150f02cb2SNick Lewycky //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2450aa64fSDan Gohman // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6450aa64fSDan Gohman // 7450aa64fSDan Gohman //===----------------------------------------------------------------------===// 8450aa64fSDan Gohman // 9db5028bdSEric Christopher // This file defines several CodeGen-specific LLVM IR analysis utilities. 10450aa64fSDan Gohman // 11450aa64fSDan Gohman //===----------------------------------------------------------------------===// 12450aa64fSDan Gohman 1309fc276dSEric Christopher #include "llvm/CodeGen/Analysis.h" 14dda00098SEric Christopher #include "llvm/Analysis/ValueTracking.h" 15ed0881b2SChandler Carruth #include "llvm/CodeGen/MachineFunction.h" 163f833edcSDavid Blaikie #include "llvm/CodeGen/TargetInstrInfo.h" 17b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetLowering.h" 18b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetSubtargetInfo.h" 199fb823bbSChandler Carruth #include "llvm/IR/DataLayout.h" 209fb823bbSChandler Carruth #include "llvm/IR/DerivedTypes.h" 219fb823bbSChandler Carruth #include "llvm/IR/Function.h" 229fb823bbSChandler Carruth #include "llvm/IR/Instructions.h" 239fb823bbSChandler Carruth #include "llvm/IR/IntrinsicInst.h" 249fb823bbSChandler Carruth #include "llvm/IR/LLVMContext.h" 259fb823bbSChandler Carruth #include "llvm/IR/Module.h" 26450aa64fSDan Gohman #include "llvm/Support/ErrorHandling.h" 27450aa64fSDan Gohman #include "llvm/Support/MathExtras.h" 28fe0006c8SSimon Pilgrim #include "llvm/Target/TargetMachine.h" 29f21434ccSRafael Espindola #include "llvm/Transforms/Utils/GlobalStatus.h" 30d913448bSEric Christopher 31450aa64fSDan Gohman using namespace llvm; 32450aa64fSDan Gohman 338923cc54SMehdi Amini /// Compute the linearized index of a member in a nested aggregate/struct/array 348923cc54SMehdi Amini /// by recursing and accumulating CurIndex as long as there are indices in the 358923cc54SMehdi Amini /// index list. 36229907cdSChris Lattner unsigned llvm::ComputeLinearIndex(Type *Ty, 37450aa64fSDan Gohman const unsigned *Indices, 38450aa64fSDan Gohman const unsigned *IndicesEnd, 39450aa64fSDan Gohman unsigned CurIndex) { 40450aa64fSDan Gohman // Base case: We're done. 41450aa64fSDan Gohman if (Indices && Indices == IndicesEnd) 42450aa64fSDan Gohman return CurIndex; 43450aa64fSDan Gohman 44450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 45229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 46ffba9e59SKazu Hirata for (auto I : llvm::enumerate(STy->elements())) { 47ffba9e59SKazu Hirata Type *ET = I.value(); 48ffba9e59SKazu Hirata if (Indices && *Indices == I.index()) 49ffba9e59SKazu Hirata return ComputeLinearIndex(ET, Indices + 1, IndicesEnd, CurIndex); 50ffba9e59SKazu Hirata CurIndex = ComputeLinearIndex(ET, nullptr, nullptr, CurIndex); 51450aa64fSDan Gohman } 527b068f6bSMehdi Amini assert(!Indices && "Unexpected out of bound"); 53450aa64fSDan Gohman return CurIndex; 54450aa64fSDan Gohman } 55450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 56229907cdSChris Lattner else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 57229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 588923cc54SMehdi Amini unsigned NumElts = ATy->getNumElements(); 598923cc54SMehdi Amini // Compute the Linear offset when jumping one element of the array 608923cc54SMehdi Amini unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 617b068f6bSMehdi Amini if (Indices) { 627b068f6bSMehdi Amini assert(*Indices < NumElts && "Unexpected out of bound"); 638923cc54SMehdi Amini // If the indice is inside the array, compute the index to the requested 648923cc54SMehdi Amini // elt and recurse inside the element with the end of the indices list 658923cc54SMehdi Amini CurIndex += EltLinearOffset* *Indices; 66aadc5596SDan Gohman return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 67450aa64fSDan Gohman } 688923cc54SMehdi Amini CurIndex += EltLinearOffset*NumElts; 69450aa64fSDan Gohman return CurIndex; 70450aa64fSDan Gohman } 71450aa64fSDan Gohman // We haven't found the type we're looking for, so keep searching. 72450aa64fSDan Gohman return CurIndex + 1; 73450aa64fSDan Gohman } 74450aa64fSDan Gohman 75450aa64fSDan Gohman /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 76450aa64fSDan Gohman /// EVTs that represent all the individual underlying 77450aa64fSDan Gohman /// non-aggregate types that comprise it. 78450aa64fSDan Gohman /// 79450aa64fSDan Gohman /// If Offsets is non-null, it points to a vector to be filled in 80450aa64fSDan Gohman /// with the in-memory offsets of each of the individual values. 81450aa64fSDan Gohman /// 8256228dabSMehdi Amini void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 8356228dabSMehdi Amini Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 84ee2474dfSTim Northover SmallVectorImpl<EVT> *MemVTs, 85450aa64fSDan Gohman SmallVectorImpl<uint64_t> *Offsets, 86450aa64fSDan Gohman uint64_t StartingOffset) { 87450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 88229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 89cfec6cd5SCraig Topper // If the Offsets aren't needed, don't query the struct layout. This allows 90cfec6cd5SCraig Topper // us to support structs with scalable vectors for operations that don't 91cfec6cd5SCraig Topper // need offsets. 92cfec6cd5SCraig Topper const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr; 93450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 94450aa64fSDan Gohman EI = EB, 95450aa64fSDan Gohman EE = STy->element_end(); 96cfec6cd5SCraig Topper EI != EE; ++EI) { 97cfec6cd5SCraig Topper // Don't compute the element offset if we didn't get a StructLayout above. 98cfec6cd5SCraig Topper uint64_t EltOffset = SL ? SL->getElementOffset(EI - EB) : 0; 99ee2474dfSTim Northover ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 100cfec6cd5SCraig Topper StartingOffset + EltOffset); 101cfec6cd5SCraig Topper } 102450aa64fSDan Gohman return; 103450aa64fSDan Gohman } 104450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 105229907cdSChris Lattner if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 106229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 107cfec6cd5SCraig Topper uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue(); 108450aa64fSDan Gohman for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 109ee2474dfSTim Northover ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 110450aa64fSDan Gohman StartingOffset + i * EltSize); 111450aa64fSDan Gohman return; 112450aa64fSDan Gohman } 113450aa64fSDan Gohman // Interpret void as zero return values. 114450aa64fSDan Gohman if (Ty->isVoidTy()) 115450aa64fSDan Gohman return; 116450aa64fSDan Gohman // Base case: we can get an EVT for this LLVM IR type. 11744ede33aSMehdi Amini ValueVTs.push_back(TLI.getValueType(DL, Ty)); 118ee2474dfSTim Northover if (MemVTs) 119ee2474dfSTim Northover MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 120450aa64fSDan Gohman if (Offsets) 121450aa64fSDan Gohman Offsets->push_back(StartingOffset); 122450aa64fSDan Gohman } 123450aa64fSDan Gohman 124ee2474dfSTim Northover void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 125ee2474dfSTim Northover Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 126ee2474dfSTim Northover SmallVectorImpl<uint64_t> *Offsets, 127ee2474dfSTim Northover uint64_t StartingOffset) { 128ee2474dfSTim Northover return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 129ee2474dfSTim Northover StartingOffset); 130ee2474dfSTim Northover } 131ee2474dfSTim Northover 1322064e45cSMatt Arsenault void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 1332064e45cSMatt Arsenault SmallVectorImpl<LLT> &ValueTys, 1342064e45cSMatt Arsenault SmallVectorImpl<uint64_t> *Offsets, 1352064e45cSMatt Arsenault uint64_t StartingOffset) { 1362064e45cSMatt Arsenault // Given a struct type, recursively traverse the elements. 1372064e45cSMatt Arsenault if (StructType *STy = dyn_cast<StructType>(&Ty)) { 138cfec6cd5SCraig Topper // If the Offsets aren't needed, don't query the struct layout. This allows 139cfec6cd5SCraig Topper // us to support structs with scalable vectors for operations that don't 140cfec6cd5SCraig Topper // need offsets. 141cfec6cd5SCraig Topper const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr; 142cfec6cd5SCraig Topper for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 143cfec6cd5SCraig Topper uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0; 1442064e45cSMatt Arsenault computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 145cfec6cd5SCraig Topper StartingOffset + EltOffset); 146cfec6cd5SCraig Topper } 1472064e45cSMatt Arsenault return; 1482064e45cSMatt Arsenault } 1492064e45cSMatt Arsenault // Given an array type, recursively traverse the elements. 1502064e45cSMatt Arsenault if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 1512064e45cSMatt Arsenault Type *EltTy = ATy->getElementType(); 152cfec6cd5SCraig Topper uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue(); 1532064e45cSMatt Arsenault for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 1542064e45cSMatt Arsenault computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 1552064e45cSMatt Arsenault StartingOffset + i * EltSize); 1562064e45cSMatt Arsenault return; 1572064e45cSMatt Arsenault } 1582064e45cSMatt Arsenault // Interpret void as zero return values. 1592064e45cSMatt Arsenault if (Ty.isVoidTy()) 1602064e45cSMatt Arsenault return; 1612064e45cSMatt Arsenault // Base case: we can get an LLT for this LLVM IR type. 1622064e45cSMatt Arsenault ValueTys.push_back(getLLTForType(Ty, DL)); 1632064e45cSMatt Arsenault if (Offsets != nullptr) 1642064e45cSMatt Arsenault Offsets->push_back(StartingOffset * 8); 1652064e45cSMatt Arsenault } 1662064e45cSMatt Arsenault 167450aa64fSDan Gohman /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 168283bc2edSReid Kleckner GlobalValue *llvm::ExtractTypeInfo(Value *V) { 1692452d703SPeter Collingbourne V = V->stripPointerCasts(); 170283bc2edSReid Kleckner GlobalValue *GV = dyn_cast<GlobalValue>(V); 171283bc2edSReid Kleckner GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 172450aa64fSDan Gohman 173283bc2edSReid Kleckner if (Var && Var->getName() == "llvm.eh.catch.all.value") { 174283bc2edSReid Kleckner assert(Var->hasInitializer() && 175450aa64fSDan Gohman "The EH catch-all value must have an initializer"); 176283bc2edSReid Kleckner Value *Init = Var->getInitializer(); 177283bc2edSReid Kleckner GV = dyn_cast<GlobalValue>(Init); 178450aa64fSDan Gohman if (!GV) V = cast<ConstantPointerNull>(Init); 179450aa64fSDan Gohman } 180450aa64fSDan Gohman 181450aa64fSDan Gohman assert((GV || isa<ConstantPointerNull>(V)) && 182450aa64fSDan Gohman "TypeInfo must be a global variable or NULL"); 183450aa64fSDan Gohman return GV; 184450aa64fSDan Gohman } 185450aa64fSDan Gohman 186450aa64fSDan Gohman /// getFCmpCondCode - Return the ISD condition code corresponding to 187450aa64fSDan Gohman /// the given LLVM IR floating-point condition code. This includes 188450aa64fSDan Gohman /// consideration of global floating-point math flags. 189450aa64fSDan Gohman /// 190450aa64fSDan Gohman ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 191450aa64fSDan Gohman switch (Pred) { 19250f02cb2SNick Lewycky case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 19350f02cb2SNick Lewycky case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 19450f02cb2SNick Lewycky case FCmpInst::FCMP_OGT: return ISD::SETOGT; 19550f02cb2SNick Lewycky case FCmpInst::FCMP_OGE: return ISD::SETOGE; 19650f02cb2SNick Lewycky case FCmpInst::FCMP_OLT: return ISD::SETOLT; 19750f02cb2SNick Lewycky case FCmpInst::FCMP_OLE: return ISD::SETOLE; 19850f02cb2SNick Lewycky case FCmpInst::FCMP_ONE: return ISD::SETONE; 19950f02cb2SNick Lewycky case FCmpInst::FCMP_ORD: return ISD::SETO; 20050f02cb2SNick Lewycky case FCmpInst::FCMP_UNO: return ISD::SETUO; 20150f02cb2SNick Lewycky case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 20250f02cb2SNick Lewycky case FCmpInst::FCMP_UGT: return ISD::SETUGT; 20350f02cb2SNick Lewycky case FCmpInst::FCMP_UGE: return ISD::SETUGE; 20450f02cb2SNick Lewycky case FCmpInst::FCMP_ULT: return ISD::SETULT; 20550f02cb2SNick Lewycky case FCmpInst::FCMP_ULE: return ISD::SETULE; 20650f02cb2SNick Lewycky case FCmpInst::FCMP_UNE: return ISD::SETUNE; 20750f02cb2SNick Lewycky case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 20846a9f016SDavid Blaikie default: llvm_unreachable("Invalid FCmp predicate opcode!"); 209450aa64fSDan Gohman } 21050f02cb2SNick Lewycky } 21150f02cb2SNick Lewycky 21250f02cb2SNick Lewycky ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 21350f02cb2SNick Lewycky switch (CC) { 21450f02cb2SNick Lewycky case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 21550f02cb2SNick Lewycky case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 21650f02cb2SNick Lewycky case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 21750f02cb2SNick Lewycky case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 21850f02cb2SNick Lewycky case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 21950f02cb2SNick Lewycky case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 22046a9f016SDavid Blaikie default: return CC; 22150f02cb2SNick Lewycky } 222450aa64fSDan Gohman } 223450aa64fSDan Gohman 224450aa64fSDan Gohman /// getICmpCondCode - Return the ISD condition code corresponding to 225450aa64fSDan Gohman /// the given LLVM IR integer condition code. 226450aa64fSDan Gohman /// 227450aa64fSDan Gohman ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 228450aa64fSDan Gohman switch (Pred) { 229450aa64fSDan Gohman case ICmpInst::ICMP_EQ: return ISD::SETEQ; 230450aa64fSDan Gohman case ICmpInst::ICMP_NE: return ISD::SETNE; 231450aa64fSDan Gohman case ICmpInst::ICMP_SLE: return ISD::SETLE; 232450aa64fSDan Gohman case ICmpInst::ICMP_ULE: return ISD::SETULE; 233450aa64fSDan Gohman case ICmpInst::ICMP_SGE: return ISD::SETGE; 234450aa64fSDan Gohman case ICmpInst::ICMP_UGE: return ISD::SETUGE; 235450aa64fSDan Gohman case ICmpInst::ICMP_SLT: return ISD::SETLT; 236450aa64fSDan Gohman case ICmpInst::ICMP_ULT: return ISD::SETULT; 237450aa64fSDan Gohman case ICmpInst::ICMP_SGT: return ISD::SETGT; 238450aa64fSDan Gohman case ICmpInst::ICMP_UGT: return ISD::SETUGT; 239450aa64fSDan Gohman default: 240450aa64fSDan Gohman llvm_unreachable("Invalid ICmp predicate opcode!"); 241450aa64fSDan Gohman } 242450aa64fSDan Gohman } 243450aa64fSDan Gohman 244ffc44549SStephen Lin static bool isNoopBitcast(Type *T1, Type *T2, 245c0659fadSMichael Gottesman const TargetLoweringBase& TLI) { 246ffc44549SStephen Lin return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 247ffc44549SStephen Lin (isa<VectorType>(T1) && isa<VectorType>(T2) && 248ffc44549SStephen Lin TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 249ffc44549SStephen Lin } 2504f3615deSChris Lattner 251a4415854STim Northover /// Look through operations that will be free to find the earliest source of 252a4415854STim Northover /// this value. 253a4415854STim Northover /// 254d68904f9SJames Henderson /// @param ValLoc If V has aggregate type, we will be interested in a particular 255a4415854STim Northover /// scalar component. This records its address; the reverse of this list gives a 256a4415854STim Northover /// sequence of indices appropriate for an extractvalue to locate the important 257a4415854STim Northover /// value. This value is updated during the function and on exit will indicate 258a4415854STim Northover /// similar information for the Value returned. 259a4415854STim Northover /// 260a4415854STim Northover /// @param DataBits If this function looks through truncate instructions, this 261a4415854STim Northover /// will record the smallest size attained. 262a4415854STim Northover static const Value *getNoopInput(const Value *V, 263a4415854STim Northover SmallVectorImpl<unsigned> &ValLoc, 264a4415854STim Northover unsigned &DataBits, 26544ede33aSMehdi Amini const TargetLoweringBase &TLI, 26644ede33aSMehdi Amini const DataLayout &DL) { 267ffc44549SStephen Lin while (true) { 268ffc44549SStephen Lin // Try to look through V1; if V1 is not an instruction, it can't be looked 269ffc44549SStephen Lin // through. 270a4415854STim Northover const Instruction *I = dyn_cast<Instruction>(V); 271a4415854STim Northover if (!I || I->getNumOperands() == 0) return V; 272c0196b1bSCraig Topper const Value *NoopInput = nullptr; 273a4415854STim Northover 274182fe3eeSChris Lattner Value *Op = I->getOperand(0); 275a4415854STim Northover if (isa<BitCastInst>(I)) { 2764f3615deSChris Lattner // Look through truly no-op bitcasts. 277ffc44549SStephen Lin if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 278ffc44549SStephen Lin NoopInput = Op; 279ffc44549SStephen Lin } else if (isa<GetElementPtrInst>(I)) { 280ffc44549SStephen Lin // Look through getelementptr 281ffc44549SStephen Lin if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 282ffc44549SStephen Lin NoopInput = Op; 283ffc44549SStephen Lin } else if (isa<IntToPtrInst>(I)) { 284182fe3eeSChris Lattner // Look through inttoptr. 285ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 286ffc44549SStephen Lin // support this eventually, but don't bother for now. 287ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 28844ede33aSMehdi Amini DL.getPointerSizeInBits() == 289182fe3eeSChris Lattner cast<IntegerType>(Op->getType())->getBitWidth()) 290ffc44549SStephen Lin NoopInput = Op; 291ffc44549SStephen Lin } else if (isa<PtrToIntInst>(I)) { 292182fe3eeSChris Lattner // Look through ptrtoint. 293ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 294ffc44549SStephen Lin // support this eventually, but don't bother for now. 295ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 29644ede33aSMehdi Amini DL.getPointerSizeInBits() == 297182fe3eeSChris Lattner cast<IntegerType>(I->getType())->getBitWidth()) 298ffc44549SStephen Lin NoopInput = Op; 299a4415854STim Northover } else if (isa<TruncInst>(I) && 300a4415854STim Northover TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 301b302561bSGraham Hunter DataBits = std::min((uint64_t)DataBits, 302b302561bSGraham Hunter I->getType()->getPrimitiveSizeInBits().getFixedSize()); 303a4415854STim Northover NoopInput = Op; 304f06cf9daSCraig Topper } else if (auto *CB = dyn_cast<CallBase>(I)) { 305f06cf9daSCraig Topper const Value *ReturnedOp = CB->getReturnedArgOperand(); 3066aff744eSAhmed Bougacha if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 3076aff744eSAhmed Bougacha NoopInput = ReturnedOp; 308a4415854STim Northover } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 309a4415854STim Northover // Value may come from either the aggregate or the scalar 310a4415854STim Northover ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 311e4310fe9STim Northover if (ValLoc.size() >= InsertLoc.size() && 312e4310fe9STim Northover std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 313a4415854STim Northover // The type being inserted is a nested sub-type of the aggregate; we 314a4415854STim Northover // have to remove those initial indices to get the location we're 315a4415854STim Northover // interested in for the operand. 316a4415854STim Northover ValLoc.resize(ValLoc.size() - InsertLoc.size()); 317a4415854STim Northover NoopInput = IVI->getInsertedValueOperand(); 318a4415854STim Northover } else { 319a4415854STim Northover // The struct we're inserting into has the value we're interested in, no 320a4415854STim Northover // change of address. 321a4415854STim Northover NoopInput = Op; 322a4415854STim Northover } 323a4415854STim Northover } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 324a4415854STim Northover // The part we're interested in will inevitably be some sub-section of the 325a4415854STim Northover // previous aggregate. Combine the two paths to obtain the true address of 326a4415854STim Northover // our element. 327a4415854STim Northover ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 3284f6ac162SBenjamin Kramer ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 329a4415854STim Northover NoopInput = Op; 330a4415854STim Northover } 331a4415854STim Northover // Terminate if we couldn't find anything to look through. 332a4415854STim Northover if (!NoopInput) 333a4415854STim Northover return V; 334a4415854STim Northover 335a4415854STim Northover V = NoopInput; 336ffc44549SStephen Lin } 337182fe3eeSChris Lattner } 338182fe3eeSChris Lattner 339a4415854STim Northover /// Return true if this scalar return value only has bits discarded on its path 340a4415854STim Northover /// from the "tail call" to the "ret". This includes the obvious noop 341a4415854STim Northover /// instructions handled by getNoopInput above as well as free truncations (or 342a4415854STim Northover /// extensions prior to the call). 343a4415854STim Northover static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 344a4415854STim Northover SmallVectorImpl<unsigned> &RetIndices, 345a4415854STim Northover SmallVectorImpl<unsigned> &CallIndices, 346707d68f0STim Northover bool AllowDifferingSizes, 34744ede33aSMehdi Amini const TargetLoweringBase &TLI, 34844ede33aSMehdi Amini const DataLayout &DL) { 3494f3615deSChris Lattner 350a4415854STim Northover // Trace the sub-value needed by the return value as far back up the graph as 351a4415854STim Northover // possible, in the hope that it will intersect with the value produced by the 352a4415854STim Northover // call. In the simple case with no "returned" attribute, the hope is actually 353a4415854STim Northover // that we end up back at the tail call instruction itself. 354a4415854STim Northover unsigned BitsRequired = UINT_MAX; 35544ede33aSMehdi Amini RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 356ffc44549SStephen Lin 357a4415854STim Northover // If this slot in the value returned is undef, it doesn't matter what the 358a4415854STim Northover // call puts there, it'll be fine. 359a4415854STim Northover if (isa<UndefValue>(RetVal)) 360a4415854STim Northover return true; 361ffc44549SStephen Lin 362a4415854STim Northover // Now do a similar search up through the graph to find where the value 363a4415854STim Northover // actually returned by the "tail call" comes from. In the simple case without 364a4415854STim Northover // a "returned" attribute, the search will be blocked immediately and the loop 365a4415854STim Northover // a Noop. 366a4415854STim Northover unsigned BitsProvided = UINT_MAX; 36744ede33aSMehdi Amini CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 368a4415854STim Northover 369a4415854STim Northover // There's no hope if we can't actually trace them to (the same part of!) the 370a4415854STim Northover // same value. 371a4415854STim Northover if (CallVal != RetVal || CallIndices != RetIndices) 372a4415854STim Northover return false; 373a4415854STim Northover 374a4415854STim Northover // However, intervening truncates may have made the call non-tail. Make sure 375a4415854STim Northover // all the bits that are needed by the "ret" have been provided by the "tail 376a4415854STim Northover // call". FIXME: with sufficiently cunning bit-tracking, we could look through 377a4415854STim Northover // extensions too. 378707d68f0STim Northover if (BitsProvided < BitsRequired || 379707d68f0STim Northover (!AllowDifferingSizes && BitsProvided != BitsRequired)) 380a4415854STim Northover return false; 381a4415854STim Northover 382ffc44549SStephen Lin return true; 383ffc44549SStephen Lin } 384a4415854STim Northover 385a4415854STim Northover /// For an aggregate type, determine whether a given index is within bounds or 386a4415854STim Northover /// not. 387e24e95feSEli Friedman static bool indexReallyValid(Type *T, unsigned Idx) { 388a4415854STim Northover if (ArrayType *AT = dyn_cast<ArrayType>(T)) 389a4415854STim Northover return Idx < AT->getNumElements(); 390a4415854STim Northover 391a4415854STim Northover return Idx < cast<StructType>(T)->getNumElements(); 392ffc44549SStephen Lin } 393a4415854STim Northover 394a4415854STim Northover /// Move the given iterators to the next leaf type in depth first traversal. 395a4415854STim Northover /// 396a4415854STim Northover /// Performs a depth-first traversal of the type as specified by its arguments, 397a4415854STim Northover /// stopping at the next leaf node (which may be a legitimate scalar type or an 398a4415854STim Northover /// empty struct or array). 399a4415854STim Northover /// 400a4415854STim Northover /// @param SubTypes List of the partial components making up the type from 401a4415854STim Northover /// outermost to innermost non-empty aggregate. The element currently 402a4415854STim Northover /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 403a4415854STim Northover /// 404a4415854STim Northover /// @param Path Set of extractvalue indices leading from the outermost type 405a4415854STim Northover /// (SubTypes[0]) to the leaf node currently represented. 406a4415854STim Northover /// 407a4415854STim Northover /// @returns true if a new type was found, false otherwise. Calling this 408a4415854STim Northover /// function again on a finished iterator will repeatedly return 409a4415854STim Northover /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 410a4415854STim Northover /// aggregate or a non-aggregate 411e24e95feSEli Friedman static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes, 412a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 413a4415854STim Northover // First march back up the tree until we can successfully increment one of the 414a4415854STim Northover // coordinates in Path. 415a4415854STim Northover while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 416a4415854STim Northover Path.pop_back(); 417a4415854STim Northover SubTypes.pop_back(); 418a4415854STim Northover } 419a4415854STim Northover 420a4415854STim Northover // If we reached the top, then the iterator is done. 421a4415854STim Northover if (Path.empty()) 422a4415854STim Northover return false; 423a4415854STim Northover 424a4415854STim Northover // We know there's *some* valid leaf now, so march back down the tree picking 425a4415854STim Northover // out the left-most element at each node. 426a4415854STim Northover ++Path.back(); 427e24e95feSEli Friedman Type *DeeperType = 428e24e95feSEli Friedman ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()); 429a4415854STim Northover while (DeeperType->isAggregateType()) { 430e24e95feSEli Friedman if (!indexReallyValid(DeeperType, 0)) 431a4415854STim Northover return true; 432a4415854STim Northover 433e24e95feSEli Friedman SubTypes.push_back(DeeperType); 434a4415854STim Northover Path.push_back(0); 435a4415854STim Northover 436e24e95feSEli Friedman DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0); 437a4415854STim Northover } 438a4415854STim Northover 439ffc44549SStephen Lin return true; 440ffc44549SStephen Lin } 441a4415854STim Northover 442a4415854STim Northover /// Find the first non-empty, scalar-like type in Next and setup the iterator 443a4415854STim Northover /// components. 444a4415854STim Northover /// 445a4415854STim Northover /// Assuming Next is an aggregate of some kind, this function will traverse the 446a4415854STim Northover /// tree from left to right (i.e. depth-first) looking for the first 447a4415854STim Northover /// non-aggregate type which will play a role in function return. 448a4415854STim Northover /// 449a4415854STim Northover /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 450a4415854STim Northover /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 451a4415854STim Northover /// i32 in that type. 452e24e95feSEli Friedman static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes, 453a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 454a4415854STim Northover // First initialise the iterator components to the first "leaf" node 455a4415854STim Northover // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 456a4415854STim Northover // despite nominally being an aggregate). 457e24e95feSEli Friedman while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) { 458e24e95feSEli Friedman SubTypes.push_back(Next); 459a4415854STim Northover Path.push_back(0); 460e24e95feSEli Friedman Next = FirstInner; 461ffc44549SStephen Lin } 462ffc44549SStephen Lin 463a4415854STim Northover // If there's no Path now, Next was originally scalar already (or empty 464a4415854STim Northover // leaf). We're done. 465a4415854STim Northover if (Path.empty()) 466a4415854STim Northover return true; 467ffc44549SStephen Lin 468a4415854STim Northover // Otherwise, use normal iteration to keep looking through the tree until we 469a4415854STim Northover // find a non-aggregate type. 470e24e95feSEli Friedman while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 471e24e95feSEli Friedman ->isAggregateType()) { 472a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 473ffc44549SStephen Lin return false; 474ffc44549SStephen Lin } 4754f3615deSChris Lattner 476a4415854STim Northover return true; 477a4415854STim Northover } 478a4415854STim Northover 479a4415854STim Northover /// Set the iterator data-structures to the next non-empty, non-aggregate 480a4415854STim Northover /// subtype. 481e24e95feSEli Friedman static bool nextRealType(SmallVectorImpl<Type *> &SubTypes, 482a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 483a4415854STim Northover do { 484a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 485a4415854STim Northover return false; 486a4415854STim Northover 487a4415854STim Northover assert(!Path.empty() && "found a leaf but didn't set the path?"); 488e24e95feSEli Friedman } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 489e24e95feSEli Friedman ->isAggregateType()); 490a4415854STim Northover 491a4415854STim Northover return true; 492a4415854STim Northover } 493a4415854STim Northover 494a4415854STim Northover 495450aa64fSDan Gohman /// Test if the given instruction is in a position to be optimized 496450aa64fSDan Gohman /// with a tail-call. This roughly means that it's in a block with 497450aa64fSDan Gohman /// a return and there's nothing that needs to be scheduled 498450aa64fSDan Gohman /// between it and the return. 499450aa64fSDan Gohman /// 500450aa64fSDan Gohman /// This function only tests target-independent requirements. 50130430938SCraig Topper bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) { 50230430938SCraig Topper const BasicBlock *ExitBB = Call.getParent(); 503edb12a83SChandler Carruth const Instruction *Term = ExitBB->getTerminator(); 504450aa64fSDan Gohman const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 505450aa64fSDan Gohman 506450aa64fSDan Gohman // The block must end in a return statement or unreachable. 507450aa64fSDan Gohman // 508450aa64fSDan Gohman // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 509450aa64fSDan Gohman // an unreachable, for now. The way tailcall optimization is currently 510450aa64fSDan Gohman // implemented means it will add an epilogue followed by a jump. That is 511450aa64fSDan Gohman // not profitable. Also, if the callee is a special function (e.g. 512450aa64fSDan Gohman // longjmp on x86), it can end up causing miscompilation that has not 513450aa64fSDan Gohman // been fully understood. 514450aa64fSDan Gohman if (!Ret && 515f9b67b81SReid Kleckner ((!TM.Options.GuaranteedTailCallOpt && 51630430938SCraig Topper Call.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term))) 5174f3615deSChris Lattner return false; 518450aa64fSDan Gohman 519450aa64fSDan Gohman // If I will have a chain, make sure no other instruction that will have a 520450aa64fSDan Gohman // chain interposes between I and the return. 5213abe7acaSVictor Huang // Check for all calls including speculatable functions. 522b6d0bd48SBenjamin Kramer for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 52330430938SCraig Topper if (&*BBI == &Call) 524450aa64fSDan Gohman break; 525450aa64fSDan Gohman // Debug info intrinsics do not get in the way of tail call optimization. 526450aa64fSDan Gohman if (isa<DbgInfoIntrinsic>(BBI)) 527450aa64fSDan Gohman continue; 528f3c44569SHongtao Yu // Pseudo probe intrinsics do not block tail call optimization either. 529f3c44569SHongtao Yu if (isa<PseudoProbeInst>(BBI)) 530f3c44569SHongtao Yu continue; 531121cac01SJeroen Dobbelaere // A lifetime end, assume or noalias.decl intrinsic should not stop tail 532121cac01SJeroen Dobbelaere // call optimization. 53318bfb3a5SRobert Lougher if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 534e03f6a16SGuozhi Wei if (II->getIntrinsicID() == Intrinsic::lifetime_end || 535121cac01SJeroen Dobbelaere II->getIntrinsicID() == Intrinsic::assume || 536121cac01SJeroen Dobbelaere II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl) 53718bfb3a5SRobert Lougher continue; 538450aa64fSDan Gohman if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 539980f8f26SDuncan P. N. Exon Smith !isSafeToSpeculativelyExecute(&*BBI)) 540450aa64fSDan Gohman return false; 541450aa64fSDan Gohman } 542450aa64fSDan Gohman 543f734a8baSEric Christopher const Function *F = ExitBB->getParent(); 544d913448bSEric Christopher return returnTypeIsEligibleForTailCall( 54530430938SCraig Topper F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 546ce0e4c26SMichael Gottesman } 547ce0e4c26SMichael Gottesman 548f79af6f8SMichael Kuperstein bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 549f79af6f8SMichael Kuperstein const ReturnInst *Ret, 550f79af6f8SMichael Kuperstein const TargetLoweringBase &TLI, 551f79af6f8SMichael Kuperstein bool *AllowDifferingSizes) { 552f79af6f8SMichael Kuperstein // ADS may be null, so don't write to it directly. 553f79af6f8SMichael Kuperstein bool DummyADS; 554f79af6f8SMichael Kuperstein bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 555f79af6f8SMichael Kuperstein ADS = true; 556f79af6f8SMichael Kuperstein 557b518054bSReid Kleckner AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 558f79af6f8SMichael Kuperstein AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 559b518054bSReid Kleckner AttributeList::ReturnIndex); 560f79af6f8SMichael Kuperstein 56162ad2128SDávid Bolvanský // Following attributes are completely benign as far as calling convention 562353cb3d4SDavid Green // goes, they shouldn't affect whether the call is a tail call. 563*ef2dc7edSDávid Bolvanský for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 564*ef2dc7edSDávid Bolvanský Attribute::DereferenceableOrNull, Attribute::NoAlias, 565*ef2dc7edSDávid Bolvanský Attribute::NonNull}) { 566*ef2dc7edSDávid Bolvanský CallerAttrs.removeAttribute(Attr); 567*ef2dc7edSDávid Bolvanský CalleeAttrs.removeAttribute(Attr); 568*ef2dc7edSDávid Bolvanský } 569f79af6f8SMichael Kuperstein 570f79af6f8SMichael Kuperstein if (CallerAttrs.contains(Attribute::ZExt)) { 571f79af6f8SMichael Kuperstein if (!CalleeAttrs.contains(Attribute::ZExt)) 572f79af6f8SMichael Kuperstein return false; 573f79af6f8SMichael Kuperstein 574f79af6f8SMichael Kuperstein ADS = false; 575f79af6f8SMichael Kuperstein CallerAttrs.removeAttribute(Attribute::ZExt); 576f79af6f8SMichael Kuperstein CalleeAttrs.removeAttribute(Attribute::ZExt); 577f79af6f8SMichael Kuperstein } else if (CallerAttrs.contains(Attribute::SExt)) { 578f79af6f8SMichael Kuperstein if (!CalleeAttrs.contains(Attribute::SExt)) 579f79af6f8SMichael Kuperstein return false; 580f79af6f8SMichael Kuperstein 581f79af6f8SMichael Kuperstein ADS = false; 582f79af6f8SMichael Kuperstein CallerAttrs.removeAttribute(Attribute::SExt); 583f79af6f8SMichael Kuperstein CalleeAttrs.removeAttribute(Attribute::SExt); 584f79af6f8SMichael Kuperstein } 585f79af6f8SMichael Kuperstein 586ac6454a7SFrancis Visoiu Mistrih // Drop sext and zext return attributes if the result is not used. 587ac6454a7SFrancis Visoiu Mistrih // This enables tail calls for code like: 588ac6454a7SFrancis Visoiu Mistrih // 589ac6454a7SFrancis Visoiu Mistrih // define void @caller() { 590ac6454a7SFrancis Visoiu Mistrih // entry: 591ac6454a7SFrancis Visoiu Mistrih // %unused_result = tail call zeroext i1 @callee() 592ac6454a7SFrancis Visoiu Mistrih // br label %retlabel 593ac6454a7SFrancis Visoiu Mistrih // retlabel: 594ac6454a7SFrancis Visoiu Mistrih // ret void 595ac6454a7SFrancis Visoiu Mistrih // } 596ac6454a7SFrancis Visoiu Mistrih if (I->use_empty()) { 597ac6454a7SFrancis Visoiu Mistrih CalleeAttrs.removeAttribute(Attribute::SExt); 598ac6454a7SFrancis Visoiu Mistrih CalleeAttrs.removeAttribute(Attribute::ZExt); 599ac6454a7SFrancis Visoiu Mistrih } 600ac6454a7SFrancis Visoiu Mistrih 601f79af6f8SMichael Kuperstein // If they're still different, there's some facet we don't understand 602f79af6f8SMichael Kuperstein // (currently only "inreg", but in future who knows). It may be OK but the 603f79af6f8SMichael Kuperstein // only safe option is to reject the tail call. 604f79af6f8SMichael Kuperstein return CallerAttrs == CalleeAttrs; 605f79af6f8SMichael Kuperstein } 606f79af6f8SMichael Kuperstein 607f2cb9c0eSSanne Wouda /// Check whether B is a bitcast of a pointer type to another pointer type, 608f2cb9c0eSSanne Wouda /// which is equal to A. 609f2cb9c0eSSanne Wouda static bool isPointerBitcastEqualTo(const Value *A, const Value *B) { 610f2cb9c0eSSanne Wouda assert(A && B && "Expected non-null inputs!"); 611f2cb9c0eSSanne Wouda 612f2cb9c0eSSanne Wouda auto *BitCastIn = dyn_cast<BitCastInst>(B); 613f2cb9c0eSSanne Wouda 614f2cb9c0eSSanne Wouda if (!BitCastIn) 615f2cb9c0eSSanne Wouda return false; 616f2cb9c0eSSanne Wouda 617f2cb9c0eSSanne Wouda if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy()) 618f2cb9c0eSSanne Wouda return false; 619f2cb9c0eSSanne Wouda 620f2cb9c0eSSanne Wouda return A == BitCastIn->getOperand(0); 621f2cb9c0eSSanne Wouda } 622f2cb9c0eSSanne Wouda 623ce0e4c26SMichael Gottesman bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 624ce0e4c26SMichael Gottesman const Instruction *I, 625ce0e4c26SMichael Gottesman const ReturnInst *Ret, 626ce0e4c26SMichael Gottesman const TargetLoweringBase &TLI) { 627450aa64fSDan Gohman // If the block ends with a void return or unreachable, it doesn't matter 628450aa64fSDan Gohman // what the call's return type is. 629450aa64fSDan Gohman if (!Ret || Ret->getNumOperands() == 0) return true; 630450aa64fSDan Gohman 631450aa64fSDan Gohman // If the return value is undef, it doesn't matter what the call's 632450aa64fSDan Gohman // return type is. 633450aa64fSDan Gohman if (isa<UndefValue>(Ret->getOperand(0))) return true; 634450aa64fSDan Gohman 635707d68f0STim Northover // Make sure the attributes attached to each return are compatible. 636f79af6f8SMichael Kuperstein bool AllowDifferingSizes; 637f79af6f8SMichael Kuperstein if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 638450aa64fSDan Gohman return false; 639450aa64fSDan Gohman 640a4415854STim Northover const Value *RetVal = Ret->getOperand(0), *CallVal = I; 6415d84d9b3SWei Mi // Intrinsic like llvm.memcpy has no return value, but the expanded 6425d84d9b3SWei Mi // libcall may or may not have return value. On most platforms, it 6435d84d9b3SWei Mi // will be expanded as memcpy in libc, which returns the first 6445d84d9b3SWei Mi // argument. On other platforms like arm-none-eabi, memcpy may be 6455d84d9b3SWei Mi // expanded as library call without return value, like __aeabi_memcpy. 646818d50a9SWei Mi const CallInst *Call = cast<CallInst>(I); 647818d50a9SWei Mi if (Function *F = Call->getCalledFunction()) { 648818d50a9SWei Mi Intrinsic::ID IID = F->getIntrinsicID(); 6495d84d9b3SWei Mi if (((IID == Intrinsic::memcpy && 6505d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 6515d84d9b3SWei Mi (IID == Intrinsic::memmove && 6525d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 6535d84d9b3SWei Mi (IID == Intrinsic::memset && 6545d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 655f2cb9c0eSSanne Wouda (RetVal == Call->getArgOperand(0) || 656f2cb9c0eSSanne Wouda isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0)))) 657818d50a9SWei Mi return true; 658818d50a9SWei Mi } 659818d50a9SWei Mi 660a4415854STim Northover SmallVector<unsigned, 4> RetPath, CallPath; 661e24e95feSEli Friedman SmallVector<Type *, 4> RetSubTypes, CallSubTypes; 662a4415854STim Northover 663a4415854STim Northover bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 664a4415854STim Northover bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 665a4415854STim Northover 666a4415854STim Northover // Nothing's actually returned, it doesn't matter what the callee put there 667a4415854STim Northover // it's a valid tail call. 668a4415854STim Northover if (RetEmpty) 669a4415854STim Northover return true; 670a4415854STim Northover 671a4415854STim Northover // Iterate pairwise through each of the value types making up the tail call 672a4415854STim Northover // and the corresponding return. For each one we want to know whether it's 673a4415854STim Northover // essentially going directly from the tail call to the ret, via operations 674a4415854STim Northover // that end up not generating any code. 675a4415854STim Northover // 676a4415854STim Northover // We allow a certain amount of covariance here. For example it's permitted 677a4415854STim Northover // for the tail call to define more bits than the ret actually cares about 678a4415854STim Northover // (e.g. via a truncate). 679a4415854STim Northover do { 680a4415854STim Northover if (CallEmpty) { 681a4415854STim Northover // We've exhausted the values produced by the tail call instruction, the 682a4415854STim Northover // rest are essentially undef. The type doesn't really matter, but we need 683a4415854STim Northover // *something*. 684e24e95feSEli Friedman Type *SlotType = 685e24e95feSEli Friedman ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back()); 686a4415854STim Northover CallVal = UndefValue::get(SlotType); 687a4415854STim Northover } 688a4415854STim Northover 689a4415854STim Northover // The manipulations performed when we're looking through an insertvalue or 690a4415854STim Northover // an extractvalue would happen at the front of the RetPath list, so since 691a4415854STim Northover // we have to copy it anyway it's more efficient to create a reversed copy. 6924f6ac162SBenjamin Kramer SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 6934f6ac162SBenjamin Kramer SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 694a4415854STim Northover 695a4415854STim Northover // Finally, we can check whether the value produced by the tail call at this 696a4415854STim Northover // index is compatible with the value we return. 697707d68f0STim Northover if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 69844ede33aSMehdi Amini AllowDifferingSizes, TLI, 69944ede33aSMehdi Amini F->getParent()->getDataLayout())) 700a4415854STim Northover return false; 701a4415854STim Northover 702a4415854STim Northover CallEmpty = !nextRealType(CallSubTypes, CallPath); 703a4415854STim Northover } while(nextRealType(RetSubTypes, RetPath)); 704a4415854STim Northover 705a4415854STim Northover return true; 706450aa64fSDan Gohman } 707f21434ccSRafael Espindola 708d69acf3bSHeejin Ahn static void collectEHScopeMembers( 709d69acf3bSHeejin Ahn DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 710d69acf3bSHeejin Ahn const MachineBasicBlock *MBB) { 711734d7c32SDavid Majnemer SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 712734d7c32SDavid Majnemer while (!Worklist.empty()) { 713734d7c32SDavid Majnemer const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 7141e4d3504SHeejin Ahn // Don't follow blocks which start new scopes. 715734d7c32SDavid Majnemer if (Visiting->isEHPad() && Visiting != MBB) 716734d7c32SDavid Majnemer continue; 717734d7c32SDavid Majnemer 7181e4d3504SHeejin Ahn // Add this MBB to our scope. 719d69acf3bSHeejin Ahn auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 7207b54b525SDavid Blaikie 72116193552SDavid Majnemer // Don't revisit blocks. 7227b54b525SDavid Blaikie if (!P.second) { 723d69acf3bSHeejin Ahn assert(P.first->second == EHScope && "MBB is part of two scopes!"); 724734d7c32SDavid Majnemer continue; 72516193552SDavid Majnemer } 72616193552SDavid Majnemer 7271e4d3504SHeejin Ahn // Returns are boundaries where scope transfer can occur, don't follow 72816193552SDavid Majnemer // successors. 729ed5e06b0SHeejin Ahn if (Visiting->isEHScopeReturnBlock()) 730734d7c32SDavid Majnemer continue; 73116193552SDavid Majnemer 732c5c4dbd2SKazu Hirata append_range(Worklist, Visiting->successors()); 733734d7c32SDavid Majnemer } 73416193552SDavid Majnemer } 73516193552SDavid Majnemer 73616193552SDavid Majnemer DenseMap<const MachineBasicBlock *, int> 7371e4d3504SHeejin Ahn llvm::getEHScopeMembership(const MachineFunction &MF) { 738d69acf3bSHeejin Ahn DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 73916193552SDavid Majnemer 74016193552SDavid Majnemer // We don't have anything to do if there aren't any EH pads. 7411e4d3504SHeejin Ahn if (!MF.hasEHScopes()) 742d69acf3bSHeejin Ahn return EHScopeMembership; 74316193552SDavid Majnemer 744e4f9b09bSDavid Majnemer int EntryBBNumber = MF.front().getNumber(); 74516193552SDavid Majnemer bool IsSEH = isAsynchronousEHPersonality( 746f1caa283SMatthias Braun classifyEHPersonality(MF.getFunction().getPersonalityFn())); 74716193552SDavid Majnemer 74816193552SDavid Majnemer const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 749d69acf3bSHeejin Ahn SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 750e4f9b09bSDavid Majnemer SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 751e4f9b09bSDavid Majnemer SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 75216193552SDavid Majnemer SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 75316193552SDavid Majnemer for (const MachineBasicBlock &MBB : MF) { 7541e4d3504SHeejin Ahn if (MBB.isEHScopeEntry()) { 755d69acf3bSHeejin Ahn EHScopeBlocks.push_back(&MBB); 756e4f9b09bSDavid Majnemer } else if (IsSEH && MBB.isEHPad()) { 757e4f9b09bSDavid Majnemer SEHCatchPads.push_back(&MBB); 758e4f9b09bSDavid Majnemer } else if (MBB.pred_empty()) { 759e4f9b09bSDavid Majnemer UnreachableBlocks.push_back(&MBB); 760e4f9b09bSDavid Majnemer } 76116193552SDavid Majnemer 76216193552SDavid Majnemer MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 7632e7af979SDuncan P. N. Exon Smith 7641e4d3504SHeejin Ahn // CatchPads are not scopes for SEH so do not consider CatchRet to 7651e4d3504SHeejin Ahn // transfer control to another scope. 76626f9e9ebSReid Kleckner if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 76716193552SDavid Majnemer continue; 76816193552SDavid Majnemer 769e4f9b09bSDavid Majnemer // FIXME: SEH CatchPads are not necessarily in the parent function: 770e4f9b09bSDavid Majnemer // they could be inside a finally block. 77116193552SDavid Majnemer const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 77216193552SDavid Majnemer const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 773e4f9b09bSDavid Majnemer CatchRetSuccessors.push_back( 774e4f9b09bSDavid Majnemer {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 77516193552SDavid Majnemer } 77616193552SDavid Majnemer 77716193552SDavid Majnemer // We don't have anything to do if there aren't any EH pads. 778d69acf3bSHeejin Ahn if (EHScopeBlocks.empty()) 779d69acf3bSHeejin Ahn return EHScopeMembership; 78016193552SDavid Majnemer 78116193552SDavid Majnemer // Identify all the basic blocks reachable from the function entry. 782d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 7831e4d3504SHeejin Ahn // All blocks not part of a scope are in the parent function. 784e4f9b09bSDavid Majnemer for (const MachineBasicBlock *MBB : UnreachableBlocks) 785d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 7861e4d3504SHeejin Ahn // Next, identify all the blocks inside the scopes. 787d69acf3bSHeejin Ahn for (const MachineBasicBlock *MBB : EHScopeBlocks) 788d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 7891e4d3504SHeejin Ahn // SEH CatchPads aren't really scopes, handle them separately. 790e4f9b09bSDavid Majnemer for (const MachineBasicBlock *MBB : SEHCatchPads) 791d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 79216193552SDavid Majnemer // Finally, identify all the targets of a catchret. 79316193552SDavid Majnemer for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 79416193552SDavid Majnemer CatchRetSuccessors) 795d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 79616193552SDavid Majnemer CatchRetPair.first); 797d69acf3bSHeejin Ahn return EHScopeMembership; 79816193552SDavid Majnemer } 799