1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/UseListOrder.h"
23 #include "llvm/IR/ValueSymbolTable.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 using namespace llvm;
28 
29 namespace {
30 struct OrderMap {
31   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
32   unsigned LastGlobalConstantID;
33   unsigned LastGlobalValueID;
34 
35   OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
36 
37   bool isGlobalConstant(unsigned ID) const {
38     return ID <= LastGlobalConstantID;
39   }
40   bool isGlobalValue(unsigned ID) const {
41     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
42   }
43 
44   unsigned size() const { return IDs.size(); }
45   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
46   std::pair<unsigned, bool> lookup(const Value *V) const {
47     return IDs.lookup(V);
48   }
49   void index(const Value *V) {
50     // Explicitly sequence get-size and insert-value operations to avoid UB.
51     unsigned ID = IDs.size() + 1;
52     IDs[V].first = ID;
53   }
54 };
55 }
56 
57 static void orderValue(const Value *V, OrderMap &OM) {
58   if (OM.lookup(V).first)
59     return;
60 
61   if (const Constant *C = dyn_cast<Constant>(V))
62     if (C->getNumOperands() && !isa<GlobalValue>(C))
63       for (const Value *Op : C->operands())
64         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
65           orderValue(Op, OM);
66 
67   // Note: we cannot cache this lookup above, since inserting into the map
68   // changes the map's size, and thus affects the other IDs.
69   OM.index(V);
70 }
71 
72 static OrderMap orderModule(const Module &M) {
73   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
74   // and ValueEnumerator::incorporateFunction().
75   OrderMap OM;
76 
77   // In the reader, initializers of GlobalValues are set *after* all the
78   // globals have been read.  Rather than awkwardly modeling this behaviour
79   // directly in predictValueUseListOrderImpl(), just assign IDs to
80   // initializers of GlobalValues before GlobalValues themselves to model this
81   // implicitly.
82   for (const GlobalVariable &G : M.globals())
83     if (G.hasInitializer())
84       if (!isa<GlobalValue>(G.getInitializer()))
85         orderValue(G.getInitializer(), OM);
86   for (const GlobalAlias &A : M.aliases())
87     if (!isa<GlobalValue>(A.getAliasee()))
88       orderValue(A.getAliasee(), OM);
89   for (const GlobalIFunc &I : M.ifuncs())
90     if (!isa<GlobalValue>(I.getResolver()))
91       orderValue(I.getResolver(), OM);
92   for (const Function &F : M) {
93     for (const Use &U : F.operands())
94       if (!isa<GlobalValue>(U.get()))
95         orderValue(U.get(), OM);
96   }
97   OM.LastGlobalConstantID = OM.size();
98 
99   // Initializers of GlobalValues are processed in
100   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
101   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
102   // by giving IDs in reverse order.
103   //
104   // Since GlobalValues never reference each other directly (just through
105   // initializers), their relative IDs only matter for determining order of
106   // uses in their initializers.
107   for (const Function &F : M)
108     orderValue(&F, OM);
109   for (const GlobalAlias &A : M.aliases())
110     orderValue(&A, OM);
111   for (const GlobalIFunc &I : M.ifuncs())
112     orderValue(&I, OM);
113   for (const GlobalVariable &G : M.globals())
114     orderValue(&G, OM);
115   OM.LastGlobalValueID = OM.size();
116 
117   for (const Function &F : M) {
118     if (F.isDeclaration())
119       continue;
120     // Here we need to match the union of ValueEnumerator::incorporateFunction()
121     // and WriteFunction().  Basic blocks are implicitly declared before
122     // anything else (by declaring their size).
123     for (const BasicBlock &BB : F)
124       orderValue(&BB, OM);
125     for (const Argument &A : F.args())
126       orderValue(&A, OM);
127     for (const BasicBlock &BB : F)
128       for (const Instruction &I : BB)
129         for (const Value *Op : I.operands())
130           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
131               isa<InlineAsm>(*Op))
132             orderValue(Op, OM);
133     for (const BasicBlock &BB : F)
134       for (const Instruction &I : BB)
135         orderValue(&I, OM);
136   }
137   return OM;
138 }
139 
140 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
141                                          unsigned ID, const OrderMap &OM,
142                                          UseListOrderStack &Stack) {
143   // Predict use-list order for this one.
144   typedef std::pair<const Use *, unsigned> Entry;
145   SmallVector<Entry, 64> List;
146   for (const Use &U : V->uses())
147     // Check if this user will be serialized.
148     if (OM.lookup(U.getUser()).first)
149       List.push_back(std::make_pair(&U, List.size()));
150 
151   if (List.size() < 2)
152     // We may have lost some users.
153     return;
154 
155   bool IsGlobalValue = OM.isGlobalValue(ID);
156   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
157     const Use *LU = L.first;
158     const Use *RU = R.first;
159     if (LU == RU)
160       return false;
161 
162     auto LID = OM.lookup(LU->getUser()).first;
163     auto RID = OM.lookup(RU->getUser()).first;
164 
165     // Global values are processed in reverse order.
166     //
167     // Moreover, initializers of GlobalValues are set *after* all the globals
168     // have been read (despite having earlier IDs).  Rather than awkwardly
169     // modeling this behaviour here, orderModule() has assigned IDs to
170     // initializers of GlobalValues before GlobalValues themselves.
171     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
172       return LID < RID;
173 
174     // If ID is 4, then expect: 7 6 5 1 2 3.
175     if (LID < RID) {
176       if (RID <= ID)
177         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
178           return true;
179       return false;
180     }
181     if (RID < LID) {
182       if (LID <= ID)
183         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
184           return false;
185       return true;
186     }
187 
188     // LID and RID are equal, so we have different operands of the same user.
189     // Assume operands are added in order for all instructions.
190     if (LID <= ID)
191       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
192         return LU->getOperandNo() < RU->getOperandNo();
193     return LU->getOperandNo() > RU->getOperandNo();
194   });
195 
196   if (std::is_sorted(
197           List.begin(), List.end(),
198           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
199     // Order is already correct.
200     return;
201 
202   // Store the shuffle.
203   Stack.emplace_back(V, F, List.size());
204   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
205   for (size_t I = 0, E = List.size(); I != E; ++I)
206     Stack.back().Shuffle[I] = List[I].second;
207 }
208 
209 static void predictValueUseListOrder(const Value *V, const Function *F,
210                                      OrderMap &OM, UseListOrderStack &Stack) {
211   auto &IDPair = OM[V];
212   assert(IDPair.first && "Unmapped value");
213   if (IDPair.second)
214     // Already predicted.
215     return;
216 
217   // Do the actual prediction.
218   IDPair.second = true;
219   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
220     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
221 
222   // Recursive descent into constants.
223   if (const Constant *C = dyn_cast<Constant>(V))
224     if (C->getNumOperands()) // Visit GlobalValues.
225       for (const Value *Op : C->operands())
226         if (isa<Constant>(Op)) // Visit GlobalValues.
227           predictValueUseListOrder(Op, F, OM, Stack);
228 }
229 
230 static UseListOrderStack predictUseListOrder(const Module &M) {
231   OrderMap OM = orderModule(M);
232 
233   // Use-list orders need to be serialized after all the users have been added
234   // to a value, or else the shuffles will be incomplete.  Store them per
235   // function in a stack.
236   //
237   // Aside from function order, the order of values doesn't matter much here.
238   UseListOrderStack Stack;
239 
240   // We want to visit the functions backward now so we can list function-local
241   // constants in the last Function they're used in.  Module-level constants
242   // have already been visited above.
243   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
244     const Function &F = *I;
245     if (F.isDeclaration())
246       continue;
247     for (const BasicBlock &BB : F)
248       predictValueUseListOrder(&BB, &F, OM, Stack);
249     for (const Argument &A : F.args())
250       predictValueUseListOrder(&A, &F, OM, Stack);
251     for (const BasicBlock &BB : F)
252       for (const Instruction &I : BB)
253         for (const Value *Op : I.operands())
254           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
255             predictValueUseListOrder(Op, &F, OM, Stack);
256     for (const BasicBlock &BB : F)
257       for (const Instruction &I : BB)
258         predictValueUseListOrder(&I, &F, OM, Stack);
259   }
260 
261   // Visit globals last, since the module-level use-list block will be seen
262   // before the function bodies are processed.
263   for (const GlobalVariable &G : M.globals())
264     predictValueUseListOrder(&G, nullptr, OM, Stack);
265   for (const Function &F : M)
266     predictValueUseListOrder(&F, nullptr, OM, Stack);
267   for (const GlobalAlias &A : M.aliases())
268     predictValueUseListOrder(&A, nullptr, OM, Stack);
269   for (const GlobalIFunc &I : M.ifuncs())
270     predictValueUseListOrder(&I, nullptr, OM, Stack);
271   for (const GlobalVariable &G : M.globals())
272     if (G.hasInitializer())
273       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
274   for (const GlobalAlias &A : M.aliases())
275     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
276   for (const GlobalIFunc &I : M.ifuncs())
277     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
278   for (const Function &F : M) {
279     for (const Use &U : F.operands())
280       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
281   }
282 
283   return Stack;
284 }
285 
286 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
287   return V.first->getType()->isIntOrIntVectorTy();
288 }
289 
290 ValueEnumerator::ValueEnumerator(const Module &M,
291                                  bool ShouldPreserveUseListOrder)
292     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
293   if (ShouldPreserveUseListOrder)
294     UseListOrders = predictUseListOrder(M);
295 
296   // Enumerate the global variables.
297   for (const GlobalVariable &GV : M.globals())
298     EnumerateValue(&GV);
299 
300   // Enumerate the functions.
301   for (const Function & F : M) {
302     EnumerateValue(&F);
303     EnumerateAttributes(F.getAttributes());
304   }
305 
306   // Enumerate the aliases.
307   for (const GlobalAlias &GA : M.aliases())
308     EnumerateValue(&GA);
309 
310   // Enumerate the ifuncs.
311   for (const GlobalIFunc &GIF : M.ifuncs())
312     EnumerateValue(&GIF);
313 
314   // Remember what is the cutoff between globalvalue's and other constants.
315   unsigned FirstConstant = Values.size();
316 
317   // Enumerate the global variable initializers.
318   for (const GlobalVariable &GV : M.globals())
319     if (GV.hasInitializer())
320       EnumerateValue(GV.getInitializer());
321 
322   // Enumerate the aliasees.
323   for (const GlobalAlias &GA : M.aliases())
324     EnumerateValue(GA.getAliasee());
325 
326   // Enumerate the ifunc resolvers.
327   for (const GlobalIFunc &GIF : M.ifuncs())
328     EnumerateValue(GIF.getResolver());
329 
330   // Enumerate any optional Function data.
331   for (const Function &F : M)
332     for (const Use &U : F.operands())
333       EnumerateValue(U.get());
334 
335   // Enumerate the metadata type.
336   //
337   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
338   // only encodes the metadata type when it's used as a value.
339   EnumerateType(Type::getMetadataTy(M.getContext()));
340 
341   // Insert constants and metadata that are named at module level into the slot
342   // pool so that the module symbol table can refer to them...
343   EnumerateValueSymbolTable(M.getValueSymbolTable());
344   EnumerateNamedMetadata(M);
345 
346   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
347 
348   // Enumerate types used by function bodies and argument lists.
349   for (const Function &F : M) {
350     for (const Argument &A : F.args())
351       EnumerateType(A.getType());
352 
353     // Enumerate metadata attached to this function.
354     F.getAllMetadata(MDs);
355     for (const auto &I : MDs)
356       EnumerateMetadata(&F, I.second);
357 
358     for (const BasicBlock &BB : F)
359       for (const Instruction &I : BB) {
360         for (const Use &Op : I.operands()) {
361           auto *MD = dyn_cast<MetadataAsValue>(&Op);
362           if (!MD) {
363             EnumerateOperandType(Op);
364             continue;
365           }
366 
367           // Local metadata is enumerated during function-incorporation.
368           if (isa<LocalAsMetadata>(MD->getMetadata()))
369             continue;
370 
371           EnumerateMetadata(&F, MD->getMetadata());
372         }
373         EnumerateType(I.getType());
374         if (const CallInst *CI = dyn_cast<CallInst>(&I))
375           EnumerateAttributes(CI->getAttributes());
376         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
377           EnumerateAttributes(II->getAttributes());
378 
379         // Enumerate metadata attached with this instruction.
380         MDs.clear();
381         I.getAllMetadataOtherThanDebugLoc(MDs);
382         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
383           EnumerateMetadata(&F, MDs[i].second);
384 
385         // Don't enumerate the location directly -- it has a special record
386         // type -- but enumerate its operands.
387         if (DILocation *L = I.getDebugLoc())
388           for (const Metadata *Op : L->operands())
389             EnumerateMetadata(&F, Op);
390       }
391   }
392 
393   // Optimize constant ordering.
394   OptimizeConstants(FirstConstant, Values.size());
395 
396   // Organize metadata ordering.
397   organizeMetadata();
398 }
399 
400 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
401   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
402   assert(I != InstructionMap.end() && "Instruction is not mapped!");
403   return I->second;
404 }
405 
406 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
407   unsigned ComdatID = Comdats.idFor(C);
408   assert(ComdatID && "Comdat not found!");
409   return ComdatID;
410 }
411 
412 void ValueEnumerator::setInstructionID(const Instruction *I) {
413   InstructionMap[I] = InstructionCount++;
414 }
415 
416 unsigned ValueEnumerator::getValueID(const Value *V) const {
417   if (auto *MD = dyn_cast<MetadataAsValue>(V))
418     return getMetadataID(MD->getMetadata());
419 
420   ValueMapType::const_iterator I = ValueMap.find(V);
421   assert(I != ValueMap.end() && "Value not in slotcalculator!");
422   return I->second-1;
423 }
424 
425 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
426   print(dbgs(), ValueMap, "Default");
427   dbgs() << '\n';
428   print(dbgs(), MetadataMap, "MetaData");
429   dbgs() << '\n';
430 }
431 
432 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
433                             const char *Name) const {
434 
435   OS << "Map Name: " << Name << "\n";
436   OS << "Size: " << Map.size() << "\n";
437   for (ValueMapType::const_iterator I = Map.begin(),
438          E = Map.end(); I != E; ++I) {
439 
440     const Value *V = I->first;
441     if (V->hasName())
442       OS << "Value: " << V->getName();
443     else
444       OS << "Value: [null]\n";
445     V->dump();
446 
447     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
448     for (const Use &U : V->uses()) {
449       if (&U != &*V->use_begin())
450         OS << ",";
451       if(U->hasName())
452         OS << " " << U->getName();
453       else
454         OS << " [null]";
455 
456     }
457     OS <<  "\n\n";
458   }
459 }
460 
461 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
462                             const char *Name) const {
463 
464   OS << "Map Name: " << Name << "\n";
465   OS << "Size: " << Map.size() << "\n";
466   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
467     const Metadata *MD = I->first;
468     OS << "Metadata: slot = " << I->second.ID << "\n";
469     OS << "Metadata: function = " << I->second.F << "\n";
470     MD->print(OS);
471     OS << "\n";
472   }
473 }
474 
475 /// OptimizeConstants - Reorder constant pool for denser encoding.
476 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
477   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
478 
479   if (ShouldPreserveUseListOrder)
480     // Optimizing constants makes the use-list order difficult to predict.
481     // Disable it for now when trying to preserve the order.
482     return;
483 
484   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
485                    [this](const std::pair<const Value *, unsigned> &LHS,
486                           const std::pair<const Value *, unsigned> &RHS) {
487     // Sort by plane.
488     if (LHS.first->getType() != RHS.first->getType())
489       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
490     // Then by frequency.
491     return LHS.second > RHS.second;
492   });
493 
494   // Ensure that integer and vector of integer constants are at the start of the
495   // constant pool.  This is important so that GEP structure indices come before
496   // gep constant exprs.
497   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
498                         isIntOrIntVectorValue);
499 
500   // Rebuild the modified portion of ValueMap.
501   for (; CstStart != CstEnd; ++CstStart)
502     ValueMap[Values[CstStart].first] = CstStart+1;
503 }
504 
505 
506 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
507 /// table into the values table.
508 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
509   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
510        VI != VE; ++VI)
511     EnumerateValue(VI->getValue());
512 }
513 
514 /// Insert all of the values referenced by named metadata in the specified
515 /// module.
516 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
517   for (const auto &I : M.named_metadata())
518     EnumerateNamedMDNode(&I);
519 }
520 
521 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
522   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
523     EnumerateMetadata(nullptr, MD->getOperand(i));
524 }
525 
526 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
527   return F ? getValueID(F) + 1 : 0;
528 }
529 
530 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
531   EnumerateMetadata(getMetadataFunctionID(F), MD);
532 }
533 
534 void ValueEnumerator::EnumerateFunctionLocalMetadata(
535     const Function &F, const LocalAsMetadata *Local) {
536   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
537 }
538 
539 void ValueEnumerator::dropFunctionFromMetadata(
540     MetadataMapType::value_type &FirstMD) {
541   SmallVector<const MDNode *, 64> Worklist;
542   auto push = [this, &Worklist](MetadataMapType::value_type &MD) {
543     auto &Entry = MD.second;
544 
545     // Nothing to do if this metadata isn't tagged.
546     if (!Entry.F)
547       return;
548 
549     // Drop the function tag.
550     Entry.F = 0;
551 
552     // If this is has an ID and is an MDNode, then its operands have entries as
553     // well.  We need to drop the function from them too.
554     if (Entry.ID)
555       if (auto *N = dyn_cast<MDNode>(MD.first))
556         Worklist.push_back(N);
557   };
558   push(FirstMD);
559   while (!Worklist.empty())
560     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
561       if (!Op)
562         continue;
563       auto MD = MetadataMap.find(Op);
564       if (MD != MetadataMap.end())
565         push(*MD);
566     }
567 }
568 
569 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
570   // Start by enumerating MD, and then work through its transitive operands in
571   // post-order.  This requires a depth-first search.
572   SmallVector<std::pair<const MDNode *, const MDOperand *>, 32> Worklist;
573   enumerateMetadataImpl(F, MD, Worklist);
574   while (!Worklist.empty()) {
575     const MDNode *N = Worklist.back().first;
576     const MDOperand *&Op = Worklist.back().second; // Be careful of lifetime...
577 
578     // Enumerate operands until the worklist changes.  We need to traverse new
579     // nodes before visiting the rest of N's operands.
580     bool DidWorklistChange = false;
581     for (const MDOperand *E = N->op_end(); Op != E;)
582       if (enumerateMetadataImpl(F, *Op++, Worklist)) {
583         DidWorklistChange = true;
584         break;
585       }
586     if (DidWorklistChange)
587       continue;
588 
589     // All the operands have been visited.  Now assign an ID.
590     Worklist.pop_back();
591     MDs.push_back(N);
592     MetadataMap[N].ID = MDs.size();
593     continue;
594   }
595 }
596 
597 bool ValueEnumerator::enumerateMetadataImpl(
598     unsigned F, const Metadata *MD,
599     SmallVectorImpl<std::pair<const MDNode *, const MDOperand *>> &Worklist) {
600   if (!MD)
601     return false;
602 
603   assert(
604       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
605       "Invalid metadata kind");
606 
607   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
608   MDIndex &Entry = Insertion.first->second;
609   if (!Insertion.second) {
610     // Already mapped.  If F doesn't match the function tag, drop it.
611     if (Entry.hasDifferentFunction(F))
612       dropFunctionFromMetadata(*Insertion.first);
613     return false;
614   }
615 
616   // MDNodes are handled separately to avoid recursion.
617   if (auto *N = dyn_cast<MDNode>(MD)) {
618     Worklist.push_back(std::make_pair(N, N->op_begin()));
619     return true; // Changed the worklist.
620   }
621 
622   // Save the metadata.
623   MDs.push_back(MD);
624   Entry.ID = MDs.size();
625 
626   // Enumerate the constant, if any.
627   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
628     EnumerateValue(C->getValue());
629 
630   return false;
631 }
632 
633 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
634 /// information reachable from the metadata.
635 void ValueEnumerator::EnumerateFunctionLocalMetadata(
636     unsigned F, const LocalAsMetadata *Local) {
637   assert(F && "Expected a function");
638 
639   // Check to see if it's already in!
640   MDIndex &Index = MetadataMap[Local];
641   if (Index.ID) {
642     assert(Index.F == F && "Expected the same function");
643     return;
644   }
645 
646   MDs.push_back(Local);
647   Index.F = F;
648   Index.ID = MDs.size();
649 
650   EnumerateValue(Local->getValue());
651 }
652 
653 void ValueEnumerator::organizeMetadata() {
654   assert(MetadataMap.size() == MDs.size() &&
655          "Metadata map and vector out of sync");
656 
657   if (MDs.empty())
658     return;
659 
660   // Copy out the index information from MetadataMap in order to choose a new
661   // order.
662   SmallVector<MDIndex, 64> Order;
663   Order.reserve(MetadataMap.size());
664   for (const Metadata *MD : MDs)
665     Order.push_back(MetadataMap.lookup(MD));
666 
667   // Partition:
668   //   - by function, then
669   //   - by isa<MDString>
670   // and then sort by the original/current ID.  Since the IDs are guaranteed to
671   // be unique, the result of std::sort will be deterministic.  There's no need
672   // for std::stable_sort.
673   std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
674     return std::make_tuple(LHS.F, !isa<MDString>(LHS.get(MDs)), LHS.ID) <
675            std::make_tuple(RHS.F, !isa<MDString>(RHS.get(MDs)), RHS.ID);
676   });
677 
678   // Return early if nothing is moving to functions and there are no strings.
679   if (!Order.back().F && !isa<MDString>(Order.front().get(MDs)))
680     return;
681 
682   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
683   // and fix up MetadataMap.
684   std::vector<const Metadata *> OldMDs = std::move(MDs);
685   MDs.reserve(OldMDs.size());
686   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
687     auto *MD = Order[I].get(OldMDs);
688     MDs.push_back(MD);
689     MetadataMap[MD].ID = I + 1;
690     if (isa<MDString>(MD))
691       ++NumMDStrings;
692   }
693 
694   // Return early if there's nothing for the functions.
695   if (MDs.size() == Order.size())
696     return;
697 
698   // Build the function metadata ranges.
699   MDRange R;
700   FunctionMDs.reserve(OldMDs.size());
701   unsigned PrevF = 0;
702   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
703        ++I) {
704     unsigned F = Order[I].F;
705     if (!PrevF) {
706       PrevF = F;
707     } else if (PrevF != F) {
708       R.Last = FunctionMDs.size();
709       std::swap(R, FunctionMDInfo[PrevF]);
710       R.First = FunctionMDs.size();
711 
712       ID = MDs.size();
713       PrevF = F;
714     }
715 
716     auto *MD = Order[I].get(OldMDs);
717     FunctionMDs.push_back(MD);
718     MetadataMap[MD].ID = ++ID;
719     if (isa<MDString>(MD))
720       ++R.NumStrings;
721   }
722   R.Last = FunctionMDs.size();
723   FunctionMDInfo[PrevF] = R;
724 }
725 
726 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
727   NumModuleMDs = MDs.size();
728 
729   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
730   NumMDStrings = R.NumStrings;
731   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
732              FunctionMDs.begin() + R.Last);
733 }
734 
735 void ValueEnumerator::EnumerateValue(const Value *V) {
736   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
737   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
738 
739   // Check to see if it's already in!
740   unsigned &ValueID = ValueMap[V];
741   if (ValueID) {
742     // Increment use count.
743     Values[ValueID-1].second++;
744     return;
745   }
746 
747   if (auto *GO = dyn_cast<GlobalObject>(V))
748     if (const Comdat *C = GO->getComdat())
749       Comdats.insert(C);
750 
751   // Enumerate the type of this value.
752   EnumerateType(V->getType());
753 
754   if (const Constant *C = dyn_cast<Constant>(V)) {
755     if (isa<GlobalValue>(C)) {
756       // Initializers for globals are handled explicitly elsewhere.
757     } else if (C->getNumOperands()) {
758       // If a constant has operands, enumerate them.  This makes sure that if a
759       // constant has uses (for example an array of const ints), that they are
760       // inserted also.
761 
762       // We prefer to enumerate them with values before we enumerate the user
763       // itself.  This makes it more likely that we can avoid forward references
764       // in the reader.  We know that there can be no cycles in the constants
765       // graph that don't go through a global variable.
766       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
767            I != E; ++I)
768         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
769           EnumerateValue(*I);
770 
771       // Finally, add the value.  Doing this could make the ValueID reference be
772       // dangling, don't reuse it.
773       Values.push_back(std::make_pair(V, 1U));
774       ValueMap[V] = Values.size();
775       return;
776     }
777   }
778 
779   // Add the value.
780   Values.push_back(std::make_pair(V, 1U));
781   ValueID = Values.size();
782 }
783 
784 
785 void ValueEnumerator::EnumerateType(Type *Ty) {
786   unsigned *TypeID = &TypeMap[Ty];
787 
788   // We've already seen this type.
789   if (*TypeID)
790     return;
791 
792   // If it is a non-anonymous struct, mark the type as being visited so that we
793   // don't recursively visit it.  This is safe because we allow forward
794   // references of these in the bitcode reader.
795   if (StructType *STy = dyn_cast<StructType>(Ty))
796     if (!STy->isLiteral())
797       *TypeID = ~0U;
798 
799   // Enumerate all of the subtypes before we enumerate this type.  This ensures
800   // that the type will be enumerated in an order that can be directly built.
801   for (Type *SubTy : Ty->subtypes())
802     EnumerateType(SubTy);
803 
804   // Refresh the TypeID pointer in case the table rehashed.
805   TypeID = &TypeMap[Ty];
806 
807   // Check to see if we got the pointer another way.  This can happen when
808   // enumerating recursive types that hit the base case deeper than they start.
809   //
810   // If this is actually a struct that we are treating as forward ref'able,
811   // then emit the definition now that all of its contents are available.
812   if (*TypeID && *TypeID != ~0U)
813     return;
814 
815   // Add this type now that its contents are all happily enumerated.
816   Types.push_back(Ty);
817 
818   *TypeID = Types.size();
819 }
820 
821 // Enumerate the types for the specified value.  If the value is a constant,
822 // walk through it, enumerating the types of the constant.
823 void ValueEnumerator::EnumerateOperandType(const Value *V) {
824   EnumerateType(V->getType());
825 
826   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
827 
828   const Constant *C = dyn_cast<Constant>(V);
829   if (!C)
830     return;
831 
832   // If this constant is already enumerated, ignore it, we know its type must
833   // be enumerated.
834   if (ValueMap.count(C))
835     return;
836 
837   // This constant may have operands, make sure to enumerate the types in
838   // them.
839   for (const Value *Op : C->operands()) {
840     // Don't enumerate basic blocks here, this happens as operands to
841     // blockaddress.
842     if (isa<BasicBlock>(Op))
843       continue;
844 
845     EnumerateOperandType(Op);
846   }
847 }
848 
849 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
850   if (PAL.isEmpty()) return;  // null is always 0.
851 
852   // Do a lookup.
853   unsigned &Entry = AttributeMap[PAL];
854   if (Entry == 0) {
855     // Never saw this before, add it.
856     Attribute.push_back(PAL);
857     Entry = Attribute.size();
858   }
859 
860   // Do lookups for all attribute groups.
861   for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
862     AttributeSet AS = PAL.getSlotAttributes(i);
863     unsigned &Entry = AttributeGroupMap[AS];
864     if (Entry == 0) {
865       AttributeGroups.push_back(AS);
866       Entry = AttributeGroups.size();
867     }
868   }
869 }
870 
871 void ValueEnumerator::incorporateFunction(const Function &F) {
872   InstructionCount = 0;
873   NumModuleValues = Values.size();
874 
875   // Add global metadata to the function block.  This doesn't include
876   // LocalAsMetadata.
877   incorporateFunctionMetadata(F);
878 
879   // Adding function arguments to the value table.
880   for (const auto &I : F.args())
881     EnumerateValue(&I);
882 
883   FirstFuncConstantID = Values.size();
884 
885   // Add all function-level constants to the value table.
886   for (const BasicBlock &BB : F) {
887     for (const Instruction &I : BB)
888       for (const Use &OI : I.operands()) {
889         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
890           EnumerateValue(OI);
891       }
892     BasicBlocks.push_back(&BB);
893     ValueMap[&BB] = BasicBlocks.size();
894   }
895 
896   // Optimize the constant layout.
897   OptimizeConstants(FirstFuncConstantID, Values.size());
898 
899   // Add the function's parameter attributes so they are available for use in
900   // the function's instruction.
901   EnumerateAttributes(F.getAttributes());
902 
903   FirstInstID = Values.size();
904 
905   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
906   // Add all of the instructions.
907   for (const BasicBlock &BB : F) {
908     for (const Instruction &I : BB) {
909       for (const Use &OI : I.operands()) {
910         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
911           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
912             // Enumerate metadata after the instructions they might refer to.
913             FnLocalMDVector.push_back(Local);
914       }
915 
916       if (!I.getType()->isVoidTy())
917         EnumerateValue(&I);
918     }
919   }
920 
921   // Add all of the function-local metadata.
922   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
923     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
924 }
925 
926 void ValueEnumerator::purgeFunction() {
927   /// Remove purged values from the ValueMap.
928   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
929     ValueMap.erase(Values[i].first);
930   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
931     MetadataMap.erase(MDs[i]);
932   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
933     ValueMap.erase(BasicBlocks[i]);
934 
935   Values.resize(NumModuleValues);
936   MDs.resize(NumModuleMDs);
937   BasicBlocks.clear();
938   NumMDStrings = 0;
939 }
940 
941 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
942                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
943   unsigned Counter = 0;
944   for (const BasicBlock &BB : *F)
945     IDMap[&BB] = ++Counter;
946 }
947 
948 /// getGlobalBasicBlockID - This returns the function-specific ID for the
949 /// specified basic block.  This is relatively expensive information, so it
950 /// should only be used by rare constructs such as address-of-label.
951 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
952   unsigned &Idx = GlobalBasicBlockIDs[BB];
953   if (Idx != 0)
954     return Idx-1;
955 
956   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
957   return getGlobalBasicBlockID(BB);
958 }
959 
960 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
961   return Log2_32_Ceil(getTypes().size() + 1);
962 }
963