1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Use.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/ValueSymbolTable.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 #include <cstddef>
43 #include <iterator>
44 #include <tuple>
45 
46 using namespace llvm;
47 
48 namespace {
49 
50 struct OrderMap {
51   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
52   unsigned LastGlobalConstantID = 0;
53   unsigned LastGlobalValueID = 0;
54 
55   OrderMap() = default;
56 
57   bool isGlobalConstant(unsigned ID) const {
58     return ID <= LastGlobalConstantID;
59   }
60 
61   bool isGlobalValue(unsigned ID) const {
62     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
63   }
64 
65   unsigned size() const { return IDs.size(); }
66   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
67 
68   std::pair<unsigned, bool> lookup(const Value *V) const {
69     return IDs.lookup(V);
70   }
71 
72   void index(const Value *V) {
73     // Explicitly sequence get-size and insert-value operations to avoid UB.
74     unsigned ID = IDs.size() + 1;
75     IDs[V].first = ID;
76   }
77 };
78 
79 } // end anonymous namespace
80 
81 /// Look for a value that might be wrapped as metadata, e.g. a value in a
82 /// metadata operand. Returns nullptr for a non-wrapped input value if
83 /// OnlyWrapped is true, or it returns the input value as-is if false.
84 static const Value *skipMetadataWrapper(const Value *V, bool OnlyWrapped) {
85   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
86     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
87       return VAM->getValue();
88   return OnlyWrapped ? nullptr : V;
89 }
90 
91 static void orderValue(const Value *V, OrderMap &OM) {
92   if (OM.lookup(V).first)
93     return;
94 
95   if (const Constant *C = dyn_cast<Constant>(V)) {
96     if (C->getNumOperands() && !isa<GlobalValue>(C)) {
97       for (const Value *Op : C->operands())
98         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
99           orderValue(Op, OM);
100       if (auto *CE = dyn_cast<ConstantExpr>(C))
101         if (CE->getOpcode() == Instruction::ShuffleVector)
102           orderValue(CE->getShuffleMaskForBitcode(), OM);
103     }
104   }
105 
106   // Note: we cannot cache this lookup above, since inserting into the map
107   // changes the map's size, and thus affects the other IDs.
108   OM.index(V);
109 }
110 
111 static OrderMap orderModule(const Module &M) {
112   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
113   // and ValueEnumerator::incorporateFunction().
114   OrderMap OM;
115 
116   // In the reader, initializers of GlobalValues are set *after* all the
117   // globals have been read.  Rather than awkwardly modeling this behaviour
118   // directly in predictValueUseListOrderImpl(), just assign IDs to
119   // initializers of GlobalValues before GlobalValues themselves to model this
120   // implicitly.
121   for (const GlobalVariable &G : M.globals())
122     if (G.hasInitializer())
123       if (!isa<GlobalValue>(G.getInitializer()))
124         orderValue(G.getInitializer(), OM);
125   for (const GlobalAlias &A : M.aliases())
126     if (!isa<GlobalValue>(A.getAliasee()))
127       orderValue(A.getAliasee(), OM);
128   for (const GlobalIFunc &I : M.ifuncs())
129     if (!isa<GlobalValue>(I.getResolver()))
130       orderValue(I.getResolver(), OM);
131   for (const Function &F : M) {
132     for (const Use &U : F.operands())
133       if (!isa<GlobalValue>(U.get()))
134         orderValue(U.get(), OM);
135   }
136 
137   // As constants used in metadata operands are emitted as module-level
138   // constants, we must order them before other operands. Also, we must order
139   // these before global values, as these will be read before setting the
140   // global values' initializers. The latter matters for constants which have
141   // uses towards other constants that are used as initializers.
142   for (const Function &F : M) {
143     if (F.isDeclaration())
144       continue;
145     for (const BasicBlock &BB : F)
146       for (const Instruction &I : BB)
147         for (const Value *V : I.operands()) {
148           if (const Value *Op = skipMetadataWrapper(V, true)) {
149             if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
150                 isa<InlineAsm>(*Op))
151               orderValue(Op, OM);
152           }
153         }
154   }
155   OM.LastGlobalConstantID = OM.size();
156 
157   // Initializers of GlobalValues are processed in
158   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
159   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
160   // by giving IDs in reverse order.
161   //
162   // Since GlobalValues never reference each other directly (just through
163   // initializers), their relative IDs only matter for determining order of
164   // uses in their initializers.
165   for (const Function &F : M)
166     orderValue(&F, OM);
167   for (const GlobalAlias &A : M.aliases())
168     orderValue(&A, OM);
169   for (const GlobalIFunc &I : M.ifuncs())
170     orderValue(&I, OM);
171   for (const GlobalVariable &G : M.globals())
172     orderValue(&G, OM);
173   OM.LastGlobalValueID = OM.size();
174 
175   for (const Function &F : M) {
176     if (F.isDeclaration())
177       continue;
178     // Here we need to match the union of ValueEnumerator::incorporateFunction()
179     // and WriteFunction().  Basic blocks are implicitly declared before
180     // anything else (by declaring their size).
181     for (const BasicBlock &BB : F)
182       orderValue(&BB, OM);
183     for (const Argument &A : F.args())
184       orderValue(&A, OM);
185     for (const BasicBlock &BB : F)
186       for (const Instruction &I : BB) {
187         for (const Value *Op : I.operands())
188           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
189               isa<InlineAsm>(*Op))
190             orderValue(Op, OM);
191         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
192           orderValue(SVI->getShuffleMaskForBitcode(), OM);
193       }
194     for (const BasicBlock &BB : F)
195       for (const Instruction &I : BB)
196         orderValue(&I, OM);
197   }
198   return OM;
199 }
200 
201 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
202                                          unsigned ID, const OrderMap &OM,
203                                          UseListOrderStack &Stack) {
204   // Predict use-list order for this one.
205   using Entry = std::pair<const Use *, unsigned>;
206   SmallVector<Entry, 64> List;
207   for (const Use &U : V->uses())
208     // Check if this user will be serialized.
209     if (OM.lookup(U.getUser()).first)
210       List.push_back(std::make_pair(&U, List.size()));
211 
212   if (List.size() < 2)
213     // We may have lost some users.
214     return;
215 
216   bool IsGlobalValue = OM.isGlobalValue(ID);
217   llvm::sort(List, [&](const Entry &L, const Entry &R) {
218     const Use *LU = L.first;
219     const Use *RU = R.first;
220     if (LU == RU)
221       return false;
222 
223     auto LID = OM.lookup(LU->getUser()).first;
224     auto RID = OM.lookup(RU->getUser()).first;
225 
226     // Global values are processed in reverse order.
227     //
228     // Moreover, initializers of GlobalValues are set *after* all the globals
229     // have been read (despite having earlier IDs).  Rather than awkwardly
230     // modeling this behaviour here, orderModule() has assigned IDs to
231     // initializers of GlobalValues before GlobalValues themselves.
232     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
233       return LID < RID;
234 
235     // If ID is 4, then expect: 7 6 5 1 2 3.
236     if (LID < RID) {
237       if (RID <= ID)
238         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
239           return true;
240       return false;
241     }
242     if (RID < LID) {
243       if (LID <= ID)
244         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
245           return false;
246       return true;
247     }
248 
249     // LID and RID are equal, so we have different operands of the same user.
250     // Assume operands are added in order for all instructions.
251     if (LID <= ID)
252       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
253         return LU->getOperandNo() < RU->getOperandNo();
254     return LU->getOperandNo() > RU->getOperandNo();
255   });
256 
257   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
258         return L.second < R.second;
259       }))
260     // Order is already correct.
261     return;
262 
263   // Store the shuffle.
264   Stack.emplace_back(V, F, List.size());
265   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
266   for (size_t I = 0, E = List.size(); I != E; ++I)
267     Stack.back().Shuffle[I] = List[I].second;
268 }
269 
270 static void predictValueUseListOrder(const Value *V, const Function *F,
271                                      OrderMap &OM, UseListOrderStack &Stack) {
272   auto &IDPair = OM[V];
273   assert(IDPair.first && "Unmapped value");
274   if (IDPair.second)
275     // Already predicted.
276     return;
277 
278   // Do the actual prediction.
279   IDPair.second = true;
280   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
281     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
282 
283   // Recursive descent into constants.
284   if (const Constant *C = dyn_cast<Constant>(V)) {
285     if (C->getNumOperands()) { // Visit GlobalValues.
286       for (const Value *Op : C->operands())
287         if (isa<Constant>(Op)) // Visit GlobalValues.
288           predictValueUseListOrder(Op, F, OM, Stack);
289       if (auto *CE = dyn_cast<ConstantExpr>(C))
290         if (CE->getOpcode() == Instruction::ShuffleVector)
291           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
292                                    Stack);
293     }
294   }
295 }
296 
297 static UseListOrderStack predictUseListOrder(const Module &M) {
298   OrderMap OM = orderModule(M);
299 
300   // Use-list orders need to be serialized after all the users have been added
301   // to a value, or else the shuffles will be incomplete.  Store them per
302   // function in a stack.
303   //
304   // Aside from function order, the order of values doesn't matter much here.
305   UseListOrderStack Stack;
306 
307   // We want to visit the functions backward now so we can list function-local
308   // constants in the last Function they're used in.  Module-level constants
309   // have already been visited above.
310   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
311     const Function &F = *I;
312     if (F.isDeclaration())
313       continue;
314     for (const BasicBlock &BB : F)
315       predictValueUseListOrder(&BB, &F, OM, Stack);
316     for (const Argument &A : F.args())
317       predictValueUseListOrder(&A, &F, OM, Stack);
318     for (const BasicBlock &BB : F)
319       for (const Instruction &I : BB) {
320         for (const Value *Op : I.operands())
321           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
322             predictValueUseListOrder(Op, &F, OM, Stack);
323         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
324           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
325                                    Stack);
326       }
327     for (const BasicBlock &BB : F)
328       for (const Instruction &I : BB)
329         predictValueUseListOrder(&I, &F, OM, Stack);
330   }
331 
332   // Visit globals last, since the module-level use-list block will be seen
333   // before the function bodies are processed.
334   for (const GlobalVariable &G : M.globals())
335     predictValueUseListOrder(&G, nullptr, OM, Stack);
336   for (const Function &F : M)
337     predictValueUseListOrder(&F, nullptr, OM, Stack);
338   for (const GlobalAlias &A : M.aliases())
339     predictValueUseListOrder(&A, nullptr, OM, Stack);
340   for (const GlobalIFunc &I : M.ifuncs())
341     predictValueUseListOrder(&I, nullptr, OM, Stack);
342   for (const GlobalVariable &G : M.globals())
343     if (G.hasInitializer())
344       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
345   for (const GlobalAlias &A : M.aliases())
346     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
347   for (const GlobalIFunc &I : M.ifuncs())
348     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
349   for (const Function &F : M) {
350     for (const Use &U : F.operands())
351       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
352   }
353 
354   return Stack;
355 }
356 
357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
358   return V.first->getType()->isIntOrIntVectorTy();
359 }
360 
361 ValueEnumerator::ValueEnumerator(const Module &M,
362                                  bool ShouldPreserveUseListOrder)
363     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
364   if (ShouldPreserveUseListOrder)
365     UseListOrders = predictUseListOrder(M);
366 
367   // Enumerate the global variables.
368   for (const GlobalVariable &GV : M.globals())
369     EnumerateValue(&GV);
370 
371   // Enumerate the functions.
372   for (const Function & F : M) {
373     EnumerateValue(&F);
374     EnumerateAttributes(F.getAttributes());
375   }
376 
377   // Enumerate the aliases.
378   for (const GlobalAlias &GA : M.aliases())
379     EnumerateValue(&GA);
380 
381   // Enumerate the ifuncs.
382   for (const GlobalIFunc &GIF : M.ifuncs())
383     EnumerateValue(&GIF);
384 
385   // Remember what is the cutoff between globalvalue's and other constants.
386   unsigned FirstConstant = Values.size();
387 
388   // Enumerate the global variable initializers and attributes.
389   for (const GlobalVariable &GV : M.globals()) {
390     if (GV.hasInitializer())
391       EnumerateValue(GV.getInitializer());
392     if (GV.hasAttributes())
393       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
394   }
395 
396   // Enumerate the aliasees.
397   for (const GlobalAlias &GA : M.aliases())
398     EnumerateValue(GA.getAliasee());
399 
400   // Enumerate the ifunc resolvers.
401   for (const GlobalIFunc &GIF : M.ifuncs())
402     EnumerateValue(GIF.getResolver());
403 
404   // Enumerate any optional Function data.
405   for (const Function &F : M)
406     for (const Use &U : F.operands())
407       EnumerateValue(U.get());
408 
409   // Enumerate the metadata type.
410   //
411   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
412   // only encodes the metadata type when it's used as a value.
413   EnumerateType(Type::getMetadataTy(M.getContext()));
414 
415   // Insert constants and metadata that are named at module level into the slot
416   // pool so that the module symbol table can refer to them...
417   EnumerateValueSymbolTable(M.getValueSymbolTable());
418   EnumerateNamedMetadata(M);
419 
420   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
421   for (const GlobalVariable &GV : M.globals()) {
422     MDs.clear();
423     GV.getAllMetadata(MDs);
424     for (const auto &I : MDs)
425       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
426       // to write metadata to the global variable's own metadata block
427       // (PR28134).
428       EnumerateMetadata(nullptr, I.second);
429   }
430 
431   // Enumerate types used by function bodies and argument lists.
432   for (const Function &F : M) {
433     for (const Argument &A : F.args())
434       EnumerateType(A.getType());
435 
436     // Enumerate metadata attached to this function.
437     MDs.clear();
438     F.getAllMetadata(MDs);
439     for (const auto &I : MDs)
440       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
441 
442     for (const BasicBlock &BB : F)
443       for (const Instruction &I : BB) {
444         for (const Use &Op : I.operands()) {
445           auto *MD = dyn_cast<MetadataAsValue>(&Op);
446           if (!MD) {
447             EnumerateOperandType(Op);
448             continue;
449           }
450 
451           // Local metadata is enumerated during function-incorporation.
452           if (isa<LocalAsMetadata>(MD->getMetadata()) ||
453               isa<DIArgList>(MD->getMetadata()))
454             continue;
455 
456           EnumerateMetadata(&F, MD->getMetadata());
457         }
458         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
459           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
460         EnumerateType(I.getType());
461         if (const auto *Call = dyn_cast<CallBase>(&I))
462           EnumerateAttributes(Call->getAttributes());
463 
464         // Enumerate metadata attached with this instruction.
465         MDs.clear();
466         I.getAllMetadataOtherThanDebugLoc(MDs);
467         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
468           EnumerateMetadata(&F, MDs[i].second);
469 
470         // Don't enumerate the location directly -- it has a special record
471         // type -- but enumerate its operands.
472         if (DILocation *L = I.getDebugLoc())
473           for (const Metadata *Op : L->operands())
474             EnumerateMetadata(&F, Op);
475       }
476   }
477 
478   // Optimize constant ordering.
479   OptimizeConstants(FirstConstant, Values.size());
480 
481   // Organize metadata ordering.
482   organizeMetadata();
483 }
484 
485 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
486   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
487   assert(I != InstructionMap.end() && "Instruction is not mapped!");
488   return I->second;
489 }
490 
491 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
492   unsigned ComdatID = Comdats.idFor(C);
493   assert(ComdatID && "Comdat not found!");
494   return ComdatID;
495 }
496 
497 void ValueEnumerator::setInstructionID(const Instruction *I) {
498   InstructionMap[I] = InstructionCount++;
499 }
500 
501 unsigned ValueEnumerator::getValueID(const Value *V) const {
502   if (auto *MD = dyn_cast<MetadataAsValue>(V))
503     return getMetadataID(MD->getMetadata());
504 
505   ValueMapType::const_iterator I = ValueMap.find(V);
506   assert(I != ValueMap.end() && "Value not in slotcalculator!");
507   return I->second-1;
508 }
509 
510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
511 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
512   print(dbgs(), ValueMap, "Default");
513   dbgs() << '\n';
514   print(dbgs(), MetadataMap, "MetaData");
515   dbgs() << '\n';
516 }
517 #endif
518 
519 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
520                             const char *Name) const {
521   OS << "Map Name: " << Name << "\n";
522   OS << "Size: " << Map.size() << "\n";
523   for (ValueMapType::const_iterator I = Map.begin(),
524          E = Map.end(); I != E; ++I) {
525     const Value *V = I->first;
526     if (V->hasName())
527       OS << "Value: " << V->getName();
528     else
529       OS << "Value: [null]\n";
530     V->print(errs());
531     errs() << '\n';
532 
533     OS << " Uses(" << V->getNumUses() << "):";
534     for (const Use &U : V->uses()) {
535       if (&U != &*V->use_begin())
536         OS << ",";
537       if(U->hasName())
538         OS << " " << U->getName();
539       else
540         OS << " [null]";
541 
542     }
543     OS <<  "\n\n";
544   }
545 }
546 
547 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
548                             const char *Name) const {
549   OS << "Map Name: " << Name << "\n";
550   OS << "Size: " << Map.size() << "\n";
551   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
552     const Metadata *MD = I->first;
553     OS << "Metadata: slot = " << I->second.ID << "\n";
554     OS << "Metadata: function = " << I->second.F << "\n";
555     MD->print(OS);
556     OS << "\n";
557   }
558 }
559 
560 /// OptimizeConstants - Reorder constant pool for denser encoding.
561 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
562   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
563 
564   if (ShouldPreserveUseListOrder)
565     // Optimizing constants makes the use-list order difficult to predict.
566     // Disable it for now when trying to preserve the order.
567     return;
568 
569   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
570                    [this](const std::pair<const Value *, unsigned> &LHS,
571                           const std::pair<const Value *, unsigned> &RHS) {
572     // Sort by plane.
573     if (LHS.first->getType() != RHS.first->getType())
574       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
575     // Then by frequency.
576     return LHS.second > RHS.second;
577   });
578 
579   // Ensure that integer and vector of integer constants are at the start of the
580   // constant pool.  This is important so that GEP structure indices come before
581   // gep constant exprs.
582   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
583                         isIntOrIntVectorValue);
584 
585   // Rebuild the modified portion of ValueMap.
586   for (; CstStart != CstEnd; ++CstStart)
587     ValueMap[Values[CstStart].first] = CstStart+1;
588 }
589 
590 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
591 /// table into the values table.
592 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
593   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
594        VI != VE; ++VI)
595     EnumerateValue(VI->getValue());
596 }
597 
598 /// Insert all of the values referenced by named metadata in the specified
599 /// module.
600 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
601   for (const auto &I : M.named_metadata())
602     EnumerateNamedMDNode(&I);
603 }
604 
605 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
606   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
607     EnumerateMetadata(nullptr, MD->getOperand(i));
608 }
609 
610 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
611   return F ? getValueID(F) + 1 : 0;
612 }
613 
614 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
615   EnumerateMetadata(getMetadataFunctionID(F), MD);
616 }
617 
618 void ValueEnumerator::EnumerateFunctionLocalMetadata(
619     const Function &F, const LocalAsMetadata *Local) {
620   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
621 }
622 
623 void ValueEnumerator::dropFunctionFromMetadata(
624     MetadataMapType::value_type &FirstMD) {
625   SmallVector<const MDNode *, 64> Worklist;
626   auto push = [&Worklist](MetadataMapType::value_type &MD) {
627     auto &Entry = MD.second;
628 
629     // Nothing to do if this metadata isn't tagged.
630     if (!Entry.F)
631       return;
632 
633     // Drop the function tag.
634     Entry.F = 0;
635 
636     // If this is has an ID and is an MDNode, then its operands have entries as
637     // well.  We need to drop the function from them too.
638     if (Entry.ID)
639       if (auto *N = dyn_cast<MDNode>(MD.first))
640         Worklist.push_back(N);
641   };
642   push(FirstMD);
643   while (!Worklist.empty())
644     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
645       if (!Op)
646         continue;
647       auto MD = MetadataMap.find(Op);
648       if (MD != MetadataMap.end())
649         push(*MD);
650     }
651 }
652 
653 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
654   // It's vital for reader efficiency that uniqued subgraphs are done in
655   // post-order; it's expensive when their operands have forward references.
656   // If a distinct node is referenced from a uniqued node, it'll be delayed
657   // until the uniqued subgraph has been completely traversed.
658   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
659 
660   // Start by enumerating MD, and then work through its transitive operands in
661   // post-order.  This requires a depth-first search.
662   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
663   if (const MDNode *N = enumerateMetadataImpl(F, MD))
664     Worklist.push_back(std::make_pair(N, N->op_begin()));
665 
666   while (!Worklist.empty()) {
667     const MDNode *N = Worklist.back().first;
668 
669     // Enumerate operands until we hit a new node.  We need to traverse these
670     // nodes' operands before visiting the rest of N's operands.
671     MDNode::op_iterator I = std::find_if(
672         Worklist.back().second, N->op_end(),
673         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
674     if (I != N->op_end()) {
675       auto *Op = cast<MDNode>(*I);
676       Worklist.back().second = ++I;
677 
678       // Delay traversing Op if it's a distinct node and N is uniqued.
679       if (Op->isDistinct() && !N->isDistinct())
680         DelayedDistinctNodes.push_back(Op);
681       else
682         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
683       continue;
684     }
685 
686     // All the operands have been visited.  Now assign an ID.
687     Worklist.pop_back();
688     MDs.push_back(N);
689     MetadataMap[N].ID = MDs.size();
690 
691     // Flush out any delayed distinct nodes; these are all the distinct nodes
692     // that are leaves in last uniqued subgraph.
693     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
694       for (const MDNode *N : DelayedDistinctNodes)
695         Worklist.push_back(std::make_pair(N, N->op_begin()));
696       DelayedDistinctNodes.clear();
697     }
698   }
699 }
700 
701 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
702   if (!MD)
703     return nullptr;
704 
705   assert(
706       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
707       "Invalid metadata kind");
708 
709   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
710   MDIndex &Entry = Insertion.first->second;
711   if (!Insertion.second) {
712     // Already mapped.  If F doesn't match the function tag, drop it.
713     if (Entry.hasDifferentFunction(F))
714       dropFunctionFromMetadata(*Insertion.first);
715     return nullptr;
716   }
717 
718   // Don't assign IDs to metadata nodes.
719   if (auto *N = dyn_cast<MDNode>(MD))
720     return N;
721 
722   // Save the metadata.
723   MDs.push_back(MD);
724   Entry.ID = MDs.size();
725 
726   // Enumerate the constant, if any.
727   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
728     EnumerateValue(C->getValue());
729 
730   return nullptr;
731 }
732 
733 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
734 /// information reachable from the metadata.
735 void ValueEnumerator::EnumerateFunctionLocalMetadata(
736     unsigned F, const LocalAsMetadata *Local) {
737   assert(F && "Expected a function");
738 
739   // Check to see if it's already in!
740   MDIndex &Index = MetadataMap[Local];
741   if (Index.ID) {
742     assert(Index.F == F && "Expected the same function");
743     return;
744   }
745 
746   MDs.push_back(Local);
747   Index.F = F;
748   Index.ID = MDs.size();
749 
750   EnumerateValue(Local->getValue());
751 }
752 
753 static unsigned getMetadataTypeOrder(const Metadata *MD) {
754   // Strings are emitted in bulk and must come first.
755   if (isa<MDString>(MD))
756     return 0;
757 
758   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
759   // to the front since we can detect it.
760   auto *N = dyn_cast<MDNode>(MD);
761   if (!N)
762     return 1;
763 
764   // The reader is fast forward references for distinct node operands, but slow
765   // when uniqued operands are unresolved.
766   return N->isDistinct() ? 2 : 3;
767 }
768 
769 void ValueEnumerator::organizeMetadata() {
770   assert(MetadataMap.size() == MDs.size() &&
771          "Metadata map and vector out of sync");
772 
773   if (MDs.empty())
774     return;
775 
776   // Copy out the index information from MetadataMap in order to choose a new
777   // order.
778   SmallVector<MDIndex, 64> Order;
779   Order.reserve(MetadataMap.size());
780   for (const Metadata *MD : MDs)
781     Order.push_back(MetadataMap.lookup(MD));
782 
783   // Partition:
784   //   - by function, then
785   //   - by isa<MDString>
786   // and then sort by the original/current ID.  Since the IDs are guaranteed to
787   // be unique, the result of std::sort will be deterministic.  There's no need
788   // for std::stable_sort.
789   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
790     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
791            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
792   });
793 
794   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
795   // and fix up MetadataMap.
796   std::vector<const Metadata *> OldMDs;
797   MDs.swap(OldMDs);
798   MDs.reserve(OldMDs.size());
799   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
800     auto *MD = Order[I].get(OldMDs);
801     MDs.push_back(MD);
802     MetadataMap[MD].ID = I + 1;
803     if (isa<MDString>(MD))
804       ++NumMDStrings;
805   }
806 
807   // Return early if there's nothing for the functions.
808   if (MDs.size() == Order.size())
809     return;
810 
811   // Build the function metadata ranges.
812   MDRange R;
813   FunctionMDs.reserve(OldMDs.size());
814   unsigned PrevF = 0;
815   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
816        ++I) {
817     unsigned F = Order[I].F;
818     if (!PrevF) {
819       PrevF = F;
820     } else if (PrevF != F) {
821       R.Last = FunctionMDs.size();
822       std::swap(R, FunctionMDInfo[PrevF]);
823       R.First = FunctionMDs.size();
824 
825       ID = MDs.size();
826       PrevF = F;
827     }
828 
829     auto *MD = Order[I].get(OldMDs);
830     FunctionMDs.push_back(MD);
831     MetadataMap[MD].ID = ++ID;
832     if (isa<MDString>(MD))
833       ++R.NumStrings;
834   }
835   R.Last = FunctionMDs.size();
836   FunctionMDInfo[PrevF] = R;
837 }
838 
839 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
840   NumModuleMDs = MDs.size();
841 
842   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
843   NumMDStrings = R.NumStrings;
844   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
845              FunctionMDs.begin() + R.Last);
846 }
847 
848 void ValueEnumerator::EnumerateValue(const Value *V) {
849   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
850   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
851 
852   // Check to see if it's already in!
853   unsigned &ValueID = ValueMap[V];
854   if (ValueID) {
855     // Increment use count.
856     Values[ValueID-1].second++;
857     return;
858   }
859 
860   if (auto *GO = dyn_cast<GlobalObject>(V))
861     if (const Comdat *C = GO->getComdat())
862       Comdats.insert(C);
863 
864   // Enumerate the type of this value.
865   EnumerateType(V->getType());
866 
867   if (const Constant *C = dyn_cast<Constant>(V)) {
868     if (isa<GlobalValue>(C)) {
869       // Initializers for globals are handled explicitly elsewhere.
870     } else if (C->getNumOperands()) {
871       // If a constant has operands, enumerate them.  This makes sure that if a
872       // constant has uses (for example an array of const ints), that they are
873       // inserted also.
874 
875       // We prefer to enumerate them with values before we enumerate the user
876       // itself.  This makes it more likely that we can avoid forward references
877       // in the reader.  We know that there can be no cycles in the constants
878       // graph that don't go through a global variable.
879       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
880            I != E; ++I)
881         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
882           EnumerateValue(*I);
883       if (auto *CE = dyn_cast<ConstantExpr>(C))
884         if (CE->getOpcode() == Instruction::ShuffleVector)
885           EnumerateValue(CE->getShuffleMaskForBitcode());
886 
887       // Finally, add the value.  Doing this could make the ValueID reference be
888       // dangling, don't reuse it.
889       Values.push_back(std::make_pair(V, 1U));
890       ValueMap[V] = Values.size();
891       return;
892     }
893   }
894 
895   // Add the value.
896   Values.push_back(std::make_pair(V, 1U));
897   ValueID = Values.size();
898 }
899 
900 
901 void ValueEnumerator::EnumerateType(Type *Ty) {
902   unsigned *TypeID = &TypeMap[Ty];
903 
904   // We've already seen this type.
905   if (*TypeID)
906     return;
907 
908   // If it is a non-anonymous struct, mark the type as being visited so that we
909   // don't recursively visit it.  This is safe because we allow forward
910   // references of these in the bitcode reader.
911   if (StructType *STy = dyn_cast<StructType>(Ty))
912     if (!STy->isLiteral())
913       *TypeID = ~0U;
914 
915   // Enumerate all of the subtypes before we enumerate this type.  This ensures
916   // that the type will be enumerated in an order that can be directly built.
917   for (Type *SubTy : Ty->subtypes())
918     EnumerateType(SubTy);
919 
920   // Refresh the TypeID pointer in case the table rehashed.
921   TypeID = &TypeMap[Ty];
922 
923   // Check to see if we got the pointer another way.  This can happen when
924   // enumerating recursive types that hit the base case deeper than they start.
925   //
926   // If this is actually a struct that we are treating as forward ref'able,
927   // then emit the definition now that all of its contents are available.
928   if (*TypeID && *TypeID != ~0U)
929     return;
930 
931   // Add this type now that its contents are all happily enumerated.
932   Types.push_back(Ty);
933 
934   *TypeID = Types.size();
935 }
936 
937 // Enumerate the types for the specified value.  If the value is a constant,
938 // walk through it, enumerating the types of the constant.
939 void ValueEnumerator::EnumerateOperandType(const Value *V) {
940   EnumerateType(V->getType());
941 
942   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
943 
944   const Constant *C = dyn_cast<Constant>(V);
945   if (!C)
946     return;
947 
948   // If this constant is already enumerated, ignore it, we know its type must
949   // be enumerated.
950   if (ValueMap.count(C))
951     return;
952 
953   // This constant may have operands, make sure to enumerate the types in
954   // them.
955   for (const Value *Op : C->operands()) {
956     // Don't enumerate basic blocks here, this happens as operands to
957     // blockaddress.
958     if (isa<BasicBlock>(Op))
959       continue;
960 
961     EnumerateOperandType(Op);
962   }
963   if (auto *CE = dyn_cast<ConstantExpr>(C))
964     if (CE->getOpcode() == Instruction::ShuffleVector)
965       EnumerateOperandType(CE->getShuffleMaskForBitcode());
966 }
967 
968 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
969   if (PAL.isEmpty()) return;  // null is always 0.
970 
971   // Do a lookup.
972   unsigned &Entry = AttributeListMap[PAL];
973   if (Entry == 0) {
974     // Never saw this before, add it.
975     AttributeLists.push_back(PAL);
976     Entry = AttributeLists.size();
977   }
978 
979   // Do lookups for all attribute groups.
980   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
981     AttributeSet AS = PAL.getAttributes(i);
982     if (!AS.hasAttributes())
983       continue;
984     IndexAndAttrSet Pair = {i, AS};
985     unsigned &Entry = AttributeGroupMap[Pair];
986     if (Entry == 0) {
987       AttributeGroups.push_back(Pair);
988       Entry = AttributeGroups.size();
989     }
990   }
991 }
992 
993 void ValueEnumerator::incorporateFunction(const Function &F) {
994   InstructionCount = 0;
995   NumModuleValues = Values.size();
996 
997   // Add global metadata to the function block.  This doesn't include
998   // LocalAsMetadata.
999   incorporateFunctionMetadata(F);
1000 
1001   // Adding function arguments to the value table.
1002   for (const auto &I : F.args()) {
1003     EnumerateValue(&I);
1004     if (I.hasAttribute(Attribute::ByVal))
1005       EnumerateType(I.getParamByValType());
1006     else if (I.hasAttribute(Attribute::StructRet))
1007       EnumerateType(I.getParamStructRetType());
1008     else if (I.hasAttribute(Attribute::ByRef))
1009       EnumerateType(I.getParamByRefType());
1010   }
1011   FirstFuncConstantID = Values.size();
1012 
1013   // Add all function-level constants to the value table.
1014   for (const BasicBlock &BB : F) {
1015     for (const Instruction &I : BB) {
1016       for (const Use &OI : I.operands()) {
1017         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1018           EnumerateValue(OI);
1019       }
1020       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1021         EnumerateValue(SVI->getShuffleMaskForBitcode());
1022     }
1023     BasicBlocks.push_back(&BB);
1024     ValueMap[&BB] = BasicBlocks.size();
1025   }
1026 
1027   // Optimize the constant layout.
1028   OptimizeConstants(FirstFuncConstantID, Values.size());
1029 
1030   // Add the function's parameter attributes so they are available for use in
1031   // the function's instruction.
1032   EnumerateAttributes(F.getAttributes());
1033 
1034   FirstInstID = Values.size();
1035 
1036   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1037   SmallVector<DIArgList *, 8> ArgListMDVector;
1038   // Add all of the instructions.
1039   for (const BasicBlock &BB : F) {
1040     for (const Instruction &I : BB) {
1041       for (const Use &OI : I.operands()) {
1042         if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1043           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1044             // Enumerate metadata after the instructions they might refer to.
1045             FnLocalMDVector.push_back(Local);
1046           } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1047             ArgListMDVector.push_back(ArgList);
1048             for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1049               if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1050                 // Enumerate metadata after the instructions they might refer
1051                 // to.
1052                 FnLocalMDVector.push_back(Local);
1053               }
1054             }
1055           }
1056         }
1057       }
1058 
1059       if (!I.getType()->isVoidTy())
1060         EnumerateValue(&I);
1061     }
1062   }
1063 
1064   // Add all of the function-local metadata.
1065   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1066     // At this point, every local values have been incorporated, we shouldn't
1067     // have a metadata operand that references a value that hasn't been seen.
1068     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1069            "Missing value for metadata operand");
1070     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1071   }
1072   // DIArgList entries must come after function-local metadata, as it is not
1073   // possible to forward-reference them.
1074   for (const DIArgList *ArgList : ArgListMDVector)
1075     EnumerateMetadata(&F, ArgList);
1076 }
1077 
1078 void ValueEnumerator::purgeFunction() {
1079   /// Remove purged values from the ValueMap.
1080   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1081     ValueMap.erase(Values[i].first);
1082   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1083     MetadataMap.erase(MDs[i]);
1084   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1085     ValueMap.erase(BasicBlocks[i]);
1086 
1087   Values.resize(NumModuleValues);
1088   MDs.resize(NumModuleMDs);
1089   BasicBlocks.clear();
1090   NumMDStrings = 0;
1091 }
1092 
1093 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1094                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1095   unsigned Counter = 0;
1096   for (const BasicBlock &BB : *F)
1097     IDMap[&BB] = ++Counter;
1098 }
1099 
1100 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1101 /// specified basic block.  This is relatively expensive information, so it
1102 /// should only be used by rare constructs such as address-of-label.
1103 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1104   unsigned &Idx = GlobalBasicBlockIDs[BB];
1105   if (Idx != 0)
1106     return Idx-1;
1107 
1108   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1109   return getGlobalBasicBlockID(BB);
1110 }
1111 
1112 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1113   return Log2_32_Ceil(getTypes().size() + 1);
1114 }
1115