1 //===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AggressiveAntiDepBreaker class, which
11 // implements register anti-dependence breaking during post-RA
12 // scheduling. It attempts to break all anti-dependencies within a
13 // block.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AggressiveAntiDepBreaker.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/RegisterClassInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "post-RA-sched"
31 
32 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
33 static cl::opt<int>
34 DebugDiv("agg-antidep-debugdiv",
35          cl::desc("Debug control for aggressive anti-dep breaker"),
36          cl::init(0), cl::Hidden);
37 static cl::opt<int>
38 DebugMod("agg-antidep-debugmod",
39          cl::desc("Debug control for aggressive anti-dep breaker"),
40          cl::init(0), cl::Hidden);
41 
42 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
43                                                MachineBasicBlock *BB) :
44   NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
45   GroupNodeIndices(TargetRegs, 0),
46   KillIndices(TargetRegs, 0),
47   DefIndices(TargetRegs, 0)
48 {
49   const unsigned BBSize = BB->size();
50   for (unsigned i = 0; i < NumTargetRegs; ++i) {
51     // Initialize all registers to be in their own group. Initially we
52     // assign the register to the same-indexed GroupNode.
53     GroupNodeIndices[i] = i;
54     // Initialize the indices to indicate that no registers are live.
55     KillIndices[i] = ~0u;
56     DefIndices[i] = BBSize;
57   }
58 }
59 
60 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
61   unsigned Node = GroupNodeIndices[Reg];
62   while (GroupNodes[Node] != Node)
63     Node = GroupNodes[Node];
64 
65   return Node;
66 }
67 
68 void AggressiveAntiDepState::GetGroupRegs(
69   unsigned Group,
70   std::vector<unsigned> &Regs,
71   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
72 {
73   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
74     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
75       Regs.push_back(Reg);
76   }
77 }
78 
79 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2)
80 {
81   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
82   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
83 
84   // find group for each register
85   unsigned Group1 = GetGroup(Reg1);
86   unsigned Group2 = GetGroup(Reg2);
87 
88   // if either group is 0, then that must become the parent
89   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
90   unsigned Other = (Parent == Group1) ? Group2 : Group1;
91   GroupNodes.at(Other) = Parent;
92   return Parent;
93 }
94 
95 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg)
96 {
97   // Create a new GroupNode for Reg. Reg's existing GroupNode must
98   // stay as is because there could be other GroupNodes referring to
99   // it.
100   unsigned idx = GroupNodes.size();
101   GroupNodes.push_back(idx);
102   GroupNodeIndices[Reg] = idx;
103   return idx;
104 }
105 
106 bool AggressiveAntiDepState::IsLive(unsigned Reg)
107 {
108   // KillIndex must be defined and DefIndex not defined for a register
109   // to be live.
110   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
111 }
112 
113 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
114     MachineFunction &MFi, const RegisterClassInfo &RCI,
115     TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
116     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
117       TII(MF.getSubtarget().getInstrInfo()),
118       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
119       State(nullptr) {
120   /* Collect a bitset of all registers that are only broken if they
121      are on the critical path. */
122   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
123     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
124     if (CriticalPathSet.none())
125       CriticalPathSet = CPSet;
126     else
127       CriticalPathSet |= CPSet;
128    }
129 
130   DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
131   DEBUG(for (int r = CriticalPathSet.find_first(); r != -1;
132              r = CriticalPathSet.find_next(r))
133           dbgs() << " " << TRI->getName(r));
134   DEBUG(dbgs() << '\n');
135 }
136 
137 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
138   delete State;
139 }
140 
141 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
142   assert(!State);
143   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
144 
145   bool IsReturnBlock = BB->isReturnBlock();
146   std::vector<unsigned> &KillIndices = State->GetKillIndices();
147   std::vector<unsigned> &DefIndices = State->GetDefIndices();
148 
149   // Examine the live-in regs of all successors.
150   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
151          SE = BB->succ_end(); SI != SE; ++SI)
152     for (const auto &LI : (*SI)->liveins()) {
153       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
154         unsigned Reg = *AI;
155         State->UnionGroups(Reg, 0);
156         KillIndices[Reg] = BB->size();
157         DefIndices[Reg] = ~0u;
158       }
159     }
160 
161   // Mark live-out callee-saved registers. In a return block this is
162   // all callee-saved registers. In non-return this is any
163   // callee-saved register that is not saved in the prolog.
164   const MachineFrameInfo *MFI = MF.getFrameInfo();
165   BitVector Pristine = MFI->getPristineRegs(MF);
166   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
167     unsigned Reg = *I;
168     if (!IsReturnBlock && !Pristine.test(Reg)) continue;
169     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
170       unsigned AliasReg = *AI;
171       State->UnionGroups(AliasReg, 0);
172       KillIndices[AliasReg] = BB->size();
173       DefIndices[AliasReg] = ~0u;
174     }
175   }
176 }
177 
178 void AggressiveAntiDepBreaker::FinishBlock() {
179   delete State;
180   State = nullptr;
181 }
182 
183 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
184                                        unsigned InsertPosIndex) {
185   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
186 
187   std::set<unsigned> PassthruRegs;
188   GetPassthruRegs(MI, PassthruRegs);
189   PrescanInstruction(MI, Count, PassthruRegs);
190   ScanInstruction(MI, Count);
191 
192   DEBUG(dbgs() << "Observe: ");
193   DEBUG(MI.dump());
194   DEBUG(dbgs() << "\tRegs:");
195 
196   std::vector<unsigned> &DefIndices = State->GetDefIndices();
197   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
198     // If Reg is current live, then mark that it can't be renamed as
199     // we don't know the extent of its live-range anymore (now that it
200     // has been scheduled). If it is not live but was defined in the
201     // previous schedule region, then set its def index to the most
202     // conservative location (i.e. the beginning of the previous
203     // schedule region).
204     if (State->IsLive(Reg)) {
205       DEBUG(if (State->GetGroup(Reg) != 0)
206               dbgs() << " " << TRI->getName(Reg) << "=g" <<
207                 State->GetGroup(Reg) << "->g0(region live-out)");
208       State->UnionGroups(Reg, 0);
209     } else if ((DefIndices[Reg] < InsertPosIndex)
210                && (DefIndices[Reg] >= Count)) {
211       DefIndices[Reg] = Count;
212     }
213   }
214   DEBUG(dbgs() << '\n');
215 }
216 
217 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI,
218                                                 MachineOperand &MO) {
219   if (!MO.isReg() || !MO.isImplicit())
220     return false;
221 
222   unsigned Reg = MO.getReg();
223   if (Reg == 0)
224     return false;
225 
226   MachineOperand *Op = nullptr;
227   if (MO.isDef())
228     Op = MI.findRegisterUseOperand(Reg, true);
229   else
230     Op = MI.findRegisterDefOperand(Reg);
231 
232   return(Op && Op->isImplicit());
233 }
234 
235 void AggressiveAntiDepBreaker::GetPassthruRegs(
236     MachineInstr &MI, std::set<unsigned> &PassthruRegs) {
237   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
238     MachineOperand &MO = MI.getOperand(i);
239     if (!MO.isReg()) continue;
240     if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) ||
241         IsImplicitDefUse(MI, MO)) {
242       const unsigned Reg = MO.getReg();
243       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
244            SubRegs.isValid(); ++SubRegs)
245         PassthruRegs.insert(*SubRegs);
246     }
247   }
248 }
249 
250 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
251 /// in SU that we want to consider for breaking.
252 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) {
253   SmallSet<unsigned, 4> RegSet;
254   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
255        P != PE; ++P) {
256     if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
257       if (RegSet.insert(P->getReg()).second)
258         Edges.push_back(&*P);
259     }
260   }
261 }
262 
263 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
264 /// critical path.
265 static const SUnit *CriticalPathStep(const SUnit *SU) {
266   const SDep *Next = nullptr;
267   unsigned NextDepth = 0;
268   // Find the predecessor edge with the greatest depth.
269   if (SU) {
270     for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
271          P != PE; ++P) {
272       const SUnit *PredSU = P->getSUnit();
273       unsigned PredLatency = P->getLatency();
274       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
275       // In the case of a latency tie, prefer an anti-dependency edge over
276       // other types of edges.
277       if (NextDepth < PredTotalLatency ||
278           (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
279         NextDepth = PredTotalLatency;
280         Next = &*P;
281       }
282     }
283   }
284 
285   return (Next) ? Next->getSUnit() : nullptr;
286 }
287 
288 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
289                                              const char *tag,
290                                              const char *header,
291                                              const char *footer) {
292   std::vector<unsigned> &KillIndices = State->GetKillIndices();
293   std::vector<unsigned> &DefIndices = State->GetDefIndices();
294   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
295     RegRefs = State->GetRegRefs();
296 
297   // FIXME: We must leave subregisters of live super registers as live, so that
298   // we don't clear out the register tracking information for subregisters of
299   // super registers we're still tracking (and with which we're unioning
300   // subregister definitions).
301   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
302     if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
303       DEBUG(if (!header && footer) dbgs() << footer);
304       return;
305     }
306 
307   if (!State->IsLive(Reg)) {
308     KillIndices[Reg] = KillIdx;
309     DefIndices[Reg] = ~0u;
310     RegRefs.erase(Reg);
311     State->LeaveGroup(Reg);
312     DEBUG(if (header) {
313         dbgs() << header << TRI->getName(Reg); header = nullptr; });
314     DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
315   }
316   // Repeat for subregisters.
317   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
318     unsigned SubregReg = *SubRegs;
319     if (!State->IsLive(SubregReg)) {
320       KillIndices[SubregReg] = KillIdx;
321       DefIndices[SubregReg] = ~0u;
322       RegRefs.erase(SubregReg);
323       State->LeaveGroup(SubregReg);
324       DEBUG(if (header) {
325           dbgs() << header << TRI->getName(Reg); header = nullptr; });
326       DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" <<
327             State->GetGroup(SubregReg) << tag);
328     }
329   }
330 
331   DEBUG(if (!header && footer) dbgs() << footer);
332 }
333 
334 void AggressiveAntiDepBreaker::PrescanInstruction(
335     MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) {
336   std::vector<unsigned> &DefIndices = State->GetDefIndices();
337   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
338     RegRefs = State->GetRegRefs();
339 
340   // Handle dead defs by simulating a last-use of the register just
341   // after the def. A dead def can occur because the def is truly
342   // dead, or because only a subregister is live at the def. If we
343   // don't do this the dead def will be incorrectly merged into the
344   // previous def.
345   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
346     MachineOperand &MO = MI.getOperand(i);
347     if (!MO.isReg() || !MO.isDef()) continue;
348     unsigned Reg = MO.getReg();
349     if (Reg == 0) continue;
350 
351     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
352   }
353 
354   DEBUG(dbgs() << "\tDef Groups:");
355   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
356     MachineOperand &MO = MI.getOperand(i);
357     if (!MO.isReg() || !MO.isDef()) continue;
358     unsigned Reg = MO.getReg();
359     if (Reg == 0) continue;
360 
361     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg));
362 
363     // If MI's defs have a special allocation requirement, don't allow
364     // any def registers to be changed. Also assume all registers
365     // defined in a call must not be changed (ABI). Inline assembly may
366     // reference either system calls or the register directly. Skip it until we
367     // can tell user specified registers from compiler-specified.
368     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) ||
369         MI.isInlineAsm()) {
370       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
371       State->UnionGroups(Reg, 0);
372     }
373 
374     // Any aliased that are live at this point are completely or
375     // partially defined here, so group those aliases with Reg.
376     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
377       unsigned AliasReg = *AI;
378       if (State->IsLive(AliasReg)) {
379         State->UnionGroups(Reg, AliasReg);
380         DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " <<
381               TRI->getName(AliasReg) << ")");
382       }
383     }
384 
385     // Note register reference...
386     const TargetRegisterClass *RC = nullptr;
387     if (i < MI.getDesc().getNumOperands())
388       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
389     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
390     RegRefs.insert(std::make_pair(Reg, RR));
391   }
392 
393   DEBUG(dbgs() << '\n');
394 
395   // Scan the register defs for this instruction and update
396   // live-ranges.
397   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
398     MachineOperand &MO = MI.getOperand(i);
399     if (!MO.isReg() || !MO.isDef()) continue;
400     unsigned Reg = MO.getReg();
401     if (Reg == 0) continue;
402     // Ignore KILLs and passthru registers for liveness...
403     if (MI.isKill() || (PassthruRegs.count(Reg) != 0))
404       continue;
405 
406     // Update def for Reg and aliases.
407     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
408       // We need to be careful here not to define already-live super registers.
409       // If the super register is already live, then this definition is not
410       // a definition of the whole super register (just a partial insertion
411       // into it). Earlier subregister definitions (which we've not yet visited
412       // because we're iterating bottom-up) need to be linked to the same group
413       // as this definition.
414       if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
415         continue;
416 
417       DefIndices[*AI] = Count;
418     }
419   }
420 }
421 
422 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI,
423                                                unsigned Count) {
424   DEBUG(dbgs() << "\tUse Groups:");
425   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
426     RegRefs = State->GetRegRefs();
427 
428   // If MI's uses have special allocation requirement, don't allow
429   // any use registers to be changed. Also assume all registers
430   // used in a call must not be changed (ABI).
431   // Inline Assembly register uses also cannot be safely changed.
432   // FIXME: The issue with predicated instruction is more complex. We are being
433   // conservatively here because the kill markers cannot be trusted after
434   // if-conversion:
435   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
436   // ...
437   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
438   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
439   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
440   //
441   // The first R6 kill is not really a kill since it's killed by a predicated
442   // instruction which may not be executed. The second R6 def may or may not
443   // re-define R6 so it's not safe to change it since the last R6 use cannot be
444   // changed.
445   bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() ||
446                  TII->isPredicated(MI) || MI.isInlineAsm();
447 
448   // Scan the register uses for this instruction and update
449   // live-ranges, groups and RegRefs.
450   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
451     MachineOperand &MO = MI.getOperand(i);
452     if (!MO.isReg() || !MO.isUse()) continue;
453     unsigned Reg = MO.getReg();
454     if (Reg == 0) continue;
455 
456     DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" <<
457           State->GetGroup(Reg));
458 
459     // It wasn't previously live but now it is, this is a kill. Forget
460     // the previous live-range information and start a new live-range
461     // for the register.
462     HandleLastUse(Reg, Count, "(last-use)");
463 
464     if (Special) {
465       DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
466       State->UnionGroups(Reg, 0);
467     }
468 
469     // Note register reference...
470     const TargetRegisterClass *RC = nullptr;
471     if (i < MI.getDesc().getNumOperands())
472       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
473     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
474     RegRefs.insert(std::make_pair(Reg, RR));
475   }
476 
477   DEBUG(dbgs() << '\n');
478 
479   // Form a group of all defs and uses of a KILL instruction to ensure
480   // that all registers are renamed as a group.
481   if (MI.isKill()) {
482     DEBUG(dbgs() << "\tKill Group:");
483 
484     unsigned FirstReg = 0;
485     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
486       MachineOperand &MO = MI.getOperand(i);
487       if (!MO.isReg()) continue;
488       unsigned Reg = MO.getReg();
489       if (Reg == 0) continue;
490 
491       if (FirstReg != 0) {
492         DEBUG(dbgs() << "=" << TRI->getName(Reg));
493         State->UnionGroups(FirstReg, Reg);
494       } else {
495         DEBUG(dbgs() << " " << TRI->getName(Reg));
496         FirstReg = Reg;
497       }
498     }
499 
500     DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
501   }
502 }
503 
504 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
505   BitVector BV(TRI->getNumRegs(), false);
506   bool first = true;
507 
508   // Check all references that need rewriting for Reg. For each, use
509   // the corresponding register class to narrow the set of registers
510   // that are appropriate for renaming.
511   for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
512     const TargetRegisterClass *RC = Q.second.RC;
513     if (!RC) continue;
514 
515     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
516     if (first) {
517       BV |= RCBV;
518       first = false;
519     } else {
520       BV &= RCBV;
521     }
522 
523     DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
524   }
525 
526   return BV;
527 }
528 
529 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
530                                 unsigned AntiDepGroupIndex,
531                                 RenameOrderType& RenameOrder,
532                                 std::map<unsigned, unsigned> &RenameMap) {
533   std::vector<unsigned> &KillIndices = State->GetKillIndices();
534   std::vector<unsigned> &DefIndices = State->GetDefIndices();
535   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
536     RegRefs = State->GetRegRefs();
537 
538   // Collect all referenced registers in the same group as
539   // AntiDepReg. These all need to be renamed together if we are to
540   // break the anti-dependence.
541   std::vector<unsigned> Regs;
542   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
543   assert(Regs.size() > 0 && "Empty register group!");
544   if (Regs.size() == 0)
545     return false;
546 
547   // Find the "superest" register in the group. At the same time,
548   // collect the BitVector of registers that can be used to rename
549   // each register.
550   DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
551         << ":\n");
552   std::map<unsigned, BitVector> RenameRegisterMap;
553   unsigned SuperReg = 0;
554   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
555     unsigned Reg = Regs[i];
556     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
557       SuperReg = Reg;
558 
559     // If Reg has any references, then collect possible rename regs
560     if (RegRefs.count(Reg) > 0) {
561       DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":");
562 
563       BitVector &BV = RenameRegisterMap[Reg];
564       assert(BV.empty());
565       BV = GetRenameRegisters(Reg);
566 
567       DEBUG({
568         dbgs() << " ::";
569         for (int r = BV.find_first(); r != -1; r = BV.find_next(r))
570           dbgs() << " " << TRI->getName(r);
571         dbgs() << "\n";
572       });
573     }
574   }
575 
576   // All group registers should be a subreg of SuperReg.
577   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
578     unsigned Reg = Regs[i];
579     if (Reg == SuperReg) continue;
580     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
581     // FIXME: remove this once PR18663 has been properly fixed. For now,
582     // return a conservative answer:
583     // assert(IsSub && "Expecting group subregister");
584     if (!IsSub)
585       return false;
586   }
587 
588 #ifndef NDEBUG
589   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
590   if (DebugDiv > 0) {
591     static int renamecnt = 0;
592     if (renamecnt++ % DebugDiv != DebugMod)
593       return false;
594 
595     dbgs() << "*** Performing rename " << TRI->getName(SuperReg) <<
596       " for debug ***\n";
597   }
598 #endif
599 
600   // Check each possible rename register for SuperReg in round-robin
601   // order. If that register is available, and the corresponding
602   // registers are available for the other group subregisters, then we
603   // can use those registers to rename.
604 
605   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
606   // check every use of the register and find the largest register class
607   // that can be used in all of them.
608   const TargetRegisterClass *SuperRC =
609     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
610 
611   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
612   if (Order.empty()) {
613     DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
614     return false;
615   }
616 
617   DEBUG(dbgs() << "\tFind Registers:");
618 
619   RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
620 
621   unsigned OrigR = RenameOrder[SuperRC];
622   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
623   unsigned R = OrigR;
624   do {
625     if (R == 0) R = Order.size();
626     --R;
627     const unsigned NewSuperReg = Order[R];
628     // Don't consider non-allocatable registers
629     if (!MRI.isAllocatable(NewSuperReg)) continue;
630     // Don't replace a register with itself.
631     if (NewSuperReg == SuperReg) continue;
632 
633     DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':');
634     RenameMap.clear();
635 
636     // For each referenced group register (which must be a SuperReg or
637     // a subregister of SuperReg), find the corresponding subregister
638     // of NewSuperReg and make sure it is free to be renamed.
639     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
640       unsigned Reg = Regs[i];
641       unsigned NewReg = 0;
642       if (Reg == SuperReg) {
643         NewReg = NewSuperReg;
644       } else {
645         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
646         if (NewSubRegIdx != 0)
647           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
648       }
649 
650       DEBUG(dbgs() << " " << TRI->getName(NewReg));
651 
652       // Check if Reg can be renamed to NewReg.
653       if (!RenameRegisterMap[Reg].test(NewReg)) {
654         DEBUG(dbgs() << "(no rename)");
655         goto next_super_reg;
656       }
657 
658       // If NewReg is dead and NewReg's most recent def is not before
659       // Regs's kill, it's safe to replace Reg with NewReg. We
660       // must also check all aliases of NewReg, because we can't define a
661       // register when any sub or super is already live.
662       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
663         DEBUG(dbgs() << "(live)");
664         goto next_super_reg;
665       } else {
666         bool found = false;
667         for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
668           unsigned AliasReg = *AI;
669           if (State->IsLive(AliasReg) ||
670               (KillIndices[Reg] > DefIndices[AliasReg])) {
671             DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)");
672             found = true;
673             break;
674           }
675         }
676         if (found)
677           goto next_super_reg;
678       }
679 
680       // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
681       // defines 'NewReg' via an early-clobber operand.
682       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
683         MachineInstr *UseMI = Q.second.Operand->getParent();
684         int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
685         if (Idx == -1)
686           continue;
687 
688         if (UseMI->getOperand(Idx).isEarlyClobber()) {
689           DEBUG(dbgs() << "(ec)");
690           goto next_super_reg;
691         }
692       }
693 
694       // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
695       // 'Reg' is an early-clobber define and that instruction also uses
696       // 'NewReg'.
697       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
698         if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber())
699           continue;
700 
701         MachineInstr *DefMI = Q.second.Operand->getParent();
702         if (DefMI->readsRegister(NewReg, TRI)) {
703           DEBUG(dbgs() << "(ec)");
704           goto next_super_reg;
705         }
706       }
707 
708       // Record that 'Reg' can be renamed to 'NewReg'.
709       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
710     }
711 
712     // If we fall-out here, then every register in the group can be
713     // renamed, as recorded in RenameMap.
714     RenameOrder.erase(SuperRC);
715     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
716     DEBUG(dbgs() << "]\n");
717     return true;
718 
719   next_super_reg:
720     DEBUG(dbgs() << ']');
721   } while (R != EndR);
722 
723   DEBUG(dbgs() << '\n');
724 
725   // No registers are free and available!
726   return false;
727 }
728 
729 /// BreakAntiDependencies - Identifiy anti-dependencies within the
730 /// ScheduleDAG and break them by renaming registers.
731 ///
732 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
733                               const std::vector<SUnit>& SUnits,
734                               MachineBasicBlock::iterator Begin,
735                               MachineBasicBlock::iterator End,
736                               unsigned InsertPosIndex,
737                               DbgValueVector &DbgValues) {
738 
739   std::vector<unsigned> &KillIndices = State->GetKillIndices();
740   std::vector<unsigned> &DefIndices = State->GetDefIndices();
741   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
742     RegRefs = State->GetRegRefs();
743 
744   // The code below assumes that there is at least one instruction,
745   // so just duck out immediately if the block is empty.
746   if (SUnits.empty()) return 0;
747 
748   // For each regclass the next register to use for renaming.
749   RenameOrderType RenameOrder;
750 
751   // ...need a map from MI to SUnit.
752   std::map<MachineInstr *, const SUnit *> MISUnitMap;
753   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
754     const SUnit *SU = &SUnits[i];
755     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
756                                                                SU));
757   }
758 
759   // Track progress along the critical path through the SUnit graph as
760   // we walk the instructions. This is needed for regclasses that only
761   // break critical-path anti-dependencies.
762   const SUnit *CriticalPathSU = nullptr;
763   MachineInstr *CriticalPathMI = nullptr;
764   if (CriticalPathSet.any()) {
765     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
766       const SUnit *SU = &SUnits[i];
767       if (!CriticalPathSU ||
768           ((SU->getDepth() + SU->Latency) >
769            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
770         CriticalPathSU = SU;
771       }
772     }
773 
774     CriticalPathMI = CriticalPathSU->getInstr();
775   }
776 
777 #ifndef NDEBUG
778   DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
779   DEBUG(dbgs() << "Available regs:");
780   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
781     if (!State->IsLive(Reg))
782       DEBUG(dbgs() << " " << TRI->getName(Reg));
783   }
784   DEBUG(dbgs() << '\n');
785 #endif
786 
787   // Attempt to break anti-dependence edges. Walk the instructions
788   // from the bottom up, tracking information about liveness as we go
789   // to help determine which registers are available.
790   unsigned Broken = 0;
791   unsigned Count = InsertPosIndex - 1;
792   for (MachineBasicBlock::iterator I = End, E = Begin;
793        I != E; --Count) {
794     MachineInstr &MI = *--I;
795 
796     if (MI.isDebugValue())
797       continue;
798 
799     DEBUG(dbgs() << "Anti: ");
800     DEBUG(MI.dump());
801 
802     std::set<unsigned> PassthruRegs;
803     GetPassthruRegs(MI, PassthruRegs);
804 
805     // Process the defs in MI...
806     PrescanInstruction(MI, Count, PassthruRegs);
807 
808     // The dependence edges that represent anti- and output-
809     // dependencies that are candidates for breaking.
810     std::vector<const SDep *> Edges;
811     const SUnit *PathSU = MISUnitMap[&MI];
812     AntiDepEdges(PathSU, Edges);
813 
814     // If MI is not on the critical path, then we don't rename
815     // registers in the CriticalPathSet.
816     BitVector *ExcludeRegs = nullptr;
817     if (&MI == CriticalPathMI) {
818       CriticalPathSU = CriticalPathStep(CriticalPathSU);
819       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
820     } else if (CriticalPathSet.any()) {
821       ExcludeRegs = &CriticalPathSet;
822     }
823 
824     // Ignore KILL instructions (they form a group in ScanInstruction
825     // but don't cause any anti-dependence breaking themselves)
826     if (!MI.isKill()) {
827       // Attempt to break each anti-dependency...
828       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
829         const SDep *Edge = Edges[i];
830         SUnit *NextSU = Edge->getSUnit();
831 
832         if ((Edge->getKind() != SDep::Anti) &&
833             (Edge->getKind() != SDep::Output)) continue;
834 
835         unsigned AntiDepReg = Edge->getReg();
836         DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg));
837         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
838 
839         if (!MRI.isAllocatable(AntiDepReg)) {
840           // Don't break anti-dependencies on non-allocatable registers.
841           DEBUG(dbgs() << " (non-allocatable)\n");
842           continue;
843         } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
844           // Don't break anti-dependencies for critical path registers
845           // if not on the critical path
846           DEBUG(dbgs() << " (not critical-path)\n");
847           continue;
848         } else if (PassthruRegs.count(AntiDepReg) != 0) {
849           // If the anti-dep register liveness "passes-thru", then
850           // don't try to change it. It will be changed along with
851           // the use if required to break an earlier antidep.
852           DEBUG(dbgs() << " (passthru)\n");
853           continue;
854         } else {
855           // No anti-dep breaking for implicit deps
856           MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg);
857           assert(AntiDepOp && "Can't find index for defined register operand");
858           if (!AntiDepOp || AntiDepOp->isImplicit()) {
859             DEBUG(dbgs() << " (implicit)\n");
860             continue;
861           }
862 
863           // If the SUnit has other dependencies on the SUnit that
864           // it anti-depends on, don't bother breaking the
865           // anti-dependency since those edges would prevent such
866           // units from being scheduled past each other
867           // regardless.
868           //
869           // Also, if there are dependencies on other SUnits with the
870           // same register as the anti-dependency, don't attempt to
871           // break it.
872           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
873                  PE = PathSU->Preds.end(); P != PE; ++P) {
874             if (P->getSUnit() == NextSU ?
875                 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
876                 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
877               AntiDepReg = 0;
878               break;
879             }
880           }
881           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
882                  PE = PathSU->Preds.end(); P != PE; ++P) {
883             if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
884                 (P->getKind() != SDep::Output)) {
885               DEBUG(dbgs() << " (real dependency)\n");
886               AntiDepReg = 0;
887               break;
888             } else if ((P->getSUnit() != NextSU) &&
889                        (P->getKind() == SDep::Data) &&
890                        (P->getReg() == AntiDepReg)) {
891               DEBUG(dbgs() << " (other dependency)\n");
892               AntiDepReg = 0;
893               break;
894             }
895           }
896 
897           if (AntiDepReg == 0) continue;
898         }
899 
900         assert(AntiDepReg != 0);
901         if (AntiDepReg == 0) continue;
902 
903         // Determine AntiDepReg's register group.
904         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
905         if (GroupIndex == 0) {
906           DEBUG(dbgs() << " (zero group)\n");
907           continue;
908         }
909 
910         DEBUG(dbgs() << '\n');
911 
912         // Look for a suitable register to use to break the anti-dependence.
913         std::map<unsigned, unsigned> RenameMap;
914         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
915           DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
916                 << TRI->getName(AntiDepReg) << ":");
917 
918           // Handle each group register...
919           for (std::map<unsigned, unsigned>::iterator
920                  S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
921             unsigned CurrReg = S->first;
922             unsigned NewReg = S->second;
923 
924             DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" <<
925                   TRI->getName(NewReg) << "(" <<
926                   RegRefs.count(CurrReg) << " refs)");
927 
928             // Update the references to the old register CurrReg to
929             // refer to the new register NewReg.
930             for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
931               Q.second.Operand->setReg(NewReg);
932               // If the SU for the instruction being updated has debug
933               // information related to the anti-dependency register, make
934               // sure to update that as well.
935               const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
936               if (!SU) continue;
937               for (DbgValueVector::iterator DVI = DbgValues.begin(),
938                      DVE = DbgValues.end(); DVI != DVE; ++DVI)
939                 if (DVI->second == Q.second.Operand->getParent())
940                   UpdateDbgValue(*DVI->first, AntiDepReg, NewReg);
941             }
942 
943             // We just went back in time and modified history; the
944             // liveness information for CurrReg is now inconsistent. Set
945             // the state as if it were dead.
946             State->UnionGroups(NewReg, 0);
947             RegRefs.erase(NewReg);
948             DefIndices[NewReg] = DefIndices[CurrReg];
949             KillIndices[NewReg] = KillIndices[CurrReg];
950 
951             State->UnionGroups(CurrReg, 0);
952             RegRefs.erase(CurrReg);
953             DefIndices[CurrReg] = KillIndices[CurrReg];
954             KillIndices[CurrReg] = ~0u;
955             assert(((KillIndices[CurrReg] == ~0u) !=
956                     (DefIndices[CurrReg] == ~0u)) &&
957                    "Kill and Def maps aren't consistent for AntiDepReg!");
958           }
959 
960           ++Broken;
961           DEBUG(dbgs() << '\n');
962         }
963       }
964     }
965 
966     ScanInstruction(MI, Count);
967   }
968 
969   return Broken;
970 }
971