150f02cb2SNick Lewycky //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2450aa64fSDan Gohman // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6450aa64fSDan Gohman // 7450aa64fSDan Gohman //===----------------------------------------------------------------------===// 8450aa64fSDan Gohman // 9db5028bdSEric Christopher // This file defines several CodeGen-specific LLVM IR analysis utilities. 10450aa64fSDan Gohman // 11450aa64fSDan Gohman //===----------------------------------------------------------------------===// 12450aa64fSDan Gohman 1309fc276dSEric Christopher #include "llvm/CodeGen/Analysis.h" 14dda00098SEric Christopher #include "llvm/Analysis/ValueTracking.h" 15ed0881b2SChandler Carruth #include "llvm/CodeGen/MachineFunction.h" 163f833edcSDavid Blaikie #include "llvm/CodeGen/TargetInstrInfo.h" 17b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetLowering.h" 18b3bde2eaSDavid Blaikie #include "llvm/CodeGen/TargetSubtargetInfo.h" 199fb823bbSChandler Carruth #include "llvm/IR/DataLayout.h" 209fb823bbSChandler Carruth #include "llvm/IR/DerivedTypes.h" 219fb823bbSChandler Carruth #include "llvm/IR/Function.h" 229fb823bbSChandler Carruth #include "llvm/IR/Instructions.h" 239fb823bbSChandler Carruth #include "llvm/IR/IntrinsicInst.h" 249fb823bbSChandler Carruth #include "llvm/IR/LLVMContext.h" 259fb823bbSChandler Carruth #include "llvm/IR/Module.h" 26450aa64fSDan Gohman #include "llvm/Support/ErrorHandling.h" 27450aa64fSDan Gohman #include "llvm/Support/MathExtras.h" 28fe0006c8SSimon Pilgrim #include "llvm/Target/TargetMachine.h" 29f21434ccSRafael Espindola #include "llvm/Transforms/Utils/GlobalStatus.h" 30d913448bSEric Christopher 31450aa64fSDan Gohman using namespace llvm; 32450aa64fSDan Gohman 338923cc54SMehdi Amini /// Compute the linearized index of a member in a nested aggregate/struct/array 348923cc54SMehdi Amini /// by recursing and accumulating CurIndex as long as there are indices in the 358923cc54SMehdi Amini /// index list. 36229907cdSChris Lattner unsigned llvm::ComputeLinearIndex(Type *Ty, 37450aa64fSDan Gohman const unsigned *Indices, 38450aa64fSDan Gohman const unsigned *IndicesEnd, 39450aa64fSDan Gohman unsigned CurIndex) { 40450aa64fSDan Gohman // Base case: We're done. 41450aa64fSDan Gohman if (Indices && Indices == IndicesEnd) 42450aa64fSDan Gohman return CurIndex; 43450aa64fSDan Gohman 44450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 45229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 46450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 47450aa64fSDan Gohman EI = EB, 48450aa64fSDan Gohman EE = STy->element_end(); 49450aa64fSDan Gohman EI != EE; ++EI) { 50450aa64fSDan Gohman if (Indices && *Indices == unsigned(EI - EB)) 51aadc5596SDan Gohman return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 52c0196b1bSCraig Topper CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 53450aa64fSDan Gohman } 547b068f6bSMehdi Amini assert(!Indices && "Unexpected out of bound"); 55450aa64fSDan Gohman return CurIndex; 56450aa64fSDan Gohman } 57450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 58229907cdSChris Lattner else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 59229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 608923cc54SMehdi Amini unsigned NumElts = ATy->getNumElements(); 618923cc54SMehdi Amini // Compute the Linear offset when jumping one element of the array 628923cc54SMehdi Amini unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 637b068f6bSMehdi Amini if (Indices) { 647b068f6bSMehdi Amini assert(*Indices < NumElts && "Unexpected out of bound"); 658923cc54SMehdi Amini // If the indice is inside the array, compute the index to the requested 668923cc54SMehdi Amini // elt and recurse inside the element with the end of the indices list 678923cc54SMehdi Amini CurIndex += EltLinearOffset* *Indices; 68aadc5596SDan Gohman return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 69450aa64fSDan Gohman } 708923cc54SMehdi Amini CurIndex += EltLinearOffset*NumElts; 71450aa64fSDan Gohman return CurIndex; 72450aa64fSDan Gohman } 73450aa64fSDan Gohman // We haven't found the type we're looking for, so keep searching. 74450aa64fSDan Gohman return CurIndex + 1; 75450aa64fSDan Gohman } 76450aa64fSDan Gohman 77450aa64fSDan Gohman /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 78450aa64fSDan Gohman /// EVTs that represent all the individual underlying 79450aa64fSDan Gohman /// non-aggregate types that comprise it. 80450aa64fSDan Gohman /// 81450aa64fSDan Gohman /// If Offsets is non-null, it points to a vector to be filled in 82450aa64fSDan Gohman /// with the in-memory offsets of each of the individual values. 83450aa64fSDan Gohman /// 8456228dabSMehdi Amini void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 8556228dabSMehdi Amini Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 86ee2474dfSTim Northover SmallVectorImpl<EVT> *MemVTs, 87450aa64fSDan Gohman SmallVectorImpl<uint64_t> *Offsets, 88450aa64fSDan Gohman uint64_t StartingOffset) { 89450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 90229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 91*cfec6cd5SCraig Topper // If the Offsets aren't needed, don't query the struct layout. This allows 92*cfec6cd5SCraig Topper // us to support structs with scalable vectors for operations that don't 93*cfec6cd5SCraig Topper // need offsets. 94*cfec6cd5SCraig Topper const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr; 95450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 96450aa64fSDan Gohman EI = EB, 97450aa64fSDan Gohman EE = STy->element_end(); 98*cfec6cd5SCraig Topper EI != EE; ++EI) { 99*cfec6cd5SCraig Topper // Don't compute the element offset if we didn't get a StructLayout above. 100*cfec6cd5SCraig Topper uint64_t EltOffset = SL ? SL->getElementOffset(EI - EB) : 0; 101ee2474dfSTim Northover ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 102*cfec6cd5SCraig Topper StartingOffset + EltOffset); 103*cfec6cd5SCraig Topper } 104450aa64fSDan Gohman return; 105450aa64fSDan Gohman } 106450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 107229907cdSChris Lattner if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 108229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 109*cfec6cd5SCraig Topper uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue(); 110450aa64fSDan Gohman for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 111ee2474dfSTim Northover ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 112450aa64fSDan Gohman StartingOffset + i * EltSize); 113450aa64fSDan Gohman return; 114450aa64fSDan Gohman } 115450aa64fSDan Gohman // Interpret void as zero return values. 116450aa64fSDan Gohman if (Ty->isVoidTy()) 117450aa64fSDan Gohman return; 118450aa64fSDan Gohman // Base case: we can get an EVT for this LLVM IR type. 11944ede33aSMehdi Amini ValueVTs.push_back(TLI.getValueType(DL, Ty)); 120ee2474dfSTim Northover if (MemVTs) 121ee2474dfSTim Northover MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 122450aa64fSDan Gohman if (Offsets) 123450aa64fSDan Gohman Offsets->push_back(StartingOffset); 124450aa64fSDan Gohman } 125450aa64fSDan Gohman 126ee2474dfSTim Northover void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 127ee2474dfSTim Northover Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 128ee2474dfSTim Northover SmallVectorImpl<uint64_t> *Offsets, 129ee2474dfSTim Northover uint64_t StartingOffset) { 130ee2474dfSTim Northover return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 131ee2474dfSTim Northover StartingOffset); 132ee2474dfSTim Northover } 133ee2474dfSTim Northover 1342064e45cSMatt Arsenault void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 1352064e45cSMatt Arsenault SmallVectorImpl<LLT> &ValueTys, 1362064e45cSMatt Arsenault SmallVectorImpl<uint64_t> *Offsets, 1372064e45cSMatt Arsenault uint64_t StartingOffset) { 1382064e45cSMatt Arsenault // Given a struct type, recursively traverse the elements. 1392064e45cSMatt Arsenault if (StructType *STy = dyn_cast<StructType>(&Ty)) { 140*cfec6cd5SCraig Topper // If the Offsets aren't needed, don't query the struct layout. This allows 141*cfec6cd5SCraig Topper // us to support structs with scalable vectors for operations that don't 142*cfec6cd5SCraig Topper // need offsets. 143*cfec6cd5SCraig Topper const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr; 144*cfec6cd5SCraig Topper for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) { 145*cfec6cd5SCraig Topper uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0; 1462064e45cSMatt Arsenault computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 147*cfec6cd5SCraig Topper StartingOffset + EltOffset); 148*cfec6cd5SCraig Topper } 1492064e45cSMatt Arsenault return; 1502064e45cSMatt Arsenault } 1512064e45cSMatt Arsenault // Given an array type, recursively traverse the elements. 1522064e45cSMatt Arsenault if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 1532064e45cSMatt Arsenault Type *EltTy = ATy->getElementType(); 154*cfec6cd5SCraig Topper uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue(); 1552064e45cSMatt Arsenault for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 1562064e45cSMatt Arsenault computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 1572064e45cSMatt Arsenault StartingOffset + i * EltSize); 1582064e45cSMatt Arsenault return; 1592064e45cSMatt Arsenault } 1602064e45cSMatt Arsenault // Interpret void as zero return values. 1612064e45cSMatt Arsenault if (Ty.isVoidTy()) 1622064e45cSMatt Arsenault return; 1632064e45cSMatt Arsenault // Base case: we can get an LLT for this LLVM IR type. 1642064e45cSMatt Arsenault ValueTys.push_back(getLLTForType(Ty, DL)); 1652064e45cSMatt Arsenault if (Offsets != nullptr) 1662064e45cSMatt Arsenault Offsets->push_back(StartingOffset * 8); 1672064e45cSMatt Arsenault } 1682064e45cSMatt Arsenault 169450aa64fSDan Gohman /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 170283bc2edSReid Kleckner GlobalValue *llvm::ExtractTypeInfo(Value *V) { 1712452d703SPeter Collingbourne V = V->stripPointerCasts(); 172283bc2edSReid Kleckner GlobalValue *GV = dyn_cast<GlobalValue>(V); 173283bc2edSReid Kleckner GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 174450aa64fSDan Gohman 175283bc2edSReid Kleckner if (Var && Var->getName() == "llvm.eh.catch.all.value") { 176283bc2edSReid Kleckner assert(Var->hasInitializer() && 177450aa64fSDan Gohman "The EH catch-all value must have an initializer"); 178283bc2edSReid Kleckner Value *Init = Var->getInitializer(); 179283bc2edSReid Kleckner GV = dyn_cast<GlobalValue>(Init); 180450aa64fSDan Gohman if (!GV) V = cast<ConstantPointerNull>(Init); 181450aa64fSDan Gohman } 182450aa64fSDan Gohman 183450aa64fSDan Gohman assert((GV || isa<ConstantPointerNull>(V)) && 184450aa64fSDan Gohman "TypeInfo must be a global variable or NULL"); 185450aa64fSDan Gohman return GV; 186450aa64fSDan Gohman } 187450aa64fSDan Gohman 188450aa64fSDan Gohman /// getFCmpCondCode - Return the ISD condition code corresponding to 189450aa64fSDan Gohman /// the given LLVM IR floating-point condition code. This includes 190450aa64fSDan Gohman /// consideration of global floating-point math flags. 191450aa64fSDan Gohman /// 192450aa64fSDan Gohman ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 193450aa64fSDan Gohman switch (Pred) { 19450f02cb2SNick Lewycky case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 19550f02cb2SNick Lewycky case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 19650f02cb2SNick Lewycky case FCmpInst::FCMP_OGT: return ISD::SETOGT; 19750f02cb2SNick Lewycky case FCmpInst::FCMP_OGE: return ISD::SETOGE; 19850f02cb2SNick Lewycky case FCmpInst::FCMP_OLT: return ISD::SETOLT; 19950f02cb2SNick Lewycky case FCmpInst::FCMP_OLE: return ISD::SETOLE; 20050f02cb2SNick Lewycky case FCmpInst::FCMP_ONE: return ISD::SETONE; 20150f02cb2SNick Lewycky case FCmpInst::FCMP_ORD: return ISD::SETO; 20250f02cb2SNick Lewycky case FCmpInst::FCMP_UNO: return ISD::SETUO; 20350f02cb2SNick Lewycky case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 20450f02cb2SNick Lewycky case FCmpInst::FCMP_UGT: return ISD::SETUGT; 20550f02cb2SNick Lewycky case FCmpInst::FCMP_UGE: return ISD::SETUGE; 20650f02cb2SNick Lewycky case FCmpInst::FCMP_ULT: return ISD::SETULT; 20750f02cb2SNick Lewycky case FCmpInst::FCMP_ULE: return ISD::SETULE; 20850f02cb2SNick Lewycky case FCmpInst::FCMP_UNE: return ISD::SETUNE; 20950f02cb2SNick Lewycky case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 21046a9f016SDavid Blaikie default: llvm_unreachable("Invalid FCmp predicate opcode!"); 211450aa64fSDan Gohman } 21250f02cb2SNick Lewycky } 21350f02cb2SNick Lewycky 21450f02cb2SNick Lewycky ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 21550f02cb2SNick Lewycky switch (CC) { 21650f02cb2SNick Lewycky case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 21750f02cb2SNick Lewycky case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 21850f02cb2SNick Lewycky case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 21950f02cb2SNick Lewycky case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 22050f02cb2SNick Lewycky case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 22150f02cb2SNick Lewycky case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 22246a9f016SDavid Blaikie default: return CC; 22350f02cb2SNick Lewycky } 224450aa64fSDan Gohman } 225450aa64fSDan Gohman 226450aa64fSDan Gohman /// getICmpCondCode - Return the ISD condition code corresponding to 227450aa64fSDan Gohman /// the given LLVM IR integer condition code. 228450aa64fSDan Gohman /// 229450aa64fSDan Gohman ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 230450aa64fSDan Gohman switch (Pred) { 231450aa64fSDan Gohman case ICmpInst::ICMP_EQ: return ISD::SETEQ; 232450aa64fSDan Gohman case ICmpInst::ICMP_NE: return ISD::SETNE; 233450aa64fSDan Gohman case ICmpInst::ICMP_SLE: return ISD::SETLE; 234450aa64fSDan Gohman case ICmpInst::ICMP_ULE: return ISD::SETULE; 235450aa64fSDan Gohman case ICmpInst::ICMP_SGE: return ISD::SETGE; 236450aa64fSDan Gohman case ICmpInst::ICMP_UGE: return ISD::SETUGE; 237450aa64fSDan Gohman case ICmpInst::ICMP_SLT: return ISD::SETLT; 238450aa64fSDan Gohman case ICmpInst::ICMP_ULT: return ISD::SETULT; 239450aa64fSDan Gohman case ICmpInst::ICMP_SGT: return ISD::SETGT; 240450aa64fSDan Gohman case ICmpInst::ICMP_UGT: return ISD::SETUGT; 241450aa64fSDan Gohman default: 242450aa64fSDan Gohman llvm_unreachable("Invalid ICmp predicate opcode!"); 243450aa64fSDan Gohman } 244450aa64fSDan Gohman } 245450aa64fSDan Gohman 246ffc44549SStephen Lin static bool isNoopBitcast(Type *T1, Type *T2, 247c0659fadSMichael Gottesman const TargetLoweringBase& TLI) { 248ffc44549SStephen Lin return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 249ffc44549SStephen Lin (isa<VectorType>(T1) && isa<VectorType>(T2) && 250ffc44549SStephen Lin TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 251ffc44549SStephen Lin } 2524f3615deSChris Lattner 253a4415854STim Northover /// Look through operations that will be free to find the earliest source of 254a4415854STim Northover /// this value. 255a4415854STim Northover /// 256d68904f9SJames Henderson /// @param ValLoc If V has aggregate type, we will be interested in a particular 257a4415854STim Northover /// scalar component. This records its address; the reverse of this list gives a 258a4415854STim Northover /// sequence of indices appropriate for an extractvalue to locate the important 259a4415854STim Northover /// value. This value is updated during the function and on exit will indicate 260a4415854STim Northover /// similar information for the Value returned. 261a4415854STim Northover /// 262a4415854STim Northover /// @param DataBits If this function looks through truncate instructions, this 263a4415854STim Northover /// will record the smallest size attained. 264a4415854STim Northover static const Value *getNoopInput(const Value *V, 265a4415854STim Northover SmallVectorImpl<unsigned> &ValLoc, 266a4415854STim Northover unsigned &DataBits, 26744ede33aSMehdi Amini const TargetLoweringBase &TLI, 26844ede33aSMehdi Amini const DataLayout &DL) { 269ffc44549SStephen Lin while (true) { 270ffc44549SStephen Lin // Try to look through V1; if V1 is not an instruction, it can't be looked 271ffc44549SStephen Lin // through. 272a4415854STim Northover const Instruction *I = dyn_cast<Instruction>(V); 273a4415854STim Northover if (!I || I->getNumOperands() == 0) return V; 274c0196b1bSCraig Topper const Value *NoopInput = nullptr; 275a4415854STim Northover 276182fe3eeSChris Lattner Value *Op = I->getOperand(0); 277a4415854STim Northover if (isa<BitCastInst>(I)) { 2784f3615deSChris Lattner // Look through truly no-op bitcasts. 279ffc44549SStephen Lin if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 280ffc44549SStephen Lin NoopInput = Op; 281ffc44549SStephen Lin } else if (isa<GetElementPtrInst>(I)) { 282ffc44549SStephen Lin // Look through getelementptr 283ffc44549SStephen Lin if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 284ffc44549SStephen Lin NoopInput = Op; 285ffc44549SStephen Lin } else if (isa<IntToPtrInst>(I)) { 286182fe3eeSChris Lattner // Look through inttoptr. 287ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 288ffc44549SStephen Lin // support this eventually, but don't bother for now. 289ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 29044ede33aSMehdi Amini DL.getPointerSizeInBits() == 291182fe3eeSChris Lattner cast<IntegerType>(Op->getType())->getBitWidth()) 292ffc44549SStephen Lin NoopInput = Op; 293ffc44549SStephen Lin } else if (isa<PtrToIntInst>(I)) { 294182fe3eeSChris Lattner // Look through ptrtoint. 295ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 296ffc44549SStephen Lin // support this eventually, but don't bother for now. 297ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 29844ede33aSMehdi Amini DL.getPointerSizeInBits() == 299182fe3eeSChris Lattner cast<IntegerType>(I->getType())->getBitWidth()) 300ffc44549SStephen Lin NoopInput = Op; 301a4415854STim Northover } else if (isa<TruncInst>(I) && 302a4415854STim Northover TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 303b302561bSGraham Hunter DataBits = std::min((uint64_t)DataBits, 304b302561bSGraham Hunter I->getType()->getPrimitiveSizeInBits().getFixedSize()); 305a4415854STim Northover NoopInput = Op; 306f06cf9daSCraig Topper } else if (auto *CB = dyn_cast<CallBase>(I)) { 307f06cf9daSCraig Topper const Value *ReturnedOp = CB->getReturnedArgOperand(); 3086aff744eSAhmed Bougacha if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 3096aff744eSAhmed Bougacha NoopInput = ReturnedOp; 310a4415854STim Northover } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 311a4415854STim Northover // Value may come from either the aggregate or the scalar 312a4415854STim Northover ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 313e4310fe9STim Northover if (ValLoc.size() >= InsertLoc.size() && 314e4310fe9STim Northover std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 315a4415854STim Northover // The type being inserted is a nested sub-type of the aggregate; we 316a4415854STim Northover // have to remove those initial indices to get the location we're 317a4415854STim Northover // interested in for the operand. 318a4415854STim Northover ValLoc.resize(ValLoc.size() - InsertLoc.size()); 319a4415854STim Northover NoopInput = IVI->getInsertedValueOperand(); 320a4415854STim Northover } else { 321a4415854STim Northover // The struct we're inserting into has the value we're interested in, no 322a4415854STim Northover // change of address. 323a4415854STim Northover NoopInput = Op; 324a4415854STim Northover } 325a4415854STim Northover } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 326a4415854STim Northover // The part we're interested in will inevitably be some sub-section of the 327a4415854STim Northover // previous aggregate. Combine the two paths to obtain the true address of 328a4415854STim Northover // our element. 329a4415854STim Northover ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 3304f6ac162SBenjamin Kramer ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 331a4415854STim Northover NoopInput = Op; 332a4415854STim Northover } 333a4415854STim Northover // Terminate if we couldn't find anything to look through. 334a4415854STim Northover if (!NoopInput) 335a4415854STim Northover return V; 336a4415854STim Northover 337a4415854STim Northover V = NoopInput; 338ffc44549SStephen Lin } 339182fe3eeSChris Lattner } 340182fe3eeSChris Lattner 341a4415854STim Northover /// Return true if this scalar return value only has bits discarded on its path 342a4415854STim Northover /// from the "tail call" to the "ret". This includes the obvious noop 343a4415854STim Northover /// instructions handled by getNoopInput above as well as free truncations (or 344a4415854STim Northover /// extensions prior to the call). 345a4415854STim Northover static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 346a4415854STim Northover SmallVectorImpl<unsigned> &RetIndices, 347a4415854STim Northover SmallVectorImpl<unsigned> &CallIndices, 348707d68f0STim Northover bool AllowDifferingSizes, 34944ede33aSMehdi Amini const TargetLoweringBase &TLI, 35044ede33aSMehdi Amini const DataLayout &DL) { 3514f3615deSChris Lattner 352a4415854STim Northover // Trace the sub-value needed by the return value as far back up the graph as 353a4415854STim Northover // possible, in the hope that it will intersect with the value produced by the 354a4415854STim Northover // call. In the simple case with no "returned" attribute, the hope is actually 355a4415854STim Northover // that we end up back at the tail call instruction itself. 356a4415854STim Northover unsigned BitsRequired = UINT_MAX; 35744ede33aSMehdi Amini RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 358ffc44549SStephen Lin 359a4415854STim Northover // If this slot in the value returned is undef, it doesn't matter what the 360a4415854STim Northover // call puts there, it'll be fine. 361a4415854STim Northover if (isa<UndefValue>(RetVal)) 362a4415854STim Northover return true; 363ffc44549SStephen Lin 364a4415854STim Northover // Now do a similar search up through the graph to find where the value 365a4415854STim Northover // actually returned by the "tail call" comes from. In the simple case without 366a4415854STim Northover // a "returned" attribute, the search will be blocked immediately and the loop 367a4415854STim Northover // a Noop. 368a4415854STim Northover unsigned BitsProvided = UINT_MAX; 36944ede33aSMehdi Amini CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 370a4415854STim Northover 371a4415854STim Northover // There's no hope if we can't actually trace them to (the same part of!) the 372a4415854STim Northover // same value. 373a4415854STim Northover if (CallVal != RetVal || CallIndices != RetIndices) 374a4415854STim Northover return false; 375a4415854STim Northover 376a4415854STim Northover // However, intervening truncates may have made the call non-tail. Make sure 377a4415854STim Northover // all the bits that are needed by the "ret" have been provided by the "tail 378a4415854STim Northover // call". FIXME: with sufficiently cunning bit-tracking, we could look through 379a4415854STim Northover // extensions too. 380707d68f0STim Northover if (BitsProvided < BitsRequired || 381707d68f0STim Northover (!AllowDifferingSizes && BitsProvided != BitsRequired)) 382a4415854STim Northover return false; 383a4415854STim Northover 384ffc44549SStephen Lin return true; 385ffc44549SStephen Lin } 386a4415854STim Northover 387a4415854STim Northover /// For an aggregate type, determine whether a given index is within bounds or 388a4415854STim Northover /// not. 389e24e95feSEli Friedman static bool indexReallyValid(Type *T, unsigned Idx) { 390a4415854STim Northover if (ArrayType *AT = dyn_cast<ArrayType>(T)) 391a4415854STim Northover return Idx < AT->getNumElements(); 392a4415854STim Northover 393a4415854STim Northover return Idx < cast<StructType>(T)->getNumElements(); 394ffc44549SStephen Lin } 395a4415854STim Northover 396a4415854STim Northover /// Move the given iterators to the next leaf type in depth first traversal. 397a4415854STim Northover /// 398a4415854STim Northover /// Performs a depth-first traversal of the type as specified by its arguments, 399a4415854STim Northover /// stopping at the next leaf node (which may be a legitimate scalar type or an 400a4415854STim Northover /// empty struct or array). 401a4415854STim Northover /// 402a4415854STim Northover /// @param SubTypes List of the partial components making up the type from 403a4415854STim Northover /// outermost to innermost non-empty aggregate. The element currently 404a4415854STim Northover /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 405a4415854STim Northover /// 406a4415854STim Northover /// @param Path Set of extractvalue indices leading from the outermost type 407a4415854STim Northover /// (SubTypes[0]) to the leaf node currently represented. 408a4415854STim Northover /// 409a4415854STim Northover /// @returns true if a new type was found, false otherwise. Calling this 410a4415854STim Northover /// function again on a finished iterator will repeatedly return 411a4415854STim Northover /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 412a4415854STim Northover /// aggregate or a non-aggregate 413e24e95feSEli Friedman static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes, 414a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 415a4415854STim Northover // First march back up the tree until we can successfully increment one of the 416a4415854STim Northover // coordinates in Path. 417a4415854STim Northover while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 418a4415854STim Northover Path.pop_back(); 419a4415854STim Northover SubTypes.pop_back(); 420a4415854STim Northover } 421a4415854STim Northover 422a4415854STim Northover // If we reached the top, then the iterator is done. 423a4415854STim Northover if (Path.empty()) 424a4415854STim Northover return false; 425a4415854STim Northover 426a4415854STim Northover // We know there's *some* valid leaf now, so march back down the tree picking 427a4415854STim Northover // out the left-most element at each node. 428a4415854STim Northover ++Path.back(); 429e24e95feSEli Friedman Type *DeeperType = 430e24e95feSEli Friedman ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()); 431a4415854STim Northover while (DeeperType->isAggregateType()) { 432e24e95feSEli Friedman if (!indexReallyValid(DeeperType, 0)) 433a4415854STim Northover return true; 434a4415854STim Northover 435e24e95feSEli Friedman SubTypes.push_back(DeeperType); 436a4415854STim Northover Path.push_back(0); 437a4415854STim Northover 438e24e95feSEli Friedman DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0); 439a4415854STim Northover } 440a4415854STim Northover 441ffc44549SStephen Lin return true; 442ffc44549SStephen Lin } 443a4415854STim Northover 444a4415854STim Northover /// Find the first non-empty, scalar-like type in Next and setup the iterator 445a4415854STim Northover /// components. 446a4415854STim Northover /// 447a4415854STim Northover /// Assuming Next is an aggregate of some kind, this function will traverse the 448a4415854STim Northover /// tree from left to right (i.e. depth-first) looking for the first 449a4415854STim Northover /// non-aggregate type which will play a role in function return. 450a4415854STim Northover /// 451a4415854STim Northover /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 452a4415854STim Northover /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 453a4415854STim Northover /// i32 in that type. 454e24e95feSEli Friedman static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes, 455a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 456a4415854STim Northover // First initialise the iterator components to the first "leaf" node 457a4415854STim Northover // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 458a4415854STim Northover // despite nominally being an aggregate). 459e24e95feSEli Friedman while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) { 460e24e95feSEli Friedman SubTypes.push_back(Next); 461a4415854STim Northover Path.push_back(0); 462e24e95feSEli Friedman Next = FirstInner; 463ffc44549SStephen Lin } 464ffc44549SStephen Lin 465a4415854STim Northover // If there's no Path now, Next was originally scalar already (or empty 466a4415854STim Northover // leaf). We're done. 467a4415854STim Northover if (Path.empty()) 468a4415854STim Northover return true; 469ffc44549SStephen Lin 470a4415854STim Northover // Otherwise, use normal iteration to keep looking through the tree until we 471a4415854STim Northover // find a non-aggregate type. 472e24e95feSEli Friedman while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 473e24e95feSEli Friedman ->isAggregateType()) { 474a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 475ffc44549SStephen Lin return false; 476ffc44549SStephen Lin } 4774f3615deSChris Lattner 478a4415854STim Northover return true; 479a4415854STim Northover } 480a4415854STim Northover 481a4415854STim Northover /// Set the iterator data-structures to the next non-empty, non-aggregate 482a4415854STim Northover /// subtype. 483e24e95feSEli Friedman static bool nextRealType(SmallVectorImpl<Type *> &SubTypes, 484a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 485a4415854STim Northover do { 486a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 487a4415854STim Northover return false; 488a4415854STim Northover 489a4415854STim Northover assert(!Path.empty() && "found a leaf but didn't set the path?"); 490e24e95feSEli Friedman } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 491e24e95feSEli Friedman ->isAggregateType()); 492a4415854STim Northover 493a4415854STim Northover return true; 494a4415854STim Northover } 495a4415854STim Northover 496a4415854STim Northover 497450aa64fSDan Gohman /// Test if the given instruction is in a position to be optimized 498450aa64fSDan Gohman /// with a tail-call. This roughly means that it's in a block with 499450aa64fSDan Gohman /// a return and there's nothing that needs to be scheduled 500450aa64fSDan Gohman /// between it and the return. 501450aa64fSDan Gohman /// 502450aa64fSDan Gohman /// This function only tests target-independent requirements. 50330430938SCraig Topper bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) { 50430430938SCraig Topper const BasicBlock *ExitBB = Call.getParent(); 505edb12a83SChandler Carruth const Instruction *Term = ExitBB->getTerminator(); 506450aa64fSDan Gohman const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 507450aa64fSDan Gohman 508450aa64fSDan Gohman // The block must end in a return statement or unreachable. 509450aa64fSDan Gohman // 510450aa64fSDan Gohman // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 511450aa64fSDan Gohman // an unreachable, for now. The way tailcall optimization is currently 512450aa64fSDan Gohman // implemented means it will add an epilogue followed by a jump. That is 513450aa64fSDan Gohman // not profitable. Also, if the callee is a special function (e.g. 514450aa64fSDan Gohman // longjmp on x86), it can end up causing miscompilation that has not 515450aa64fSDan Gohman // been fully understood. 516450aa64fSDan Gohman if (!Ret && 517f9b67b81SReid Kleckner ((!TM.Options.GuaranteedTailCallOpt && 51830430938SCraig Topper Call.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term))) 5194f3615deSChris Lattner return false; 520450aa64fSDan Gohman 521450aa64fSDan Gohman // If I will have a chain, make sure no other instruction that will have a 522450aa64fSDan Gohman // chain interposes between I and the return. 5233abe7acaSVictor Huang // Check for all calls including speculatable functions. 524b6d0bd48SBenjamin Kramer for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 52530430938SCraig Topper if (&*BBI == &Call) 526450aa64fSDan Gohman break; 527450aa64fSDan Gohman // Debug info intrinsics do not get in the way of tail call optimization. 528450aa64fSDan Gohman if (isa<DbgInfoIntrinsic>(BBI)) 529450aa64fSDan Gohman continue; 530f3c44569SHongtao Yu // Pseudo probe intrinsics do not block tail call optimization either. 531f3c44569SHongtao Yu if (isa<PseudoProbeInst>(BBI)) 532f3c44569SHongtao Yu continue; 533e03f6a16SGuozhi Wei // A lifetime end or assume intrinsic should not stop tail call 534e03f6a16SGuozhi Wei // optimization. 53518bfb3a5SRobert Lougher if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 536e03f6a16SGuozhi Wei if (II->getIntrinsicID() == Intrinsic::lifetime_end || 537e03f6a16SGuozhi Wei II->getIntrinsicID() == Intrinsic::assume) 53818bfb3a5SRobert Lougher continue; 539450aa64fSDan Gohman if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 540980f8f26SDuncan P. N. Exon Smith !isSafeToSpeculativelyExecute(&*BBI)) 541450aa64fSDan Gohman return false; 542450aa64fSDan Gohman } 543450aa64fSDan Gohman 544f734a8baSEric Christopher const Function *F = ExitBB->getParent(); 545d913448bSEric Christopher return returnTypeIsEligibleForTailCall( 54630430938SCraig Topper F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 547ce0e4c26SMichael Gottesman } 548ce0e4c26SMichael Gottesman 549f79af6f8SMichael Kuperstein bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 550f79af6f8SMichael Kuperstein const ReturnInst *Ret, 551f79af6f8SMichael Kuperstein const TargetLoweringBase &TLI, 552f79af6f8SMichael Kuperstein bool *AllowDifferingSizes) { 553f79af6f8SMichael Kuperstein // ADS may be null, so don't write to it directly. 554f79af6f8SMichael Kuperstein bool DummyADS; 555f79af6f8SMichael Kuperstein bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 556f79af6f8SMichael Kuperstein ADS = true; 557f79af6f8SMichael Kuperstein 558b518054bSReid Kleckner AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 559f79af6f8SMichael Kuperstein AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 560b518054bSReid Kleckner AttributeList::ReturnIndex); 561f79af6f8SMichael Kuperstein 56262ad2128SDávid Bolvanský // Following attributes are completely benign as far as calling convention 563353cb3d4SDavid Green // goes, they shouldn't affect whether the call is a tail call. 564807f732cSBjorn Pettersson CallerAttrs.removeAttribute(Attribute::NoAlias); 565807f732cSBjorn Pettersson CalleeAttrs.removeAttribute(Attribute::NoAlias); 566353cb3d4SDavid Green CallerAttrs.removeAttribute(Attribute::NonNull); 567353cb3d4SDavid Green CalleeAttrs.removeAttribute(Attribute::NonNull); 56862ad2128SDávid Bolvanský CallerAttrs.removeAttribute(Attribute::Dereferenceable); 56962ad2128SDávid Bolvanský CalleeAttrs.removeAttribute(Attribute::Dereferenceable); 57062ad2128SDávid Bolvanský CallerAttrs.removeAttribute(Attribute::DereferenceableOrNull); 57162ad2128SDávid Bolvanský CalleeAttrs.removeAttribute(Attribute::DereferenceableOrNull); 572f79af6f8SMichael Kuperstein 573f79af6f8SMichael Kuperstein if (CallerAttrs.contains(Attribute::ZExt)) { 574f79af6f8SMichael Kuperstein if (!CalleeAttrs.contains(Attribute::ZExt)) 575f79af6f8SMichael Kuperstein return false; 576f79af6f8SMichael Kuperstein 577f79af6f8SMichael Kuperstein ADS = false; 578f79af6f8SMichael Kuperstein CallerAttrs.removeAttribute(Attribute::ZExt); 579f79af6f8SMichael Kuperstein CalleeAttrs.removeAttribute(Attribute::ZExt); 580f79af6f8SMichael Kuperstein } else if (CallerAttrs.contains(Attribute::SExt)) { 581f79af6f8SMichael Kuperstein if (!CalleeAttrs.contains(Attribute::SExt)) 582f79af6f8SMichael Kuperstein return false; 583f79af6f8SMichael Kuperstein 584f79af6f8SMichael Kuperstein ADS = false; 585f79af6f8SMichael Kuperstein CallerAttrs.removeAttribute(Attribute::SExt); 586f79af6f8SMichael Kuperstein CalleeAttrs.removeAttribute(Attribute::SExt); 587f79af6f8SMichael Kuperstein } 588f79af6f8SMichael Kuperstein 589ac6454a7SFrancis Visoiu Mistrih // Drop sext and zext return attributes if the result is not used. 590ac6454a7SFrancis Visoiu Mistrih // This enables tail calls for code like: 591ac6454a7SFrancis Visoiu Mistrih // 592ac6454a7SFrancis Visoiu Mistrih // define void @caller() { 593ac6454a7SFrancis Visoiu Mistrih // entry: 594ac6454a7SFrancis Visoiu Mistrih // %unused_result = tail call zeroext i1 @callee() 595ac6454a7SFrancis Visoiu Mistrih // br label %retlabel 596ac6454a7SFrancis Visoiu Mistrih // retlabel: 597ac6454a7SFrancis Visoiu Mistrih // ret void 598ac6454a7SFrancis Visoiu Mistrih // } 599ac6454a7SFrancis Visoiu Mistrih if (I->use_empty()) { 600ac6454a7SFrancis Visoiu Mistrih CalleeAttrs.removeAttribute(Attribute::SExt); 601ac6454a7SFrancis Visoiu Mistrih CalleeAttrs.removeAttribute(Attribute::ZExt); 602ac6454a7SFrancis Visoiu Mistrih } 603ac6454a7SFrancis Visoiu Mistrih 604f79af6f8SMichael Kuperstein // If they're still different, there's some facet we don't understand 605f79af6f8SMichael Kuperstein // (currently only "inreg", but in future who knows). It may be OK but the 606f79af6f8SMichael Kuperstein // only safe option is to reject the tail call. 607f79af6f8SMichael Kuperstein return CallerAttrs == CalleeAttrs; 608f79af6f8SMichael Kuperstein } 609f79af6f8SMichael Kuperstein 610f2cb9c0eSSanne Wouda /// Check whether B is a bitcast of a pointer type to another pointer type, 611f2cb9c0eSSanne Wouda /// which is equal to A. 612f2cb9c0eSSanne Wouda static bool isPointerBitcastEqualTo(const Value *A, const Value *B) { 613f2cb9c0eSSanne Wouda assert(A && B && "Expected non-null inputs!"); 614f2cb9c0eSSanne Wouda 615f2cb9c0eSSanne Wouda auto *BitCastIn = dyn_cast<BitCastInst>(B); 616f2cb9c0eSSanne Wouda 617f2cb9c0eSSanne Wouda if (!BitCastIn) 618f2cb9c0eSSanne Wouda return false; 619f2cb9c0eSSanne Wouda 620f2cb9c0eSSanne Wouda if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy()) 621f2cb9c0eSSanne Wouda return false; 622f2cb9c0eSSanne Wouda 623f2cb9c0eSSanne Wouda return A == BitCastIn->getOperand(0); 624f2cb9c0eSSanne Wouda } 625f2cb9c0eSSanne Wouda 626ce0e4c26SMichael Gottesman bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 627ce0e4c26SMichael Gottesman const Instruction *I, 628ce0e4c26SMichael Gottesman const ReturnInst *Ret, 629ce0e4c26SMichael Gottesman const TargetLoweringBase &TLI) { 630450aa64fSDan Gohman // If the block ends with a void return or unreachable, it doesn't matter 631450aa64fSDan Gohman // what the call's return type is. 632450aa64fSDan Gohman if (!Ret || Ret->getNumOperands() == 0) return true; 633450aa64fSDan Gohman 634450aa64fSDan Gohman // If the return value is undef, it doesn't matter what the call's 635450aa64fSDan Gohman // return type is. 636450aa64fSDan Gohman if (isa<UndefValue>(Ret->getOperand(0))) return true; 637450aa64fSDan Gohman 638707d68f0STim Northover // Make sure the attributes attached to each return are compatible. 639f79af6f8SMichael Kuperstein bool AllowDifferingSizes; 640f79af6f8SMichael Kuperstein if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 641450aa64fSDan Gohman return false; 642450aa64fSDan Gohman 643a4415854STim Northover const Value *RetVal = Ret->getOperand(0), *CallVal = I; 6445d84d9b3SWei Mi // Intrinsic like llvm.memcpy has no return value, but the expanded 6455d84d9b3SWei Mi // libcall may or may not have return value. On most platforms, it 6465d84d9b3SWei Mi // will be expanded as memcpy in libc, which returns the first 6475d84d9b3SWei Mi // argument. On other platforms like arm-none-eabi, memcpy may be 6485d84d9b3SWei Mi // expanded as library call without return value, like __aeabi_memcpy. 649818d50a9SWei Mi const CallInst *Call = cast<CallInst>(I); 650818d50a9SWei Mi if (Function *F = Call->getCalledFunction()) { 651818d50a9SWei Mi Intrinsic::ID IID = F->getIntrinsicID(); 6525d84d9b3SWei Mi if (((IID == Intrinsic::memcpy && 6535d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 6545d84d9b3SWei Mi (IID == Intrinsic::memmove && 6555d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 6565d84d9b3SWei Mi (IID == Intrinsic::memset && 6575d84d9b3SWei Mi TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 658f2cb9c0eSSanne Wouda (RetVal == Call->getArgOperand(0) || 659f2cb9c0eSSanne Wouda isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0)))) 660818d50a9SWei Mi return true; 661818d50a9SWei Mi } 662818d50a9SWei Mi 663a4415854STim Northover SmallVector<unsigned, 4> RetPath, CallPath; 664e24e95feSEli Friedman SmallVector<Type *, 4> RetSubTypes, CallSubTypes; 665a4415854STim Northover 666a4415854STim Northover bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 667a4415854STim Northover bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 668a4415854STim Northover 669a4415854STim Northover // Nothing's actually returned, it doesn't matter what the callee put there 670a4415854STim Northover // it's a valid tail call. 671a4415854STim Northover if (RetEmpty) 672a4415854STim Northover return true; 673a4415854STim Northover 674a4415854STim Northover // Iterate pairwise through each of the value types making up the tail call 675a4415854STim Northover // and the corresponding return. For each one we want to know whether it's 676a4415854STim Northover // essentially going directly from the tail call to the ret, via operations 677a4415854STim Northover // that end up not generating any code. 678a4415854STim Northover // 679a4415854STim Northover // We allow a certain amount of covariance here. For example it's permitted 680a4415854STim Northover // for the tail call to define more bits than the ret actually cares about 681a4415854STim Northover // (e.g. via a truncate). 682a4415854STim Northover do { 683a4415854STim Northover if (CallEmpty) { 684a4415854STim Northover // We've exhausted the values produced by the tail call instruction, the 685a4415854STim Northover // rest are essentially undef. The type doesn't really matter, but we need 686a4415854STim Northover // *something*. 687e24e95feSEli Friedman Type *SlotType = 688e24e95feSEli Friedman ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back()); 689a4415854STim Northover CallVal = UndefValue::get(SlotType); 690a4415854STim Northover } 691a4415854STim Northover 692a4415854STim Northover // The manipulations performed when we're looking through an insertvalue or 693a4415854STim Northover // an extractvalue would happen at the front of the RetPath list, so since 694a4415854STim Northover // we have to copy it anyway it's more efficient to create a reversed copy. 6954f6ac162SBenjamin Kramer SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 6964f6ac162SBenjamin Kramer SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 697a4415854STim Northover 698a4415854STim Northover // Finally, we can check whether the value produced by the tail call at this 699a4415854STim Northover // index is compatible with the value we return. 700707d68f0STim Northover if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 70144ede33aSMehdi Amini AllowDifferingSizes, TLI, 70244ede33aSMehdi Amini F->getParent()->getDataLayout())) 703a4415854STim Northover return false; 704a4415854STim Northover 705a4415854STim Northover CallEmpty = !nextRealType(CallSubTypes, CallPath); 706a4415854STim Northover } while(nextRealType(RetSubTypes, RetPath)); 707a4415854STim Northover 708a4415854STim Northover return true; 709450aa64fSDan Gohman } 710f21434ccSRafael Espindola 711d69acf3bSHeejin Ahn static void collectEHScopeMembers( 712d69acf3bSHeejin Ahn DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 713d69acf3bSHeejin Ahn const MachineBasicBlock *MBB) { 714734d7c32SDavid Majnemer SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 715734d7c32SDavid Majnemer while (!Worklist.empty()) { 716734d7c32SDavid Majnemer const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 7171e4d3504SHeejin Ahn // Don't follow blocks which start new scopes. 718734d7c32SDavid Majnemer if (Visiting->isEHPad() && Visiting != MBB) 719734d7c32SDavid Majnemer continue; 720734d7c32SDavid Majnemer 7211e4d3504SHeejin Ahn // Add this MBB to our scope. 722d69acf3bSHeejin Ahn auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 7237b54b525SDavid Blaikie 72416193552SDavid Majnemer // Don't revisit blocks. 7257b54b525SDavid Blaikie if (!P.second) { 726d69acf3bSHeejin Ahn assert(P.first->second == EHScope && "MBB is part of two scopes!"); 727734d7c32SDavid Majnemer continue; 72816193552SDavid Majnemer } 72916193552SDavid Majnemer 7301e4d3504SHeejin Ahn // Returns are boundaries where scope transfer can occur, don't follow 73116193552SDavid Majnemer // successors. 732ed5e06b0SHeejin Ahn if (Visiting->isEHScopeReturnBlock()) 733734d7c32SDavid Majnemer continue; 73416193552SDavid Majnemer 735734d7c32SDavid Majnemer for (const MachineBasicBlock *Succ : Visiting->successors()) 736734d7c32SDavid Majnemer Worklist.push_back(Succ); 737734d7c32SDavid Majnemer } 73816193552SDavid Majnemer } 73916193552SDavid Majnemer 74016193552SDavid Majnemer DenseMap<const MachineBasicBlock *, int> 7411e4d3504SHeejin Ahn llvm::getEHScopeMembership(const MachineFunction &MF) { 742d69acf3bSHeejin Ahn DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 74316193552SDavid Majnemer 74416193552SDavid Majnemer // We don't have anything to do if there aren't any EH pads. 7451e4d3504SHeejin Ahn if (!MF.hasEHScopes()) 746d69acf3bSHeejin Ahn return EHScopeMembership; 74716193552SDavid Majnemer 748e4f9b09bSDavid Majnemer int EntryBBNumber = MF.front().getNumber(); 74916193552SDavid Majnemer bool IsSEH = isAsynchronousEHPersonality( 750f1caa283SMatthias Braun classifyEHPersonality(MF.getFunction().getPersonalityFn())); 75116193552SDavid Majnemer 75216193552SDavid Majnemer const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 753d69acf3bSHeejin Ahn SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 754e4f9b09bSDavid Majnemer SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 755e4f9b09bSDavid Majnemer SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 75616193552SDavid Majnemer SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 75716193552SDavid Majnemer for (const MachineBasicBlock &MBB : MF) { 7581e4d3504SHeejin Ahn if (MBB.isEHScopeEntry()) { 759d69acf3bSHeejin Ahn EHScopeBlocks.push_back(&MBB); 760e4f9b09bSDavid Majnemer } else if (IsSEH && MBB.isEHPad()) { 761e4f9b09bSDavid Majnemer SEHCatchPads.push_back(&MBB); 762e4f9b09bSDavid Majnemer } else if (MBB.pred_empty()) { 763e4f9b09bSDavid Majnemer UnreachableBlocks.push_back(&MBB); 764e4f9b09bSDavid Majnemer } 76516193552SDavid Majnemer 76616193552SDavid Majnemer MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 7672e7af979SDuncan P. N. Exon Smith 7681e4d3504SHeejin Ahn // CatchPads are not scopes for SEH so do not consider CatchRet to 7691e4d3504SHeejin Ahn // transfer control to another scope. 77026f9e9ebSReid Kleckner if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 77116193552SDavid Majnemer continue; 77216193552SDavid Majnemer 773e4f9b09bSDavid Majnemer // FIXME: SEH CatchPads are not necessarily in the parent function: 774e4f9b09bSDavid Majnemer // they could be inside a finally block. 77516193552SDavid Majnemer const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 77616193552SDavid Majnemer const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 777e4f9b09bSDavid Majnemer CatchRetSuccessors.push_back( 778e4f9b09bSDavid Majnemer {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 77916193552SDavid Majnemer } 78016193552SDavid Majnemer 78116193552SDavid Majnemer // We don't have anything to do if there aren't any EH pads. 782d69acf3bSHeejin Ahn if (EHScopeBlocks.empty()) 783d69acf3bSHeejin Ahn return EHScopeMembership; 78416193552SDavid Majnemer 78516193552SDavid Majnemer // Identify all the basic blocks reachable from the function entry. 786d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 7871e4d3504SHeejin Ahn // All blocks not part of a scope are in the parent function. 788e4f9b09bSDavid Majnemer for (const MachineBasicBlock *MBB : UnreachableBlocks) 789d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 7901e4d3504SHeejin Ahn // Next, identify all the blocks inside the scopes. 791d69acf3bSHeejin Ahn for (const MachineBasicBlock *MBB : EHScopeBlocks) 792d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 7931e4d3504SHeejin Ahn // SEH CatchPads aren't really scopes, handle them separately. 794e4f9b09bSDavid Majnemer for (const MachineBasicBlock *MBB : SEHCatchPads) 795d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 79616193552SDavid Majnemer // Finally, identify all the targets of a catchret. 79716193552SDavid Majnemer for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 79816193552SDavid Majnemer CatchRetSuccessors) 799d69acf3bSHeejin Ahn collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 80016193552SDavid Majnemer CatchRetPair.first); 801d69acf3bSHeejin Ahn return EHScopeMembership; 80216193552SDavid Majnemer } 803