1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ValueEnumerator class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Module.h" 20 #include "llvm/TypeSymbolTable.h" 21 #include "llvm/ValueSymbolTable.h" 22 #include "llvm/Instructions.h" 23 #include <algorithm> 24 using namespace llvm; 25 26 static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) { 27 return V.first->getType()->isIntegerTy(); 28 } 29 30 /// ValueEnumerator - Enumerate module-level information. 31 ValueEnumerator::ValueEnumerator(const Module *M) { 32 // Enumerate the global variables. 33 for (Module::const_global_iterator I = M->global_begin(), 34 E = M->global_end(); I != E; ++I) 35 EnumerateValue(I); 36 37 // Enumerate the functions. 38 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { 39 EnumerateValue(I); 40 EnumerateAttributes(cast<Function>(I)->getAttributes()); 41 } 42 43 // Enumerate the aliases. 44 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); 45 I != E; ++I) 46 EnumerateValue(I); 47 48 // Remember what is the cutoff between globalvalue's and other constants. 49 unsigned FirstConstant = Values.size(); 50 51 // Enumerate the global variable initializers. 52 for (Module::const_global_iterator I = M->global_begin(), 53 E = M->global_end(); I != E; ++I) 54 if (I->hasInitializer()) 55 EnumerateValue(I->getInitializer()); 56 57 // Enumerate the aliasees. 58 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); 59 I != E; ++I) 60 EnumerateValue(I->getAliasee()); 61 62 // Enumerate types used by the type symbol table. 63 EnumerateTypeSymbolTable(M->getTypeSymbolTable()); 64 65 // Insert constants and metadata that are named at module level into the slot 66 // pool so that the module symbol table can refer to them... 67 EnumerateValueSymbolTable(M->getValueSymbolTable()); 68 EnumerateNamedMetadata(M); 69 70 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; 71 72 // Enumerate types used by function bodies and argument lists. 73 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 74 75 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 76 I != E; ++I) 77 EnumerateType(I->getType()); 78 79 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 80 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ 81 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 82 OI != E; ++OI) { 83 if (MDNode *MD = dyn_cast<MDNode>(*OI)) 84 if (MD->isFunctionLocal() && MD->getFunction()) 85 // These will get enumerated during function-incorporation. 86 continue; 87 EnumerateOperandType(*OI); 88 } 89 EnumerateType(I->getType()); 90 if (const CallInst *CI = dyn_cast<CallInst>(I)) 91 EnumerateAttributes(CI->getAttributes()); 92 else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) 93 EnumerateAttributes(II->getAttributes()); 94 95 // Enumerate metadata attached with this instruction. 96 MDs.clear(); 97 I->getAllMetadataOtherThanDebugLoc(MDs); 98 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 99 EnumerateMetadata(MDs[i].second); 100 101 if (!I->getDebugLoc().isUnknown()) { 102 MDNode *Scope, *IA; 103 I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); 104 if (Scope) EnumerateMetadata(Scope); 105 if (IA) EnumerateMetadata(IA); 106 } 107 } 108 } 109 110 // Optimize constant ordering. 111 OptimizeConstants(FirstConstant, Values.size()); 112 113 OptimizeTypes(); 114 115 // Now that we rearranged the type table, rebuild TypeMap. 116 for (unsigned i = 0, e = Types.size(); i != e; ++i) 117 TypeMap[Types[i]] = i+1; 118 } 119 120 struct TypeAndDeps { 121 const Type *Ty; 122 unsigned NumDeps; 123 }; 124 125 static int CompareByDeps(const void *a, const void *b) { 126 const TypeAndDeps &ta = *(const TypeAndDeps*) a; 127 const TypeAndDeps &tb = *(const TypeAndDeps*) b; 128 return ta.NumDeps - tb.NumDeps; 129 } 130 131 static void VisitType(const Type *Ty, SmallPtrSet<const Type*, 16> &Visited, 132 std::vector<const Type*> &Out) { 133 if (Visited.count(Ty)) 134 return; 135 136 Visited.insert(Ty); 137 138 for (Type::subtype_iterator I2 = Ty->subtype_begin(), 139 E2 = Ty->subtype_end(); I2 != E2; ++I2) { 140 const Type *InnerType = I2->get(); 141 VisitType(InnerType, Visited, Out); 142 } 143 144 Out.push_back(Ty); 145 } 146 147 void ValueEnumerator::OptimizeTypes(void) { 148 // If the types form a DAG, this will compute a topological sort and 149 // no forward references will be needed when reading them in. 150 // If there are cycles, this is a simple but reasonable heuristic for 151 // the minimum feedback arc set problem. 152 const unsigned NumTypes = Types.size(); 153 std::vector<TypeAndDeps> TypeDeps; 154 TypeDeps.resize(NumTypes); 155 156 for (unsigned I = 0; I < NumTypes; ++I) { 157 const Type *Ty = Types[I]; 158 TypeDeps[I].Ty = Ty; 159 TypeDeps[I].NumDeps = 0; 160 } 161 162 for (unsigned I = 0; I < NumTypes; ++I) { 163 const Type *Ty = TypeDeps[I].Ty; 164 for (Type::subtype_iterator I2 = Ty->subtype_begin(), 165 E2 = Ty->subtype_end(); I2 != E2; ++I2) { 166 const Type *InnerType = I2->get(); 167 unsigned InnerIndex = TypeMap.lookup(InnerType) - 1; 168 TypeDeps[InnerIndex].NumDeps++; 169 } 170 } 171 array_pod_sort(TypeDeps.begin(), TypeDeps.end(), CompareByDeps); 172 173 SmallPtrSet<const Type*, 16> Visited; 174 Types.clear(); 175 Types.reserve(NumTypes); 176 for (unsigned I = 0; I < NumTypes; ++I) { 177 VisitType(TypeDeps[I].Ty, Visited, Types); 178 } 179 } 180 181 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 182 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 183 assert (I != InstructionMap.end() && "Instruction is not mapped!"); 184 return I->second; 185 } 186 187 void ValueEnumerator::setInstructionID(const Instruction *I) { 188 InstructionMap[I] = InstructionCount++; 189 } 190 191 unsigned ValueEnumerator::getValueID(const Value *V) const { 192 if (isa<MDNode>(V) || isa<MDString>(V)) { 193 ValueMapType::const_iterator I = MDValueMap.find(V); 194 assert(I != MDValueMap.end() && "Value not in slotcalculator!"); 195 return I->second-1; 196 } 197 198 ValueMapType::const_iterator I = ValueMap.find(V); 199 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 200 return I->second-1; 201 } 202 203 // Optimize constant ordering. 204 namespace { 205 struct CstSortPredicate { 206 ValueEnumerator &VE; 207 explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} 208 bool operator()(const std::pair<const Value*, unsigned> &LHS, 209 const std::pair<const Value*, unsigned> &RHS) { 210 // Sort by plane. 211 if (LHS.first->getType() != RHS.first->getType()) 212 return VE.getTypeID(LHS.first->getType()) < 213 VE.getTypeID(RHS.first->getType()); 214 // Then by frequency. 215 return LHS.second > RHS.second; 216 } 217 }; 218 } 219 220 /// OptimizeConstants - Reorder constant pool for denser encoding. 221 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 222 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 223 224 CstSortPredicate P(*this); 225 std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); 226 227 // Ensure that integer constants are at the start of the constant pool. This 228 // is important so that GEP structure indices come before gep constant exprs. 229 std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, 230 isIntegerValue); 231 232 // Rebuild the modified portion of ValueMap. 233 for (; CstStart != CstEnd; ++CstStart) 234 ValueMap[Values[CstStart].first] = CstStart+1; 235 } 236 237 238 /// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol 239 /// table. 240 void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) { 241 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 242 TI != TE; ++TI) 243 EnumerateType(TI->second); 244 } 245 246 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 247 /// table into the values table. 248 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 249 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 250 VI != VE; ++VI) 251 EnumerateValue(VI->getValue()); 252 } 253 254 /// EnumerateNamedMetadata - Insert all of the values referenced by 255 /// named metadata in the specified module. 256 void ValueEnumerator::EnumerateNamedMetadata(const Module *M) { 257 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 258 E = M->named_metadata_end(); I != E; ++I) 259 EnumerateNamedMDNode(I); 260 } 261 262 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 263 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 264 EnumerateMetadata(MD->getOperand(i)); 265 } 266 267 /// EnumerateMDNodeOperands - Enumerate all non-function-local values 268 /// and types referenced by the given MDNode. 269 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { 270 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 271 if (Value *V = N->getOperand(i)) { 272 if (isa<MDNode>(V) || isa<MDString>(V)) 273 EnumerateMetadata(V); 274 else if (!isa<Instruction>(V) && !isa<Argument>(V)) 275 EnumerateValue(V); 276 } else 277 EnumerateType(Type::getVoidTy(N->getContext())); 278 } 279 } 280 281 void ValueEnumerator::EnumerateMetadata(const Value *MD) { 282 assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind"); 283 284 // Enumerate the type of this value. 285 EnumerateType(MD->getType()); 286 287 const MDNode *N = dyn_cast<MDNode>(MD); 288 289 // In the module-level pass, skip function-local nodes themselves, but 290 // do walk their operands. 291 if (N && N->isFunctionLocal() && N->getFunction()) { 292 EnumerateMDNodeOperands(N); 293 return; 294 } 295 296 // Check to see if it's already in! 297 unsigned &MDValueID = MDValueMap[MD]; 298 if (MDValueID) { 299 // Increment use count. 300 MDValues[MDValueID-1].second++; 301 return; 302 } 303 MDValues.push_back(std::make_pair(MD, 1U)); 304 MDValueID = MDValues.size(); 305 306 // Enumerate all non-function-local operands. 307 if (N) 308 EnumerateMDNodeOperands(N); 309 } 310 311 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 312 /// information reachable from the given MDNode. 313 void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) { 314 assert(N->isFunctionLocal() && N->getFunction() && 315 "EnumerateFunctionLocalMetadata called on non-function-local mdnode!"); 316 317 // Enumerate the type of this value. 318 EnumerateType(N->getType()); 319 320 // Check to see if it's already in! 321 unsigned &MDValueID = MDValueMap[N]; 322 if (MDValueID) { 323 // Increment use count. 324 MDValues[MDValueID-1].second++; 325 return; 326 } 327 MDValues.push_back(std::make_pair(N, 1U)); 328 MDValueID = MDValues.size(); 329 330 // To incoroporate function-local information visit all function-local 331 // MDNodes and all function-local values they reference. 332 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 333 if (Value *V = N->getOperand(i)) { 334 if (MDNode *O = dyn_cast<MDNode>(V)) { 335 if (O->isFunctionLocal() && O->getFunction()) 336 EnumerateFunctionLocalMetadata(O); 337 } else if (isa<Instruction>(V) || isa<Argument>(V)) 338 EnumerateValue(V); 339 } 340 341 // Also, collect all function-local MDNodes for easy access. 342 FunctionLocalMDs.push_back(N); 343 } 344 345 void ValueEnumerator::EnumerateValue(const Value *V) { 346 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 347 assert(!isa<MDNode>(V) && !isa<MDString>(V) && 348 "EnumerateValue doesn't handle Metadata!"); 349 350 // Check to see if it's already in! 351 unsigned &ValueID = ValueMap[V]; 352 if (ValueID) { 353 // Increment use count. 354 Values[ValueID-1].second++; 355 return; 356 } 357 358 // Enumerate the type of this value. 359 EnumerateType(V->getType()); 360 361 if (const Constant *C = dyn_cast<Constant>(V)) { 362 if (isa<GlobalValue>(C)) { 363 // Initializers for globals are handled explicitly elsewhere. 364 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 365 // Do not enumerate the initializers for an array of simple characters. 366 // The initializers just pollute the value table, and we emit the strings 367 // specially. 368 } else if (C->getNumOperands()) { 369 // If a constant has operands, enumerate them. This makes sure that if a 370 // constant has uses (for example an array of const ints), that they are 371 // inserted also. 372 373 // We prefer to enumerate them with values before we enumerate the user 374 // itself. This makes it more likely that we can avoid forward references 375 // in the reader. We know that there can be no cycles in the constants 376 // graph that don't go through a global variable. 377 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 378 I != E; ++I) 379 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 380 EnumerateValue(*I); 381 382 // Finally, add the value. Doing this could make the ValueID reference be 383 // dangling, don't reuse it. 384 Values.push_back(std::make_pair(V, 1U)); 385 ValueMap[V] = Values.size(); 386 return; 387 } 388 } 389 390 // Add the value. 391 Values.push_back(std::make_pair(V, 1U)); 392 ValueID = Values.size(); 393 } 394 395 396 void ValueEnumerator::EnumerateType(const Type *Ty) { 397 unsigned &TypeID = TypeMap[Ty]; 398 399 // We've already seen this type. 400 if (TypeID) 401 return; 402 403 // First time we saw this type, add it. 404 Types.push_back(Ty); 405 TypeID = Types.size(); 406 407 // Enumerate subtypes. 408 for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); 409 I != E; ++I) 410 EnumerateType(*I); 411 } 412 413 // Enumerate the types for the specified value. If the value is a constant, 414 // walk through it, enumerating the types of the constant. 415 void ValueEnumerator::EnumerateOperandType(const Value *V) { 416 EnumerateType(V->getType()); 417 418 if (const Constant *C = dyn_cast<Constant>(V)) { 419 // If this constant is already enumerated, ignore it, we know its type must 420 // be enumerated. 421 if (ValueMap.count(V)) return; 422 423 // This constant may have operands, make sure to enumerate the types in 424 // them. 425 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 426 const Value *Op = C->getOperand(i); 427 428 // Don't enumerate basic blocks here, this happens as operands to 429 // blockaddress. 430 if (isa<BasicBlock>(Op)) continue; 431 432 EnumerateOperandType(Op); 433 } 434 435 if (const MDNode *N = dyn_cast<MDNode>(V)) { 436 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 437 if (Value *Elem = N->getOperand(i)) 438 EnumerateOperandType(Elem); 439 } 440 } else if (isa<MDString>(V) || isa<MDNode>(V)) 441 EnumerateMetadata(V); 442 } 443 444 void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) { 445 if (PAL.isEmpty()) return; // null is always 0. 446 // Do a lookup. 447 unsigned &Entry = AttributeMap[PAL.getRawPointer()]; 448 if (Entry == 0) { 449 // Never saw this before, add it. 450 Attributes.push_back(PAL); 451 Entry = Attributes.size(); 452 } 453 } 454 455 456 void ValueEnumerator::incorporateFunction(const Function &F) { 457 InstructionCount = 0; 458 NumModuleValues = Values.size(); 459 NumModuleMDValues = MDValues.size(); 460 461 // Adding function arguments to the value table. 462 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 463 I != E; ++I) 464 EnumerateValue(I); 465 466 FirstFuncConstantID = Values.size(); 467 468 // Add all function-level constants to the value table. 469 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 470 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) 471 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 472 OI != E; ++OI) { 473 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 474 isa<InlineAsm>(*OI)) 475 EnumerateValue(*OI); 476 } 477 BasicBlocks.push_back(BB); 478 ValueMap[BB] = BasicBlocks.size(); 479 } 480 481 // Optimize the constant layout. 482 OptimizeConstants(FirstFuncConstantID, Values.size()); 483 484 // Add the function's parameter attributes so they are available for use in 485 // the function's instruction. 486 EnumerateAttributes(F.getAttributes()); 487 488 FirstInstID = Values.size(); 489 490 SmallVector<MDNode *, 8> FnLocalMDVector; 491 // Add all of the instructions. 492 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 493 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { 494 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 495 OI != E; ++OI) { 496 if (MDNode *MD = dyn_cast<MDNode>(*OI)) 497 if (MD->isFunctionLocal() && MD->getFunction()) 498 // Enumerate metadata after the instructions they might refer to. 499 FnLocalMDVector.push_back(MD); 500 } 501 502 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; 503 I->getAllMetadataOtherThanDebugLoc(MDs); 504 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 505 MDNode *N = MDs[i].second; 506 if (N->isFunctionLocal() && N->getFunction()) 507 FnLocalMDVector.push_back(N); 508 } 509 510 if (!I->getType()->isVoidTy()) 511 EnumerateValue(I); 512 } 513 } 514 515 // Add all of the function-local metadata. 516 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) 517 EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); 518 } 519 520 void ValueEnumerator::purgeFunction() { 521 /// Remove purged values from the ValueMap. 522 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 523 ValueMap.erase(Values[i].first); 524 for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i) 525 MDValueMap.erase(MDValues[i].first); 526 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 527 ValueMap.erase(BasicBlocks[i]); 528 529 Values.resize(NumModuleValues); 530 MDValues.resize(NumModuleMDValues); 531 BasicBlocks.clear(); 532 FunctionLocalMDs.clear(); 533 } 534 535 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 536 DenseMap<const BasicBlock*, unsigned> &IDMap) { 537 unsigned Counter = 0; 538 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 539 IDMap[BB] = ++Counter; 540 } 541 542 /// getGlobalBasicBlockID - This returns the function-specific ID for the 543 /// specified basic block. This is relatively expensive information, so it 544 /// should only be used by rare constructs such as address-of-label. 545 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 546 unsigned &Idx = GlobalBasicBlockIDs[BB]; 547 if (Idx != 0) 548 return Idx-1; 549 550 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 551 return getGlobalBasicBlockID(BB); 552 } 553 554