1 //===----- AggressiveAntiDepBreaker.cpp - Anti-dep breaker ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AggressiveAntiDepBreaker class, which 11 // implements register anti-dependence breaking during post-RA 12 // scheduling. It attempts to break all anti-dependencies within a 13 // block. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AggressiveAntiDepBreaker.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/RegisterClassInfo.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 #include "llvm/Target/TargetRegisterInfo.h" 29 using namespace llvm; 30 31 #define DEBUG_TYPE "post-RA-sched" 32 33 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod 34 static cl::opt<int> 35 DebugDiv("agg-antidep-debugdiv", 36 cl::desc("Debug control for aggressive anti-dep breaker"), 37 cl::init(0), cl::Hidden); 38 static cl::opt<int> 39 DebugMod("agg-antidep-debugmod", 40 cl::desc("Debug control for aggressive anti-dep breaker"), 41 cl::init(0), cl::Hidden); 42 43 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs, 44 MachineBasicBlock *BB) : 45 NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0), 46 GroupNodeIndices(TargetRegs, 0), 47 KillIndices(TargetRegs, 0), 48 DefIndices(TargetRegs, 0) 49 { 50 const unsigned BBSize = BB->size(); 51 for (unsigned i = 0; i < NumTargetRegs; ++i) { 52 // Initialize all registers to be in their own group. Initially we 53 // assign the register to the same-indexed GroupNode. 54 GroupNodeIndices[i] = i; 55 // Initialize the indices to indicate that no registers are live. 56 KillIndices[i] = ~0u; 57 DefIndices[i] = BBSize; 58 } 59 } 60 61 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) { 62 unsigned Node = GroupNodeIndices[Reg]; 63 while (GroupNodes[Node] != Node) 64 Node = GroupNodes[Node]; 65 66 return Node; 67 } 68 69 void AggressiveAntiDepState::GetGroupRegs( 70 unsigned Group, 71 std::vector<unsigned> &Regs, 72 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs) 73 { 74 for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) { 75 if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0)) 76 Regs.push_back(Reg); 77 } 78 } 79 80 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) 81 { 82 assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!"); 83 assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!"); 84 85 // find group for each register 86 unsigned Group1 = GetGroup(Reg1); 87 unsigned Group2 = GetGroup(Reg2); 88 89 // if either group is 0, then that must become the parent 90 unsigned Parent = (Group1 == 0) ? Group1 : Group2; 91 unsigned Other = (Parent == Group1) ? Group2 : Group1; 92 GroupNodes.at(Other) = Parent; 93 return Parent; 94 } 95 96 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) 97 { 98 // Create a new GroupNode for Reg. Reg's existing GroupNode must 99 // stay as is because there could be other GroupNodes referring to 100 // it. 101 unsigned idx = GroupNodes.size(); 102 GroupNodes.push_back(idx); 103 GroupNodeIndices[Reg] = idx; 104 return idx; 105 } 106 107 bool AggressiveAntiDepState::IsLive(unsigned Reg) 108 { 109 // KillIndex must be defined and DefIndex not defined for a register 110 // to be live. 111 return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u)); 112 } 113 114 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker( 115 MachineFunction &MFi, const RegisterClassInfo &RCI, 116 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) 117 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 118 TII(MF.getSubtarget().getInstrInfo()), 119 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 120 State(nullptr) { 121 /* Collect a bitset of all registers that are only broken if they 122 are on the critical path. */ 123 for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) { 124 BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]); 125 if (CriticalPathSet.none()) 126 CriticalPathSet = CPSet; 127 else 128 CriticalPathSet |= CPSet; 129 } 130 131 DEBUG(dbgs() << "AntiDep Critical-Path Registers:"); 132 DEBUG(for (int r = CriticalPathSet.find_first(); r != -1; 133 r = CriticalPathSet.find_next(r)) 134 dbgs() << " " << TRI->getName(r)); 135 DEBUG(dbgs() << '\n'); 136 } 137 138 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() { 139 delete State; 140 } 141 142 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 143 assert(!State); 144 State = new AggressiveAntiDepState(TRI->getNumRegs(), BB); 145 146 bool IsReturnBlock = (!BB->empty() && BB->back().isReturn()); 147 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 148 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 149 150 // Examine the live-in regs of all successors. 151 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 152 SE = BB->succ_end(); SI != SE; ++SI) 153 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 154 E = (*SI)->livein_end(); I != E; ++I) { 155 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 156 unsigned Reg = *AI; 157 State->UnionGroups(Reg, 0); 158 KillIndices[Reg] = BB->size(); 159 DefIndices[Reg] = ~0u; 160 } 161 } 162 163 // Mark live-out callee-saved registers. In a return block this is 164 // all callee-saved registers. In non-return this is any 165 // callee-saved register that is not saved in the prolog. 166 const MachineFrameInfo *MFI = MF.getFrameInfo(); 167 BitVector Pristine = MFI->getPristineRegs(BB); 168 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) { 169 unsigned Reg = *I; 170 if (!IsReturnBlock && !Pristine.test(Reg)) continue; 171 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 172 unsigned AliasReg = *AI; 173 State->UnionGroups(AliasReg, 0); 174 KillIndices[AliasReg] = BB->size(); 175 DefIndices[AliasReg] = ~0u; 176 } 177 } 178 } 179 180 void AggressiveAntiDepBreaker::FinishBlock() { 181 delete State; 182 State = nullptr; 183 } 184 185 void AggressiveAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, 186 unsigned InsertPosIndex) { 187 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 188 189 std::set<unsigned> PassthruRegs; 190 GetPassthruRegs(MI, PassthruRegs); 191 PrescanInstruction(MI, Count, PassthruRegs); 192 ScanInstruction(MI, Count); 193 194 DEBUG(dbgs() << "Observe: "); 195 DEBUG(MI->dump()); 196 DEBUG(dbgs() << "\tRegs:"); 197 198 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 199 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 200 // If Reg is current live, then mark that it can't be renamed as 201 // we don't know the extent of its live-range anymore (now that it 202 // has been scheduled). If it is not live but was defined in the 203 // previous schedule region, then set its def index to the most 204 // conservative location (i.e. the beginning of the previous 205 // schedule region). 206 if (State->IsLive(Reg)) { 207 DEBUG(if (State->GetGroup(Reg) != 0) 208 dbgs() << " " << TRI->getName(Reg) << "=g" << 209 State->GetGroup(Reg) << "->g0(region live-out)"); 210 State->UnionGroups(Reg, 0); 211 } else if ((DefIndices[Reg] < InsertPosIndex) 212 && (DefIndices[Reg] >= Count)) { 213 DefIndices[Reg] = Count; 214 } 215 } 216 DEBUG(dbgs() << '\n'); 217 } 218 219 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr *MI, 220 MachineOperand& MO) 221 { 222 if (!MO.isReg() || !MO.isImplicit()) 223 return false; 224 225 unsigned Reg = MO.getReg(); 226 if (Reg == 0) 227 return false; 228 229 MachineOperand *Op = nullptr; 230 if (MO.isDef()) 231 Op = MI->findRegisterUseOperand(Reg, true); 232 else 233 Op = MI->findRegisterDefOperand(Reg); 234 235 return(Op && Op->isImplicit()); 236 } 237 238 void AggressiveAntiDepBreaker::GetPassthruRegs(MachineInstr *MI, 239 std::set<unsigned>& PassthruRegs) { 240 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 241 MachineOperand &MO = MI->getOperand(i); 242 if (!MO.isReg()) continue; 243 if ((MO.isDef() && MI->isRegTiedToUseOperand(i)) || 244 IsImplicitDefUse(MI, MO)) { 245 const unsigned Reg = MO.getReg(); 246 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 247 SubRegs.isValid(); ++SubRegs) 248 PassthruRegs.insert(*SubRegs); 249 } 250 } 251 } 252 253 /// AntiDepEdges - Return in Edges the anti- and output- dependencies 254 /// in SU that we want to consider for breaking. 255 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep*>& Edges) { 256 SmallSet<unsigned, 4> RegSet; 257 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 258 P != PE; ++P) { 259 if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) { 260 unsigned Reg = P->getReg(); 261 if (RegSet.count(Reg) == 0) { 262 Edges.push_back(&*P); 263 RegSet.insert(Reg); 264 } 265 } 266 } 267 } 268 269 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 270 /// critical path. 271 static const SUnit *CriticalPathStep(const SUnit *SU) { 272 const SDep *Next = nullptr; 273 unsigned NextDepth = 0; 274 // Find the predecessor edge with the greatest depth. 275 if (SU) { 276 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 277 P != PE; ++P) { 278 const SUnit *PredSU = P->getSUnit(); 279 unsigned PredLatency = P->getLatency(); 280 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 281 // In the case of a latency tie, prefer an anti-dependency edge over 282 // other types of edges. 283 if (NextDepth < PredTotalLatency || 284 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 285 NextDepth = PredTotalLatency; 286 Next = &*P; 287 } 288 } 289 } 290 291 return (Next) ? Next->getSUnit() : nullptr; 292 } 293 294 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx, 295 const char *tag, 296 const char *header, 297 const char *footer) { 298 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 299 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 300 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 301 RegRefs = State->GetRegRefs(); 302 303 if (!State->IsLive(Reg)) { 304 KillIndices[Reg] = KillIdx; 305 DefIndices[Reg] = ~0u; 306 RegRefs.erase(Reg); 307 State->LeaveGroup(Reg); 308 DEBUG(if (header) { 309 dbgs() << header << TRI->getName(Reg); header = nullptr; }); 310 DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag); 311 } 312 // Repeat for subregisters. 313 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 314 unsigned SubregReg = *SubRegs; 315 if (!State->IsLive(SubregReg)) { 316 KillIndices[SubregReg] = KillIdx; 317 DefIndices[SubregReg] = ~0u; 318 RegRefs.erase(SubregReg); 319 State->LeaveGroup(SubregReg); 320 DEBUG(if (header) { 321 dbgs() << header << TRI->getName(Reg); header = nullptr; }); 322 DEBUG(dbgs() << " " << TRI->getName(SubregReg) << "->g" << 323 State->GetGroup(SubregReg) << tag); 324 } 325 } 326 327 DEBUG(if (!header && footer) dbgs() << footer); 328 } 329 330 void AggressiveAntiDepBreaker::PrescanInstruction(MachineInstr *MI, 331 unsigned Count, 332 std::set<unsigned>& PassthruRegs) { 333 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 334 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 335 RegRefs = State->GetRegRefs(); 336 337 // Handle dead defs by simulating a last-use of the register just 338 // after the def. A dead def can occur because the def is truly 339 // dead, or because only a subregister is live at the def. If we 340 // don't do this the dead def will be incorrectly merged into the 341 // previous def. 342 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 343 MachineOperand &MO = MI->getOperand(i); 344 if (!MO.isReg() || !MO.isDef()) continue; 345 unsigned Reg = MO.getReg(); 346 if (Reg == 0) continue; 347 348 HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n"); 349 } 350 351 DEBUG(dbgs() << "\tDef Groups:"); 352 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 353 MachineOperand &MO = MI->getOperand(i); 354 if (!MO.isReg() || !MO.isDef()) continue; 355 unsigned Reg = MO.getReg(); 356 if (Reg == 0) continue; 357 358 DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << State->GetGroup(Reg)); 359 360 // If MI's defs have a special allocation requirement, don't allow 361 // any def registers to be changed. Also assume all registers 362 // defined in a call must not be changed (ABI). 363 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || 364 TII->isPredicated(MI)) { 365 DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 366 State->UnionGroups(Reg, 0); 367 } 368 369 // Any aliased that are live at this point are completely or 370 // partially defined here, so group those aliases with Reg. 371 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 372 unsigned AliasReg = *AI; 373 if (State->IsLive(AliasReg)) { 374 State->UnionGroups(Reg, AliasReg); 375 DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via " << 376 TRI->getName(AliasReg) << ")"); 377 } 378 } 379 380 // Note register reference... 381 const TargetRegisterClass *RC = nullptr; 382 if (i < MI->getDesc().getNumOperands()) 383 RC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 384 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 385 RegRefs.insert(std::make_pair(Reg, RR)); 386 } 387 388 DEBUG(dbgs() << '\n'); 389 390 // Scan the register defs for this instruction and update 391 // live-ranges. 392 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 393 MachineOperand &MO = MI->getOperand(i); 394 if (!MO.isReg() || !MO.isDef()) continue; 395 unsigned Reg = MO.getReg(); 396 if (Reg == 0) continue; 397 // Ignore KILLs and passthru registers for liveness... 398 if (MI->isKill() || (PassthruRegs.count(Reg) != 0)) 399 continue; 400 401 // Update def for Reg and aliases. 402 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 403 // We need to be careful here not to define already-live super registers. 404 // If the super register is already live, then this definition is not 405 // a definition of the whole super register (just a partial insertion 406 // into it). Earlier subregister definitions (which we've not yet visited 407 // because we're iterating bottom-up) need to be linked to the same group 408 // as this definition. 409 if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) 410 continue; 411 412 DefIndices[*AI] = Count; 413 } 414 } 415 } 416 417 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr *MI, 418 unsigned Count) { 419 DEBUG(dbgs() << "\tUse Groups:"); 420 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 421 RegRefs = State->GetRegRefs(); 422 423 // If MI's uses have special allocation requirement, don't allow 424 // any use registers to be changed. Also assume all registers 425 // used in a call must not be changed (ABI). 426 // FIXME: The issue with predicated instruction is more complex. We are being 427 // conservatively here because the kill markers cannot be trusted after 428 // if-conversion: 429 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 430 // ... 431 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 432 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 433 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 434 // 435 // The first R6 kill is not really a kill since it's killed by a predicated 436 // instruction which may not be executed. The second R6 def may or may not 437 // re-define R6 so it's not safe to change it since the last R6 use cannot be 438 // changed. 439 bool Special = MI->isCall() || 440 MI->hasExtraSrcRegAllocReq() || 441 TII->isPredicated(MI); 442 443 // Scan the register uses for this instruction and update 444 // live-ranges, groups and RegRefs. 445 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 446 MachineOperand &MO = MI->getOperand(i); 447 if (!MO.isReg() || !MO.isUse()) continue; 448 unsigned Reg = MO.getReg(); 449 if (Reg == 0) continue; 450 451 DEBUG(dbgs() << " " << TRI->getName(Reg) << "=g" << 452 State->GetGroup(Reg)); 453 454 // It wasn't previously live but now it is, this is a kill. Forget 455 // the previous live-range information and start a new live-range 456 // for the register. 457 HandleLastUse(Reg, Count, "(last-use)"); 458 459 if (Special) { 460 DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)"); 461 State->UnionGroups(Reg, 0); 462 } 463 464 // Note register reference... 465 const TargetRegisterClass *RC = nullptr; 466 if (i < MI->getDesc().getNumOperands()) 467 RC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 468 AggressiveAntiDepState::RegisterReference RR = { &MO, RC }; 469 RegRefs.insert(std::make_pair(Reg, RR)); 470 } 471 472 DEBUG(dbgs() << '\n'); 473 474 // Form a group of all defs and uses of a KILL instruction to ensure 475 // that all registers are renamed as a group. 476 if (MI->isKill()) { 477 DEBUG(dbgs() << "\tKill Group:"); 478 479 unsigned FirstReg = 0; 480 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 481 MachineOperand &MO = MI->getOperand(i); 482 if (!MO.isReg()) continue; 483 unsigned Reg = MO.getReg(); 484 if (Reg == 0) continue; 485 486 if (FirstReg != 0) { 487 DEBUG(dbgs() << "=" << TRI->getName(Reg)); 488 State->UnionGroups(FirstReg, Reg); 489 } else { 490 DEBUG(dbgs() << " " << TRI->getName(Reg)); 491 FirstReg = Reg; 492 } 493 } 494 495 DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n'); 496 } 497 } 498 499 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) { 500 BitVector BV(TRI->getNumRegs(), false); 501 bool first = true; 502 503 // Check all references that need rewriting for Reg. For each, use 504 // the corresponding register class to narrow the set of registers 505 // that are appropriate for renaming. 506 std::pair<std::multimap<unsigned, 507 AggressiveAntiDepState::RegisterReference>::iterator, 508 std::multimap<unsigned, 509 AggressiveAntiDepState::RegisterReference>::iterator> 510 Range = State->GetRegRefs().equal_range(Reg); 511 for (std::multimap<unsigned, 512 AggressiveAntiDepState::RegisterReference>::iterator Q = Range.first, 513 QE = Range.second; Q != QE; ++Q) { 514 const TargetRegisterClass *RC = Q->second.RC; 515 if (!RC) continue; 516 517 BitVector RCBV = TRI->getAllocatableSet(MF, RC); 518 if (first) { 519 BV |= RCBV; 520 first = false; 521 } else { 522 BV &= RCBV; 523 } 524 525 DEBUG(dbgs() << " " << RC->getName()); 526 } 527 528 return BV; 529 } 530 531 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters( 532 unsigned AntiDepGroupIndex, 533 RenameOrderType& RenameOrder, 534 std::map<unsigned, unsigned> &RenameMap) { 535 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 536 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 537 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 538 RegRefs = State->GetRegRefs(); 539 540 // Collect all referenced registers in the same group as 541 // AntiDepReg. These all need to be renamed together if we are to 542 // break the anti-dependence. 543 std::vector<unsigned> Regs; 544 State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs); 545 assert(Regs.size() > 0 && "Empty register group!"); 546 if (Regs.size() == 0) 547 return false; 548 549 // Find the "superest" register in the group. At the same time, 550 // collect the BitVector of registers that can be used to rename 551 // each register. 552 DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex 553 << ":\n"); 554 std::map<unsigned, BitVector> RenameRegisterMap; 555 unsigned SuperReg = 0; 556 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 557 unsigned Reg = Regs[i]; 558 if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg)) 559 SuperReg = Reg; 560 561 // If Reg has any references, then collect possible rename regs 562 if (RegRefs.count(Reg) > 0) { 563 DEBUG(dbgs() << "\t\t" << TRI->getName(Reg) << ":"); 564 565 BitVector BV = GetRenameRegisters(Reg); 566 RenameRegisterMap.insert(std::pair<unsigned, BitVector>(Reg, BV)); 567 568 DEBUG(dbgs() << " ::"); 569 DEBUG(for (int r = BV.find_first(); r != -1; r = BV.find_next(r)) 570 dbgs() << " " << TRI->getName(r)); 571 DEBUG(dbgs() << "\n"); 572 } 573 } 574 575 // All group registers should be a subreg of SuperReg. 576 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 577 unsigned Reg = Regs[i]; 578 if (Reg == SuperReg) continue; 579 bool IsSub = TRI->isSubRegister(SuperReg, Reg); 580 // FIXME: remove this once PR18663 has been properly fixed. For now, 581 // return a conservative answer: 582 // assert(IsSub && "Expecting group subregister"); 583 if (!IsSub) 584 return false; 585 } 586 587 #ifndef NDEBUG 588 // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod 589 if (DebugDiv > 0) { 590 static int renamecnt = 0; 591 if (renamecnt++ % DebugDiv != DebugMod) 592 return false; 593 594 dbgs() << "*** Performing rename " << TRI->getName(SuperReg) << 595 " for debug ***\n"; 596 } 597 #endif 598 599 // Check each possible rename register for SuperReg in round-robin 600 // order. If that register is available, and the corresponding 601 // registers are available for the other group subregisters, then we 602 // can use those registers to rename. 603 604 // FIXME: Using getMinimalPhysRegClass is very conservative. We should 605 // check every use of the register and find the largest register class 606 // that can be used in all of them. 607 const TargetRegisterClass *SuperRC = 608 TRI->getMinimalPhysRegClass(SuperReg, MVT::Other); 609 610 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC); 611 if (Order.empty()) { 612 DEBUG(dbgs() << "\tEmpty Super Regclass!!\n"); 613 return false; 614 } 615 616 DEBUG(dbgs() << "\tFind Registers:"); 617 618 if (RenameOrder.count(SuperRC) == 0) 619 RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size())); 620 621 unsigned OrigR = RenameOrder[SuperRC]; 622 unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR); 623 unsigned R = OrigR; 624 do { 625 if (R == 0) R = Order.size(); 626 --R; 627 const unsigned NewSuperReg = Order[R]; 628 // Don't consider non-allocatable registers 629 if (!MRI.isAllocatable(NewSuperReg)) continue; 630 // Don't replace a register with itself. 631 if (NewSuperReg == SuperReg) continue; 632 633 DEBUG(dbgs() << " [" << TRI->getName(NewSuperReg) << ':'); 634 RenameMap.clear(); 635 636 // For each referenced group register (which must be a SuperReg or 637 // a subregister of SuperReg), find the corresponding subregister 638 // of NewSuperReg and make sure it is free to be renamed. 639 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 640 unsigned Reg = Regs[i]; 641 unsigned NewReg = 0; 642 if (Reg == SuperReg) { 643 NewReg = NewSuperReg; 644 } else { 645 unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg); 646 if (NewSubRegIdx != 0) 647 NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx); 648 } 649 650 DEBUG(dbgs() << " " << TRI->getName(NewReg)); 651 652 // Check if Reg can be renamed to NewReg. 653 BitVector BV = RenameRegisterMap[Reg]; 654 if (!BV.test(NewReg)) { 655 DEBUG(dbgs() << "(no rename)"); 656 goto next_super_reg; 657 } 658 659 // If NewReg is dead and NewReg's most recent def is not before 660 // Regs's kill, it's safe to replace Reg with NewReg. We 661 // must also check all aliases of NewReg, because we can't define a 662 // register when any sub or super is already live. 663 if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) { 664 DEBUG(dbgs() << "(live)"); 665 goto next_super_reg; 666 } else { 667 bool found = false; 668 for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) { 669 unsigned AliasReg = *AI; 670 if (State->IsLive(AliasReg) || 671 (KillIndices[Reg] > DefIndices[AliasReg])) { 672 DEBUG(dbgs() << "(alias " << TRI->getName(AliasReg) << " live)"); 673 found = true; 674 break; 675 } 676 } 677 if (found) 678 goto next_super_reg; 679 } 680 681 // Record that 'Reg' can be renamed to 'NewReg'. 682 RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg)); 683 } 684 685 // If we fall-out here, then every register in the group can be 686 // renamed, as recorded in RenameMap. 687 RenameOrder.erase(SuperRC); 688 RenameOrder.insert(RenameOrderType::value_type(SuperRC, R)); 689 DEBUG(dbgs() << "]\n"); 690 return true; 691 692 next_super_reg: 693 DEBUG(dbgs() << ']'); 694 } while (R != EndR); 695 696 DEBUG(dbgs() << '\n'); 697 698 // No registers are free and available! 699 return false; 700 } 701 702 /// BreakAntiDependencies - Identifiy anti-dependencies within the 703 /// ScheduleDAG and break them by renaming registers. 704 /// 705 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies( 706 const std::vector<SUnit>& SUnits, 707 MachineBasicBlock::iterator Begin, 708 MachineBasicBlock::iterator End, 709 unsigned InsertPosIndex, 710 DbgValueVector &DbgValues) { 711 712 std::vector<unsigned> &KillIndices = State->GetKillIndices(); 713 std::vector<unsigned> &DefIndices = State->GetDefIndices(); 714 std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>& 715 RegRefs = State->GetRegRefs(); 716 717 // The code below assumes that there is at least one instruction, 718 // so just duck out immediately if the block is empty. 719 if (SUnits.empty()) return 0; 720 721 // For each regclass the next register to use for renaming. 722 RenameOrderType RenameOrder; 723 724 // ...need a map from MI to SUnit. 725 std::map<MachineInstr *, const SUnit *> MISUnitMap; 726 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 727 const SUnit *SU = &SUnits[i]; 728 MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(), 729 SU)); 730 } 731 732 // Track progress along the critical path through the SUnit graph as 733 // we walk the instructions. This is needed for regclasses that only 734 // break critical-path anti-dependencies. 735 const SUnit *CriticalPathSU = nullptr; 736 MachineInstr *CriticalPathMI = nullptr; 737 if (CriticalPathSet.any()) { 738 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 739 const SUnit *SU = &SUnits[i]; 740 if (!CriticalPathSU || 741 ((SU->getDepth() + SU->Latency) > 742 (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) { 743 CriticalPathSU = SU; 744 } 745 } 746 747 CriticalPathMI = CriticalPathSU->getInstr(); 748 } 749 750 #ifndef NDEBUG 751 DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n"); 752 DEBUG(dbgs() << "Available regs:"); 753 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 754 if (!State->IsLive(Reg)) 755 DEBUG(dbgs() << " " << TRI->getName(Reg)); 756 } 757 DEBUG(dbgs() << '\n'); 758 #endif 759 760 // Attempt to break anti-dependence edges. Walk the instructions 761 // from the bottom up, tracking information about liveness as we go 762 // to help determine which registers are available. 763 unsigned Broken = 0; 764 unsigned Count = InsertPosIndex - 1; 765 for (MachineBasicBlock::iterator I = End, E = Begin; 766 I != E; --Count) { 767 MachineInstr *MI = --I; 768 769 if (MI->isDebugValue()) 770 continue; 771 772 DEBUG(dbgs() << "Anti: "); 773 DEBUG(MI->dump()); 774 775 std::set<unsigned> PassthruRegs; 776 GetPassthruRegs(MI, PassthruRegs); 777 778 // Process the defs in MI... 779 PrescanInstruction(MI, Count, PassthruRegs); 780 781 // The dependence edges that represent anti- and output- 782 // dependencies that are candidates for breaking. 783 std::vector<const SDep *> Edges; 784 const SUnit *PathSU = MISUnitMap[MI]; 785 AntiDepEdges(PathSU, Edges); 786 787 // If MI is not on the critical path, then we don't rename 788 // registers in the CriticalPathSet. 789 BitVector *ExcludeRegs = nullptr; 790 if (MI == CriticalPathMI) { 791 CriticalPathSU = CriticalPathStep(CriticalPathSU); 792 CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr; 793 } else if (CriticalPathSet.any()) { 794 ExcludeRegs = &CriticalPathSet; 795 } 796 797 // Ignore KILL instructions (they form a group in ScanInstruction 798 // but don't cause any anti-dependence breaking themselves) 799 if (!MI->isKill()) { 800 // Attempt to break each anti-dependency... 801 for (unsigned i = 0, e = Edges.size(); i != e; ++i) { 802 const SDep *Edge = Edges[i]; 803 SUnit *NextSU = Edge->getSUnit(); 804 805 if ((Edge->getKind() != SDep::Anti) && 806 (Edge->getKind() != SDep::Output)) continue; 807 808 unsigned AntiDepReg = Edge->getReg(); 809 DEBUG(dbgs() << "\tAntidep reg: " << TRI->getName(AntiDepReg)); 810 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 811 812 if (!MRI.isAllocatable(AntiDepReg)) { 813 // Don't break anti-dependencies on non-allocatable registers. 814 DEBUG(dbgs() << " (non-allocatable)\n"); 815 continue; 816 } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) { 817 // Don't break anti-dependencies for critical path registers 818 // if not on the critical path 819 DEBUG(dbgs() << " (not critical-path)\n"); 820 continue; 821 } else if (PassthruRegs.count(AntiDepReg) != 0) { 822 // If the anti-dep register liveness "passes-thru", then 823 // don't try to change it. It will be changed along with 824 // the use if required to break an earlier antidep. 825 DEBUG(dbgs() << " (passthru)\n"); 826 continue; 827 } else { 828 // No anti-dep breaking for implicit deps 829 MachineOperand *AntiDepOp = MI->findRegisterDefOperand(AntiDepReg); 830 assert(AntiDepOp && "Can't find index for defined register operand"); 831 if (!AntiDepOp || AntiDepOp->isImplicit()) { 832 DEBUG(dbgs() << " (implicit)\n"); 833 continue; 834 } 835 836 // If the SUnit has other dependencies on the SUnit that 837 // it anti-depends on, don't bother breaking the 838 // anti-dependency since those edges would prevent such 839 // units from being scheduled past each other 840 // regardless. 841 // 842 // Also, if there are dependencies on other SUnits with the 843 // same register as the anti-dependency, don't attempt to 844 // break it. 845 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 846 PE = PathSU->Preds.end(); P != PE; ++P) { 847 if (P->getSUnit() == NextSU ? 848 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 849 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 850 AntiDepReg = 0; 851 break; 852 } 853 } 854 for (SUnit::const_pred_iterator P = PathSU->Preds.begin(), 855 PE = PathSU->Preds.end(); P != PE; ++P) { 856 if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) && 857 (P->getKind() != SDep::Output)) { 858 DEBUG(dbgs() << " (real dependency)\n"); 859 AntiDepReg = 0; 860 break; 861 } else if ((P->getSUnit() != NextSU) && 862 (P->getKind() == SDep::Data) && 863 (P->getReg() == AntiDepReg)) { 864 DEBUG(dbgs() << " (other dependency)\n"); 865 AntiDepReg = 0; 866 break; 867 } 868 } 869 870 if (AntiDepReg == 0) continue; 871 } 872 873 assert(AntiDepReg != 0); 874 if (AntiDepReg == 0) continue; 875 876 // Determine AntiDepReg's register group. 877 const unsigned GroupIndex = State->GetGroup(AntiDepReg); 878 if (GroupIndex == 0) { 879 DEBUG(dbgs() << " (zero group)\n"); 880 continue; 881 } 882 883 DEBUG(dbgs() << '\n'); 884 885 // Look for a suitable register to use to break the anti-dependence. 886 std::map<unsigned, unsigned> RenameMap; 887 if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) { 888 DEBUG(dbgs() << "\tBreaking anti-dependence edge on " 889 << TRI->getName(AntiDepReg) << ":"); 890 891 // Handle each group register... 892 for (std::map<unsigned, unsigned>::iterator 893 S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) { 894 unsigned CurrReg = S->first; 895 unsigned NewReg = S->second; 896 897 DEBUG(dbgs() << " " << TRI->getName(CurrReg) << "->" << 898 TRI->getName(NewReg) << "(" << 899 RegRefs.count(CurrReg) << " refs)"); 900 901 // Update the references to the old register CurrReg to 902 // refer to the new register NewReg. 903 std::pair<std::multimap<unsigned, 904 AggressiveAntiDepState::RegisterReference>::iterator, 905 std::multimap<unsigned, 906 AggressiveAntiDepState::RegisterReference>::iterator> 907 Range = RegRefs.equal_range(CurrReg); 908 for (std::multimap<unsigned, 909 AggressiveAntiDepState::RegisterReference>::iterator 910 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 911 Q->second.Operand->setReg(NewReg); 912 // If the SU for the instruction being updated has debug 913 // information related to the anti-dependency register, make 914 // sure to update that as well. 915 const SUnit *SU = MISUnitMap[Q->second.Operand->getParent()]; 916 if (!SU) continue; 917 for (DbgValueVector::iterator DVI = DbgValues.begin(), 918 DVE = DbgValues.end(); DVI != DVE; ++DVI) 919 if (DVI->second == Q->second.Operand->getParent()) 920 UpdateDbgValue(DVI->first, AntiDepReg, NewReg); 921 } 922 923 // We just went back in time and modified history; the 924 // liveness information for CurrReg is now inconsistent. Set 925 // the state as if it were dead. 926 State->UnionGroups(NewReg, 0); 927 RegRefs.erase(NewReg); 928 DefIndices[NewReg] = DefIndices[CurrReg]; 929 KillIndices[NewReg] = KillIndices[CurrReg]; 930 931 State->UnionGroups(CurrReg, 0); 932 RegRefs.erase(CurrReg); 933 DefIndices[CurrReg] = KillIndices[CurrReg]; 934 KillIndices[CurrReg] = ~0u; 935 assert(((KillIndices[CurrReg] == ~0u) != 936 (DefIndices[CurrReg] == ~0u)) && 937 "Kill and Def maps aren't consistent for AntiDepReg!"); 938 } 939 940 ++Broken; 941 DEBUG(dbgs() << '\n'); 942 } 943 } 944 } 945 946 ScanInstruction(MI, Count); 947 } 948 949 return Broken; 950 } 951