150f02cb2SNick Lewycky //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2450aa64fSDan Gohman // 3450aa64fSDan Gohman // The LLVM Compiler Infrastructure 4450aa64fSDan Gohman // 5450aa64fSDan Gohman // This file is distributed under the University of Illinois Open Source 6450aa64fSDan Gohman // License. See LICENSE.TXT for details. 7450aa64fSDan Gohman // 8450aa64fSDan Gohman //===----------------------------------------------------------------------===// 9450aa64fSDan Gohman // 10450aa64fSDan Gohman // This file defines several CodeGen-specific LLVM IR analysis utilties. 11450aa64fSDan Gohman // 12450aa64fSDan Gohman //===----------------------------------------------------------------------===// 13450aa64fSDan Gohman 14450aa64fSDan Gohman #include "llvm/CodeGen/Analysis.h" 1575d7d5e9SDan Gohman #include "llvm/Analysis/ValueTracking.h" 16ed0881b2SChandler Carruth #include "llvm/CodeGen/MachineFunction.h" 179fb823bbSChandler Carruth #include "llvm/IR/DataLayout.h" 189fb823bbSChandler Carruth #include "llvm/IR/DerivedTypes.h" 199fb823bbSChandler Carruth #include "llvm/IR/Function.h" 209fb823bbSChandler Carruth #include "llvm/IR/Instructions.h" 219fb823bbSChandler Carruth #include "llvm/IR/IntrinsicInst.h" 229fb823bbSChandler Carruth #include "llvm/IR/LLVMContext.h" 239fb823bbSChandler Carruth #include "llvm/IR/Module.h" 24450aa64fSDan Gohman #include "llvm/Support/ErrorHandling.h" 25450aa64fSDan Gohman #include "llvm/Support/MathExtras.h" 26ed0881b2SChandler Carruth #include "llvm/Target/TargetLowering.h" 27450aa64fSDan Gohman using namespace llvm; 28450aa64fSDan Gohman 29450aa64fSDan Gohman /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 30450aa64fSDan Gohman /// of insertvalue or extractvalue indices that identify a member, return 31450aa64fSDan Gohman /// the linearized index of the start of the member. 32450aa64fSDan Gohman /// 33229907cdSChris Lattner unsigned llvm::ComputeLinearIndex(Type *Ty, 34450aa64fSDan Gohman const unsigned *Indices, 35450aa64fSDan Gohman const unsigned *IndicesEnd, 36450aa64fSDan Gohman unsigned CurIndex) { 37450aa64fSDan Gohman // Base case: We're done. 38450aa64fSDan Gohman if (Indices && Indices == IndicesEnd) 39450aa64fSDan Gohman return CurIndex; 40450aa64fSDan Gohman 41450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 42229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 43450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 44450aa64fSDan Gohman EI = EB, 45450aa64fSDan Gohman EE = STy->element_end(); 46450aa64fSDan Gohman EI != EE; ++EI) { 47450aa64fSDan Gohman if (Indices && *Indices == unsigned(EI - EB)) 48aadc5596SDan Gohman return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 49aadc5596SDan Gohman CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); 50450aa64fSDan Gohman } 51450aa64fSDan Gohman return CurIndex; 52450aa64fSDan Gohman } 53450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 54229907cdSChris Lattner else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 55229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 56450aa64fSDan Gohman for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 57450aa64fSDan Gohman if (Indices && *Indices == i) 58aadc5596SDan Gohman return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 59aadc5596SDan Gohman CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); 60450aa64fSDan Gohman } 61450aa64fSDan Gohman return CurIndex; 62450aa64fSDan Gohman } 63450aa64fSDan Gohman // We haven't found the type we're looking for, so keep searching. 64450aa64fSDan Gohman return CurIndex + 1; 65450aa64fSDan Gohman } 66450aa64fSDan Gohman 67450aa64fSDan Gohman /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 68450aa64fSDan Gohman /// EVTs that represent all the individual underlying 69450aa64fSDan Gohman /// non-aggregate types that comprise it. 70450aa64fSDan Gohman /// 71450aa64fSDan Gohman /// If Offsets is non-null, it points to a vector to be filled in 72450aa64fSDan Gohman /// with the in-memory offsets of each of the individual values. 73450aa64fSDan Gohman /// 74229907cdSChris Lattner void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 75450aa64fSDan Gohman SmallVectorImpl<EVT> &ValueVTs, 76450aa64fSDan Gohman SmallVectorImpl<uint64_t> *Offsets, 77450aa64fSDan Gohman uint64_t StartingOffset) { 78450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 79229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 80cdfe20b9SMicah Villmow const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy); 81450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 82450aa64fSDan Gohman EI = EB, 83450aa64fSDan Gohman EE = STy->element_end(); 84450aa64fSDan Gohman EI != EE; ++EI) 85450aa64fSDan Gohman ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 86450aa64fSDan Gohman StartingOffset + SL->getElementOffset(EI - EB)); 87450aa64fSDan Gohman return; 88450aa64fSDan Gohman } 89450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 90229907cdSChris Lattner if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 91229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 92cdfe20b9SMicah Villmow uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy); 93450aa64fSDan Gohman for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 94450aa64fSDan Gohman ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 95450aa64fSDan Gohman StartingOffset + i * EltSize); 96450aa64fSDan Gohman return; 97450aa64fSDan Gohman } 98450aa64fSDan Gohman // Interpret void as zero return values. 99450aa64fSDan Gohman if (Ty->isVoidTy()) 100450aa64fSDan Gohman return; 101450aa64fSDan Gohman // Base case: we can get an EVT for this LLVM IR type. 102450aa64fSDan Gohman ValueVTs.push_back(TLI.getValueType(Ty)); 103450aa64fSDan Gohman if (Offsets) 104450aa64fSDan Gohman Offsets->push_back(StartingOffset); 105450aa64fSDan Gohman } 106450aa64fSDan Gohman 107450aa64fSDan Gohman /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 108450aa64fSDan Gohman GlobalVariable *llvm::ExtractTypeInfo(Value *V) { 109450aa64fSDan Gohman V = V->stripPointerCasts(); 110450aa64fSDan Gohman GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 111450aa64fSDan Gohman 112fa60b0eeSBill Wendling if (GV && GV->getName() == "llvm.eh.catch.all.value") { 113450aa64fSDan Gohman assert(GV->hasInitializer() && 114450aa64fSDan Gohman "The EH catch-all value must have an initializer"); 115450aa64fSDan Gohman Value *Init = GV->getInitializer(); 116450aa64fSDan Gohman GV = dyn_cast<GlobalVariable>(Init); 117450aa64fSDan Gohman if (!GV) V = cast<ConstantPointerNull>(Init); 118450aa64fSDan Gohman } 119450aa64fSDan Gohman 120450aa64fSDan Gohman assert((GV || isa<ConstantPointerNull>(V)) && 121450aa64fSDan Gohman "TypeInfo must be a global variable or NULL"); 122450aa64fSDan Gohman return GV; 123450aa64fSDan Gohman } 124450aa64fSDan Gohman 125450aa64fSDan Gohman /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 126450aa64fSDan Gohman /// processed uses a memory 'm' constraint. 127450aa64fSDan Gohman bool 128e8360b71SJohn Thompson llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 129450aa64fSDan Gohman const TargetLowering &TLI) { 130450aa64fSDan Gohman for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 131450aa64fSDan Gohman InlineAsm::ConstraintInfo &CI = CInfos[i]; 132450aa64fSDan Gohman for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 133450aa64fSDan Gohman TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 134450aa64fSDan Gohman if (CType == TargetLowering::C_Memory) 135450aa64fSDan Gohman return true; 136450aa64fSDan Gohman } 137450aa64fSDan Gohman 138450aa64fSDan Gohman // Indirect operand accesses access memory. 139450aa64fSDan Gohman if (CI.isIndirect) 140450aa64fSDan Gohman return true; 141450aa64fSDan Gohman } 142450aa64fSDan Gohman 143450aa64fSDan Gohman return false; 144450aa64fSDan Gohman } 145450aa64fSDan Gohman 146450aa64fSDan Gohman /// getFCmpCondCode - Return the ISD condition code corresponding to 147450aa64fSDan Gohman /// the given LLVM IR floating-point condition code. This includes 148450aa64fSDan Gohman /// consideration of global floating-point math flags. 149450aa64fSDan Gohman /// 150450aa64fSDan Gohman ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 151450aa64fSDan Gohman switch (Pred) { 15250f02cb2SNick Lewycky case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 15350f02cb2SNick Lewycky case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 15450f02cb2SNick Lewycky case FCmpInst::FCMP_OGT: return ISD::SETOGT; 15550f02cb2SNick Lewycky case FCmpInst::FCMP_OGE: return ISD::SETOGE; 15650f02cb2SNick Lewycky case FCmpInst::FCMP_OLT: return ISD::SETOLT; 15750f02cb2SNick Lewycky case FCmpInst::FCMP_OLE: return ISD::SETOLE; 15850f02cb2SNick Lewycky case FCmpInst::FCMP_ONE: return ISD::SETONE; 15950f02cb2SNick Lewycky case FCmpInst::FCMP_ORD: return ISD::SETO; 16050f02cb2SNick Lewycky case FCmpInst::FCMP_UNO: return ISD::SETUO; 16150f02cb2SNick Lewycky case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 16250f02cb2SNick Lewycky case FCmpInst::FCMP_UGT: return ISD::SETUGT; 16350f02cb2SNick Lewycky case FCmpInst::FCMP_UGE: return ISD::SETUGE; 16450f02cb2SNick Lewycky case FCmpInst::FCMP_ULT: return ISD::SETULT; 16550f02cb2SNick Lewycky case FCmpInst::FCMP_ULE: return ISD::SETULE; 16650f02cb2SNick Lewycky case FCmpInst::FCMP_UNE: return ISD::SETUNE; 16750f02cb2SNick Lewycky case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 16846a9f016SDavid Blaikie default: llvm_unreachable("Invalid FCmp predicate opcode!"); 169450aa64fSDan Gohman } 17050f02cb2SNick Lewycky } 17150f02cb2SNick Lewycky 17250f02cb2SNick Lewycky ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 17350f02cb2SNick Lewycky switch (CC) { 17450f02cb2SNick Lewycky case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 17550f02cb2SNick Lewycky case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 17650f02cb2SNick Lewycky case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 17750f02cb2SNick Lewycky case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 17850f02cb2SNick Lewycky case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 17950f02cb2SNick Lewycky case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 18046a9f016SDavid Blaikie default: return CC; 18150f02cb2SNick Lewycky } 182450aa64fSDan Gohman } 183450aa64fSDan Gohman 184450aa64fSDan Gohman /// getICmpCondCode - Return the ISD condition code corresponding to 185450aa64fSDan Gohman /// the given LLVM IR integer condition code. 186450aa64fSDan Gohman /// 187450aa64fSDan Gohman ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 188450aa64fSDan Gohman switch (Pred) { 189450aa64fSDan Gohman case ICmpInst::ICMP_EQ: return ISD::SETEQ; 190450aa64fSDan Gohman case ICmpInst::ICMP_NE: return ISD::SETNE; 191450aa64fSDan Gohman case ICmpInst::ICMP_SLE: return ISD::SETLE; 192450aa64fSDan Gohman case ICmpInst::ICMP_ULE: return ISD::SETULE; 193450aa64fSDan Gohman case ICmpInst::ICMP_SGE: return ISD::SETGE; 194450aa64fSDan Gohman case ICmpInst::ICMP_UGE: return ISD::SETUGE; 195450aa64fSDan Gohman case ICmpInst::ICMP_SLT: return ISD::SETLT; 196450aa64fSDan Gohman case ICmpInst::ICMP_ULT: return ISD::SETULT; 197450aa64fSDan Gohman case ICmpInst::ICMP_SGT: return ISD::SETGT; 198450aa64fSDan Gohman case ICmpInst::ICMP_UGT: return ISD::SETUGT; 199450aa64fSDan Gohman default: 200450aa64fSDan Gohman llvm_unreachable("Invalid ICmp predicate opcode!"); 201450aa64fSDan Gohman } 202450aa64fSDan Gohman } 203450aa64fSDan Gohman 204ffc44549SStephen Lin static bool isNoopBitcast(Type *T1, Type *T2, 205c0659fadSMichael Gottesman const TargetLoweringBase& TLI) { 206ffc44549SStephen Lin return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 207ffc44549SStephen Lin (isa<VectorType>(T1) && isa<VectorType>(T2) && 208ffc44549SStephen Lin TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 209ffc44549SStephen Lin } 2104f3615deSChris Lattner 211a4415854STim Northover /// Look through operations that will be free to find the earliest source of 212a4415854STim Northover /// this value. 213a4415854STim Northover /// 214a4415854STim Northover /// @param ValLoc If V has aggegate type, we will be interested in a particular 215a4415854STim Northover /// scalar component. This records its address; the reverse of this list gives a 216a4415854STim Northover /// sequence of indices appropriate for an extractvalue to locate the important 217a4415854STim Northover /// value. This value is updated during the function and on exit will indicate 218a4415854STim Northover /// similar information for the Value returned. 219a4415854STim Northover /// 220a4415854STim Northover /// @param DataBits If this function looks through truncate instructions, this 221a4415854STim Northover /// will record the smallest size attained. 222a4415854STim Northover static const Value *getNoopInput(const Value *V, 223a4415854STim Northover SmallVectorImpl<unsigned> &ValLoc, 224a4415854STim Northover unsigned &DataBits, 225c0659fadSMichael Gottesman const TargetLoweringBase &TLI) { 226ffc44549SStephen Lin while (true) { 227ffc44549SStephen Lin // Try to look through V1; if V1 is not an instruction, it can't be looked 228ffc44549SStephen Lin // through. 229a4415854STim Northover const Instruction *I = dyn_cast<Instruction>(V); 230a4415854STim Northover if (!I || I->getNumOperands() == 0) return V; 231ffc44549SStephen Lin const Value *NoopInput = 0; 232a4415854STim Northover 233182fe3eeSChris Lattner Value *Op = I->getOperand(0); 234a4415854STim Northover if (isa<BitCastInst>(I)) { 2354f3615deSChris Lattner // Look through truly no-op bitcasts. 236ffc44549SStephen Lin if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 237ffc44549SStephen Lin NoopInput = Op; 238ffc44549SStephen Lin } else if (isa<GetElementPtrInst>(I)) { 239ffc44549SStephen Lin // Look through getelementptr 240ffc44549SStephen Lin if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 241ffc44549SStephen Lin NoopInput = Op; 242ffc44549SStephen Lin } else if (isa<IntToPtrInst>(I)) { 243182fe3eeSChris Lattner // Look through inttoptr. 244ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 245ffc44549SStephen Lin // support this eventually, but don't bother for now. 246ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 247ffc44549SStephen Lin TLI.getPointerTy().getSizeInBits() == 248182fe3eeSChris Lattner cast<IntegerType>(Op->getType())->getBitWidth()) 249ffc44549SStephen Lin NoopInput = Op; 250ffc44549SStephen Lin } else if (isa<PtrToIntInst>(I)) { 251182fe3eeSChris Lattner // Look through ptrtoint. 252ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 253ffc44549SStephen Lin // support this eventually, but don't bother for now. 254ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 255ffc44549SStephen Lin TLI.getPointerTy().getSizeInBits() == 256182fe3eeSChris Lattner cast<IntegerType>(I->getType())->getBitWidth()) 257ffc44549SStephen Lin NoopInput = Op; 258a4415854STim Northover } else if (isa<TruncInst>(I) && 259a4415854STim Northover TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 260a4415854STim Northover DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 261a4415854STim Northover NoopInput = Op; 262b8bd232aSStephen Lin } else if (isa<CallInst>(I)) { 263a4415854STim Northover // Look through call (skipping callee) 264a4415854STim Northover for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 265b8bd232aSStephen Lin i != e; ++i) { 266b8bd232aSStephen Lin unsigned attrInd = i - I->op_begin() + 1; 267b8bd232aSStephen Lin if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 268b8bd232aSStephen Lin isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 269b8bd232aSStephen Lin NoopInput = *i; 270b8bd232aSStephen Lin break; 271b8bd232aSStephen Lin } 272b8bd232aSStephen Lin } 273b8bd232aSStephen Lin } else if (isa<InvokeInst>(I)) { 274a4415854STim Northover // Look through invoke (skipping BB, BB, Callee) 275a4415854STim Northover for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 276b8bd232aSStephen Lin i != e; ++i) { 277b8bd232aSStephen Lin unsigned attrInd = i - I->op_begin() + 1; 278b8bd232aSStephen Lin if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 279b8bd232aSStephen Lin isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 280b8bd232aSStephen Lin NoopInput = *i; 281b8bd232aSStephen Lin break; 282b8bd232aSStephen Lin } 283b8bd232aSStephen Lin } 284a4415854STim Northover } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 285a4415854STim Northover // Value may come from either the aggregate or the scalar 286a4415854STim Northover ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 287a4415854STim Northover if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(), 288a4415854STim Northover ValLoc.rbegin())) { 289a4415854STim Northover // The type being inserted is a nested sub-type of the aggregate; we 290a4415854STim Northover // have to remove those initial indices to get the location we're 291a4415854STim Northover // interested in for the operand. 292a4415854STim Northover ValLoc.resize(ValLoc.size() - InsertLoc.size()); 293a4415854STim Northover NoopInput = IVI->getInsertedValueOperand(); 294a4415854STim Northover } else { 295a4415854STim Northover // The struct we're inserting into has the value we're interested in, no 296a4415854STim Northover // change of address. 297a4415854STim Northover NoopInput = Op; 298a4415854STim Northover } 299a4415854STim Northover } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 300a4415854STim Northover // The part we're interested in will inevitably be some sub-section of the 301a4415854STim Northover // previous aggregate. Combine the two paths to obtain the true address of 302a4415854STim Northover // our element. 303a4415854STim Northover ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 304a4415854STim Northover std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(), 305a4415854STim Northover std::back_inserter(ValLoc)); 306a4415854STim Northover NoopInput = Op; 307a4415854STim Northover } 308a4415854STim Northover // Terminate if we couldn't find anything to look through. 309a4415854STim Northover if (!NoopInput) 310a4415854STim Northover return V; 311a4415854STim Northover 312a4415854STim Northover V = NoopInput; 313ffc44549SStephen Lin } 314182fe3eeSChris Lattner } 315182fe3eeSChris Lattner 316a4415854STim Northover /// Return true if this scalar return value only has bits discarded on its path 317a4415854STim Northover /// from the "tail call" to the "ret". This includes the obvious noop 318a4415854STim Northover /// instructions handled by getNoopInput above as well as free truncations (or 319a4415854STim Northover /// extensions prior to the call). 320a4415854STim Northover static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 321a4415854STim Northover SmallVectorImpl<unsigned> &RetIndices, 322a4415854STim Northover SmallVectorImpl<unsigned> &CallIndices, 323a4415854STim Northover const TargetLoweringBase &TLI) { 3244f3615deSChris Lattner 325a4415854STim Northover // Trace the sub-value needed by the return value as far back up the graph as 326a4415854STim Northover // possible, in the hope that it will intersect with the value produced by the 327a4415854STim Northover // call. In the simple case with no "returned" attribute, the hope is actually 328a4415854STim Northover // that we end up back at the tail call instruction itself. 329a4415854STim Northover unsigned BitsRequired = UINT_MAX; 330a4415854STim Northover RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI); 331ffc44549SStephen Lin 332a4415854STim Northover // If this slot in the value returned is undef, it doesn't matter what the 333a4415854STim Northover // call puts there, it'll be fine. 334a4415854STim Northover if (isa<UndefValue>(RetVal)) 335a4415854STim Northover return true; 336ffc44549SStephen Lin 337a4415854STim Northover // Now do a similar search up through the graph to find where the value 338a4415854STim Northover // actually returned by the "tail call" comes from. In the simple case without 339a4415854STim Northover // a "returned" attribute, the search will be blocked immediately and the loop 340a4415854STim Northover // a Noop. 341a4415854STim Northover unsigned BitsProvided = UINT_MAX; 342a4415854STim Northover CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI); 343a4415854STim Northover 344a4415854STim Northover // There's no hope if we can't actually trace them to (the same part of!) the 345a4415854STim Northover // same value. 346a4415854STim Northover if (CallVal != RetVal || CallIndices != RetIndices) 347a4415854STim Northover return false; 348a4415854STim Northover 349a4415854STim Northover // However, intervening truncates may have made the call non-tail. Make sure 350a4415854STim Northover // all the bits that are needed by the "ret" have been provided by the "tail 351a4415854STim Northover // call". FIXME: with sufficiently cunning bit-tracking, we could look through 352a4415854STim Northover // extensions too. 353a4415854STim Northover if (BitsProvided < BitsRequired) 354a4415854STim Northover return false; 355a4415854STim Northover 356ffc44549SStephen Lin return true; 357ffc44549SStephen Lin } 358a4415854STim Northover 359a4415854STim Northover /// For an aggregate type, determine whether a given index is within bounds or 360a4415854STim Northover /// not. 361a4415854STim Northover static bool indexReallyValid(CompositeType *T, unsigned Idx) { 362a4415854STim Northover if (ArrayType *AT = dyn_cast<ArrayType>(T)) 363a4415854STim Northover return Idx < AT->getNumElements(); 364a4415854STim Northover 365a4415854STim Northover return Idx < cast<StructType>(T)->getNumElements(); 366ffc44549SStephen Lin } 367a4415854STim Northover 368a4415854STim Northover /// Move the given iterators to the next leaf type in depth first traversal. 369a4415854STim Northover /// 370a4415854STim Northover /// Performs a depth-first traversal of the type as specified by its arguments, 371a4415854STim Northover /// stopping at the next leaf node (which may be a legitimate scalar type or an 372a4415854STim Northover /// empty struct or array). 373a4415854STim Northover /// 374a4415854STim Northover /// @param SubTypes List of the partial components making up the type from 375a4415854STim Northover /// outermost to innermost non-empty aggregate. The element currently 376a4415854STim Northover /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 377a4415854STim Northover /// 378a4415854STim Northover /// @param Path Set of extractvalue indices leading from the outermost type 379a4415854STim Northover /// (SubTypes[0]) to the leaf node currently represented. 380a4415854STim Northover /// 381a4415854STim Northover /// @returns true if a new type was found, false otherwise. Calling this 382a4415854STim Northover /// function again on a finished iterator will repeatedly return 383a4415854STim Northover /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 384a4415854STim Northover /// aggregate or a non-aggregate 385*df03449aSBenjamin Kramer static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 386a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 387a4415854STim Northover // First march back up the tree until we can successfully increment one of the 388a4415854STim Northover // coordinates in Path. 389a4415854STim Northover while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 390a4415854STim Northover Path.pop_back(); 391a4415854STim Northover SubTypes.pop_back(); 392a4415854STim Northover } 393a4415854STim Northover 394a4415854STim Northover // If we reached the top, then the iterator is done. 395a4415854STim Northover if (Path.empty()) 396a4415854STim Northover return false; 397a4415854STim Northover 398a4415854STim Northover // We know there's *some* valid leaf now, so march back down the tree picking 399a4415854STim Northover // out the left-most element at each node. 400a4415854STim Northover ++Path.back(); 401a4415854STim Northover Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 402a4415854STim Northover while (DeeperType->isAggregateType()) { 403a4415854STim Northover CompositeType *CT = cast<CompositeType>(DeeperType); 404a4415854STim Northover if (!indexReallyValid(CT, 0)) 405a4415854STim Northover return true; 406a4415854STim Northover 407a4415854STim Northover SubTypes.push_back(CT); 408a4415854STim Northover Path.push_back(0); 409a4415854STim Northover 410a4415854STim Northover DeeperType = CT->getTypeAtIndex(0U); 411a4415854STim Northover } 412a4415854STim Northover 413ffc44549SStephen Lin return true; 414ffc44549SStephen Lin } 415a4415854STim Northover 416a4415854STim Northover /// Find the first non-empty, scalar-like type in Next and setup the iterator 417a4415854STim Northover /// components. 418a4415854STim Northover /// 419a4415854STim Northover /// Assuming Next is an aggregate of some kind, this function will traverse the 420a4415854STim Northover /// tree from left to right (i.e. depth-first) looking for the first 421a4415854STim Northover /// non-aggregate type which will play a role in function return. 422a4415854STim Northover /// 423a4415854STim Northover /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 424a4415854STim Northover /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 425a4415854STim Northover /// i32 in that type. 426a4415854STim Northover static bool firstRealType(Type *Next, 427a4415854STim Northover SmallVectorImpl<CompositeType *> &SubTypes, 428a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 429a4415854STim Northover // First initialise the iterator components to the first "leaf" node 430a4415854STim Northover // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 431a4415854STim Northover // despite nominally being an aggregate). 432a4415854STim Northover while (Next->isAggregateType() && 433a4415854STim Northover indexReallyValid(cast<CompositeType>(Next), 0)) { 434a4415854STim Northover SubTypes.push_back(cast<CompositeType>(Next)); 435a4415854STim Northover Path.push_back(0); 436a4415854STim Northover Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 437ffc44549SStephen Lin } 438ffc44549SStephen Lin 439a4415854STim Northover // If there's no Path now, Next was originally scalar already (or empty 440a4415854STim Northover // leaf). We're done. 441a4415854STim Northover if (Path.empty()) 442a4415854STim Northover return true; 443ffc44549SStephen Lin 444a4415854STim Northover // Otherwise, use normal iteration to keep looking through the tree until we 445a4415854STim Northover // find a non-aggregate type. 446a4415854STim Northover while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 447a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 448ffc44549SStephen Lin return false; 449ffc44549SStephen Lin } 4504f3615deSChris Lattner 451a4415854STim Northover return true; 452a4415854STim Northover } 453a4415854STim Northover 454a4415854STim Northover /// Set the iterator data-structures to the next non-empty, non-aggregate 455a4415854STim Northover /// subtype. 456*df03449aSBenjamin Kramer static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 457a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 458a4415854STim Northover do { 459a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 460a4415854STim Northover return false; 461a4415854STim Northover 462a4415854STim Northover assert(!Path.empty() && "found a leaf but didn't set the path?"); 463a4415854STim Northover } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 464a4415854STim Northover 465a4415854STim Northover return true; 466a4415854STim Northover } 467a4415854STim Northover 468a4415854STim Northover 469450aa64fSDan Gohman /// Test if the given instruction is in a position to be optimized 470450aa64fSDan Gohman /// with a tail-call. This roughly means that it's in a block with 471450aa64fSDan Gohman /// a return and there's nothing that needs to be scheduled 472450aa64fSDan Gohman /// between it and the return. 473450aa64fSDan Gohman /// 474450aa64fSDan Gohman /// This function only tests target-independent requirements. 475ffc44549SStephen Lin bool llvm::isInTailCallPosition(ImmutableCallSite CS, 476ffc44549SStephen Lin const TargetLowering &TLI) { 477450aa64fSDan Gohman const Instruction *I = CS.getInstruction(); 478450aa64fSDan Gohman const BasicBlock *ExitBB = I->getParent(); 479450aa64fSDan Gohman const TerminatorInst *Term = ExitBB->getTerminator(); 480450aa64fSDan Gohman const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 481450aa64fSDan Gohman 482450aa64fSDan Gohman // The block must end in a return statement or unreachable. 483450aa64fSDan Gohman // 484450aa64fSDan Gohman // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 485450aa64fSDan Gohman // an unreachable, for now. The way tailcall optimization is currently 486450aa64fSDan Gohman // implemented means it will add an epilogue followed by a jump. That is 487450aa64fSDan Gohman // not profitable. Also, if the callee is a special function (e.g. 488450aa64fSDan Gohman // longjmp on x86), it can end up causing miscompilation that has not 489450aa64fSDan Gohman // been fully understood. 490450aa64fSDan Gohman if (!Ret && 49150f02cb2SNick Lewycky (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt || 4924f3615deSChris Lattner !isa<UnreachableInst>(Term))) 4934f3615deSChris Lattner return false; 494450aa64fSDan Gohman 495450aa64fSDan Gohman // If I will have a chain, make sure no other instruction that will have a 496450aa64fSDan Gohman // chain interposes between I and the return. 497450aa64fSDan Gohman if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 49875d7d5e9SDan Gohman !isSafeToSpeculativelyExecute(I)) 499450aa64fSDan Gohman for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 500450aa64fSDan Gohman --BBI) { 501450aa64fSDan Gohman if (&*BBI == I) 502450aa64fSDan Gohman break; 503450aa64fSDan Gohman // Debug info intrinsics do not get in the way of tail call optimization. 504450aa64fSDan Gohman if (isa<DbgInfoIntrinsic>(BBI)) 505450aa64fSDan Gohman continue; 506450aa64fSDan Gohman if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 50775d7d5e9SDan Gohman !isSafeToSpeculativelyExecute(BBI)) 508450aa64fSDan Gohman return false; 509450aa64fSDan Gohman } 510450aa64fSDan Gohman 511450aa64fSDan Gohman // If the block ends with a void return or unreachable, it doesn't matter 512450aa64fSDan Gohman // what the call's return type is. 513450aa64fSDan Gohman if (!Ret || Ret->getNumOperands() == 0) return true; 514450aa64fSDan Gohman 515450aa64fSDan Gohman // If the return value is undef, it doesn't matter what the call's 516450aa64fSDan Gohman // return type is. 517450aa64fSDan Gohman if (isa<UndefValue>(Ret->getOperand(0))) return true; 518450aa64fSDan Gohman 519450aa64fSDan Gohman // Conservatively require the attributes of the call to match those of 520450aa64fSDan Gohman // the return. Ignore noalias because it doesn't affect the call sequence. 521b1f3b498SEvan Cheng const Function *F = ExitBB->getParent(); 5224f972ea2SBill Wendling AttributeSet CallerAttrs = F->getAttributes(); 5234f972ea2SBill Wendling if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). 5244f972ea2SBill Wendling removeAttribute(Attribute::NoAlias) != 5254f972ea2SBill Wendling AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). 5264f972ea2SBill Wendling removeAttribute(Attribute::NoAlias)) 527450aa64fSDan Gohman return false; 528450aa64fSDan Gohman 529450aa64fSDan Gohman // It's not safe to eliminate the sign / zero extension of the return value. 5304f972ea2SBill Wendling if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 5314f972ea2SBill Wendling CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 532450aa64fSDan Gohman return false; 533450aa64fSDan Gohman 534a4415854STim Northover const Value *RetVal = Ret->getOperand(0), *CallVal = I; 535a4415854STim Northover SmallVector<unsigned, 4> RetPath, CallPath; 536a4415854STim Northover SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 537a4415854STim Northover 538a4415854STim Northover bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 539a4415854STim Northover bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 540a4415854STim Northover 541a4415854STim Northover // Nothing's actually returned, it doesn't matter what the callee put there 542a4415854STim Northover // it's a valid tail call. 543a4415854STim Northover if (RetEmpty) 544a4415854STim Northover return true; 545a4415854STim Northover 546a4415854STim Northover // Iterate pairwise through each of the value types making up the tail call 547a4415854STim Northover // and the corresponding return. For each one we want to know whether it's 548a4415854STim Northover // essentially going directly from the tail call to the ret, via operations 549a4415854STim Northover // that end up not generating any code. 550a4415854STim Northover // 551a4415854STim Northover // We allow a certain amount of covariance here. For example it's permitted 552a4415854STim Northover // for the tail call to define more bits than the ret actually cares about 553a4415854STim Northover // (e.g. via a truncate). 554a4415854STim Northover do { 555a4415854STim Northover if (CallEmpty) { 556a4415854STim Northover // We've exhausted the values produced by the tail call instruction, the 557a4415854STim Northover // rest are essentially undef. The type doesn't really matter, but we need 558a4415854STim Northover // *something*. 559a4415854STim Northover Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 560a4415854STim Northover CallVal = UndefValue::get(SlotType); 561a4415854STim Northover } 562a4415854STim Northover 563a4415854STim Northover // The manipulations performed when we're looking through an insertvalue or 564a4415854STim Northover // an extractvalue would happen at the front of the RetPath list, so since 565a4415854STim Northover // we have to copy it anyway it's more efficient to create a reversed copy. 566a4415854STim Northover using std::copy; 567a4415854STim Northover SmallVector<unsigned, 4> TmpRetPath, TmpCallPath; 568a4415854STim Northover copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath)); 569a4415854STim Northover copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath)); 570a4415854STim Northover 571a4415854STim Northover // Finally, we can check whether the value produced by the tail call at this 572a4415854STim Northover // index is compatible with the value we return. 573a4415854STim Northover if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, TLI)) 574a4415854STim Northover return false; 575a4415854STim Northover 576a4415854STim Northover CallEmpty = !nextRealType(CallSubTypes, CallPath); 577a4415854STim Northover } while(nextRealType(RetSubTypes, RetPath)); 578a4415854STim Northover 579a4415854STim Northover return true; 580450aa64fSDan Gohman } 581