1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AggressiveAntiDepBreaker class, which 11 // implements register anti-dependence breaking during post-RA 12 // scheduling. It attempts to break all anti-dependencies within a 13 // block. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AggressiveAntiDepBreaker.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/MachineValueType.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/ScheduleDAG.h" 31 #include "llvm/CodeGen/TargetInstrInfo.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <cassert> 40 #include <map> 41 #include <set> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "post-RA-sched" 48 49 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod 50 static cl::opt<int> 51 DebugDiv("agg-antidep-debugdiv", 52 cl::desc("Debug control for aggressive anti-dep breaker"), 53 cl::init(0), cl::Hidden); 54 55 static cl::opt<int> 56 DebugMod("agg-antidep-debugmod", 57 cl::desc("Debug control for aggressive anti-dep breaker"), 58 cl::init(0), cl::Hidden); 59 60 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, 61 MachineBasicBlock *BB) 62 : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), 63 GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0), 64 DefIndices(TargetRegs, 0) { 65 const unsigned BBSize = BB->size(); 66 for (unsigned i = 0; i < NumTargetRegs; ++i) { 67 // Initialize all registers to be in their own group. Initially we 68 // assign the register to the same-indexed GroupNode. 69 GroupNodeIndices[i] = i; 70 // Initialize the indices to indicate that no registers are live. 71 KillIndices[i] = ~0u; 72 DefIndices[i] = BBSize; 73 } 74 } 75 76 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { 77 unsigned Node = GroupNodeIndices[Reg]; 78 while (GroupNodes[Node] != Node) 79 Node = GroupNodes[Node]; 80 81 return Node; 82 } 83 84 void AggressiveAntiDepState::GetGroupRegs( 85 unsigned Group, 86 std::vector<unsigned> &Regs, 87 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs) 88 { 89 for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { 90 if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) 91 Regs.push_back(Reg); 92 } 93 } 94 95 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) { 96 assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); 97 assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); 98 99 // find group for each register 100 unsigned Group1 = GetGroup(Reg1); 101 unsigned Group2 = GetGroup(Reg2); 102 103 // if either group is 0, then that must become the parent 104 unsigned Parent = (Group1 == 0) ? Group1 : Group2; 105 unsigned Other = (Parent == Group1) ? Group2 : Group1; 106 GroupNodes.at(Other) = Parent; 107 return Parent; 108 } 109 110 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) { 111 // Create a new GroupNode for Reg. Reg's existing GroupNode must 112 // stay as is because there could be other GroupNodes referring to 113 // it. 114 unsigned idx = GroupNodes.size(); 115 GroupNodes.push_back(idx); 116 GroupNodeIndices[Reg] = idx; 117 return idx; 118 } 119 120 bool AggressiveAntiDepState::IsLive(unsigned Reg) { 121 // KillIndex must be defined and DefIndex not defined for a register 122 // to be live. 123 return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); 124 } 125 126 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( 127 MachineFunction &MFi, const RegisterClassInfo &RCI, 128 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) 129 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 130 TII(MF.getSubtarget().getInstrInfo()), 131 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) { 132 /* Collect a bitset of all registers that are only broken if they 133 are on the critical path. */ 134 for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { 135 BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); 136 if (CriticalPathSet.none()) 137 CriticalPathSet = CPSet; 138 else 139 CriticalPathSet |= CPSet; 140 } 141 142 DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); 143 DEBUG(for (unsigned r : CriticalPathSet.set_bits()) 144 dbgs() << " " << printReg(r, TRI)); 145 DEBUG(dbgs() << '\n'); 146 } 147 148 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { 149 delete State; 150 } 151 152 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 153 assert(!State); 154 State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); 155 156 bool IsReturnBlock = BB->isReturnBlock(); 157 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 158 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 159 160 // Examine the live-in regs of all successors. 161 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 162 SE = BB->succ_end(); SI != SE; ++SI) 163 for (const auto &LI : (*SI)->liveins()) { 164 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { 165 unsigned Reg = *AI; 166 State->UnionGroups(Reg, 0); 167 KillIndices[Reg] = BB->size(); 168 DefIndices[Reg] = ~0u; 169 } 170 } 171 172 // Mark live-out callee-saved registers. In a return block this is 173 // all callee-saved registers. In non-return this is any 174 // callee-saved register that is not saved in the prolog. 175 const MachineFrameInfo &MFI = MF.getFrameInfo(); 176 BitVector Pristine = MFI.getPristineRegs(MF); 177 for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; 178 ++I) { 179 unsigned Reg = *I; 180 if (!IsReturnBlock && !Pristine.test(Reg)) 181 continue; 182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 183 unsigned AliasReg = *AI; 184 State->UnionGroups(AliasReg, 0); 185 KillIndices[AliasReg] = BB->size(); 186 DefIndices[AliasReg] = ~0u; 187 } 188 } 189 } 190 191 void AggressiveAntiDepBreaker::FinishBlock() { 192 delete State; 193 State = nullptr; 194 } 195 196 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, 197 unsigned InsertPosIndex) { 198 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 199 200 std::set<unsigned> PassthruRegs; 201 GetPassthruRegs(MI, PassthruRegs); 202 PrescanInstruction(MI, Count, PassthruRegs); 203 ScanInstruction(MI, Count); 204 205 DEBUG(dbgs() << "Observe: "); 206 DEBUG(MI.dump()); 207 DEBUG(dbgs() << "\tRegs:"); 208 209 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 210 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 211 // If Reg is current live, then mark that it can't be renamed as 212 // we don't know the extent of its live-range anymore (now that it 213 // has been scheduled). If it is not live but was defined in the 214 // previous schedule region, then set its def index to the most 215 // conservative location (i.e. the beginning of the previous 216 // schedule region). 217 if (State->IsLive(Reg)) { 218 DEBUG(if (State->GetGroup(Reg) != 0) 219 dbgs() << " " << printReg(Reg, TRI) << "=g" << 220 State->GetGroup(Reg) << "->g0(region live-out)"); 221 State->UnionGroups(Reg, 0); 222 } else if ((DefIndices[Reg] < InsertPosIndex) 223 && (DefIndices[Reg] >= Count)) { 224 DefIndices[Reg] = Count; 225 } 226 } 227 DEBUG(dbgs() << '\n'); 228 } 229 230 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI, 231 MachineOperand &MO) { 232 if (!MO.isReg() || !MO.isImplicit()) 233 return false; 234 235 unsigned Reg = MO.getReg(); 236 if (Reg == 0) 237 return false; 238 239 MachineOperand *Op = nullptr; 240 if (MO.isDef()) 241 Op = MI.findRegisterUseOperand(Reg, true); 242 else 243 Op = MI.findRegisterDefOperand(Reg); 244 245 return(Op && Op->isImplicit()); 246 } 247 248 void AggressiveAntiDepBreaker::GetPassthruRegs( 249 MachineInstr &MI, std::set<unsigned> &PassthruRegs) { 250 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 251 MachineOperand &MO = MI.getOperand(i); 252 if (!MO.isReg()) continue; 253 if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) || 254 IsImplicitDefUse(MI, MO)) { 255 const unsigned Reg = MO.getReg(); 256 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 257 SubRegs.isValid(); ++SubRegs) 258 PassthruRegs.insert(*SubRegs); 259 } 260 } 261 } 262 263 /// AntiDepEdges - Return in Edges the anti- and output- dependencies 264 /// in SU that we want to consider for breaking. 265 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) { 266 SmallSet<unsigned, 4> RegSet; 267 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 268 P != PE; ++P) { 269 if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) { 270 if (RegSet.insert(P->getReg()).second) 271 Edges.push_back(&*P); 272 } 273 } 274 } 275 276 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 277 /// critical path. 278 static const SUnit *CriticalPathStep(const SUnit *SU) { 279 const SDep *Next = nullptr; 280 unsigned NextDepth = 0; 281 // Find the predecessor edge with the greatest depth. 282 if (SU) { 283 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 284 P != PE; ++P) { 285 const SUnit *PredSU = P->getSUnit(); 286 unsigned PredLatency = P->getLatency(); 287 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 288 // In the case of a latency tie, prefer an anti-dependency edge over 289 // other types of edges. 290 if (NextDepth < PredTotalLatency || 291 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 292 NextDepth = PredTotalLatency; 293 Next = &*P; 294 } 295 } 296 } 297 298 return (Next) ? Next->getSUnit() : nullptr; 299 } 300 301 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, 302 const char *tag, 303 const char *header, 304 const char *footer) { 305 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 306 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 307 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 308 RegRefs = State->GetRegRefs(); 309 310 // FIXME: We must leave subregisters of live super registers as live, so that 311 // we don't clear out the register tracking information for subregisters of 312 // super registers we're still tracking (and with which we're unioning 313 // subregister definitions). 314 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 315 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) { 316 DEBUG(if (!header && footer) dbgs() << footer); 317 return; 318 } 319 320 if (!State->IsLive(Reg)) { 321 KillIndices[Reg] = KillIdx; 322 DefIndices[Reg] = ~0u; 323 RegRefs.erase(Reg); 324 State->LeaveGroup(Reg); 325 DEBUG(if (header) { 326 dbgs() << header << printReg(Reg, TRI); header = nullptr; }); 327 DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); 328 // Repeat for subregisters. Note that we only do this if the superregister 329 // was not live because otherwise, regardless whether we have an explicit 330 // use of the subregister, the subregister's contents are needed for the 331 // uses of the superregister. 332 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 333 unsigned SubregReg = *SubRegs; 334 if (!State->IsLive(SubregReg)) { 335 KillIndices[SubregReg] = KillIdx; 336 DefIndices[SubregReg] = ~0u; 337 RegRefs.erase(SubregReg); 338 State->LeaveGroup(SubregReg); 339 DEBUG(if (header) { 340 dbgs() << header << printReg(Reg, TRI); header = nullptr; }); 341 DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g" << 342 State->GetGroup(SubregReg) << tag); 343 } 344 } 345 } 346 347 DEBUG(if (!header && footer) dbgs() << footer); 348 } 349 350 void AggressiveAntiDepBreaker::PrescanInstruction( 351 MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) { 352 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 353 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 354 RegRefs = State->GetRegRefs(); 355 356 // Handle dead defs by simulating a last-use of the register just 357 // after the def. A dead def can occur because the def is truly 358 // dead, or because only a subregister is live at the def. If we 359 // don't do this the dead def will be incorrectly merged into the 360 // previous def. 361 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 362 MachineOperand &MO = MI.getOperand(i); 363 if (!MO.isReg() || !MO.isDef()) continue; 364 unsigned Reg = MO.getReg(); 365 if (Reg == 0) continue; 366 367 HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); 368 } 369 370 DEBUG(dbgs() << "\tDef Groups:"); 371 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 372 MachineOperand &MO = MI.getOperand(i); 373 if (!MO.isReg() || !MO.isDef()) continue; 374 unsigned Reg = MO.getReg(); 375 if (Reg == 0) continue; 376 377 DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)); 378 379 // If MI's defs have a special allocation requirement, don't allow 380 // any def registers to be changed. Also assume all registers 381 // defined in a call must not be changed (ABI). Inline assembly may 382 // reference either system calls or the register directly. Skip it until we 383 // can tell user specified registers from compiler-specified. 384 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) || 385 MI.isInlineAsm()) { 386 DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 387 State->UnionGroups(Reg, 0); 388 } 389 390 // Any aliased that are live at this point are completely or 391 // partially defined here, so group those aliases with Reg. 392 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 393 unsigned AliasReg = *AI; 394 if (State->IsLive(AliasReg)) { 395 State->UnionGroups(Reg, AliasReg); 396 DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " 397 << printReg(AliasReg, TRI) << ")"); 398 } 399 } 400 401 // Note register reference... 402 const TargetRegisterClass *RC = nullptr; 403 if (i < MI.getDesc().getNumOperands()) 404 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 405 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 406 RegRefs.insert(std::make_pair(Reg, RR)); 407 } 408 409 DEBUG(dbgs() << '\n'); 410 411 // Scan the register defs for this instruction and update 412 // live-ranges. 413 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 414 MachineOperand &MO = MI.getOperand(i); 415 if (!MO.isReg() || !MO.isDef()) continue; 416 unsigned Reg = MO.getReg(); 417 if (Reg == 0) continue; 418 // Ignore KILLs and passthru registers for liveness... 419 if (MI.isKill() || (PassthruRegs.count(Reg) != 0)) 420 continue; 421 422 // Update def for Reg and aliases. 423 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 424 // We need to be careful here not to define already-live super registers. 425 // If the super register is already live, then this definition is not 426 // a definition of the whole super register (just a partial insertion 427 // into it). Earlier subregister definitions (which we've not yet visited 428 // because we're iterating bottom-up) need to be linked to the same group 429 // as this definition. 430 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) 431 continue; 432 433 DefIndices[*AI] = Count; 434 } 435 } 436 } 437 438 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI, 439 unsigned Count) { 440 DEBUG(dbgs() << "\tUse Groups:"); 441 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 442 RegRefs = State->GetRegRefs(); 443 444 // If MI's uses have special allocation requirement, don't allow 445 // any use registers to be changed. Also assume all registers 446 // used in a call must not be changed (ABI). 447 // Inline Assembly register uses also cannot be safely changed. 448 // FIXME: The issue with predicated instruction is more complex. We are being 449 // conservatively here because the kill markers cannot be trusted after 450 // if-conversion: 451 // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] 452 // ... 453 // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] 454 // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] 455 // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) 456 // 457 // The first R6 kill is not really a kill since it's killed by a predicated 458 // instruction which may not be executed. The second R6 def may or may not 459 // re-define R6 so it's not safe to change it since the last R6 use cannot be 460 // changed. 461 bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() || 462 TII->isPredicated(MI) || MI.isInlineAsm(); 463 464 // Scan the register uses for this instruction and update 465 // live-ranges, groups and RegRefs. 466 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 467 MachineOperand &MO = MI.getOperand(i); 468 if (!MO.isReg() || !MO.isUse()) continue; 469 unsigned Reg = MO.getReg(); 470 if (Reg == 0) continue; 471 472 DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)); 473 474 // It wasn't previously live but now it is, this is a kill. Forget 475 // the previous live-range information and start a new live-range 476 // for the register. 477 HandleLastUse(Reg, Count, "(last-use)"); 478 479 if (Special) { 480 DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 481 State->UnionGroups(Reg, 0); 482 } 483 484 // Note register reference... 485 const TargetRegisterClass *RC = nullptr; 486 if (i < MI.getDesc().getNumOperands()) 487 RC = TII->getRegClass(MI.getDesc(), i, TRI, MF); 488 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 489 RegRefs.insert(std::make_pair(Reg, RR)); 490 } 491 492 DEBUG(dbgs() << '\n'); 493 494 // Form a group of all defs and uses of a KILL instruction to ensure 495 // that all registers are renamed as a group. 496 if (MI.isKill()) { 497 DEBUG(dbgs() << "\tKill Group:"); 498 499 unsigned FirstReg = 0; 500 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 501 MachineOperand &MO = MI.getOperand(i); 502 if (!MO.isReg()) continue; 503 unsigned Reg = MO.getReg(); 504 if (Reg == 0) continue; 505 506 if (FirstReg != 0) { 507 DEBUG(dbgs() << "=" << printReg(Reg, TRI)); 508 State->UnionGroups(FirstReg, Reg); 509 } else { 510 DEBUG(dbgs() << " " << printReg(Reg, TRI)); 511 FirstReg = Reg; 512 } 513 } 514 515 DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); 516 } 517 } 518 519 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { 520 BitVector BV(TRI->getNumRegs(), false); 521 bool first = true; 522 523 // Check all references that need rewriting for Reg. For each, use 524 // the corresponding register class to narrow the set of registers 525 // that are appropriate for renaming. 526 for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) { 527 const TargetRegisterClass *RC = Q.second.RC; 528 if (!RC) continue; 529 530 BitVector RCBV = TRI->getAllocatableSet(MF, RC); 531 if (first) { 532 BV |= RCBV; 533 first = false; 534 } else { 535 BV &= RCBV; 536 } 537 538 DEBUG(dbgs() << " " << TRI->getRegClassName(RC)); 539 } 540 541 return BV; 542 } 543 544 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( 545 unsigned AntiDepGroupIndex, 546 RenameOrderType& RenameOrder, 547 std::map<unsigned, unsigned> &RenameMap) { 548 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 549 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 550 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 551 RegRefs = State->GetRegRefs(); 552 553 // Collect all referenced registers in the same group as 554 // AntiDepReg. These all need to be renamed together if we are to 555 // break the anti-dependence. 556 std::vector<unsigned> Regs; 557 State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); 558 assert(!Regs.empty() && "Empty register group!"); 559 if (Regs.empty()) 560 return false; 561 562 // Find the "superest" register in the group. At the same time, 563 // collect the BitVector of registers that can be used to rename 564 // each register. 565 DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex 566 << ":\n"); 567 std::map<unsigned, BitVector> RenameRegisterMap; 568 unsigned SuperReg = 0; 569 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 570 unsigned Reg = Regs[i]; 571 if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) 572 SuperReg = Reg; 573 574 // If Reg has any references, then collect possible rename regs 575 if (RegRefs.count(Reg) > 0) { 576 DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":"); 577 578 BitVector &BV = RenameRegisterMap[Reg]; 579 assert(BV.empty()); 580 BV = GetRenameRegisters(Reg); 581 582 DEBUG({ 583 dbgs() << " ::"; 584 for (unsigned r : BV.set_bits()) 585 dbgs() << " " << printReg(r, TRI); 586 dbgs() << "\n"; 587 }); 588 } 589 } 590 591 // All group registers should be a subreg of SuperReg. 592 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 593 unsigned Reg = Regs[i]; 594 if (Reg == SuperReg) continue; 595 bool IsSub = TRI->isSubRegister(SuperReg, Reg); 596 // FIXME: remove this once PR18663 has been properly fixed. For now, 597 // return a conservative answer: 598 // assert(IsSub && "Expecting group subregister"); 599 if (!IsSub) 600 return false; 601 } 602 603 #ifndef NDEBUG 604 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod 605 if (DebugDiv > 0) { 606 static int renamecnt = 0; 607 if (renamecnt++ % DebugDiv != DebugMod) 608 return false; 609 610 dbgs() << "*** Performing rename " << printReg(SuperReg, TRI) 611 << " for debug ***\n"; 612 } 613 #endif 614 615 // Check each possible rename register for SuperReg in round-robin 616 // order. If that register is available, and the corresponding 617 // registers are available for the other group subregisters, then we 618 // can use those registers to rename. 619 620 // FIXME: Using getMinimalPhysRegClass is very conservative. We should 621 // check every use of the register and find the largest register class 622 // that can be used in all of them. 623 const TargetRegisterClass *SuperRC = 624 TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); 625 626 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC); 627 if (Order.empty()) { 628 DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); 629 return false; 630 } 631 632 DEBUG(dbgs() << "\tFind Registers:"); 633 634 RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); 635 636 unsigned OrigR = RenameOrder[SuperRC]; 637 unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); 638 unsigned R = OrigR; 639 do { 640 if (R == 0) R = Order.size(); 641 --R; 642 const unsigned NewSuperReg = Order[R]; 643 // Don't consider non-allocatable registers 644 if (!MRI.isAllocatable(NewSuperReg)) continue; 645 // Don't replace a register with itself. 646 if (NewSuperReg == SuperReg) continue; 647 648 DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':'); 649 RenameMap.clear(); 650 651 // For each referenced group register (which must be a SuperReg or 652 // a subregister of SuperReg), find the corresponding subregister 653 // of NewSuperReg and make sure it is free to be renamed. 654 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 655 unsigned Reg = Regs[i]; 656 unsigned NewReg = 0; 657 if (Reg == SuperReg) { 658 NewReg = NewSuperReg; 659 } else { 660 unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); 661 if (NewSubRegIdx != 0) 662 NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); 663 } 664 665 DEBUG(dbgs() << " " << printReg(NewReg, TRI)); 666 667 // Check if Reg can be renamed to NewReg. 668 if (!RenameRegisterMap[Reg].test(NewReg)) { 669 DEBUG(dbgs() << "(no rename)"); 670 goto next_super_reg; 671 } 672 673 // If NewReg is dead and NewReg's most recent def is not before 674 // Regs's kill, it's safe to replace Reg with NewReg. We 675 // must also check all aliases of NewReg, because we can't define a 676 // register when any sub or super is already live. 677 if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { 678 DEBUG(dbgs() << "(live)"); 679 goto next_super_reg; 680 } else { 681 bool found = false; 682 for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { 683 unsigned AliasReg = *AI; 684 if (State->IsLive(AliasReg) || 685 (KillIndices[Reg] > DefIndices[AliasReg])) { 686 DEBUG(dbgs() << "(alias " << printReg(AliasReg, TRI) << " live)"); 687 found = true; 688 break; 689 } 690 } 691 if (found) 692 goto next_super_reg; 693 } 694 695 // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also 696 // defines 'NewReg' via an early-clobber operand. 697 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 698 MachineInstr *UseMI = Q.second.Operand->getParent(); 699 int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI); 700 if (Idx == -1) 701 continue; 702 703 if (UseMI->getOperand(Idx).isEarlyClobber()) { 704 DEBUG(dbgs() << "(ec)"); 705 goto next_super_reg; 706 } 707 } 708 709 // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining 710 // 'Reg' is an early-clobber define and that instruction also uses 711 // 'NewReg'. 712 for (const auto &Q : make_range(RegRefs.equal_range(Reg))) { 713 if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber()) 714 continue; 715 716 MachineInstr *DefMI = Q.second.Operand->getParent(); 717 if (DefMI->readsRegister(NewReg, TRI)) { 718 DEBUG(dbgs() << "(ec)"); 719 goto next_super_reg; 720 } 721 } 722 723 // Record that 'Reg' can be renamed to 'NewReg'. 724 RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg)); 725 } 726 727 // If we fall-out here, then every register in the group can be 728 // renamed, as recorded in RenameMap. 729 RenameOrder.erase(SuperRC); 730 RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); 731 DEBUG(dbgs() << "]\n"); 732 return true; 733 734 next_super_reg: 735 DEBUG(dbgs() << ']'); 736 } while (R != EndR); 737 738 DEBUG(dbgs() << '\n'); 739 740 // No registers are free and available! 741 return false; 742 } 743 744 /// BreakAntiDependencies - Identifiy anti-dependencies within the 745 /// ScheduleDAG and break them by renaming registers. 746 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( 747 const std::vector<SUnit> &SUnits, 748 MachineBasicBlock::iterator Begin, 749 MachineBasicBlock::iterator End, 750 unsigned InsertPosIndex, 751 DbgValueVector &DbgValues) { 752 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 753 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 754 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 755 RegRefs = State->GetRegRefs(); 756 757 // The code below assumes that there is at least one instruction, 758 // so just duck out immediately if the block is empty. 759 if (SUnits.empty()) return 0; 760 761 // For each regclass the next register to use for renaming. 762 RenameOrderType RenameOrder; 763 764 // ...need a map from MI to SUnit. 765 std::map<MachineInstr *, const SUnit *> MISUnitMap; 766 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 767 const SUnit *SU = &SUnits[i]; 768 MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(), 769 SU)); 770 } 771 772 // Track progress along the critical path through the SUnit graph as 773 // we walk the instructions. This is needed for regclasses that only 774 // break critical-path anti-dependencies. 775 const SUnit *CriticalPathSU = nullptr; 776 MachineInstr *CriticalPathMI = nullptr; 777 if (CriticalPathSet.any()) { 778 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 779 const SUnit *SU = &SUnits[i]; 780 if (!CriticalPathSU || 781 ((SU->getDepth() + SU->Latency) > 782 (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { 783 CriticalPathSU = SU; 784 } 785 } 786 787 CriticalPathMI = CriticalPathSU->getInstr(); 788 } 789 790 #ifndef NDEBUG 791 DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); 792 DEBUG(dbgs() << "Available regs:"); 793 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 794 if (!State->IsLive(Reg)) 795 DEBUG(dbgs() << " " << printReg(Reg, TRI)); 796 } 797 DEBUG(dbgs() << '\n'); 798 #endif 799 800 BitVector RegAliases(TRI->getNumRegs()); 801 802 // Attempt to break anti-dependence edges. Walk the instructions 803 // from the bottom up, tracking information about liveness as we go 804 // to help determine which registers are available. 805 unsigned Broken = 0; 806 unsigned Count = InsertPosIndex - 1; 807 for (MachineBasicBlock::iterator I = End, E = Begin; 808 I != E; --Count) { 809 MachineInstr &MI = *--I; 810 811 if (MI.isDebugValue()) 812 continue; 813 814 DEBUG(dbgs() << "Anti: "); 815 DEBUG(MI.dump()); 816 817 std::set<unsigned> PassthruRegs; 818 GetPassthruRegs(MI, PassthruRegs); 819 820 // Process the defs in MI... 821 PrescanInstruction(MI, Count, PassthruRegs); 822 823 // The dependence edges that represent anti- and output- 824 // dependencies that are candidates for breaking. 825 std::vector<const SDep *> Edges; 826 const SUnit *PathSU = MISUnitMap[&MI]; 827 AntiDepEdges(PathSU, Edges); 828 829 // If MI is not on the critical path, then we don't rename 830 // registers in the CriticalPathSet. 831 BitVector *ExcludeRegs = nullptr; 832 if (&MI == CriticalPathMI) { 833 CriticalPathSU = CriticalPathStep(CriticalPathSU); 834 CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; 835 } else if (CriticalPathSet.any()) { 836 ExcludeRegs = &CriticalPathSet; 837 } 838 839 // Ignore KILL instructions (they form a group in ScanInstruction 840 // but don't cause any anti-dependence breaking themselves) 841 if (!MI.isKill()) { 842 // Attempt to break each anti-dependency... 843 for (unsigned i = 0, e = Edges.size(); i != e; ++i) { 844 const SDep *Edge = Edges[i]; 845 SUnit *NextSU = Edge->getSUnit(); 846 847 if ((Edge->getKind() != SDep::Anti) && 848 (Edge->getKind() != SDep::Output)) continue; 849 850 unsigned AntiDepReg = Edge->getReg(); 851 DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI)); 852 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 853 854 if (!MRI.isAllocatable(AntiDepReg)) { 855 // Don't break anti-dependencies on non-allocatable registers. 856 DEBUG(dbgs() << " (non-allocatable)\n"); 857 continue; 858 } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { 859 // Don't break anti-dependencies for critical path registers 860 // if not on the critical path 861 DEBUG(dbgs() << " (not critical-path)\n"); 862 continue; 863 } else if (PassthruRegs.count(AntiDepReg) != 0) { 864 // If the anti-dep register liveness "passes-thru", then 865 // don't try to change it. It will be changed along with 866 // the use if required to break an earlier antidep. 867 DEBUG(dbgs() << " (passthru)\n"); 868 continue; 869 } else { 870 // No anti-dep breaking for implicit deps 871 MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg); 872 assert(AntiDepOp && "Can't find index for defined register operand"); 873 if (!AntiDepOp || AntiDepOp->isImplicit()) { 874 DEBUG(dbgs() << " (implicit)\n"); 875 continue; 876 } 877 878 // If the SUnit has other dependencies on the SUnit that 879 // it anti-depends on, don't bother breaking the 880 // anti-dependency since those edges would prevent such 881 // units from being scheduled past each other 882 // regardless. 883 // 884 // Also, if there are dependencies on other SUnits with the 885 // same register as the anti-dependency, don't attempt to 886 // break it. 887 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 888 PE = PathSU->Preds.end(); P != PE; ++P) { 889 if (P->getSUnit() == NextSU ? 890 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 891 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 892 AntiDepReg = 0; 893 break; 894 } 895 } 896 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 897 PE = PathSU->Preds.end(); P != PE; ++P) { 898 if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) && 899 (P->getKind() != SDep::Output)) { 900 DEBUG(dbgs() << " (real dependency)\n"); 901 AntiDepReg = 0; 902 break; 903 } else if ((P->getSUnit() != NextSU) && 904 (P->getKind() == SDep::Data) && 905 (P->getReg() == AntiDepReg)) { 906 DEBUG(dbgs() << " (other dependency)\n"); 907 AntiDepReg = 0; 908 break; 909 } 910 } 911 912 if (AntiDepReg == 0) continue; 913 914 // If the definition of the anti-dependency register does not start 915 // a new live range, bail out. This can happen if the anti-dep 916 // register is a sub-register of another register whose live range 917 // spans over PathSU. In such case, PathSU defines only a part of 918 // the larger register. 919 RegAliases.reset(); 920 for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI) 921 RegAliases.set(*AI); 922 for (SDep S : PathSU->Succs) { 923 SDep::Kind K = S.getKind(); 924 if (K != SDep::Data && K != SDep::Output && K != SDep::Anti) 925 continue; 926 unsigned R = S.getReg(); 927 if (!RegAliases[R]) 928 continue; 929 if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R)) 930 continue; 931 AntiDepReg = 0; 932 break; 933 } 934 935 if (AntiDepReg == 0) continue; 936 } 937 938 assert(AntiDepReg != 0); 939 if (AntiDepReg == 0) continue; 940 941 // Determine AntiDepReg's register group. 942 const unsigned GroupIndex = State->GetGroup(AntiDepReg); 943 if (GroupIndex == 0) { 944 DEBUG(dbgs() << " (zero group)\n"); 945 continue; 946 } 947 948 DEBUG(dbgs() << '\n'); 949 950 // Look for a suitable register to use to break the anti-dependence. 951 std::map<unsigned, unsigned> RenameMap; 952 if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { 953 DEBUG(dbgs() << "\tBreaking anti-dependence edge on " 954 << printReg(AntiDepReg, TRI) << ":"); 955 956 // Handle each group register... 957 for (std::map<unsigned, unsigned>::iterator 958 S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) { 959 unsigned CurrReg = S->first; 960 unsigned NewReg = S->second; 961 962 DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->" 963 << printReg(NewReg, TRI) << "(" 964 << RegRefs.count(CurrReg) << " refs)"); 965 966 // Update the references to the old register CurrReg to 967 // refer to the new register NewReg. 968 for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) { 969 Q.second.Operand->setReg(NewReg); 970 // If the SU for the instruction being updated has debug 971 // information related to the anti-dependency register, make 972 // sure to update that as well. 973 const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()]; 974 if (!SU) continue; 975 UpdateDbgValues(DbgValues, Q.second.Operand->getParent(), 976 AntiDepReg, NewReg); 977 } 978 979 // We just went back in time and modified history; the 980 // liveness information for CurrReg is now inconsistent. Set 981 // the state as if it were dead. 982 State->UnionGroups(NewReg, 0); 983 RegRefs.erase(NewReg); 984 DefIndices[NewReg] = DefIndices[CurrReg]; 985 KillIndices[NewReg] = KillIndices[CurrReg]; 986 987 State->UnionGroups(CurrReg, 0); 988 RegRefs.erase(CurrReg); 989 DefIndices[CurrReg] = KillIndices[CurrReg]; 990 KillIndices[CurrReg] = ~0u; 991 assert(((KillIndices[CurrReg] == ~0u) != 992 (DefIndices[CurrReg] == ~0u)) && 993 "Kill and Def maps aren't consistent for AntiDepReg!"); 994 } 995 996 ++Broken; 997 DEBUG(dbgs() << '\n'); 998 } 999 } 1000 } 1001 1002 ScanInstruction(MI, Count); 1003 } 1004 1005 return Broken; 1006 } 1007