150f02cb2SNick Lewycky //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2450aa64fSDan Gohman //
3450aa64fSDan Gohman //                     The LLVM Compiler Infrastructure
4450aa64fSDan Gohman //
5450aa64fSDan Gohman // This file is distributed under the University of Illinois Open Source
6450aa64fSDan Gohman // License. See LICENSE.TXT for details.
7450aa64fSDan Gohman //
8450aa64fSDan Gohman //===----------------------------------------------------------------------===//
9450aa64fSDan Gohman //
10450aa64fSDan Gohman // This file defines several CodeGen-specific LLVM IR analysis utilties.
11450aa64fSDan Gohman //
12450aa64fSDan Gohman //===----------------------------------------------------------------------===//
13450aa64fSDan Gohman 
14450aa64fSDan Gohman #include "llvm/CodeGen/Analysis.h"
1575d7d5e9SDan Gohman #include "llvm/Analysis/ValueTracking.h"
16ed0881b2SChandler Carruth #include "llvm/CodeGen/MachineFunction.h"
179fb823bbSChandler Carruth #include "llvm/IR/DataLayout.h"
189fb823bbSChandler Carruth #include "llvm/IR/DerivedTypes.h"
199fb823bbSChandler Carruth #include "llvm/IR/Function.h"
209fb823bbSChandler Carruth #include "llvm/IR/Instructions.h"
219fb823bbSChandler Carruth #include "llvm/IR/IntrinsicInst.h"
229fb823bbSChandler Carruth #include "llvm/IR/LLVMContext.h"
239fb823bbSChandler Carruth #include "llvm/IR/Module.h"
24450aa64fSDan Gohman #include "llvm/Support/ErrorHandling.h"
25450aa64fSDan Gohman #include "llvm/Support/MathExtras.h"
26ed0881b2SChandler Carruth #include "llvm/Target/TargetLowering.h"
27450aa64fSDan Gohman using namespace llvm;
28450aa64fSDan Gohman 
29450aa64fSDan Gohman /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
30450aa64fSDan Gohman /// of insertvalue or extractvalue indices that identify a member, return
31450aa64fSDan Gohman /// the linearized index of the start of the member.
32450aa64fSDan Gohman ///
33229907cdSChris Lattner unsigned llvm::ComputeLinearIndex(Type *Ty,
34450aa64fSDan Gohman                                   const unsigned *Indices,
35450aa64fSDan Gohman                                   const unsigned *IndicesEnd,
36450aa64fSDan Gohman                                   unsigned CurIndex) {
37450aa64fSDan Gohman   // Base case: We're done.
38450aa64fSDan Gohman   if (Indices && Indices == IndicesEnd)
39450aa64fSDan Gohman     return CurIndex;
40450aa64fSDan Gohman 
41450aa64fSDan Gohman   // Given a struct type, recursively traverse the elements.
42229907cdSChris Lattner   if (StructType *STy = dyn_cast<StructType>(Ty)) {
43450aa64fSDan Gohman     for (StructType::element_iterator EB = STy->element_begin(),
44450aa64fSDan Gohman                                       EI = EB,
45450aa64fSDan Gohman                                       EE = STy->element_end();
46450aa64fSDan Gohman         EI != EE; ++EI) {
47450aa64fSDan Gohman       if (Indices && *Indices == unsigned(EI - EB))
48aadc5596SDan Gohman         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
49aadc5596SDan Gohman       CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
50450aa64fSDan Gohman     }
51450aa64fSDan Gohman     return CurIndex;
52450aa64fSDan Gohman   }
53450aa64fSDan Gohman   // Given an array type, recursively traverse the elements.
54229907cdSChris Lattner   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
55229907cdSChris Lattner     Type *EltTy = ATy->getElementType();
56450aa64fSDan Gohman     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
57450aa64fSDan Gohman       if (Indices && *Indices == i)
58aadc5596SDan Gohman         return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
59aadc5596SDan Gohman       CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
60450aa64fSDan Gohman     }
61450aa64fSDan Gohman     return CurIndex;
62450aa64fSDan Gohman   }
63450aa64fSDan Gohman   // We haven't found the type we're looking for, so keep searching.
64450aa64fSDan Gohman   return CurIndex + 1;
65450aa64fSDan Gohman }
66450aa64fSDan Gohman 
67450aa64fSDan Gohman /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
68450aa64fSDan Gohman /// EVTs that represent all the individual underlying
69450aa64fSDan Gohman /// non-aggregate types that comprise it.
70450aa64fSDan Gohman ///
71450aa64fSDan Gohman /// If Offsets is non-null, it points to a vector to be filled in
72450aa64fSDan Gohman /// with the in-memory offsets of each of the individual values.
73450aa64fSDan Gohman ///
74229907cdSChris Lattner void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
75450aa64fSDan Gohman                            SmallVectorImpl<EVT> &ValueVTs,
76450aa64fSDan Gohman                            SmallVectorImpl<uint64_t> *Offsets,
77450aa64fSDan Gohman                            uint64_t StartingOffset) {
78450aa64fSDan Gohman   // Given a struct type, recursively traverse the elements.
79229907cdSChris Lattner   if (StructType *STy = dyn_cast<StructType>(Ty)) {
80cdfe20b9SMicah Villmow     const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
81450aa64fSDan Gohman     for (StructType::element_iterator EB = STy->element_begin(),
82450aa64fSDan Gohman                                       EI = EB,
83450aa64fSDan Gohman                                       EE = STy->element_end();
84450aa64fSDan Gohman          EI != EE; ++EI)
85450aa64fSDan Gohman       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
86450aa64fSDan Gohman                       StartingOffset + SL->getElementOffset(EI - EB));
87450aa64fSDan Gohman     return;
88450aa64fSDan Gohman   }
89450aa64fSDan Gohman   // Given an array type, recursively traverse the elements.
90229907cdSChris Lattner   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
91229907cdSChris Lattner     Type *EltTy = ATy->getElementType();
92cdfe20b9SMicah Villmow     uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
93450aa64fSDan Gohman     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
94450aa64fSDan Gohman       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
95450aa64fSDan Gohman                       StartingOffset + i * EltSize);
96450aa64fSDan Gohman     return;
97450aa64fSDan Gohman   }
98450aa64fSDan Gohman   // Interpret void as zero return values.
99450aa64fSDan Gohman   if (Ty->isVoidTy())
100450aa64fSDan Gohman     return;
101450aa64fSDan Gohman   // Base case: we can get an EVT for this LLVM IR type.
102450aa64fSDan Gohman   ValueVTs.push_back(TLI.getValueType(Ty));
103450aa64fSDan Gohman   if (Offsets)
104450aa64fSDan Gohman     Offsets->push_back(StartingOffset);
105450aa64fSDan Gohman }
106450aa64fSDan Gohman 
107450aa64fSDan Gohman /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
108450aa64fSDan Gohman GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
109450aa64fSDan Gohman   V = V->stripPointerCasts();
110450aa64fSDan Gohman   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
111450aa64fSDan Gohman 
112fa60b0eeSBill Wendling   if (GV && GV->getName() == "llvm.eh.catch.all.value") {
113450aa64fSDan Gohman     assert(GV->hasInitializer() &&
114450aa64fSDan Gohman            "The EH catch-all value must have an initializer");
115450aa64fSDan Gohman     Value *Init = GV->getInitializer();
116450aa64fSDan Gohman     GV = dyn_cast<GlobalVariable>(Init);
117450aa64fSDan Gohman     if (!GV) V = cast<ConstantPointerNull>(Init);
118450aa64fSDan Gohman   }
119450aa64fSDan Gohman 
120450aa64fSDan Gohman   assert((GV || isa<ConstantPointerNull>(V)) &&
121450aa64fSDan Gohman          "TypeInfo must be a global variable or NULL");
122450aa64fSDan Gohman   return GV;
123450aa64fSDan Gohman }
124450aa64fSDan Gohman 
125450aa64fSDan Gohman /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
126450aa64fSDan Gohman /// processed uses a memory 'm' constraint.
127450aa64fSDan Gohman bool
128e8360b71SJohn Thompson llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
129450aa64fSDan Gohman                                 const TargetLowering &TLI) {
130450aa64fSDan Gohman   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
131450aa64fSDan Gohman     InlineAsm::ConstraintInfo &CI = CInfos[i];
132450aa64fSDan Gohman     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
133450aa64fSDan Gohman       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
134450aa64fSDan Gohman       if (CType == TargetLowering::C_Memory)
135450aa64fSDan Gohman         return true;
136450aa64fSDan Gohman     }
137450aa64fSDan Gohman 
138450aa64fSDan Gohman     // Indirect operand accesses access memory.
139450aa64fSDan Gohman     if (CI.isIndirect)
140450aa64fSDan Gohman       return true;
141450aa64fSDan Gohman   }
142450aa64fSDan Gohman 
143450aa64fSDan Gohman   return false;
144450aa64fSDan Gohman }
145450aa64fSDan Gohman 
146450aa64fSDan Gohman /// getFCmpCondCode - Return the ISD condition code corresponding to
147450aa64fSDan Gohman /// the given LLVM IR floating-point condition code.  This includes
148450aa64fSDan Gohman /// consideration of global floating-point math flags.
149450aa64fSDan Gohman ///
150450aa64fSDan Gohman ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
151450aa64fSDan Gohman   switch (Pred) {
15250f02cb2SNick Lewycky   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
15350f02cb2SNick Lewycky   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
15450f02cb2SNick Lewycky   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
15550f02cb2SNick Lewycky   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
15650f02cb2SNick Lewycky   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
15750f02cb2SNick Lewycky   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
15850f02cb2SNick Lewycky   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
15950f02cb2SNick Lewycky   case FCmpInst::FCMP_ORD:   return ISD::SETO;
16050f02cb2SNick Lewycky   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
16150f02cb2SNick Lewycky   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
16250f02cb2SNick Lewycky   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
16350f02cb2SNick Lewycky   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
16450f02cb2SNick Lewycky   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
16550f02cb2SNick Lewycky   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
16650f02cb2SNick Lewycky   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
16750f02cb2SNick Lewycky   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
16846a9f016SDavid Blaikie   default: llvm_unreachable("Invalid FCmp predicate opcode!");
169450aa64fSDan Gohman   }
17050f02cb2SNick Lewycky }
17150f02cb2SNick Lewycky 
17250f02cb2SNick Lewycky ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
17350f02cb2SNick Lewycky   switch (CC) {
17450f02cb2SNick Lewycky     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
17550f02cb2SNick Lewycky     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
17650f02cb2SNick Lewycky     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
17750f02cb2SNick Lewycky     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
17850f02cb2SNick Lewycky     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
17950f02cb2SNick Lewycky     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
18046a9f016SDavid Blaikie     default: return CC;
18150f02cb2SNick Lewycky   }
182450aa64fSDan Gohman }
183450aa64fSDan Gohman 
184450aa64fSDan Gohman /// getICmpCondCode - Return the ISD condition code corresponding to
185450aa64fSDan Gohman /// the given LLVM IR integer condition code.
186450aa64fSDan Gohman ///
187450aa64fSDan Gohman ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
188450aa64fSDan Gohman   switch (Pred) {
189450aa64fSDan Gohman   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
190450aa64fSDan Gohman   case ICmpInst::ICMP_NE:  return ISD::SETNE;
191450aa64fSDan Gohman   case ICmpInst::ICMP_SLE: return ISD::SETLE;
192450aa64fSDan Gohman   case ICmpInst::ICMP_ULE: return ISD::SETULE;
193450aa64fSDan Gohman   case ICmpInst::ICMP_SGE: return ISD::SETGE;
194450aa64fSDan Gohman   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
195450aa64fSDan Gohman   case ICmpInst::ICMP_SLT: return ISD::SETLT;
196450aa64fSDan Gohman   case ICmpInst::ICMP_ULT: return ISD::SETULT;
197450aa64fSDan Gohman   case ICmpInst::ICMP_SGT: return ISD::SETGT;
198450aa64fSDan Gohman   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
199450aa64fSDan Gohman   default:
200450aa64fSDan Gohman     llvm_unreachable("Invalid ICmp predicate opcode!");
201450aa64fSDan Gohman   }
202450aa64fSDan Gohman }
203450aa64fSDan Gohman 
204ffc44549SStephen Lin static bool isNoopBitcast(Type *T1, Type *T2,
205c0659fadSMichael Gottesman                           const TargetLoweringBase& TLI) {
206ffc44549SStephen Lin   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
207ffc44549SStephen Lin          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
208ffc44549SStephen Lin           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
209ffc44549SStephen Lin }
2104f3615deSChris Lattner 
211a4415854STim Northover /// Look through operations that will be free to find the earliest source of
212a4415854STim Northover /// this value.
213a4415854STim Northover ///
214a4415854STim Northover /// @param ValLoc If V has aggegate type, we will be interested in a particular
215a4415854STim Northover /// scalar component. This records its address; the reverse of this list gives a
216a4415854STim Northover /// sequence of indices appropriate for an extractvalue to locate the important
217a4415854STim Northover /// value. This value is updated during the function and on exit will indicate
218a4415854STim Northover /// similar information for the Value returned.
219a4415854STim Northover ///
220a4415854STim Northover /// @param DataBits If this function looks through truncate instructions, this
221a4415854STim Northover /// will record the smallest size attained.
222a4415854STim Northover static const Value *getNoopInput(const Value *V,
223a4415854STim Northover                                  SmallVectorImpl<unsigned> &ValLoc,
224a4415854STim Northover                                  unsigned &DataBits,
225c0659fadSMichael Gottesman                                  const TargetLoweringBase &TLI) {
226ffc44549SStephen Lin   while (true) {
227ffc44549SStephen Lin     // Try to look through V1; if V1 is not an instruction, it can't be looked
228ffc44549SStephen Lin     // through.
229a4415854STim Northover     const Instruction *I = dyn_cast<Instruction>(V);
230a4415854STim Northover     if (!I || I->getNumOperands() == 0) return V;
231ffc44549SStephen Lin     const Value *NoopInput = 0;
232a4415854STim Northover 
233182fe3eeSChris Lattner     Value *Op = I->getOperand(0);
234a4415854STim Northover     if (isa<BitCastInst>(I)) {
2354f3615deSChris Lattner       // Look through truly no-op bitcasts.
236ffc44549SStephen Lin       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
237ffc44549SStephen Lin         NoopInput = Op;
238ffc44549SStephen Lin     } else if (isa<GetElementPtrInst>(I)) {
239ffc44549SStephen Lin       // Look through getelementptr
240ffc44549SStephen Lin       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
241ffc44549SStephen Lin         NoopInput = Op;
242ffc44549SStephen Lin     } else if (isa<IntToPtrInst>(I)) {
243182fe3eeSChris Lattner       // Look through inttoptr.
244ffc44549SStephen Lin       // Make sure this isn't a truncating or extending cast.  We could
245ffc44549SStephen Lin       // support this eventually, but don't bother for now.
246ffc44549SStephen Lin       if (!isa<VectorType>(I->getType()) &&
247ffc44549SStephen Lin           TLI.getPointerTy().getSizeInBits() ==
248182fe3eeSChris Lattner           cast<IntegerType>(Op->getType())->getBitWidth())
249ffc44549SStephen Lin         NoopInput = Op;
250ffc44549SStephen Lin     } else if (isa<PtrToIntInst>(I)) {
251182fe3eeSChris Lattner       // Look through ptrtoint.
252ffc44549SStephen Lin       // Make sure this isn't a truncating or extending cast.  We could
253ffc44549SStephen Lin       // support this eventually, but don't bother for now.
254ffc44549SStephen Lin       if (!isa<VectorType>(I->getType()) &&
255ffc44549SStephen Lin           TLI.getPointerTy().getSizeInBits() ==
256182fe3eeSChris Lattner           cast<IntegerType>(I->getType())->getBitWidth())
257ffc44549SStephen Lin         NoopInput = Op;
258a4415854STim Northover     } else if (isa<TruncInst>(I) &&
259a4415854STim Northover                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
260a4415854STim Northover       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
261a4415854STim Northover       NoopInput = Op;
262b8bd232aSStephen Lin     } else if (isa<CallInst>(I)) {
263a4415854STim Northover       // Look through call (skipping callee)
264a4415854STim Northover       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
265b8bd232aSStephen Lin            i != e; ++i) {
266b8bd232aSStephen Lin         unsigned attrInd = i - I->op_begin() + 1;
267b8bd232aSStephen Lin         if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
268b8bd232aSStephen Lin             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
269b8bd232aSStephen Lin           NoopInput = *i;
270b8bd232aSStephen Lin           break;
271b8bd232aSStephen Lin         }
272b8bd232aSStephen Lin       }
273b8bd232aSStephen Lin     } else if (isa<InvokeInst>(I)) {
274a4415854STim Northover       // Look through invoke (skipping BB, BB, Callee)
275a4415854STim Northover       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
276b8bd232aSStephen Lin            i != e; ++i) {
277b8bd232aSStephen Lin         unsigned attrInd = i - I->op_begin() + 1;
278b8bd232aSStephen Lin         if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
279b8bd232aSStephen Lin             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
280b8bd232aSStephen Lin           NoopInput = *i;
281b8bd232aSStephen Lin           break;
282b8bd232aSStephen Lin         }
283b8bd232aSStephen Lin       }
284a4415854STim Northover     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
285a4415854STim Northover       // Value may come from either the aggregate or the scalar
286a4415854STim Northover       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
287a4415854STim Northover       if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(),
288a4415854STim Northover                      ValLoc.rbegin())) {
289a4415854STim Northover         // The type being inserted is a nested sub-type of the aggregate; we
290a4415854STim Northover         // have to remove those initial indices to get the location we're
291a4415854STim Northover         // interested in for the operand.
292a4415854STim Northover         ValLoc.resize(ValLoc.size() - InsertLoc.size());
293a4415854STim Northover         NoopInput = IVI->getInsertedValueOperand();
294a4415854STim Northover       } else {
295a4415854STim Northover         // The struct we're inserting into has the value we're interested in, no
296a4415854STim Northover         // change of address.
297a4415854STim Northover         NoopInput = Op;
298a4415854STim Northover       }
299a4415854STim Northover     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
300a4415854STim Northover       // The part we're interested in will inevitably be some sub-section of the
301a4415854STim Northover       // previous aggregate. Combine the two paths to obtain the true address of
302a4415854STim Northover       // our element.
303a4415854STim Northover       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
304a4415854STim Northover       std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(),
305a4415854STim Northover                 std::back_inserter(ValLoc));
306a4415854STim Northover       NoopInput = Op;
307a4415854STim Northover     }
308a4415854STim Northover     // Terminate if we couldn't find anything to look through.
309a4415854STim Northover     if (!NoopInput)
310a4415854STim Northover       return V;
311a4415854STim Northover 
312a4415854STim Northover     V = NoopInput;
313ffc44549SStephen Lin   }
314182fe3eeSChris Lattner }
315182fe3eeSChris Lattner 
316a4415854STim Northover /// Return true if this scalar return value only has bits discarded on its path
317a4415854STim Northover /// from the "tail call" to the "ret". This includes the obvious noop
318a4415854STim Northover /// instructions handled by getNoopInput above as well as free truncations (or
319a4415854STim Northover /// extensions prior to the call).
320a4415854STim Northover static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
321a4415854STim Northover                                  SmallVectorImpl<unsigned> &RetIndices,
322a4415854STim Northover                                  SmallVectorImpl<unsigned> &CallIndices,
323a4415854STim Northover                                  const TargetLoweringBase &TLI) {
3244f3615deSChris Lattner 
325a4415854STim Northover   // Trace the sub-value needed by the return value as far back up the graph as
326a4415854STim Northover   // possible, in the hope that it will intersect with the value produced by the
327a4415854STim Northover   // call. In the simple case with no "returned" attribute, the hope is actually
328a4415854STim Northover   // that we end up back at the tail call instruction itself.
329a4415854STim Northover   unsigned BitsRequired = UINT_MAX;
330a4415854STim Northover   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI);
331ffc44549SStephen Lin 
332a4415854STim Northover   // If this slot in the value returned is undef, it doesn't matter what the
333a4415854STim Northover   // call puts there, it'll be fine.
334a4415854STim Northover   if (isa<UndefValue>(RetVal))
335a4415854STim Northover     return true;
336ffc44549SStephen Lin 
337a4415854STim Northover   // Now do a similar search up through the graph to find where the value
338a4415854STim Northover   // actually returned by the "tail call" comes from. In the simple case without
339a4415854STim Northover   // a "returned" attribute, the search will be blocked immediately and the loop
340a4415854STim Northover   // a Noop.
341a4415854STim Northover   unsigned BitsProvided = UINT_MAX;
342a4415854STim Northover   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI);
343a4415854STim Northover 
344a4415854STim Northover   // There's no hope if we can't actually trace them to (the same part of!) the
345a4415854STim Northover   // same value.
346a4415854STim Northover   if (CallVal != RetVal || CallIndices != RetIndices)
347a4415854STim Northover     return false;
348a4415854STim Northover 
349a4415854STim Northover   // However, intervening truncates may have made the call non-tail. Make sure
350a4415854STim Northover   // all the bits that are needed by the "ret" have been provided by the "tail
351a4415854STim Northover   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
352a4415854STim Northover   // extensions too.
353a4415854STim Northover   if (BitsProvided < BitsRequired)
354a4415854STim Northover     return false;
355a4415854STim Northover 
356ffc44549SStephen Lin   return true;
357ffc44549SStephen Lin }
358a4415854STim Northover 
359a4415854STim Northover /// For an aggregate type, determine whether a given index is within bounds or
360a4415854STim Northover /// not.
361a4415854STim Northover static bool indexReallyValid(CompositeType *T, unsigned Idx) {
362a4415854STim Northover   if (ArrayType *AT = dyn_cast<ArrayType>(T))
363a4415854STim Northover     return Idx < AT->getNumElements();
364a4415854STim Northover 
365a4415854STim Northover   return Idx < cast<StructType>(T)->getNumElements();
366ffc44549SStephen Lin }
367a4415854STim Northover 
368a4415854STim Northover /// Move the given iterators to the next leaf type in depth first traversal.
369a4415854STim Northover ///
370a4415854STim Northover /// Performs a depth-first traversal of the type as specified by its arguments,
371a4415854STim Northover /// stopping at the next leaf node (which may be a legitimate scalar type or an
372a4415854STim Northover /// empty struct or array).
373a4415854STim Northover ///
374a4415854STim Northover /// @param SubTypes List of the partial components making up the type from
375a4415854STim Northover /// outermost to innermost non-empty aggregate. The element currently
376a4415854STim Northover /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
377a4415854STim Northover ///
378a4415854STim Northover /// @param Path Set of extractvalue indices leading from the outermost type
379a4415854STim Northover /// (SubTypes[0]) to the leaf node currently represented.
380a4415854STim Northover ///
381a4415854STim Northover /// @returns true if a new type was found, false otherwise. Calling this
382a4415854STim Northover /// function again on a finished iterator will repeatedly return
383a4415854STim Northover /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
384a4415854STim Northover /// aggregate or a non-aggregate
385*df03449aSBenjamin Kramer static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
386a4415854STim Northover                                   SmallVectorImpl<unsigned> &Path) {
387a4415854STim Northover   // First march back up the tree until we can successfully increment one of the
388a4415854STim Northover   // coordinates in Path.
389a4415854STim Northover   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
390a4415854STim Northover     Path.pop_back();
391a4415854STim Northover     SubTypes.pop_back();
392a4415854STim Northover   }
393a4415854STim Northover 
394a4415854STim Northover   // If we reached the top, then the iterator is done.
395a4415854STim Northover   if (Path.empty())
396a4415854STim Northover     return false;
397a4415854STim Northover 
398a4415854STim Northover   // We know there's *some* valid leaf now, so march back down the tree picking
399a4415854STim Northover   // out the left-most element at each node.
400a4415854STim Northover   ++Path.back();
401a4415854STim Northover   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
402a4415854STim Northover   while (DeeperType->isAggregateType()) {
403a4415854STim Northover     CompositeType *CT = cast<CompositeType>(DeeperType);
404a4415854STim Northover     if (!indexReallyValid(CT, 0))
405a4415854STim Northover       return true;
406a4415854STim Northover 
407a4415854STim Northover     SubTypes.push_back(CT);
408a4415854STim Northover     Path.push_back(0);
409a4415854STim Northover 
410a4415854STim Northover     DeeperType = CT->getTypeAtIndex(0U);
411a4415854STim Northover   }
412a4415854STim Northover 
413ffc44549SStephen Lin   return true;
414ffc44549SStephen Lin }
415a4415854STim Northover 
416a4415854STim Northover /// Find the first non-empty, scalar-like type in Next and setup the iterator
417a4415854STim Northover /// components.
418a4415854STim Northover ///
419a4415854STim Northover /// Assuming Next is an aggregate of some kind, this function will traverse the
420a4415854STim Northover /// tree from left to right (i.e. depth-first) looking for the first
421a4415854STim Northover /// non-aggregate type which will play a role in function return.
422a4415854STim Northover ///
423a4415854STim Northover /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
424a4415854STim Northover /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
425a4415854STim Northover /// i32 in that type.
426a4415854STim Northover static bool firstRealType(Type *Next,
427a4415854STim Northover                           SmallVectorImpl<CompositeType *> &SubTypes,
428a4415854STim Northover                           SmallVectorImpl<unsigned> &Path) {
429a4415854STim Northover   // First initialise the iterator components to the first "leaf" node
430a4415854STim Northover   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
431a4415854STim Northover   // despite nominally being an aggregate).
432a4415854STim Northover   while (Next->isAggregateType() &&
433a4415854STim Northover          indexReallyValid(cast<CompositeType>(Next), 0)) {
434a4415854STim Northover     SubTypes.push_back(cast<CompositeType>(Next));
435a4415854STim Northover     Path.push_back(0);
436a4415854STim Northover     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
437ffc44549SStephen Lin   }
438ffc44549SStephen Lin 
439a4415854STim Northover   // If there's no Path now, Next was originally scalar already (or empty
440a4415854STim Northover   // leaf). We're done.
441a4415854STim Northover   if (Path.empty())
442a4415854STim Northover     return true;
443ffc44549SStephen Lin 
444a4415854STim Northover   // Otherwise, use normal iteration to keep looking through the tree until we
445a4415854STim Northover   // find a non-aggregate type.
446a4415854STim Northover   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
447a4415854STim Northover     if (!advanceToNextLeafType(SubTypes, Path))
448ffc44549SStephen Lin       return false;
449ffc44549SStephen Lin   }
4504f3615deSChris Lattner 
451a4415854STim Northover   return true;
452a4415854STim Northover }
453a4415854STim Northover 
454a4415854STim Northover /// Set the iterator data-structures to the next non-empty, non-aggregate
455a4415854STim Northover /// subtype.
456*df03449aSBenjamin Kramer static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
457a4415854STim Northover                          SmallVectorImpl<unsigned> &Path) {
458a4415854STim Northover   do {
459a4415854STim Northover     if (!advanceToNextLeafType(SubTypes, Path))
460a4415854STim Northover       return false;
461a4415854STim Northover 
462a4415854STim Northover     assert(!Path.empty() && "found a leaf but didn't set the path?");
463a4415854STim Northover   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
464a4415854STim Northover 
465a4415854STim Northover   return true;
466a4415854STim Northover }
467a4415854STim Northover 
468a4415854STim Northover 
469450aa64fSDan Gohman /// Test if the given instruction is in a position to be optimized
470450aa64fSDan Gohman /// with a tail-call. This roughly means that it's in a block with
471450aa64fSDan Gohman /// a return and there's nothing that needs to be scheduled
472450aa64fSDan Gohman /// between it and the return.
473450aa64fSDan Gohman ///
474450aa64fSDan Gohman /// This function only tests target-independent requirements.
475ffc44549SStephen Lin bool llvm::isInTailCallPosition(ImmutableCallSite CS,
476ffc44549SStephen Lin                                 const TargetLowering &TLI) {
477450aa64fSDan Gohman   const Instruction *I = CS.getInstruction();
478450aa64fSDan Gohman   const BasicBlock *ExitBB = I->getParent();
479450aa64fSDan Gohman   const TerminatorInst *Term = ExitBB->getTerminator();
480450aa64fSDan Gohman   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
481450aa64fSDan Gohman 
482450aa64fSDan Gohman   // The block must end in a return statement or unreachable.
483450aa64fSDan Gohman   //
484450aa64fSDan Gohman   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
485450aa64fSDan Gohman   // an unreachable, for now. The way tailcall optimization is currently
486450aa64fSDan Gohman   // implemented means it will add an epilogue followed by a jump. That is
487450aa64fSDan Gohman   // not profitable. Also, if the callee is a special function (e.g.
488450aa64fSDan Gohman   // longjmp on x86), it can end up causing miscompilation that has not
489450aa64fSDan Gohman   // been fully understood.
490450aa64fSDan Gohman   if (!Ret &&
49150f02cb2SNick Lewycky       (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
4924f3615deSChris Lattner        !isa<UnreachableInst>(Term)))
4934f3615deSChris Lattner     return false;
494450aa64fSDan Gohman 
495450aa64fSDan Gohman   // If I will have a chain, make sure no other instruction that will have a
496450aa64fSDan Gohman   // chain interposes between I and the return.
497450aa64fSDan Gohman   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
49875d7d5e9SDan Gohman       !isSafeToSpeculativelyExecute(I))
499450aa64fSDan Gohman     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
500450aa64fSDan Gohman          --BBI) {
501450aa64fSDan Gohman       if (&*BBI == I)
502450aa64fSDan Gohman         break;
503450aa64fSDan Gohman       // Debug info intrinsics do not get in the way of tail call optimization.
504450aa64fSDan Gohman       if (isa<DbgInfoIntrinsic>(BBI))
505450aa64fSDan Gohman         continue;
506450aa64fSDan Gohman       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
50775d7d5e9SDan Gohman           !isSafeToSpeculativelyExecute(BBI))
508450aa64fSDan Gohman         return false;
509450aa64fSDan Gohman     }
510450aa64fSDan Gohman 
511450aa64fSDan Gohman   // If the block ends with a void return or unreachable, it doesn't matter
512450aa64fSDan Gohman   // what the call's return type is.
513450aa64fSDan Gohman   if (!Ret || Ret->getNumOperands() == 0) return true;
514450aa64fSDan Gohman 
515450aa64fSDan Gohman   // If the return value is undef, it doesn't matter what the call's
516450aa64fSDan Gohman   // return type is.
517450aa64fSDan Gohman   if (isa<UndefValue>(Ret->getOperand(0))) return true;
518450aa64fSDan Gohman 
519450aa64fSDan Gohman   // Conservatively require the attributes of the call to match those of
520450aa64fSDan Gohman   // the return. Ignore noalias because it doesn't affect the call sequence.
521b1f3b498SEvan Cheng   const Function *F = ExitBB->getParent();
5224f972ea2SBill Wendling   AttributeSet CallerAttrs = F->getAttributes();
5234f972ea2SBill Wendling   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
5244f972ea2SBill Wendling         removeAttribute(Attribute::NoAlias) !=
5254f972ea2SBill Wendling       AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
5264f972ea2SBill Wendling         removeAttribute(Attribute::NoAlias))
527450aa64fSDan Gohman     return false;
528450aa64fSDan Gohman 
529450aa64fSDan Gohman   // It's not safe to eliminate the sign / zero extension of the return value.
5304f972ea2SBill Wendling   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
5314f972ea2SBill Wendling       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
532450aa64fSDan Gohman     return false;
533450aa64fSDan Gohman 
534a4415854STim Northover   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
535a4415854STim Northover   SmallVector<unsigned, 4> RetPath, CallPath;
536a4415854STim Northover   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
537a4415854STim Northover 
538a4415854STim Northover   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
539a4415854STim Northover   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
540a4415854STim Northover 
541a4415854STim Northover   // Nothing's actually returned, it doesn't matter what the callee put there
542a4415854STim Northover   // it's a valid tail call.
543a4415854STim Northover   if (RetEmpty)
544a4415854STim Northover     return true;
545a4415854STim Northover 
546a4415854STim Northover   // Iterate pairwise through each of the value types making up the tail call
547a4415854STim Northover   // and the corresponding return. For each one we want to know whether it's
548a4415854STim Northover   // essentially going directly from the tail call to the ret, via operations
549a4415854STim Northover   // that end up not generating any code.
550a4415854STim Northover   //
551a4415854STim Northover   // We allow a certain amount of covariance here. For example it's permitted
552a4415854STim Northover   // for the tail call to define more bits than the ret actually cares about
553a4415854STim Northover   // (e.g. via a truncate).
554a4415854STim Northover   do {
555a4415854STim Northover     if (CallEmpty) {
556a4415854STim Northover       // We've exhausted the values produced by the tail call instruction, the
557a4415854STim Northover       // rest are essentially undef. The type doesn't really matter, but we need
558a4415854STim Northover       // *something*.
559a4415854STim Northover       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
560a4415854STim Northover       CallVal = UndefValue::get(SlotType);
561a4415854STim Northover     }
562a4415854STim Northover 
563a4415854STim Northover     // The manipulations performed when we're looking through an insertvalue or
564a4415854STim Northover     // an extractvalue would happen at the front of the RetPath list, so since
565a4415854STim Northover     // we have to copy it anyway it's more efficient to create a reversed copy.
566a4415854STim Northover     using std::copy;
567a4415854STim Northover     SmallVector<unsigned, 4> TmpRetPath, TmpCallPath;
568a4415854STim Northover     copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath));
569a4415854STim Northover     copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath));
570a4415854STim Northover 
571a4415854STim Northover     // Finally, we can check whether the value produced by the tail call at this
572a4415854STim Northover     // index is compatible with the value we return.
573a4415854STim Northover     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, TLI))
574a4415854STim Northover       return false;
575a4415854STim Northover 
576a4415854STim Northover     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
577a4415854STim Northover   } while(nextRealType(RetSubTypes, RetPath));
578a4415854STim Northover 
579a4415854STim Northover   return true;
580450aa64fSDan Gohman }
581