150f02cb2SNick Lewycky //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2450aa64fSDan Gohman // 3450aa64fSDan Gohman // The LLVM Compiler Infrastructure 4450aa64fSDan Gohman // 5450aa64fSDan Gohman // This file is distributed under the University of Illinois Open Source 6450aa64fSDan Gohman // License. See LICENSE.TXT for details. 7450aa64fSDan Gohman // 8450aa64fSDan Gohman //===----------------------------------------------------------------------===// 9450aa64fSDan Gohman // 10db5028bdSEric Christopher // This file defines several CodeGen-specific LLVM IR analysis utilities. 11450aa64fSDan Gohman // 12450aa64fSDan Gohman //===----------------------------------------------------------------------===// 13450aa64fSDan Gohman 1409fc276dSEric Christopher #include "llvm/CodeGen/Analysis.h" 15dda00098SEric Christopher #include "llvm/Analysis/ValueTracking.h" 16ed0881b2SChandler Carruth #include "llvm/CodeGen/MachineFunction.h" 1716193552SDavid Majnemer #include "llvm/CodeGen/MachineModuleInfo.h" 18576d36aeSEric Christopher #include "llvm/CodeGen/SelectionDAG.h" 199fb823bbSChandler Carruth #include "llvm/IR/DataLayout.h" 209fb823bbSChandler Carruth #include "llvm/IR/DerivedTypes.h" 219fb823bbSChandler Carruth #include "llvm/IR/Function.h" 229fb823bbSChandler Carruth #include "llvm/IR/Instructions.h" 239fb823bbSChandler Carruth #include "llvm/IR/IntrinsicInst.h" 249fb823bbSChandler Carruth #include "llvm/IR/LLVMContext.h" 259fb823bbSChandler Carruth #include "llvm/IR/Module.h" 26450aa64fSDan Gohman #include "llvm/Support/ErrorHandling.h" 27450aa64fSDan Gohman #include "llvm/Support/MathExtras.h" 28ed0881b2SChandler Carruth #include "llvm/Target/TargetLowering.h" 2916193552SDavid Majnemer #include "llvm/Target/TargetInstrInfo.h" 30d913448bSEric Christopher #include "llvm/Target/TargetSubtargetInfo.h" 31f21434ccSRafael Espindola #include "llvm/Transforms/Utils/GlobalStatus.h" 32d913448bSEric Christopher 33450aa64fSDan Gohman using namespace llvm; 34450aa64fSDan Gohman 358923cc54SMehdi Amini /// Compute the linearized index of a member in a nested aggregate/struct/array 368923cc54SMehdi Amini /// by recursing and accumulating CurIndex as long as there are indices in the 378923cc54SMehdi Amini /// index list. 38229907cdSChris Lattner unsigned llvm::ComputeLinearIndex(Type *Ty, 39450aa64fSDan Gohman const unsigned *Indices, 40450aa64fSDan Gohman const unsigned *IndicesEnd, 41450aa64fSDan Gohman unsigned CurIndex) { 42450aa64fSDan Gohman // Base case: We're done. 43450aa64fSDan Gohman if (Indices && Indices == IndicesEnd) 44450aa64fSDan Gohman return CurIndex; 45450aa64fSDan Gohman 46450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 47229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 48450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 49450aa64fSDan Gohman EI = EB, 50450aa64fSDan Gohman EE = STy->element_end(); 51450aa64fSDan Gohman EI != EE; ++EI) { 52450aa64fSDan Gohman if (Indices && *Indices == unsigned(EI - EB)) 53aadc5596SDan Gohman return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 54c0196b1bSCraig Topper CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 55450aa64fSDan Gohman } 567b068f6bSMehdi Amini assert(!Indices && "Unexpected out of bound"); 57450aa64fSDan Gohman return CurIndex; 58450aa64fSDan Gohman } 59450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 60229907cdSChris Lattner else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 61229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 628923cc54SMehdi Amini unsigned NumElts = ATy->getNumElements(); 638923cc54SMehdi Amini // Compute the Linear offset when jumping one element of the array 648923cc54SMehdi Amini unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 657b068f6bSMehdi Amini if (Indices) { 667b068f6bSMehdi Amini assert(*Indices < NumElts && "Unexpected out of bound"); 678923cc54SMehdi Amini // If the indice is inside the array, compute the index to the requested 688923cc54SMehdi Amini // elt and recurse inside the element with the end of the indices list 698923cc54SMehdi Amini CurIndex += EltLinearOffset* *Indices; 70aadc5596SDan Gohman return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 71450aa64fSDan Gohman } 728923cc54SMehdi Amini CurIndex += EltLinearOffset*NumElts; 73450aa64fSDan Gohman return CurIndex; 74450aa64fSDan Gohman } 75450aa64fSDan Gohman // We haven't found the type we're looking for, so keep searching. 76450aa64fSDan Gohman return CurIndex + 1; 77450aa64fSDan Gohman } 78450aa64fSDan Gohman 79450aa64fSDan Gohman /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 80450aa64fSDan Gohman /// EVTs that represent all the individual underlying 81450aa64fSDan Gohman /// non-aggregate types that comprise it. 82450aa64fSDan Gohman /// 83450aa64fSDan Gohman /// If Offsets is non-null, it points to a vector to be filled in 84450aa64fSDan Gohman /// with the in-memory offsets of each of the individual values. 85450aa64fSDan Gohman /// 8656228dabSMehdi Amini void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 8756228dabSMehdi Amini Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 88450aa64fSDan Gohman SmallVectorImpl<uint64_t> *Offsets, 89450aa64fSDan Gohman uint64_t StartingOffset) { 90450aa64fSDan Gohman // Given a struct type, recursively traverse the elements. 91229907cdSChris Lattner if (StructType *STy = dyn_cast<StructType>(Ty)) { 9256228dabSMehdi Amini const StructLayout *SL = DL.getStructLayout(STy); 93450aa64fSDan Gohman for (StructType::element_iterator EB = STy->element_begin(), 94450aa64fSDan Gohman EI = EB, 95450aa64fSDan Gohman EE = STy->element_end(); 96450aa64fSDan Gohman EI != EE; ++EI) 9756228dabSMehdi Amini ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets, 98450aa64fSDan Gohman StartingOffset + SL->getElementOffset(EI - EB)); 99450aa64fSDan Gohman return; 100450aa64fSDan Gohman } 101450aa64fSDan Gohman // Given an array type, recursively traverse the elements. 102229907cdSChris Lattner if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 103229907cdSChris Lattner Type *EltTy = ATy->getElementType(); 10456228dabSMehdi Amini uint64_t EltSize = DL.getTypeAllocSize(EltTy); 105450aa64fSDan Gohman for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 10656228dabSMehdi Amini ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, 107450aa64fSDan Gohman StartingOffset + i * EltSize); 108450aa64fSDan Gohman return; 109450aa64fSDan Gohman } 110450aa64fSDan Gohman // Interpret void as zero return values. 111450aa64fSDan Gohman if (Ty->isVoidTy()) 112450aa64fSDan Gohman return; 113450aa64fSDan Gohman // Base case: we can get an EVT for this LLVM IR type. 11444ede33aSMehdi Amini ValueVTs.push_back(TLI.getValueType(DL, Ty)); 115450aa64fSDan Gohman if (Offsets) 116450aa64fSDan Gohman Offsets->push_back(StartingOffset); 117450aa64fSDan Gohman } 118450aa64fSDan Gohman 119450aa64fSDan Gohman /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 120283bc2edSReid Kleckner GlobalValue *llvm::ExtractTypeInfo(Value *V) { 121450aa64fSDan Gohman V = V->stripPointerCasts(); 122283bc2edSReid Kleckner GlobalValue *GV = dyn_cast<GlobalValue>(V); 123283bc2edSReid Kleckner GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 124450aa64fSDan Gohman 125283bc2edSReid Kleckner if (Var && Var->getName() == "llvm.eh.catch.all.value") { 126283bc2edSReid Kleckner assert(Var->hasInitializer() && 127450aa64fSDan Gohman "The EH catch-all value must have an initializer"); 128283bc2edSReid Kleckner Value *Init = Var->getInitializer(); 129283bc2edSReid Kleckner GV = dyn_cast<GlobalValue>(Init); 130450aa64fSDan Gohman if (!GV) V = cast<ConstantPointerNull>(Init); 131450aa64fSDan Gohman } 132450aa64fSDan Gohman 133450aa64fSDan Gohman assert((GV || isa<ConstantPointerNull>(V)) && 134450aa64fSDan Gohman "TypeInfo must be a global variable or NULL"); 135450aa64fSDan Gohman return GV; 136450aa64fSDan Gohman } 137450aa64fSDan Gohman 138450aa64fSDan Gohman /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 139450aa64fSDan Gohman /// processed uses a memory 'm' constraint. 140450aa64fSDan Gohman bool 141e8360b71SJohn Thompson llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 142450aa64fSDan Gohman const TargetLowering &TLI) { 143450aa64fSDan Gohman for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 144450aa64fSDan Gohman InlineAsm::ConstraintInfo &CI = CInfos[i]; 145450aa64fSDan Gohman for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 146450aa64fSDan Gohman TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 147450aa64fSDan Gohman if (CType == TargetLowering::C_Memory) 148450aa64fSDan Gohman return true; 149450aa64fSDan Gohman } 150450aa64fSDan Gohman 151450aa64fSDan Gohman // Indirect operand accesses access memory. 152450aa64fSDan Gohman if (CI.isIndirect) 153450aa64fSDan Gohman return true; 154450aa64fSDan Gohman } 155450aa64fSDan Gohman 156450aa64fSDan Gohman return false; 157450aa64fSDan Gohman } 158450aa64fSDan Gohman 159450aa64fSDan Gohman /// getFCmpCondCode - Return the ISD condition code corresponding to 160450aa64fSDan Gohman /// the given LLVM IR floating-point condition code. This includes 161450aa64fSDan Gohman /// consideration of global floating-point math flags. 162450aa64fSDan Gohman /// 163450aa64fSDan Gohman ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 164450aa64fSDan Gohman switch (Pred) { 16550f02cb2SNick Lewycky case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 16650f02cb2SNick Lewycky case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 16750f02cb2SNick Lewycky case FCmpInst::FCMP_OGT: return ISD::SETOGT; 16850f02cb2SNick Lewycky case FCmpInst::FCMP_OGE: return ISD::SETOGE; 16950f02cb2SNick Lewycky case FCmpInst::FCMP_OLT: return ISD::SETOLT; 17050f02cb2SNick Lewycky case FCmpInst::FCMP_OLE: return ISD::SETOLE; 17150f02cb2SNick Lewycky case FCmpInst::FCMP_ONE: return ISD::SETONE; 17250f02cb2SNick Lewycky case FCmpInst::FCMP_ORD: return ISD::SETO; 17350f02cb2SNick Lewycky case FCmpInst::FCMP_UNO: return ISD::SETUO; 17450f02cb2SNick Lewycky case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 17550f02cb2SNick Lewycky case FCmpInst::FCMP_UGT: return ISD::SETUGT; 17650f02cb2SNick Lewycky case FCmpInst::FCMP_UGE: return ISD::SETUGE; 17750f02cb2SNick Lewycky case FCmpInst::FCMP_ULT: return ISD::SETULT; 17850f02cb2SNick Lewycky case FCmpInst::FCMP_ULE: return ISD::SETULE; 17950f02cb2SNick Lewycky case FCmpInst::FCMP_UNE: return ISD::SETUNE; 18050f02cb2SNick Lewycky case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 18146a9f016SDavid Blaikie default: llvm_unreachable("Invalid FCmp predicate opcode!"); 182450aa64fSDan Gohman } 18350f02cb2SNick Lewycky } 18450f02cb2SNick Lewycky 18550f02cb2SNick Lewycky ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 18650f02cb2SNick Lewycky switch (CC) { 18750f02cb2SNick Lewycky case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 18850f02cb2SNick Lewycky case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 18950f02cb2SNick Lewycky case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 19050f02cb2SNick Lewycky case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 19150f02cb2SNick Lewycky case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 19250f02cb2SNick Lewycky case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 19346a9f016SDavid Blaikie default: return CC; 19450f02cb2SNick Lewycky } 195450aa64fSDan Gohman } 196450aa64fSDan Gohman 197450aa64fSDan Gohman /// getICmpCondCode - Return the ISD condition code corresponding to 198450aa64fSDan Gohman /// the given LLVM IR integer condition code. 199450aa64fSDan Gohman /// 200450aa64fSDan Gohman ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 201450aa64fSDan Gohman switch (Pred) { 202450aa64fSDan Gohman case ICmpInst::ICMP_EQ: return ISD::SETEQ; 203450aa64fSDan Gohman case ICmpInst::ICMP_NE: return ISD::SETNE; 204450aa64fSDan Gohman case ICmpInst::ICMP_SLE: return ISD::SETLE; 205450aa64fSDan Gohman case ICmpInst::ICMP_ULE: return ISD::SETULE; 206450aa64fSDan Gohman case ICmpInst::ICMP_SGE: return ISD::SETGE; 207450aa64fSDan Gohman case ICmpInst::ICMP_UGE: return ISD::SETUGE; 208450aa64fSDan Gohman case ICmpInst::ICMP_SLT: return ISD::SETLT; 209450aa64fSDan Gohman case ICmpInst::ICMP_ULT: return ISD::SETULT; 210450aa64fSDan Gohman case ICmpInst::ICMP_SGT: return ISD::SETGT; 211450aa64fSDan Gohman case ICmpInst::ICMP_UGT: return ISD::SETUGT; 212450aa64fSDan Gohman default: 213450aa64fSDan Gohman llvm_unreachable("Invalid ICmp predicate opcode!"); 214450aa64fSDan Gohman } 215450aa64fSDan Gohman } 216450aa64fSDan Gohman 217ffc44549SStephen Lin static bool isNoopBitcast(Type *T1, Type *T2, 218c0659fadSMichael Gottesman const TargetLoweringBase& TLI) { 219ffc44549SStephen Lin return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 220ffc44549SStephen Lin (isa<VectorType>(T1) && isa<VectorType>(T2) && 221ffc44549SStephen Lin TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 222ffc44549SStephen Lin } 2234f3615deSChris Lattner 224a4415854STim Northover /// Look through operations that will be free to find the earliest source of 225a4415854STim Northover /// this value. 226a4415854STim Northover /// 227a4415854STim Northover /// @param ValLoc If V has aggegate type, we will be interested in a particular 228a4415854STim Northover /// scalar component. This records its address; the reverse of this list gives a 229a4415854STim Northover /// sequence of indices appropriate for an extractvalue to locate the important 230a4415854STim Northover /// value. This value is updated during the function and on exit will indicate 231a4415854STim Northover /// similar information for the Value returned. 232a4415854STim Northover /// 233a4415854STim Northover /// @param DataBits If this function looks through truncate instructions, this 234a4415854STim Northover /// will record the smallest size attained. 235a4415854STim Northover static const Value *getNoopInput(const Value *V, 236a4415854STim Northover SmallVectorImpl<unsigned> &ValLoc, 237a4415854STim Northover unsigned &DataBits, 23844ede33aSMehdi Amini const TargetLoweringBase &TLI, 23944ede33aSMehdi Amini const DataLayout &DL) { 240ffc44549SStephen Lin while (true) { 241ffc44549SStephen Lin // Try to look through V1; if V1 is not an instruction, it can't be looked 242ffc44549SStephen Lin // through. 243a4415854STim Northover const Instruction *I = dyn_cast<Instruction>(V); 244a4415854STim Northover if (!I || I->getNumOperands() == 0) return V; 245c0196b1bSCraig Topper const Value *NoopInput = nullptr; 246a4415854STim Northover 247182fe3eeSChris Lattner Value *Op = I->getOperand(0); 248a4415854STim Northover if (isa<BitCastInst>(I)) { 2494f3615deSChris Lattner // Look through truly no-op bitcasts. 250ffc44549SStephen Lin if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 251ffc44549SStephen Lin NoopInput = Op; 252ffc44549SStephen Lin } else if (isa<GetElementPtrInst>(I)) { 253ffc44549SStephen Lin // Look through getelementptr 254ffc44549SStephen Lin if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 255ffc44549SStephen Lin NoopInput = Op; 256ffc44549SStephen Lin } else if (isa<IntToPtrInst>(I)) { 257182fe3eeSChris Lattner // Look through inttoptr. 258ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 259ffc44549SStephen Lin // support this eventually, but don't bother for now. 260ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 26144ede33aSMehdi Amini DL.getPointerSizeInBits() == 262182fe3eeSChris Lattner cast<IntegerType>(Op->getType())->getBitWidth()) 263ffc44549SStephen Lin NoopInput = Op; 264ffc44549SStephen Lin } else if (isa<PtrToIntInst>(I)) { 265182fe3eeSChris Lattner // Look through ptrtoint. 266ffc44549SStephen Lin // Make sure this isn't a truncating or extending cast. We could 267ffc44549SStephen Lin // support this eventually, but don't bother for now. 268ffc44549SStephen Lin if (!isa<VectorType>(I->getType()) && 26944ede33aSMehdi Amini DL.getPointerSizeInBits() == 270182fe3eeSChris Lattner cast<IntegerType>(I->getType())->getBitWidth()) 271ffc44549SStephen Lin NoopInput = Op; 272a4415854STim Northover } else if (isa<TruncInst>(I) && 273a4415854STim Northover TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 274a4415854STim Northover DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 275a4415854STim Northover NoopInput = Op; 276b8bd232aSStephen Lin } else if (isa<CallInst>(I)) { 277a4415854STim Northover // Look through call (skipping callee) 278a4415854STim Northover for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 279b8bd232aSStephen Lin i != e; ++i) { 280b8bd232aSStephen Lin unsigned attrInd = i - I->op_begin() + 1; 281b8bd232aSStephen Lin if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 282b8bd232aSStephen Lin isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 283b8bd232aSStephen Lin NoopInput = *i; 284b8bd232aSStephen Lin break; 285b8bd232aSStephen Lin } 286b8bd232aSStephen Lin } 287b8bd232aSStephen Lin } else if (isa<InvokeInst>(I)) { 288a4415854STim Northover // Look through invoke (skipping BB, BB, Callee) 289a4415854STim Northover for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 290b8bd232aSStephen Lin i != e; ++i) { 291b8bd232aSStephen Lin unsigned attrInd = i - I->op_begin() + 1; 292b8bd232aSStephen Lin if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 293b8bd232aSStephen Lin isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 294b8bd232aSStephen Lin NoopInput = *i; 295b8bd232aSStephen Lin break; 296b8bd232aSStephen Lin } 297b8bd232aSStephen Lin } 298a4415854STim Northover } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 299a4415854STim Northover // Value may come from either the aggregate or the scalar 300a4415854STim Northover ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 301e4310fe9STim Northover if (ValLoc.size() >= InsertLoc.size() && 302e4310fe9STim Northover std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 303a4415854STim Northover // The type being inserted is a nested sub-type of the aggregate; we 304a4415854STim Northover // have to remove those initial indices to get the location we're 305a4415854STim Northover // interested in for the operand. 306a4415854STim Northover ValLoc.resize(ValLoc.size() - InsertLoc.size()); 307a4415854STim Northover NoopInput = IVI->getInsertedValueOperand(); 308a4415854STim Northover } else { 309a4415854STim Northover // The struct we're inserting into has the value we're interested in, no 310a4415854STim Northover // change of address. 311a4415854STim Northover NoopInput = Op; 312a4415854STim Northover } 313a4415854STim Northover } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 314a4415854STim Northover // The part we're interested in will inevitably be some sub-section of the 315a4415854STim Northover // previous aggregate. Combine the two paths to obtain the true address of 316a4415854STim Northover // our element. 317a4415854STim Northover ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 3184f6ac162SBenjamin Kramer ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 319a4415854STim Northover NoopInput = Op; 320a4415854STim Northover } 321a4415854STim Northover // Terminate if we couldn't find anything to look through. 322a4415854STim Northover if (!NoopInput) 323a4415854STim Northover return V; 324a4415854STim Northover 325a4415854STim Northover V = NoopInput; 326ffc44549SStephen Lin } 327182fe3eeSChris Lattner } 328182fe3eeSChris Lattner 329a4415854STim Northover /// Return true if this scalar return value only has bits discarded on its path 330a4415854STim Northover /// from the "tail call" to the "ret". This includes the obvious noop 331a4415854STim Northover /// instructions handled by getNoopInput above as well as free truncations (or 332a4415854STim Northover /// extensions prior to the call). 333a4415854STim Northover static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 334a4415854STim Northover SmallVectorImpl<unsigned> &RetIndices, 335a4415854STim Northover SmallVectorImpl<unsigned> &CallIndices, 336707d68f0STim Northover bool AllowDifferingSizes, 33744ede33aSMehdi Amini const TargetLoweringBase &TLI, 33844ede33aSMehdi Amini const DataLayout &DL) { 3394f3615deSChris Lattner 340a4415854STim Northover // Trace the sub-value needed by the return value as far back up the graph as 341a4415854STim Northover // possible, in the hope that it will intersect with the value produced by the 342a4415854STim Northover // call. In the simple case with no "returned" attribute, the hope is actually 343a4415854STim Northover // that we end up back at the tail call instruction itself. 344a4415854STim Northover unsigned BitsRequired = UINT_MAX; 34544ede33aSMehdi Amini RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 346ffc44549SStephen Lin 347a4415854STim Northover // If this slot in the value returned is undef, it doesn't matter what the 348a4415854STim Northover // call puts there, it'll be fine. 349a4415854STim Northover if (isa<UndefValue>(RetVal)) 350a4415854STim Northover return true; 351ffc44549SStephen Lin 352a4415854STim Northover // Now do a similar search up through the graph to find where the value 353a4415854STim Northover // actually returned by the "tail call" comes from. In the simple case without 354a4415854STim Northover // a "returned" attribute, the search will be blocked immediately and the loop 355a4415854STim Northover // a Noop. 356a4415854STim Northover unsigned BitsProvided = UINT_MAX; 35744ede33aSMehdi Amini CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 358a4415854STim Northover 359a4415854STim Northover // There's no hope if we can't actually trace them to (the same part of!) the 360a4415854STim Northover // same value. 361a4415854STim Northover if (CallVal != RetVal || CallIndices != RetIndices) 362a4415854STim Northover return false; 363a4415854STim Northover 364a4415854STim Northover // However, intervening truncates may have made the call non-tail. Make sure 365a4415854STim Northover // all the bits that are needed by the "ret" have been provided by the "tail 366a4415854STim Northover // call". FIXME: with sufficiently cunning bit-tracking, we could look through 367a4415854STim Northover // extensions too. 368707d68f0STim Northover if (BitsProvided < BitsRequired || 369707d68f0STim Northover (!AllowDifferingSizes && BitsProvided != BitsRequired)) 370a4415854STim Northover return false; 371a4415854STim Northover 372ffc44549SStephen Lin return true; 373ffc44549SStephen Lin } 374a4415854STim Northover 375a4415854STim Northover /// For an aggregate type, determine whether a given index is within bounds or 376a4415854STim Northover /// not. 377a4415854STim Northover static bool indexReallyValid(CompositeType *T, unsigned Idx) { 378a4415854STim Northover if (ArrayType *AT = dyn_cast<ArrayType>(T)) 379a4415854STim Northover return Idx < AT->getNumElements(); 380a4415854STim Northover 381a4415854STim Northover return Idx < cast<StructType>(T)->getNumElements(); 382ffc44549SStephen Lin } 383a4415854STim Northover 384a4415854STim Northover /// Move the given iterators to the next leaf type in depth first traversal. 385a4415854STim Northover /// 386a4415854STim Northover /// Performs a depth-first traversal of the type as specified by its arguments, 387a4415854STim Northover /// stopping at the next leaf node (which may be a legitimate scalar type or an 388a4415854STim Northover /// empty struct or array). 389a4415854STim Northover /// 390a4415854STim Northover /// @param SubTypes List of the partial components making up the type from 391a4415854STim Northover /// outermost to innermost non-empty aggregate. The element currently 392a4415854STim Northover /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 393a4415854STim Northover /// 394a4415854STim Northover /// @param Path Set of extractvalue indices leading from the outermost type 395a4415854STim Northover /// (SubTypes[0]) to the leaf node currently represented. 396a4415854STim Northover /// 397a4415854STim Northover /// @returns true if a new type was found, false otherwise. Calling this 398a4415854STim Northover /// function again on a finished iterator will repeatedly return 399a4415854STim Northover /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 400a4415854STim Northover /// aggregate or a non-aggregate 401df03449aSBenjamin Kramer static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 402a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 403a4415854STim Northover // First march back up the tree until we can successfully increment one of the 404a4415854STim Northover // coordinates in Path. 405a4415854STim Northover while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 406a4415854STim Northover Path.pop_back(); 407a4415854STim Northover SubTypes.pop_back(); 408a4415854STim Northover } 409a4415854STim Northover 410a4415854STim Northover // If we reached the top, then the iterator is done. 411a4415854STim Northover if (Path.empty()) 412a4415854STim Northover return false; 413a4415854STim Northover 414a4415854STim Northover // We know there's *some* valid leaf now, so march back down the tree picking 415a4415854STim Northover // out the left-most element at each node. 416a4415854STim Northover ++Path.back(); 417a4415854STim Northover Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 418a4415854STim Northover while (DeeperType->isAggregateType()) { 419a4415854STim Northover CompositeType *CT = cast<CompositeType>(DeeperType); 420a4415854STim Northover if (!indexReallyValid(CT, 0)) 421a4415854STim Northover return true; 422a4415854STim Northover 423a4415854STim Northover SubTypes.push_back(CT); 424a4415854STim Northover Path.push_back(0); 425a4415854STim Northover 426a4415854STim Northover DeeperType = CT->getTypeAtIndex(0U); 427a4415854STim Northover } 428a4415854STim Northover 429ffc44549SStephen Lin return true; 430ffc44549SStephen Lin } 431a4415854STim Northover 432a4415854STim Northover /// Find the first non-empty, scalar-like type in Next and setup the iterator 433a4415854STim Northover /// components. 434a4415854STim Northover /// 435a4415854STim Northover /// Assuming Next is an aggregate of some kind, this function will traverse the 436a4415854STim Northover /// tree from left to right (i.e. depth-first) looking for the first 437a4415854STim Northover /// non-aggregate type which will play a role in function return. 438a4415854STim Northover /// 439a4415854STim Northover /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 440a4415854STim Northover /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 441a4415854STim Northover /// i32 in that type. 442a4415854STim Northover static bool firstRealType(Type *Next, 443a4415854STim Northover SmallVectorImpl<CompositeType *> &SubTypes, 444a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 445a4415854STim Northover // First initialise the iterator components to the first "leaf" node 446a4415854STim Northover // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 447a4415854STim Northover // despite nominally being an aggregate). 448a4415854STim Northover while (Next->isAggregateType() && 449a4415854STim Northover indexReallyValid(cast<CompositeType>(Next), 0)) { 450a4415854STim Northover SubTypes.push_back(cast<CompositeType>(Next)); 451a4415854STim Northover Path.push_back(0); 452a4415854STim Northover Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 453ffc44549SStephen Lin } 454ffc44549SStephen Lin 455a4415854STim Northover // If there's no Path now, Next was originally scalar already (or empty 456a4415854STim Northover // leaf). We're done. 457a4415854STim Northover if (Path.empty()) 458a4415854STim Northover return true; 459ffc44549SStephen Lin 460a4415854STim Northover // Otherwise, use normal iteration to keep looking through the tree until we 461a4415854STim Northover // find a non-aggregate type. 462a4415854STim Northover while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 463a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 464ffc44549SStephen Lin return false; 465ffc44549SStephen Lin } 4664f3615deSChris Lattner 467a4415854STim Northover return true; 468a4415854STim Northover } 469a4415854STim Northover 470a4415854STim Northover /// Set the iterator data-structures to the next non-empty, non-aggregate 471a4415854STim Northover /// subtype. 472df03449aSBenjamin Kramer static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 473a4415854STim Northover SmallVectorImpl<unsigned> &Path) { 474a4415854STim Northover do { 475a4415854STim Northover if (!advanceToNextLeafType(SubTypes, Path)) 476a4415854STim Northover return false; 477a4415854STim Northover 478a4415854STim Northover assert(!Path.empty() && "found a leaf but didn't set the path?"); 479a4415854STim Northover } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 480a4415854STim Northover 481a4415854STim Northover return true; 482a4415854STim Northover } 483a4415854STim Northover 484a4415854STim Northover 485450aa64fSDan Gohman /// Test if the given instruction is in a position to be optimized 486450aa64fSDan Gohman /// with a tail-call. This roughly means that it's in a block with 487450aa64fSDan Gohman /// a return and there's nothing that needs to be scheduled 488450aa64fSDan Gohman /// between it and the return. 489450aa64fSDan Gohman /// 490450aa64fSDan Gohman /// This function only tests target-independent requirements. 491480872b4SJuergen Ributzka bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 492450aa64fSDan Gohman const Instruction *I = CS.getInstruction(); 493450aa64fSDan Gohman const BasicBlock *ExitBB = I->getParent(); 494450aa64fSDan Gohman const TerminatorInst *Term = ExitBB->getTerminator(); 495450aa64fSDan Gohman const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 496450aa64fSDan Gohman 497450aa64fSDan Gohman // The block must end in a return statement or unreachable. 498450aa64fSDan Gohman // 499450aa64fSDan Gohman // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 500450aa64fSDan Gohman // an unreachable, for now. The way tailcall optimization is currently 501450aa64fSDan Gohman // implemented means it will add an epilogue followed by a jump. That is 502450aa64fSDan Gohman // not profitable. Also, if the callee is a special function (e.g. 503450aa64fSDan Gohman // longjmp on x86), it can end up causing miscompilation that has not 504450aa64fSDan Gohman // been fully understood. 505450aa64fSDan Gohman if (!Ret && 5064ce9863dSJuergen Ributzka (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 5074f3615deSChris Lattner return false; 508450aa64fSDan Gohman 509450aa64fSDan Gohman // If I will have a chain, make sure no other instruction that will have a 510450aa64fSDan Gohman // chain interposes between I and the return. 5110a92f86fSDavid Majnemer if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 5120a92f86fSDavid Majnemer !isSafeToSpeculativelyExecute(I)) 513b6d0bd48SBenjamin Kramer for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 514450aa64fSDan Gohman if (&*BBI == I) 515450aa64fSDan Gohman break; 516450aa64fSDan Gohman // Debug info intrinsics do not get in the way of tail call optimization. 517450aa64fSDan Gohman if (isa<DbgInfoIntrinsic>(BBI)) 518450aa64fSDan Gohman continue; 519450aa64fSDan Gohman if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 520980f8f26SDuncan P. N. Exon Smith !isSafeToSpeculativelyExecute(&*BBI)) 521450aa64fSDan Gohman return false; 522450aa64fSDan Gohman } 523450aa64fSDan Gohman 524f734a8baSEric Christopher const Function *F = ExitBB->getParent(); 525d913448bSEric Christopher return returnTypeIsEligibleForTailCall( 526f734a8baSEric Christopher F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 527ce0e4c26SMichael Gottesman } 528ce0e4c26SMichael Gottesman 529ce0e4c26SMichael Gottesman bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 530ce0e4c26SMichael Gottesman const Instruction *I, 531ce0e4c26SMichael Gottesman const ReturnInst *Ret, 532ce0e4c26SMichael Gottesman const TargetLoweringBase &TLI) { 533450aa64fSDan Gohman // If the block ends with a void return or unreachable, it doesn't matter 534450aa64fSDan Gohman // what the call's return type is. 535450aa64fSDan Gohman if (!Ret || Ret->getNumOperands() == 0) return true; 536450aa64fSDan Gohman 537450aa64fSDan Gohman // If the return value is undef, it doesn't matter what the call's 538450aa64fSDan Gohman // return type is. 539450aa64fSDan Gohman if (isa<UndefValue>(Ret->getOperand(0))) return true; 540450aa64fSDan Gohman 541707d68f0STim Northover // Make sure the attributes attached to each return are compatible. 542ce0e4c26SMichael Gottesman AttrBuilder CallerAttrs(F->getAttributes(), 543707d68f0STim Northover AttributeSet::ReturnIndex); 544707d68f0STim Northover AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 545707d68f0STim Northover AttributeSet::ReturnIndex); 546707d68f0STim Northover 547707d68f0STim Northover // Noalias is completely benign as far as calling convention goes, it 548707d68f0STim Northover // shouldn't affect whether the call is a tail call. 549707d68f0STim Northover CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias); 550707d68f0STim Northover CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias); 551707d68f0STim Northover 552707d68f0STim Northover bool AllowDifferingSizes = true; 553707d68f0STim Northover if (CallerAttrs.contains(Attribute::ZExt)) { 554707d68f0STim Northover if (!CalleeAttrs.contains(Attribute::ZExt)) 555450aa64fSDan Gohman return false; 556450aa64fSDan Gohman 557707d68f0STim Northover AllowDifferingSizes = false; 558707d68f0STim Northover CallerAttrs.removeAttribute(Attribute::ZExt); 559707d68f0STim Northover CalleeAttrs.removeAttribute(Attribute::ZExt); 560707d68f0STim Northover } else if (CallerAttrs.contains(Attribute::SExt)) { 561707d68f0STim Northover if (!CalleeAttrs.contains(Attribute::SExt)) 562707d68f0STim Northover return false; 563707d68f0STim Northover 564707d68f0STim Northover AllowDifferingSizes = false; 565707d68f0STim Northover CallerAttrs.removeAttribute(Attribute::SExt); 566707d68f0STim Northover CalleeAttrs.removeAttribute(Attribute::SExt); 567707d68f0STim Northover } 568707d68f0STim Northover 569707d68f0STim Northover // If they're still different, there's some facet we don't understand 570707d68f0STim Northover // (currently only "inreg", but in future who knows). It may be OK but the 571707d68f0STim Northover // only safe option is to reject the tail call. 572707d68f0STim Northover if (CallerAttrs != CalleeAttrs) 573450aa64fSDan Gohman return false; 574450aa64fSDan Gohman 575a4415854STim Northover const Value *RetVal = Ret->getOperand(0), *CallVal = I; 576a4415854STim Northover SmallVector<unsigned, 4> RetPath, CallPath; 577a4415854STim Northover SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 578a4415854STim Northover 579a4415854STim Northover bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 580a4415854STim Northover bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 581a4415854STim Northover 582a4415854STim Northover // Nothing's actually returned, it doesn't matter what the callee put there 583a4415854STim Northover // it's a valid tail call. 584a4415854STim Northover if (RetEmpty) 585a4415854STim Northover return true; 586a4415854STim Northover 587a4415854STim Northover // Iterate pairwise through each of the value types making up the tail call 588a4415854STim Northover // and the corresponding return. For each one we want to know whether it's 589a4415854STim Northover // essentially going directly from the tail call to the ret, via operations 590a4415854STim Northover // that end up not generating any code. 591a4415854STim Northover // 592a4415854STim Northover // We allow a certain amount of covariance here. For example it's permitted 593a4415854STim Northover // for the tail call to define more bits than the ret actually cares about 594a4415854STim Northover // (e.g. via a truncate). 595a4415854STim Northover do { 596a4415854STim Northover if (CallEmpty) { 597a4415854STim Northover // We've exhausted the values produced by the tail call instruction, the 598a4415854STim Northover // rest are essentially undef. The type doesn't really matter, but we need 599a4415854STim Northover // *something*. 600a4415854STim Northover Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 601a4415854STim Northover CallVal = UndefValue::get(SlotType); 602a4415854STim Northover } 603a4415854STim Northover 604a4415854STim Northover // The manipulations performed when we're looking through an insertvalue or 605a4415854STim Northover // an extractvalue would happen at the front of the RetPath list, so since 606a4415854STim Northover // we have to copy it anyway it's more efficient to create a reversed copy. 6074f6ac162SBenjamin Kramer SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 6084f6ac162SBenjamin Kramer SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 609a4415854STim Northover 610a4415854STim Northover // Finally, we can check whether the value produced by the tail call at this 611a4415854STim Northover // index is compatible with the value we return. 612707d68f0STim Northover if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 61344ede33aSMehdi Amini AllowDifferingSizes, TLI, 61444ede33aSMehdi Amini F->getParent()->getDataLayout())) 615a4415854STim Northover return false; 616a4415854STim Northover 617a4415854STim Northover CallEmpty = !nextRealType(CallSubTypes, CallPath); 618a4415854STim Northover } while(nextRealType(RetSubTypes, RetPath)); 619a4415854STim Northover 620a4415854STim Northover return true; 621450aa64fSDan Gohman } 622f21434ccSRafael Espindola 623f21434ccSRafael Espindola bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) { 624f21434ccSRafael Espindola if (!GV->hasLinkOnceODRLinkage()) 625f21434ccSRafael Espindola return false; 626f21434ccSRafael Espindola 627f21434ccSRafael Espindola if (GV->hasUnnamedAddr()) 628f21434ccSRafael Espindola return true; 629f21434ccSRafael Espindola 630f21434ccSRafael Espindola // If it is a non constant variable, it needs to be uniqued across shared 631f21434ccSRafael Espindola // objects. 632f21434ccSRafael Espindola if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 633f21434ccSRafael Espindola if (!Var->isConstant()) 634f21434ccSRafael Espindola return false; 635f21434ccSRafael Espindola } 636f21434ccSRafael Espindola 637f21434ccSRafael Espindola // An alias can point to a variable. We could try to resolve the alias to 638f21434ccSRafael Espindola // decide, but for now just don't hide them. 639f21434ccSRafael Espindola if (isa<GlobalAlias>(GV)) 640f21434ccSRafael Espindola return false; 641f21434ccSRafael Espindola 642*79db9171SRafael Espindola // If we don't see every use, we have to be conservative and assume the value 643*79db9171SRafael Espindola // address is significant. 644*79db9171SRafael Espindola if (GV->getParent()->getMaterializer()) 645*79db9171SRafael Espindola return false; 646*79db9171SRafael Espindola 647f21434ccSRafael Espindola GlobalStatus GS; 648f21434ccSRafael Espindola if (GlobalStatus::analyzeGlobal(GV, GS)) 649f21434ccSRafael Espindola return false; 650f21434ccSRafael Espindola 651f21434ccSRafael Espindola return !GS.IsCompared; 652f21434ccSRafael Espindola } 65316193552SDavid Majnemer 65416193552SDavid Majnemer static void collectFuncletMembers( 65516193552SDavid Majnemer DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet, 65616193552SDavid Majnemer const MachineBasicBlock *MBB) { 6577b54b525SDavid Blaikie // Add this MBB to our funclet. 6587b54b525SDavid Blaikie auto P = FuncletMembership.insert(std::make_pair(MBB, Funclet)); 6597b54b525SDavid Blaikie 66016193552SDavid Majnemer // Don't revisit blocks. 6617b54b525SDavid Blaikie if (!P.second) { 6627b54b525SDavid Blaikie assert(P.first->second == Funclet && "MBB is part of two funclets!"); 66316193552SDavid Majnemer return; 66416193552SDavid Majnemer } 66516193552SDavid Majnemer 66616193552SDavid Majnemer bool IsReturn = false; 66716193552SDavid Majnemer int NumTerminators = 0; 66816193552SDavid Majnemer for (const MachineInstr &MI : MBB->terminators()) { 66916193552SDavid Majnemer IsReturn |= MI.isReturn(); 67016193552SDavid Majnemer ++NumTerminators; 67116193552SDavid Majnemer } 67216193552SDavid Majnemer assert((!IsReturn || NumTerminators == 1) && 67316193552SDavid Majnemer "Expected only one terminator when a return is present!"); 67416193552SDavid Majnemer 67516193552SDavid Majnemer // Returns are boundaries where funclet transfer can occur, don't follow 67616193552SDavid Majnemer // successors. 67716193552SDavid Majnemer if (IsReturn) 67816193552SDavid Majnemer return; 67916193552SDavid Majnemer 68016193552SDavid Majnemer for (const MachineBasicBlock *SMBB : MBB->successors()) 68116193552SDavid Majnemer if (!SMBB->isEHPad()) 68216193552SDavid Majnemer collectFuncletMembers(FuncletMembership, Funclet, SMBB); 68316193552SDavid Majnemer } 68416193552SDavid Majnemer 68516193552SDavid Majnemer DenseMap<const MachineBasicBlock *, int> 68616193552SDavid Majnemer llvm::getFuncletMembership(const MachineFunction &MF) { 68716193552SDavid Majnemer DenseMap<const MachineBasicBlock *, int> FuncletMembership; 68816193552SDavid Majnemer 68916193552SDavid Majnemer // We don't have anything to do if there aren't any EH pads. 69016193552SDavid Majnemer if (!MF.getMMI().hasEHFunclets()) 69116193552SDavid Majnemer return FuncletMembership; 69216193552SDavid Majnemer 693e4f9b09bSDavid Majnemer int EntryBBNumber = MF.front().getNumber(); 69416193552SDavid Majnemer bool IsSEH = isAsynchronousEHPersonality( 69516193552SDavid Majnemer classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 69616193552SDavid Majnemer 69716193552SDavid Majnemer const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 69816193552SDavid Majnemer SmallVector<const MachineBasicBlock *, 16> FuncletBlocks; 699e4f9b09bSDavid Majnemer SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 700e4f9b09bSDavid Majnemer SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 70116193552SDavid Majnemer SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 70216193552SDavid Majnemer for (const MachineBasicBlock &MBB : MF) { 703e4f9b09bSDavid Majnemer if (MBB.isEHFuncletEntry()) { 70416193552SDavid Majnemer FuncletBlocks.push_back(&MBB); 705e4f9b09bSDavid Majnemer } else if (IsSEH && MBB.isEHPad()) { 706e4f9b09bSDavid Majnemer SEHCatchPads.push_back(&MBB); 707e4f9b09bSDavid Majnemer } else if (MBB.pred_empty()) { 708e4f9b09bSDavid Majnemer UnreachableBlocks.push_back(&MBB); 709e4f9b09bSDavid Majnemer } 71016193552SDavid Majnemer 71116193552SDavid Majnemer MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 71216193552SDavid Majnemer // CatchPads are not funclets for SEH so do not consider CatchRet to 71316193552SDavid Majnemer // transfer control to another funclet. 714e4f9b09bSDavid Majnemer if (MBBI->getOpcode() != TII->getCatchReturnOpcode()) 71516193552SDavid Majnemer continue; 71616193552SDavid Majnemer 717e4f9b09bSDavid Majnemer // FIXME: SEH CatchPads are not necessarily in the parent function: 718e4f9b09bSDavid Majnemer // they could be inside a finally block. 71916193552SDavid Majnemer const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 72016193552SDavid Majnemer const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 721e4f9b09bSDavid Majnemer CatchRetSuccessors.push_back( 722e4f9b09bSDavid Majnemer {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 72316193552SDavid Majnemer } 72416193552SDavid Majnemer 72516193552SDavid Majnemer // We don't have anything to do if there aren't any EH pads. 72616193552SDavid Majnemer if (FuncletBlocks.empty()) 72716193552SDavid Majnemer return FuncletMembership; 72816193552SDavid Majnemer 72916193552SDavid Majnemer // Identify all the basic blocks reachable from the function entry. 730980f8f26SDuncan P. N. Exon Smith collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front()); 731e4f9b09bSDavid Majnemer // All blocks not part of a funclet are in the parent function. 732e4f9b09bSDavid Majnemer for (const MachineBasicBlock *MBB : UnreachableBlocks) 733e4f9b09bSDavid Majnemer collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 73416193552SDavid Majnemer // Next, identify all the blocks inside the funclets. 73516193552SDavid Majnemer for (const MachineBasicBlock *MBB : FuncletBlocks) 73616193552SDavid Majnemer collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB); 737e4f9b09bSDavid Majnemer // SEH CatchPads aren't really funclets, handle them separately. 738e4f9b09bSDavid Majnemer for (const MachineBasicBlock *MBB : SEHCatchPads) 739e4f9b09bSDavid Majnemer collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 74016193552SDavid Majnemer // Finally, identify all the targets of a catchret. 74116193552SDavid Majnemer for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 74216193552SDavid Majnemer CatchRetSuccessors) 74316193552SDavid Majnemer collectFuncletMembers(FuncletMembership, CatchRetPair.second, 74416193552SDavid Majnemer CatchRetPair.first); 74516193552SDavid Majnemer return FuncletMembership; 74616193552SDavid Majnemer } 747