150f02cb2SNick Lewycky //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2450aa64fSDan Gohman // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6450aa64fSDan Gohman // 7450aa64fSDan Gohman //===----------------------------------------------------------------------===// 8450aa64fSDan Gohman // 9db5028bdSEric Christopher // This file defines several CodeGen-specific LLVM IR analysis utilities. 10450aa64fSDan Gohman // 11450aa64fSDan Gohman //===----------------------------------------------------------------------===// 12450aa64fSDan Gohman 1309fc276dSEric Christopher #include "llvm/CodeGen/Analysis.h" 14dda00098SEric Christopher #include "llvm/Analysis/ValueTracking.h" 15ed0881b2SChandler Carruth #include "llvm/CodeGen/MachineFunction.h" 163f833edcSDavid Blaikie #include "llvm/CodeGen/TargetInstrInfo.h" 17b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetLowering.h" 18b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetSubtargetInfo.h" 199fb823bbSChandler Carruth #include "llvm/IR/DataLayout.h" 209fb823bbSChandler Carruth #include "llvm/IR/DerivedTypes.h" 219fb823bbSChandler Carruth #include "llvm/IR/Function.h" 229fb823bbSChandler Carruth #include "llvm/IR/Instructions.h" 239fb823bbSChandler Carruth #include "llvm/IR/IntrinsicInst.h" 249fb823bbSChandler Carruth #include "llvm/IR/LLVMContext.h" 259fb823bbSChandler Carruth #include "llvm/IR/Module.h" 26450aa64fSDan Gohman #include "llvm/Support/ErrorHandling.h" 27450aa64fSDan Gohman #include "llvm/Support/MathExtras.h" 28f21434ccSRafael Espindola #include "llvm/Transforms/Utils/GlobalStatus.h" 29d913448bSEric Christopher 30450aa64fSDan Gohman using namespace llvm; 31450aa64fSDan Gohman 328923cc54SMehdi Amini /// Compute the linearized index of a member in a nested aggregate/struct/array 338923cc54SMehdi Amini /// by recursing and accumulating CurIndex as long as there are indices in the 348923cc54SMehdi Amini /// index list. 35229907cdSChris Lattner unsigned llvm::ComputeLinearIndex(Type *Ty, 36450aa64fSDan Gohman const unsigned *Indices, 37450aa64fSDan Gohman const unsigned *IndicesEnd, 38450aa64fSDan Gohman unsigned CurIndex) { 39450aa64fSDan Gohman // Base case: We're done. 40450aa64fSDan Gohman if (Indices && Indices == IndicesEnd) 41450aa64fSDan Gohman return CurIndex; 42450aa64fSDan Gohman 43450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 44229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 45450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 46450aa64fSDan Gohman EI = EB, 47450aa64fSDan Gohman EE = STy->element_end(); 48450aa64fSDan Gohman EI != EE; ++EI) { 49450aa64fSDan Gohman if (Indices && *Indices == unsigned(EI - EB)) 50aadc5596SDan Gohman return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 51c0196b1bSCraig Topper CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 52450aa64fSDan Gohman } 537b068f6bSMehdi Amini assert(!Indices && "Unexpected out of bound"); 54450aa64fSDan Gohman return CurIndex; 55450aa64fSDan Gohman } 56450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 57229907cdSChris Lattner else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 58229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 598923cc54SMehdi Amini unsigned NumElts = ATy->getNumElements(); 608923cc54SMehdi Amini // Compute the Linear offset when jumping one element of the array 618923cc54SMehdi Amini unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 627b068f6bSMehdi Amini if (Indices) { 637b068f6bSMehdi Amini assert(*Indices < NumElts && "Unexpected out of bound"); 648923cc54SMehdi Amini // If the indice is inside the array, compute the index to the requested 658923cc54SMehdi Amini // elt and recurse inside the element with the end of the indices list 668923cc54SMehdi Amini CurIndex += EltLinearOffset* *Indices; 67aadc5596SDan Gohman return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 68450aa64fSDan Gohman } 698923cc54SMehdi Amini CurIndex += EltLinearOffset*NumElts; 70450aa64fSDan Gohman return CurIndex; 71450aa64fSDan Gohman } 72450aa64fSDan Gohman // We haven't found the type we're looking for, so keep searching. 73450aa64fSDan Gohman return CurIndex + 1; 74450aa64fSDan Gohman } 75450aa64fSDan Gohman 76450aa64fSDan Gohman /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 77450aa64fSDan Gohman /// EVTs that represent all the individual underlying 78450aa64fSDan Gohman /// non-aggregate types that comprise it. 79450aa64fSDan Gohman /// 80450aa64fSDan Gohman /// If Offsets is non-null, it points to a vector to be filled in 81450aa64fSDan Gohman /// with the in-memory offsets of each of the individual values. 82450aa64fSDan Gohman /// 8356228dabSMehdi Amini void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 8456228dabSMehdi Amini Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 85*ee2474dfSTim Northover SmallVectorImpl<EVT> *MemVTs, 86450aa64fSDan Gohman SmallVectorImpl<uint64_t> *Offsets, 87450aa64fSDan Gohman uint64_t StartingOffset) { 88450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 89229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 9056228dabSMehdi Amini const StructLayout *SL = DL.getStructLayout(STy); 91450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 92450aa64fSDan Gohman EI = EB, 93450aa64fSDan Gohman EE = STy->element_end(); 94450aa64fSDan Gohman EI != EE; ++EI) 95*ee2474dfSTim Northover ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 96450aa64fSDan Gohman StartingOffset + SL->getElementOffset(EI - EB)); 97450aa64fSDan Gohman return; 98450aa64fSDan Gohman } 99450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 100229907cdSChris Lattner if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 101229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 10256228dabSMehdi Amini uint64_t EltSize = DL.getTypeAllocSize(EltTy); 103450aa64fSDan Gohman for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 104*ee2474dfSTim Northover ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 105450aa64fSDan Gohman StartingOffset + i * EltSize); 106450aa64fSDan Gohman return; 107450aa64fSDan Gohman } 108450aa64fSDan Gohman // Interpret void as zero return values. 109450aa64fSDan Gohman if (Ty->isVoidTy()) 110450aa64fSDan Gohman return; 111450aa64fSDan Gohman // Base case: we can get an EVT for this LLVM IR type. 11244ede33aSMehdi Amini ValueVTs.push_back(TLI.getValueType(DL, Ty)); 113*ee2474dfSTim Northover if (MemVTs) 114*ee2474dfSTim Northover MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 115450aa64fSDan Gohman if (Offsets) 116450aa64fSDan Gohman Offsets->push_back(StartingOffset); 117450aa64fSDan Gohman } 118450aa64fSDan Gohman 119*ee2474dfSTim Northover void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 120*ee2474dfSTim Northover Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 121*ee2474dfSTim Northover SmallVectorImpl<uint64_t> *Offsets, 122*ee2474dfSTim Northover uint64_t StartingOffset) { 123*ee2474dfSTim Northover return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 124*ee2474dfSTim Northover StartingOffset); 125*ee2474dfSTim Northover } 126*ee2474dfSTim Northover 1272064e45cSMatt Arsenault void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 1282064e45cSMatt Arsenault SmallVectorImpl<LLT> &ValueTys, 1292064e45cSMatt Arsenault SmallVectorImpl<uint64_t> *Offsets, 1302064e45cSMatt Arsenault uint64_t StartingOffset) { 1312064e45cSMatt Arsenault // Given a struct type, recursively traverse the elements. 1322064e45cSMatt Arsenault if (StructType *STy = dyn_cast<StructType>(&Ty)) { 1332064e45cSMatt Arsenault const StructLayout *SL = DL.getStructLayout(STy); 1342064e45cSMatt Arsenault for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 1352064e45cSMatt Arsenault computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 1362064e45cSMatt Arsenault StartingOffset + SL->getElementOffset(I)); 1372064e45cSMatt Arsenault return; 1382064e45cSMatt Arsenault } 1392064e45cSMatt Arsenault // Given an array type, recursively traverse the elements. 1402064e45cSMatt Arsenault if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 1412064e45cSMatt Arsenault Type *EltTy = ATy->getElementType(); 1422064e45cSMatt Arsenault uint64_t EltSize = DL.getTypeAllocSize(EltTy); 1432064e45cSMatt Arsenault for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 1442064e45cSMatt Arsenault computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 1452064e45cSMatt Arsenault StartingOffset + i * EltSize); 1462064e45cSMatt Arsenault return; 1472064e45cSMatt Arsenault } 1482064e45cSMatt Arsenault // Interpret void as zero return values. 1492064e45cSMatt Arsenault if (Ty.isVoidTy()) 1502064e45cSMatt Arsenault return; 1512064e45cSMatt Arsenault // Base case: we can get an LLT for this LLVM IR type. 1522064e45cSMatt Arsenault ValueTys.push_back(getLLTForType(Ty, DL)); 1532064e45cSMatt Arsenault if (Offsets != nullptr) 1542064e45cSMatt Arsenault Offsets->push_back(StartingOffset * 8); 1552064e45cSMatt Arsenault } 1562064e45cSMatt Arsenault 157450aa64fSDan Gohman /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 158283bc2edSReid Kleckner GlobalValue *llvm::ExtractTypeInfo(Value *V) { 159450aa64fSDan Gohman V = V->stripPointerCasts(); 160283bc2edSReid Kleckner GlobalValue *GV = dyn_cast<GlobalValue>(V); 161283bc2edSReid Kleckner GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 162450aa64fSDan Gohman 163283bc2edSReid Kleckner if (Var && Var->getName() == "llvm.eh.catch.all.value") { 164283bc2edSReid Kleckner assert(Var->hasInitializer() && 165450aa64fSDan Gohman "The EH catch-all value must have an initializer"); 166283bc2edSReid Kleckner Value *Init = Var->getInitializer(); 167283bc2edSReid Kleckner GV = dyn_cast<GlobalValue>(Init); 168450aa64fSDan Gohman if (!GV) V = cast<ConstantPointerNull>(Init); 169450aa64fSDan Gohman } 170450aa64fSDan Gohman 171450aa64fSDan Gohman assert((GV || isa<ConstantPointerNull>(V)) && 172450aa64fSDan Gohman "TypeInfo must be a global variable or NULL"); 173450aa64fSDan Gohman return GV; 174450aa64fSDan Gohman } 175450aa64fSDan Gohman 176450aa64fSDan Gohman /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 177450aa64fSDan Gohman /// processed uses a memory 'm' constraint. 178450aa64fSDan Gohman bool 179e8360b71SJohn Thompson llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 180450aa64fSDan Gohman const TargetLowering &TLI) { 181450aa64fSDan Gohman for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 182450aa64fSDan Gohman InlineAsm::ConstraintInfo &CI = CInfos[i]; 183450aa64fSDan Gohman for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 184450aa64fSDan Gohman TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 185450aa64fSDan Gohman if (CType == TargetLowering::C_Memory) 186450aa64fSDan Gohman return true; 187450aa64fSDan Gohman } 188450aa64fSDan Gohman 189450aa64fSDan Gohman // Indirect operand accesses access memory. 190450aa64fSDan Gohman if (CI.isIndirect) 191450aa64fSDan Gohman return true; 192450aa64fSDan Gohman } 193450aa64fSDan Gohman 194450aa64fSDan Gohman return false; 195450aa64fSDan Gohman } 196450aa64fSDan Gohman 197450aa64fSDan Gohman /// getFCmpCondCode - Return the ISD condition code corresponding to 198450aa64fSDan Gohman /// the given LLVM IR floating-point condition code. This includes 199450aa64fSDan Gohman /// consideration of global floating-point math flags. 200450aa64fSDan Gohman /// 201450aa64fSDan Gohman ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 202450aa64fSDan Gohman switch (Pred) { 20350f02cb2SNick Lewycky case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 20450f02cb2SNick Lewycky case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 20550f02cb2SNick Lewycky case FCmpInst::FCMP_OGT: return ISD::SETOGT; 20650f02cb2SNick Lewycky case FCmpInst::FCMP_OGE: return ISD::SETOGE; 20750f02cb2SNick Lewycky case FCmpInst::FCMP_OLT: return ISD::SETOLT; 20850f02cb2SNick Lewycky case FCmpInst::FCMP_OLE: return ISD::SETOLE; 20950f02cb2SNick Lewycky case FCmpInst::FCMP_ONE: return ISD::SETONE; 21050f02cb2SNick Lewycky case FCmpInst::FCMP_ORD: return ISD::SETO; 21150f02cb2SNick Lewycky case FCmpInst::FCMP_UNO: return ISD::SETUO; 21250f02cb2SNick Lewycky case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 21350f02cb2SNick Lewycky case FCmpInst::FCMP_UGT: return ISD::SETUGT; 21450f02cb2SNick Lewycky case FCmpInst::FCMP_UGE: return ISD::SETUGE; 21550f02cb2SNick Lewycky case FCmpInst::FCMP_ULT: return ISD::SETULT; 21650f02cb2SNick Lewycky case FCmpInst::FCMP_ULE: return ISD::SETULE; 21750f02cb2SNick Lewycky case FCmpInst::FCMP_UNE: return ISD::SETUNE; 21850f02cb2SNick Lewycky case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 21946a9f016SDavid Blaikie default: llvm_unreachable("Invalid FCmp predicate opcode!"); 220450aa64fSDan Gohman } 22150f02cb2SNick Lewycky } 22250f02cb2SNick Lewycky 22350f02cb2SNick Lewycky ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 22450f02cb2SNick Lewycky switch (CC) { 22550f02cb2SNick Lewycky case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 22650f02cb2SNick Lewycky case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 22750f02cb2SNick Lewycky case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 22850f02cb2SNick Lewycky case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 22950f02cb2SNick Lewycky case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 23050f02cb2SNick Lewycky case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 23146a9f016SDavid Blaikie default: return CC; 23250f02cb2SNick Lewycky } 233450aa64fSDan Gohman } 234450aa64fSDan Gohman 235450aa64fSDan Gohman /// getICmpCondCode - Return the ISD condition code corresponding to 236450aa64fSDan Gohman /// the given LLVM IR integer condition code. 237450aa64fSDan Gohman /// 238450aa64fSDan Gohman ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 239450aa64fSDan Gohman switch (Pred) { 240450aa64fSDan Gohman case ICmpInst::ICMP_EQ: return ISD::SETEQ; 241450aa64fSDan Gohman case ICmpInst::ICMP_NE: return ISD::SETNE; 242450aa64fSDan Gohman case ICmpInst::ICMP_SLE: return ISD::SETLE; 243450aa64fSDan Gohman case ICmpInst::ICMP_ULE: return ISD::SETULE; 244450aa64fSDan Gohman case ICmpInst::ICMP_SGE: return ISD::SETGE; 245450aa64fSDan Gohman case ICmpInst::ICMP_UGE: return ISD::SETUGE; 246450aa64fSDan Gohman case ICmpInst::ICMP_SLT: return ISD::SETLT; 247450aa64fSDan Gohman case ICmpInst::ICMP_ULT: return ISD::SETULT; 248450aa64fSDan Gohman case ICmpInst::ICMP_SGT: return ISD::SETGT; 249450aa64fSDan Gohman case ICmpInst::ICMP_UGT: return ISD::SETUGT; 250450aa64fSDan Gohman default: 251450aa64fSDan Gohman llvm_unreachable("Invalid ICmp predicate opcode!"); 252450aa64fSDan Gohman } 253450aa64fSDan Gohman } 254450aa64fSDan Gohman 255ffc44549SStephen Lin static bool isNoopBitcast(Type *T1, Type *T2, 256c0659fadSMichael Gottesman const TargetLoweringBase& TLI) { 257ffc44549SStephen Lin return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 258ffc44549SStephen Lin (isa<VectorType>(T1) && isa<VectorType>(T2) && 259ffc44549SStephen Lin TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 260ffc44549SStephen Lin } 2614f3615deSChris Lattner 262a4415854STim Northover /// Look through operations that will be free to find the earliest source of 263a4415854STim Northover /// this value. 264a4415854STim Northover /// 265a4415854STim Northover /// @param ValLoc If V has aggegate type, we will be interested in a particular 266a4415854STim Northover /// scalar component. This records its address; the reverse of this list gives a 267a4415854STim Northover /// sequence of indices appropriate for an extractvalue to locate the important 268a4415854STim Northover /// value. This value is updated during the function and on exit will indicate 269a4415854STim Northover /// similar information for the Value returned. 270a4415854STim Northover /// 271a4415854STim Northover /// @param DataBits If this function looks through truncate instructions, this 272a4415854STim Northover /// will record the smallest size attained. 273a4415854STim Northover static const Value *getNoopInput(const Value *V, 274a4415854STim Northover SmallVectorImpl<unsigned> &ValLoc, 275a4415854STim Northover unsigned &DataBits, 27644ede33aSMehdi Amini const TargetLoweringBase &TLI, 27744ede33aSMehdi Amini const DataLayout &DL) { 278ffc44549SStephen Lin while (true) { 279ffc44549SStephen Lin // Try to look through V1; if V1 is not an instruction, it can't be looked 280ffc44549SStephen Lin // through. 281a4415854STim Northover const Instruction *I = dyn_cast<Instruction>(V); 282a4415854STim Northover if (!I || I->getNumOperands() == 0) return V; 283c0196b1bSCraig Topper const Value *NoopInput = nullptr; 284a4415854STim Northover 285182fe3eeSChris Lattner Value *Op = I->getOperand(0); 286a4415854STim Northover if (isa<BitCastInst>(I)) { 2874f3615deSChris Lattner // Look through truly no-op bitcasts. 288ffc44549SStephen Lin if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 289ffc44549SStephen Lin NoopInput = Op; 290ffc44549SStephen Lin } else if (isa<GetElementPtrInst>(I)) { 291ffc44549SStephen Lin // Look through getelementptr 292ffc44549SStephen Lin if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 293ffc44549SStephen Lin NoopInput = Op; 294ffc44549SStephen Lin } else if (isa<IntToPtrInst>(I)) { 295182fe3eeSChris Lattner // Look through inttoptr. 296ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 297ffc44549SStephen Lin // support this eventually, but don't bother for now. 298ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 29944ede33aSMehdi Amini DL.getPointerSizeInBits() == 300182fe3eeSChris Lattner cast<IntegerType>(Op->getType())->getBitWidth()) 301ffc44549SStephen Lin NoopInput = Op; 302ffc44549SStephen Lin } else if (isa<PtrToIntInst>(I)) { 303182fe3eeSChris Lattner // Look through ptrtoint. 304ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 305ffc44549SStephen Lin // support this eventually, but don't bother for now. 306ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 30744ede33aSMehdi Amini DL.getPointerSizeInBits() == 308182fe3eeSChris Lattner cast<IntegerType>(I->getType())->getBitWidth()) 309ffc44549SStephen Lin NoopInput = Op; 310a4415854STim Northover } else if (isa<TruncInst>(I) && 311a4415854STim Northover TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 312a4415854STim Northover DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 313a4415854STim Northover NoopInput = Op; 3148a41319dSAhmed Bougacha } else if (auto CS = ImmutableCallSite(I)) { 3158a41319dSAhmed Bougacha const Value *ReturnedOp = CS.getReturnedArgOperand(); 3166aff744eSAhmed Bougacha if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 3176aff744eSAhmed Bougacha NoopInput = ReturnedOp; 318a4415854STim Northover } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 319a4415854STim Northover // Value may come from either the aggregate or the scalar 320a4415854STim Northover ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 321e4310fe9STim Northover if (ValLoc.size() >= InsertLoc.size() && 322e4310fe9STim Northover std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 323a4415854STim Northover // The type being inserted is a nested sub-type of the aggregate; we 324a4415854STim Northover // have to remove those initial indices to get the location we're 325a4415854STim Northover // interested in for the operand. 326a4415854STim Northover ValLoc.resize(ValLoc.size() - InsertLoc.size()); 327a4415854STim Northover NoopInput = IVI->getInsertedValueOperand(); 328a4415854STim Northover } else { 329a4415854STim Northover // The struct we're inserting into has the value we're interested in, no 330a4415854STim Northover // change of address. 331a4415854STim Northover NoopInput = Op; 332a4415854STim Northover } 333a4415854STim Northover } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 334a4415854STim Northover // The part we're interested in will inevitably be some sub-section of the 335a4415854STim Northover // previous aggregate. Combine the two paths to obtain the true address of 336a4415854STim Northover // our element. 337a4415854STim Northover ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 3384f6ac162SBenjamin Kramer ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 339a4415854STim Northover NoopInput = Op; 340a4415854STim Northover } 341a4415854STim Northover // Terminate if we couldn't find anything to look through. 342a4415854STim Northover if (!NoopInput) 343a4415854STim Northover return V; 344a4415854STim Northover 345a4415854STim Northover V = NoopInput; 346ffc44549SStephen Lin } 347182fe3eeSChris Lattner } 348182fe3eeSChris Lattner 349a4415854STim Northover /// Return true if this scalar return value only has bits discarded on its path 350a4415854STim Northover /// from the "tail call" to the "ret". This includes the obvious noop 351a4415854STim Northover /// instructions handled by getNoopInput above as well as free truncations (or 352a4415854STim Northover /// extensions prior to the call). 353a4415854STim Northover static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 354a4415854STim Northover SmallVectorImpl<unsigned> &RetIndices, 355a4415854STim Northover SmallVectorImpl<unsigned> &CallIndices, 356707d68f0STim Northover bool AllowDifferingSizes, 35744ede33aSMehdi Amini const TargetLoweringBase &TLI, 35844ede33aSMehdi Amini const DataLayout &DL) { 3594f3615deSChris Lattner 360a4415854STim Northover // Trace the sub-value needed by the return value as far back up the graph as 361a4415854STim Northover // possible, in the hope that it will intersect with the value produced by the 362a4415854STim Northover // call. In the simple case with no "returned" attribute, the hope is actually 363a4415854STim Northover // that we end up back at the tail call instruction itself. 364a4415854STim Northover unsigned BitsRequired = UINT_MAX; 36544ede33aSMehdi Amini RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 366ffc44549SStephen Lin 367a4415854STim Northover // If this slot in the value returned is undef, it doesn't matter what the 368a4415854STim Northover // call puts there, it'll be fine. 369a4415854STim Northover if (isa<UndefValue>(RetVal)) 370a4415854STim Northover return true; 371ffc44549SStephen Lin 372a4415854STim Northover // Now do a similar search up through the graph to find where the value 373a4415854STim Northover // actually returned by the "tail call" comes from. In the simple case without 374a4415854STim Northover // a "returned" attribute, the search will be blocked immediately and the loop 375a4415854STim Northover // a Noop. 376a4415854STim Northover unsigned BitsProvided = UINT_MAX; 37744ede33aSMehdi Amini CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 378a4415854STim Northover 379a4415854STim Northover // There's no hope if we can't actually trace them to (the same part of!) the 380a4415854STim Northover // same value. 381a4415854STim Northover if (CallVal != RetVal || CallIndices != RetIndices) 382a4415854STim Northover return false; 383a4415854STim Northover 384a4415854STim Northover // However, intervening truncates may have made the call non-tail. Make sure 385a4415854STim Northover // all the bits that are needed by the "ret" have been provided by the "tail 386a4415854STim Northover // call". FIXME: with sufficiently cunning bit-tracking, we could look through 387a4415854STim Northover // extensions too. 388707d68f0STim Northover if (BitsProvided < BitsRequired || 389707d68f0STim Northover (!AllowDifferingSizes && BitsProvided != BitsRequired)) 390a4415854STim Northover return false; 391a4415854STim Northover 392ffc44549SStephen Lin return true; 393ffc44549SStephen Lin } 394a4415854STim Northover 395a4415854STim Northover /// For an aggregate type, determine whether a given index is within bounds or 396a4415854STim Northover /// not. 397a4415854STim Northover static bool indexReallyValid(CompositeType *T, unsigned Idx) { 398a4415854STim Northover if (ArrayType *AT = dyn_cast<ArrayType>(T)) 399a4415854STim Northover return Idx < AT->getNumElements(); 400a4415854STim Northover 401a4415854STim Northover return Idx < cast<StructType>(T)->getNumElements(); 402ffc44549SStephen Lin } 403a4415854STim Northover 404a4415854STim Northover /// Move the given iterators to the next leaf type in depth first traversal. 405a4415854STim Northover /// 406a4415854STim Northover /// Performs a depth-first traversal of the type as specified by its arguments, 407a4415854STim Northover /// stopping at the next leaf node (which may be a legitimate scalar type or an 408a4415854STim Northover /// empty struct or array). 409a4415854STim Northover /// 410a4415854STim Northover /// @param SubTypes List of the partial components making up the type from 411a4415854STim Northover /// outermost to innermost non-empty aggregate. The element currently 412a4415854STim Northover /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 413a4415854STim Northover /// 414a4415854STim Northover /// @param Path Set of extractvalue indices leading from the outermost type 415a4415854STim Northover /// (SubTypes[0]) to the leaf node currently represented. 416a4415854STim Northover /// 417a4415854STim Northover /// @returns true if a new type was found, false otherwise. Calling this 418a4415854STim Northover /// function again on a finished iterator will repeatedly return 419a4415854STim Northover /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 420a4415854STim Northover /// aggregate or a non-aggregate 421df03449aSBenjamin Kramer static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 422a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 423a4415854STim Northover // First march back up the tree until we can successfully increment one of the 424a4415854STim Northover // coordinates in Path. 425a4415854STim Northover while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 426a4415854STim Northover Path.pop_back(); 427a4415854STim Northover SubTypes.pop_back(); 428a4415854STim Northover } 429a4415854STim Northover 430a4415854STim Northover // If we reached the top, then the iterator is done. 431a4415854STim Northover if (Path.empty()) 432a4415854STim Northover return false; 433a4415854STim Northover 434a4415854STim Northover // We know there's *some* valid leaf now, so march back down the tree picking 435a4415854STim Northover // out the left-most element at each node. 436a4415854STim Northover ++Path.back(); 437a4415854STim Northover Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 438a4415854STim Northover while (DeeperType->isAggregateType()) { 439a4415854STim Northover CompositeType *CT = cast<CompositeType>(DeeperType); 440a4415854STim Northover if (!indexReallyValid(CT, 0)) 441a4415854STim Northover return true; 442a4415854STim Northover 443a4415854STim Northover SubTypes.push_back(CT); 444a4415854STim Northover Path.push_back(0); 445a4415854STim Northover 446a4415854STim Northover DeeperType = CT->getTypeAtIndex(0U); 447a4415854STim Northover } 448a4415854STim Northover 449ffc44549SStephen Lin return true; 450ffc44549SStephen Lin } 451a4415854STim Northover 452a4415854STim Northover /// Find the first non-empty, scalar-like type in Next and setup the iterator 453a4415854STim Northover /// components. 454a4415854STim Northover /// 455a4415854STim Northover /// Assuming Next is an aggregate of some kind, this function will traverse the 456a4415854STim Northover /// tree from left to right (i.e. depth-first) looking for the first 457a4415854STim Northover /// non-aggregate type which will play a role in function return. 458a4415854STim Northover /// 459a4415854STim Northover /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 460a4415854STim Northover /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 461a4415854STim Northover /// i32 in that type. 462a4415854STim Northover static bool firstRealType(Type *Next, 463a4415854STim Northover SmallVectorImpl<CompositeType *> &SubTypes, 464a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 465a4415854STim Northover // First initialise the iterator components to the first "leaf" node 466a4415854STim Northover // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 467a4415854STim Northover // despite nominally being an aggregate). 468a4415854STim Northover while (Next->isAggregateType() && 469a4415854STim Northover indexReallyValid(cast<CompositeType>(Next), 0)) { 470a4415854STim Northover SubTypes.push_back(cast<CompositeType>(Next)); 471a4415854STim Northover Path.push_back(0); 472a4415854STim Northover Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 473ffc44549SStephen Lin } 474ffc44549SStephen Lin 475a4415854STim Northover // If there's no Path now, Next was originally scalar already (or empty 476a4415854STim Northover // leaf). We're done. 477a4415854STim Northover if (Path.empty()) 478a4415854STim Northover return true; 479ffc44549SStephen Lin 480a4415854STim Northover // Otherwise, use normal iteration to keep looking through the tree until we 481a4415854STim Northover // find a non-aggregate type. 482a4415854STim Northover while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 483a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 484ffc44549SStephen Lin return false; 485ffc44549SStephen Lin } 4864f3615deSChris Lattner 487a4415854STim Northover return true; 488a4415854STim Northover } 489a4415854STim Northover 490a4415854STim Northover /// Set the iterator data-structures to the next non-empty, non-aggregate 491a4415854STim Northover /// subtype. 492df03449aSBenjamin Kramer static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 493a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 494a4415854STim Northover do { 495a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 496a4415854STim Northover return false; 497a4415854STim Northover 498a4415854STim Northover assert(!Path.empty() && "found a leaf but didn't set the path?"); 499a4415854STim Northover } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 500a4415854STim Northover 501a4415854STim Northover return true; 502a4415854STim Northover } 503a4415854STim Northover 504a4415854STim Northover 505450aa64fSDan Gohman /// Test if the given instruction is in a position to be optimized 506450aa64fSDan Gohman /// with a tail-call. This roughly means that it's in a block with 507450aa64fSDan Gohman /// a return and there's nothing that needs to be scheduled 508450aa64fSDan Gohman /// between it and the return. 509450aa64fSDan Gohman /// 510450aa64fSDan Gohman /// This function only tests target-independent requirements. 511480872b4SJuergen Ributzka bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 512450aa64fSDan Gohman const Instruction *I = CS.getInstruction(); 513450aa64fSDan Gohman const BasicBlock *ExitBB = I->getParent(); 514edb12a83SChandler Carruth const Instruction *Term = ExitBB->getTerminator(); 515450aa64fSDan Gohman const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 516450aa64fSDan Gohman 517450aa64fSDan Gohman // The block must end in a return statement or unreachable. 518450aa64fSDan Gohman // 519450aa64fSDan Gohman // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 520450aa64fSDan Gohman // an unreachable, for now. The way tailcall optimization is currently 521450aa64fSDan Gohman // implemented means it will add an epilogue followed by a jump. That is 522450aa64fSDan Gohman // not profitable. Also, if the callee is a special function (e.g. 523450aa64fSDan Gohman // longjmp on x86), it can end up causing miscompilation that has not 524450aa64fSDan Gohman // been fully understood. 525450aa64fSDan Gohman if (!Ret && 5264ce9863dSJuergen Ributzka (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 5274f3615deSChris Lattner return false; 528450aa64fSDan Gohman 529450aa64fSDan Gohman // If I will have a chain, make sure no other instruction that will have a 530450aa64fSDan Gohman // chain interposes between I and the return. 5310a92f86fSDavid Majnemer if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 5320a92f86fSDavid Majnemer !isSafeToSpeculativelyExecute(I)) 533b6d0bd48SBenjamin Kramer for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 534450aa64fSDan Gohman if (&*BBI == I) 535450aa64fSDan Gohman break; 536450aa64fSDan Gohman // Debug info intrinsics do not get in the way of tail call optimization. 537450aa64fSDan Gohman if (isa<DbgInfoIntrinsic>(BBI)) 538450aa64fSDan Gohman continue; 53918bfb3a5SRobert Lougher // A lifetime end intrinsic should not stop tail call optimization. 54018bfb3a5SRobert Lougher if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 54118bfb3a5SRobert Lougher if (II->getIntrinsicID() == Intrinsic::lifetime_end) 54218bfb3a5SRobert Lougher continue; 543450aa64fSDan Gohman if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 544980f8f26SDuncan P. N. Exon Smith !isSafeToSpeculativelyExecute(&*BBI)) 545450aa64fSDan Gohman return false; 546450aa64fSDan Gohman } 547450aa64fSDan Gohman 548f734a8baSEric Christopher const Function *F = ExitBB->getParent(); 549d913448bSEric Christopher return returnTypeIsEligibleForTailCall( 550f734a8baSEric Christopher F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 551ce0e4c26SMichael Gottesman } 552ce0e4c26SMichael Gottesman 553f79af6f8SMichael Kuperstein bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 554f79af6f8SMichael Kuperstein const ReturnInst *Ret, 555f79af6f8SMichael Kuperstein const TargetLoweringBase &TLI, 556f79af6f8SMichael Kuperstein bool *AllowDifferingSizes) { 557f79af6f8SMichael Kuperstein // ADS may be null, so don't write to it directly. 558f79af6f8SMichael Kuperstein bool DummyADS; 559f79af6f8SMichael Kuperstein bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 560f79af6f8SMichael Kuperstein ADS = true; 561f79af6f8SMichael Kuperstein 562b518054bSReid Kleckner AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 563f79af6f8SMichael Kuperstein AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 564b518054bSReid Kleckner AttributeList::ReturnIndex); 565f79af6f8SMichael Kuperstein 566353cb3d4SDavid Green // NoAlias and NonNull are completely benign as far as calling convention 567353cb3d4SDavid Green // goes, they shouldn't affect whether the call is a tail call. 568807f732cSBjorn Pettersson CallerAttrs.removeAttribute(Attribute::NoAlias); 569807f732cSBjorn Pettersson CalleeAttrs.removeAttribute(Attribute::NoAlias); 570353cb3d4SDavid Green CallerAttrs.removeAttribute(Attribute::NonNull); 571353cb3d4SDavid Green CalleeAttrs.removeAttribute(Attribute::NonNull); 572f79af6f8SMichael Kuperstein 573f79af6f8SMichael Kuperstein if (CallerAttrs.contains(Attribute::ZExt)) { 574f79af6f8SMichael Kuperstein if (!CalleeAttrs.contains(Attribute::ZExt)) 575f79af6f8SMichael Kuperstein return false; 576f79af6f8SMichael Kuperstein 577f79af6f8SMichael Kuperstein ADS = false; 578f79af6f8SMichael Kuperstein CallerAttrs.removeAttribute(Attribute::ZExt); 579f79af6f8SMichael Kuperstein CalleeAttrs.removeAttribute(Attribute::ZExt); 580f79af6f8SMichael Kuperstein } else if (CallerAttrs.contains(Attribute::SExt)) { 581f79af6f8SMichael Kuperstein if (!CalleeAttrs.contains(Attribute::SExt)) 582f79af6f8SMichael Kuperstein return false; 583f79af6f8SMichael Kuperstein 584f79af6f8SMichael Kuperstein ADS = false; 585f79af6f8SMichael Kuperstein CallerAttrs.removeAttribute(Attribute::SExt); 586f79af6f8SMichael Kuperstein CalleeAttrs.removeAttribute(Attribute::SExt); 587f79af6f8SMichael Kuperstein } 588f79af6f8SMichael Kuperstein 589ac6454a7SFrancis Visoiu Mistrih // Drop sext and zext return attributes if the result is not used. 590ac6454a7SFrancis Visoiu Mistrih // This enables tail calls for code like: 591ac6454a7SFrancis Visoiu Mistrih // 592ac6454a7SFrancis Visoiu Mistrih // define void @caller() { 593ac6454a7SFrancis Visoiu Mistrih // entry: 594ac6454a7SFrancis Visoiu Mistrih // %unused_result = tail call zeroext i1 @callee() 595ac6454a7SFrancis Visoiu Mistrih // br label %retlabel 596ac6454a7SFrancis Visoiu Mistrih // retlabel: 597ac6454a7SFrancis Visoiu Mistrih // ret void 598ac6454a7SFrancis Visoiu Mistrih // } 599ac6454a7SFrancis Visoiu Mistrih if (I->use_empty()) { 600ac6454a7SFrancis Visoiu Mistrih CalleeAttrs.removeAttribute(Attribute::SExt); 601ac6454a7SFrancis Visoiu Mistrih CalleeAttrs.removeAttribute(Attribute::ZExt); 602ac6454a7SFrancis Visoiu Mistrih } 603ac6454a7SFrancis Visoiu Mistrih 604f79af6f8SMichael Kuperstein // If they're still different, there's some facet we don't understand 605f79af6f8SMichael Kuperstein // (currently only "inreg", but in future who knows). It may be OK but the 606f79af6f8SMichael Kuperstein // only safe option is to reject the tail call. 607f79af6f8SMichael Kuperstein return CallerAttrs == CalleeAttrs; 608f79af6f8SMichael Kuperstein } 609f79af6f8SMichael Kuperstein 610ce0e4c26SMichael Gottesman bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 611ce0e4c26SMichael Gottesman const Instruction *I, 612ce0e4c26SMichael Gottesman const ReturnInst *Ret, 613ce0e4c26SMichael Gottesman const TargetLoweringBase &TLI) { 614450aa64fSDan Gohman // If the block ends with a void return or unreachable, it doesn't matter 615450aa64fSDan Gohman // what the call's return type is. 616450aa64fSDan Gohman if (!Ret || Ret->getNumOperands() == 0) return true; 617450aa64fSDan Gohman 618450aa64fSDan Gohman // If the return value is undef, it doesn't matter what the call's 619450aa64fSDan Gohman // return type is. 620450aa64fSDan Gohman if (isa<UndefValue>(Ret->getOperand(0))) return true; 621450aa64fSDan Gohman 622707d68f0STim Northover // Make sure the attributes attached to each return are compatible. 623f79af6f8SMichael Kuperstein bool AllowDifferingSizes; 624f79af6f8SMichael Kuperstein if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 625450aa64fSDan Gohman return false; 626450aa64fSDan Gohman 627a4415854STim Northover const Value *RetVal = Ret->getOperand(0), *CallVal = I; 6285d84d9b3SWei Mi // Intrinsic like llvm.memcpy has no return value, but the expanded 6295d84d9b3SWei Mi // libcall may or may not have return value. On most platforms, it 6305d84d9b3SWei Mi // will be expanded as memcpy in libc, which returns the first 6315d84d9b3SWei Mi // argument. On other platforms like arm-none-eabi, memcpy may be 6325d84d9b3SWei Mi // expanded as library call without return value, like __aeabi_memcpy. 633818d50a9SWei Mi const CallInst *Call = cast<CallInst>(I); 634818d50a9SWei Mi if (Function *F = Call->getCalledFunction()) { 635818d50a9SWei Mi Intrinsic::ID IID = F->getIntrinsicID(); 6365d84d9b3SWei Mi if (((IID == Intrinsic::memcpy && 6375d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 6385d84d9b3SWei Mi (IID == Intrinsic::memmove && 6395d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 6405d84d9b3SWei Mi (IID == Intrinsic::memset && 6415d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 642818d50a9SWei Mi RetVal == Call->getArgOperand(0)) 643818d50a9SWei Mi return true; 644818d50a9SWei Mi } 645818d50a9SWei Mi 646a4415854STim Northover SmallVector<unsigned, 4> RetPath, CallPath; 647a4415854STim Northover SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 648a4415854STim Northover 649a4415854STim Northover bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 650a4415854STim Northover bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 651a4415854STim Northover 652a4415854STim Northover // Nothing's actually returned, it doesn't matter what the callee put there 653a4415854STim Northover // it's a valid tail call. 654a4415854STim Northover if (RetEmpty) 655a4415854STim Northover return true; 656a4415854STim Northover 657a4415854STim Northover // Iterate pairwise through each of the value types making up the tail call 658a4415854STim Northover // and the corresponding return. For each one we want to know whether it's 659a4415854STim Northover // essentially going directly from the tail call to the ret, via operations 660a4415854STim Northover // that end up not generating any code. 661a4415854STim Northover // 662a4415854STim Northover // We allow a certain amount of covariance here. For example it's permitted 663a4415854STim Northover // for the tail call to define more bits than the ret actually cares about 664a4415854STim Northover // (e.g. via a truncate). 665a4415854STim Northover do { 666a4415854STim Northover if (CallEmpty) { 667a4415854STim Northover // We've exhausted the values produced by the tail call instruction, the 668a4415854STim Northover // rest are essentially undef. The type doesn't really matter, but we need 669a4415854STim Northover // *something*. 670a4415854STim Northover Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 671a4415854STim Northover CallVal = UndefValue::get(SlotType); 672a4415854STim Northover } 673a4415854STim Northover 674a4415854STim Northover // The manipulations performed when we're looking through an insertvalue or 675a4415854STim Northover // an extractvalue would happen at the front of the RetPath list, so since 676a4415854STim Northover // we have to copy it anyway it's more efficient to create a reversed copy. 6774f6ac162SBenjamin Kramer SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 6784f6ac162SBenjamin Kramer SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 679a4415854STim Northover 680a4415854STim Northover // Finally, we can check whether the value produced by the tail call at this 681a4415854STim Northover // index is compatible with the value we return. 682707d68f0STim Northover if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 68344ede33aSMehdi Amini AllowDifferingSizes, TLI, 68444ede33aSMehdi Amini F->getParent()->getDataLayout())) 685a4415854STim Northover return false; 686a4415854STim Northover 687a4415854STim Northover CallEmpty = !nextRealType(CallSubTypes, CallPath); 688a4415854STim Northover } while(nextRealType(RetSubTypes, RetPath)); 689a4415854STim Northover 690a4415854STim Northover return true; 691450aa64fSDan Gohman } 692f21434ccSRafael Espindola 693d69acf3bSHeejin Ahn static void collectEHScopeMembers( 694d69acf3bSHeejin Ahn DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 695d69acf3bSHeejin Ahn const MachineBasicBlock *MBB) { 696734d7c32SDavid Majnemer SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 697734d7c32SDavid Majnemer while (!Worklist.empty()) { 698734d7c32SDavid Majnemer const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 6991e4d3504SHeejin Ahn // Don't follow blocks which start new scopes. 700734d7c32SDavid Majnemer if (Visiting->isEHPad() && Visiting != MBB) 701734d7c32SDavid Majnemer continue; 702734d7c32SDavid Majnemer 7031e4d3504SHeejin Ahn // Add this MBB to our scope. 704d69acf3bSHeejin Ahn auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 7057b54b525SDavid Blaikie 70616193552SDavid Majnemer // Don't revisit blocks. 7077b54b525SDavid Blaikie if (!P.second) { 708d69acf3bSHeejin Ahn assert(P.first->second == EHScope && "MBB is part of two scopes!"); 709734d7c32SDavid Majnemer continue; 71016193552SDavid Majnemer } 71116193552SDavid Majnemer 7121e4d3504SHeejin Ahn // Returns are boundaries where scope transfer can occur, don't follow 71316193552SDavid Majnemer // successors. 714ed5e06b0SHeejin Ahn if (Visiting->isEHScopeReturnBlock()) 715734d7c32SDavid Majnemer continue; 71616193552SDavid Majnemer 717734d7c32SDavid Majnemer for (const MachineBasicBlock *Succ : Visiting->successors()) 718734d7c32SDavid Majnemer Worklist.push_back(Succ); 719734d7c32SDavid Majnemer } 72016193552SDavid Majnemer } 72116193552SDavid Majnemer 72216193552SDavid Majnemer DenseMap<const MachineBasicBlock *, int> 7231e4d3504SHeejin Ahn llvm::getEHScopeMembership(const MachineFunction &MF) { 724d69acf3bSHeejin Ahn DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 72516193552SDavid Majnemer 72616193552SDavid Majnemer // We don't have anything to do if there aren't any EH pads. 7271e4d3504SHeejin Ahn if (!MF.hasEHScopes()) 728d69acf3bSHeejin Ahn return EHScopeMembership; 72916193552SDavid Majnemer 730e4f9b09bSDavid Majnemer int EntryBBNumber = MF.front().getNumber(); 73116193552SDavid Majnemer bool IsSEH = isAsynchronousEHPersonality( 732f1caa283SMatthias Braun classifyEHPersonality(MF.getFunction().getPersonalityFn())); 73316193552SDavid Majnemer 73416193552SDavid Majnemer const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 735d69acf3bSHeejin Ahn SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 736e4f9b09bSDavid Majnemer SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 737e4f9b09bSDavid Majnemer SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 73816193552SDavid Majnemer SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 73916193552SDavid Majnemer for (const MachineBasicBlock &MBB : MF) { 7401e4d3504SHeejin Ahn if (MBB.isEHScopeEntry()) { 741d69acf3bSHeejin Ahn EHScopeBlocks.push_back(&MBB); 742e4f9b09bSDavid Majnemer } else if (IsSEH && MBB.isEHPad()) { 743e4f9b09bSDavid Majnemer SEHCatchPads.push_back(&MBB); 744e4f9b09bSDavid Majnemer } else if (MBB.pred_empty()) { 745e4f9b09bSDavid Majnemer UnreachableBlocks.push_back(&MBB); 746e4f9b09bSDavid Majnemer } 74716193552SDavid Majnemer 74816193552SDavid Majnemer MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 7492e7af979SDuncan P. N. Exon Smith 7501e4d3504SHeejin Ahn // CatchPads are not scopes for SEH so do not consider CatchRet to 7511e4d3504SHeejin Ahn // transfer control to another scope. 75226f9e9ebSReid Kleckner if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 75316193552SDavid Majnemer continue; 75416193552SDavid Majnemer 755e4f9b09bSDavid Majnemer // FIXME: SEH CatchPads are not necessarily in the parent function: 756e4f9b09bSDavid Majnemer // they could be inside a finally block. 75716193552SDavid Majnemer const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 75816193552SDavid Majnemer const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 759e4f9b09bSDavid Majnemer CatchRetSuccessors.push_back( 760e4f9b09bSDavid Majnemer {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 76116193552SDavid Majnemer } 76216193552SDavid Majnemer 76316193552SDavid Majnemer // We don't have anything to do if there aren't any EH pads. 764d69acf3bSHeejin Ahn if (EHScopeBlocks.empty()) 765d69acf3bSHeejin Ahn return EHScopeMembership; 76616193552SDavid Majnemer 76716193552SDavid Majnemer // Identify all the basic blocks reachable from the function entry. 768d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 7691e4d3504SHeejin Ahn // All blocks not part of a scope are in the parent function. 770e4f9b09bSDavid Majnemer for (const MachineBasicBlock *MBB : UnreachableBlocks) 771d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 7721e4d3504SHeejin Ahn // Next, identify all the blocks inside the scopes. 773d69acf3bSHeejin Ahn for (const MachineBasicBlock *MBB : EHScopeBlocks) 774d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 7751e4d3504SHeejin Ahn // SEH CatchPads aren't really scopes, handle them separately. 776e4f9b09bSDavid Majnemer for (const MachineBasicBlock *MBB : SEHCatchPads) 777d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 77816193552SDavid Majnemer // Finally, identify all the targets of a catchret. 77916193552SDavid Majnemer for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 78016193552SDavid Majnemer CatchRetSuccessors) 781d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 78216193552SDavid Majnemer CatchRetPair.first); 783d69acf3bSHeejin Ahn return EHScopeMembership; 78416193552SDavid Majnemer } 785