1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ValueEnumerator.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/Config/llvm-config.h" 16 #include "llvm/IR/Argument.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GlobalAlias.h" 23 #include "llvm/IR/GlobalIFunc.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Use.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/IR/ValueSymbolTable.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <algorithm> 42 #include <cstddef> 43 #include <iterator> 44 #include <tuple> 45 46 using namespace llvm; 47 48 namespace { 49 50 struct OrderMap { 51 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 52 unsigned LastGlobalConstantID = 0; 53 unsigned LastGlobalValueID = 0; 54 55 OrderMap() = default; 56 57 bool isGlobalConstant(unsigned ID) const { 58 return ID <= LastGlobalConstantID; 59 } 60 61 bool isGlobalValue(unsigned ID) const { 62 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 63 } 64 65 unsigned size() const { return IDs.size(); } 66 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 67 68 std::pair<unsigned, bool> lookup(const Value *V) const { 69 return IDs.lookup(V); 70 } 71 72 void index(const Value *V) { 73 // Explicitly sequence get-size and insert-value operations to avoid UB. 74 unsigned ID = IDs.size() + 1; 75 IDs[V].first = ID; 76 } 77 }; 78 79 } // end anonymous namespace 80 81 /// Look for a value that might be wrapped as metadata, e.g. a value in a 82 /// metadata operand. Returns nullptr for a non-wrapped input value if 83 /// OnlyWrapped is true, or it returns the input value as-is if false. 84 static const Value *skipMetadataWrapper(const Value *V, bool OnlyWrapped) { 85 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) 86 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata())) 87 return VAM->getValue(); 88 return OnlyWrapped ? nullptr : V; 89 } 90 91 static void orderValue(const Value *V, OrderMap &OM) { 92 if (OM.lookup(V).first) 93 return; 94 95 if (const Constant *C = dyn_cast<Constant>(V)) { 96 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 97 for (const Value *Op : C->operands()) 98 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 99 orderValue(Op, OM); 100 if (auto *CE = dyn_cast<ConstantExpr>(C)) 101 if (CE->getOpcode() == Instruction::ShuffleVector) 102 orderValue(CE->getShuffleMaskForBitcode(), OM); 103 } 104 } 105 106 // Note: we cannot cache this lookup above, since inserting into the map 107 // changes the map's size, and thus affects the other IDs. 108 OM.index(V); 109 } 110 111 static OrderMap orderModule(const Module &M) { 112 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 113 // and ValueEnumerator::incorporateFunction(). 114 OrderMap OM; 115 116 // In the reader, initializers of GlobalValues are set *after* all the 117 // globals have been read. Rather than awkwardly modeling this behaviour 118 // directly in predictValueUseListOrderImpl(), just assign IDs to 119 // initializers of GlobalValues before GlobalValues themselves to model this 120 // implicitly. 121 for (const GlobalVariable &G : M.globals()) 122 if (G.hasInitializer()) 123 if (!isa<GlobalValue>(G.getInitializer())) 124 orderValue(G.getInitializer(), OM); 125 for (const GlobalAlias &A : M.aliases()) 126 if (!isa<GlobalValue>(A.getAliasee())) 127 orderValue(A.getAliasee(), OM); 128 for (const GlobalIFunc &I : M.ifuncs()) 129 if (!isa<GlobalValue>(I.getResolver())) 130 orderValue(I.getResolver(), OM); 131 for (const Function &F : M) { 132 for (const Use &U : F.operands()) 133 if (!isa<GlobalValue>(U.get())) 134 orderValue(U.get(), OM); 135 } 136 137 // As constants used in metadata operands are emitted as module-level 138 // constants, we must order them before other operands. Also, we must order 139 // these before global values, as these will be read before setting the 140 // global values' initializers. The latter matters for constants which have 141 // uses towards other constants that are used as initializers. 142 for (const Function &F : M) { 143 if (F.isDeclaration()) 144 continue; 145 for (const BasicBlock &BB : F) 146 for (const Instruction &I : BB) 147 for (const Value *V : I.operands()) { 148 if (const Value *Op = skipMetadataWrapper(V, true)) { 149 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 150 isa<InlineAsm>(*Op)) 151 orderValue(Op, OM); 152 } 153 } 154 } 155 OM.LastGlobalConstantID = OM.size(); 156 157 // Initializers of GlobalValues are processed in 158 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 159 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 160 // by giving IDs in reverse order. 161 // 162 // Since GlobalValues never reference each other directly (just through 163 // initializers), their relative IDs only matter for determining order of 164 // uses in their initializers. 165 for (const Function &F : M) 166 orderValue(&F, OM); 167 for (const GlobalAlias &A : M.aliases()) 168 orderValue(&A, OM); 169 for (const GlobalIFunc &I : M.ifuncs()) 170 orderValue(&I, OM); 171 for (const GlobalVariable &G : M.globals()) 172 orderValue(&G, OM); 173 OM.LastGlobalValueID = OM.size(); 174 175 for (const Function &F : M) { 176 if (F.isDeclaration()) 177 continue; 178 // Here we need to match the union of ValueEnumerator::incorporateFunction() 179 // and WriteFunction(). Basic blocks are implicitly declared before 180 // anything else (by declaring their size). 181 for (const BasicBlock &BB : F) 182 orderValue(&BB, OM); 183 for (const Argument &A : F.args()) 184 orderValue(&A, OM); 185 for (const BasicBlock &BB : F) 186 for (const Instruction &I : BB) { 187 for (const Value *Op : I.operands()) 188 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 189 isa<InlineAsm>(*Op)) 190 orderValue(Op, OM); 191 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 192 orderValue(SVI->getShuffleMaskForBitcode(), OM); 193 } 194 for (const BasicBlock &BB : F) 195 for (const Instruction &I : BB) 196 orderValue(&I, OM); 197 } 198 return OM; 199 } 200 201 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 202 unsigned ID, const OrderMap &OM, 203 UseListOrderStack &Stack) { 204 // Predict use-list order for this one. 205 using Entry = std::pair<const Use *, unsigned>; 206 SmallVector<Entry, 64> List; 207 for (const Use &U : V->uses()) 208 // Check if this user will be serialized. 209 if (OM.lookup(U.getUser()).first) 210 List.push_back(std::make_pair(&U, List.size())); 211 212 if (List.size() < 2) 213 // We may have lost some users. 214 return; 215 216 bool IsGlobalValue = OM.isGlobalValue(ID); 217 llvm::sort(List, [&](const Entry &L, const Entry &R) { 218 const Use *LU = L.first; 219 const Use *RU = R.first; 220 if (LU == RU) 221 return false; 222 223 auto LID = OM.lookup(LU->getUser()).first; 224 auto RID = OM.lookup(RU->getUser()).first; 225 226 // Global values are processed in reverse order. 227 // 228 // Moreover, initializers of GlobalValues are set *after* all the globals 229 // have been read (despite having earlier IDs). Rather than awkwardly 230 // modeling this behaviour here, orderModule() has assigned IDs to 231 // initializers of GlobalValues before GlobalValues themselves. 232 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 233 return LID < RID; 234 235 // If ID is 4, then expect: 7 6 5 1 2 3. 236 if (LID < RID) { 237 if (RID <= ID) 238 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 239 return true; 240 return false; 241 } 242 if (RID < LID) { 243 if (LID <= ID) 244 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 245 return false; 246 return true; 247 } 248 249 // LID and RID are equal, so we have different operands of the same user. 250 // Assume operands are added in order for all instructions. 251 if (LID <= ID) 252 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 253 return LU->getOperandNo() < RU->getOperandNo(); 254 return LU->getOperandNo() > RU->getOperandNo(); 255 }); 256 257 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 258 return L.second < R.second; 259 })) 260 // Order is already correct. 261 return; 262 263 // Store the shuffle. 264 Stack.emplace_back(V, F, List.size()); 265 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 266 for (size_t I = 0, E = List.size(); I != E; ++I) 267 Stack.back().Shuffle[I] = List[I].second; 268 } 269 270 static void predictValueUseListOrder(const Value *V, const Function *F, 271 OrderMap &OM, UseListOrderStack &Stack) { 272 auto &IDPair = OM[V]; 273 assert(IDPair.first && "Unmapped value"); 274 if (IDPair.second) 275 // Already predicted. 276 return; 277 278 // Do the actual prediction. 279 IDPair.second = true; 280 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 281 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 282 283 // Recursive descent into constants. 284 if (const Constant *C = dyn_cast<Constant>(V)) { 285 if (C->getNumOperands()) { // Visit GlobalValues. 286 for (const Value *Op : C->operands()) 287 if (isa<Constant>(Op)) // Visit GlobalValues. 288 predictValueUseListOrder(Op, F, OM, Stack); 289 if (auto *CE = dyn_cast<ConstantExpr>(C)) 290 if (CE->getOpcode() == Instruction::ShuffleVector) 291 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 292 Stack); 293 } 294 } 295 } 296 297 static UseListOrderStack predictUseListOrder(const Module &M) { 298 OrderMap OM = orderModule(M); 299 300 // Use-list orders need to be serialized after all the users have been added 301 // to a value, or else the shuffles will be incomplete. Store them per 302 // function in a stack. 303 // 304 // Aside from function order, the order of values doesn't matter much here. 305 UseListOrderStack Stack; 306 307 // We want to visit the functions backward now so we can list function-local 308 // constants in the last Function they're used in. Module-level constants 309 // have already been visited above. 310 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 311 const Function &F = *I; 312 if (F.isDeclaration()) 313 continue; 314 for (const BasicBlock &BB : F) 315 predictValueUseListOrder(&BB, &F, OM, Stack); 316 for (const Argument &A : F.args()) 317 predictValueUseListOrder(&A, &F, OM, Stack); 318 for (const BasicBlock &BB : F) 319 for (const Instruction &I : BB) { 320 for (const Value *Op : I.operands()) 321 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 322 predictValueUseListOrder(Op, &F, OM, Stack); 323 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 324 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 325 Stack); 326 } 327 for (const BasicBlock &BB : F) 328 for (const Instruction &I : BB) 329 predictValueUseListOrder(&I, &F, OM, Stack); 330 } 331 332 // Visit globals last, since the module-level use-list block will be seen 333 // before the function bodies are processed. 334 for (const GlobalVariable &G : M.globals()) 335 predictValueUseListOrder(&G, nullptr, OM, Stack); 336 for (const Function &F : M) 337 predictValueUseListOrder(&F, nullptr, OM, Stack); 338 for (const GlobalAlias &A : M.aliases()) 339 predictValueUseListOrder(&A, nullptr, OM, Stack); 340 for (const GlobalIFunc &I : M.ifuncs()) 341 predictValueUseListOrder(&I, nullptr, OM, Stack); 342 for (const GlobalVariable &G : M.globals()) 343 if (G.hasInitializer()) 344 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 345 for (const GlobalAlias &A : M.aliases()) 346 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 347 for (const GlobalIFunc &I : M.ifuncs()) 348 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 349 for (const Function &F : M) { 350 for (const Use &U : F.operands()) 351 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 352 } 353 354 return Stack; 355 } 356 357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 358 return V.first->getType()->isIntOrIntVectorTy(); 359 } 360 361 ValueEnumerator::ValueEnumerator(const Module &M, 362 bool ShouldPreserveUseListOrder) 363 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 364 if (ShouldPreserveUseListOrder) 365 UseListOrders = predictUseListOrder(M); 366 367 // Enumerate the global variables. 368 for (const GlobalVariable &GV : M.globals()) 369 EnumerateValue(&GV); 370 371 // Enumerate the functions. 372 for (const Function & F : M) { 373 EnumerateValue(&F); 374 EnumerateAttributes(F.getAttributes()); 375 } 376 377 // Enumerate the aliases. 378 for (const GlobalAlias &GA : M.aliases()) 379 EnumerateValue(&GA); 380 381 // Enumerate the ifuncs. 382 for (const GlobalIFunc &GIF : M.ifuncs()) 383 EnumerateValue(&GIF); 384 385 // Remember what is the cutoff between globalvalue's and other constants. 386 unsigned FirstConstant = Values.size(); 387 388 // Enumerate the global variable initializers and attributes. 389 for (const GlobalVariable &GV : M.globals()) { 390 if (GV.hasInitializer()) 391 EnumerateValue(GV.getInitializer()); 392 if (GV.hasAttributes()) 393 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 394 } 395 396 // Enumerate the aliasees. 397 for (const GlobalAlias &GA : M.aliases()) 398 EnumerateValue(GA.getAliasee()); 399 400 // Enumerate the ifunc resolvers. 401 for (const GlobalIFunc &GIF : M.ifuncs()) 402 EnumerateValue(GIF.getResolver()); 403 404 // Enumerate any optional Function data. 405 for (const Function &F : M) 406 for (const Use &U : F.operands()) 407 EnumerateValue(U.get()); 408 409 // Enumerate the metadata type. 410 // 411 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 412 // only encodes the metadata type when it's used as a value. 413 EnumerateType(Type::getMetadataTy(M.getContext())); 414 415 // Insert constants and metadata that are named at module level into the slot 416 // pool so that the module symbol table can refer to them... 417 EnumerateValueSymbolTable(M.getValueSymbolTable()); 418 EnumerateNamedMetadata(M); 419 420 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 421 for (const GlobalVariable &GV : M.globals()) { 422 MDs.clear(); 423 GV.getAllMetadata(MDs); 424 for (const auto &I : MDs) 425 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 426 // to write metadata to the global variable's own metadata block 427 // (PR28134). 428 EnumerateMetadata(nullptr, I.second); 429 } 430 431 // Enumerate types used by function bodies and argument lists. 432 for (const Function &F : M) { 433 for (const Argument &A : F.args()) 434 EnumerateType(A.getType()); 435 436 // Enumerate metadata attached to this function. 437 MDs.clear(); 438 F.getAllMetadata(MDs); 439 for (const auto &I : MDs) 440 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 441 442 for (const BasicBlock &BB : F) 443 for (const Instruction &I : BB) { 444 for (const Use &Op : I.operands()) { 445 auto *MD = dyn_cast<MetadataAsValue>(&Op); 446 if (!MD) { 447 EnumerateOperandType(Op); 448 continue; 449 } 450 451 // Local metadata is enumerated during function-incorporation. 452 if (isa<LocalAsMetadata>(MD->getMetadata()) || 453 isa<DIArgList>(MD->getMetadata())) 454 continue; 455 456 EnumerateMetadata(&F, MD->getMetadata()); 457 } 458 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 459 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 460 EnumerateType(I.getType()); 461 if (const auto *Call = dyn_cast<CallBase>(&I)) 462 EnumerateAttributes(Call->getAttributes()); 463 464 // Enumerate metadata attached with this instruction. 465 MDs.clear(); 466 I.getAllMetadataOtherThanDebugLoc(MDs); 467 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 468 EnumerateMetadata(&F, MDs[i].second); 469 470 // Don't enumerate the location directly -- it has a special record 471 // type -- but enumerate its operands. 472 if (DILocation *L = I.getDebugLoc()) 473 for (const Metadata *Op : L->operands()) 474 EnumerateMetadata(&F, Op); 475 } 476 } 477 478 // Optimize constant ordering. 479 OptimizeConstants(FirstConstant, Values.size()); 480 481 // Organize metadata ordering. 482 organizeMetadata(); 483 } 484 485 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 486 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 487 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 488 return I->second; 489 } 490 491 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 492 unsigned ComdatID = Comdats.idFor(C); 493 assert(ComdatID && "Comdat not found!"); 494 return ComdatID; 495 } 496 497 void ValueEnumerator::setInstructionID(const Instruction *I) { 498 InstructionMap[I] = InstructionCount++; 499 } 500 501 unsigned ValueEnumerator::getValueID(const Value *V) const { 502 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 503 return getMetadataID(MD->getMetadata()); 504 505 ValueMapType::const_iterator I = ValueMap.find(V); 506 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 507 return I->second-1; 508 } 509 510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 511 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 512 print(dbgs(), ValueMap, "Default"); 513 dbgs() << '\n'; 514 print(dbgs(), MetadataMap, "MetaData"); 515 dbgs() << '\n'; 516 } 517 #endif 518 519 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 520 const char *Name) const { 521 OS << "Map Name: " << Name << "\n"; 522 OS << "Size: " << Map.size() << "\n"; 523 for (ValueMapType::const_iterator I = Map.begin(), 524 E = Map.end(); I != E; ++I) { 525 const Value *V = I->first; 526 if (V->hasName()) 527 OS << "Value: " << V->getName(); 528 else 529 OS << "Value: [null]\n"; 530 V->print(errs()); 531 errs() << '\n'; 532 533 OS << " Uses(" << V->getNumUses() << "):"; 534 for (const Use &U : V->uses()) { 535 if (&U != &*V->use_begin()) 536 OS << ","; 537 if(U->hasName()) 538 OS << " " << U->getName(); 539 else 540 OS << " [null]"; 541 542 } 543 OS << "\n\n"; 544 } 545 } 546 547 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 548 const char *Name) const { 549 OS << "Map Name: " << Name << "\n"; 550 OS << "Size: " << Map.size() << "\n"; 551 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 552 const Metadata *MD = I->first; 553 OS << "Metadata: slot = " << I->second.ID << "\n"; 554 OS << "Metadata: function = " << I->second.F << "\n"; 555 MD->print(OS); 556 OS << "\n"; 557 } 558 } 559 560 /// OptimizeConstants - Reorder constant pool for denser encoding. 561 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 562 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 563 564 if (ShouldPreserveUseListOrder) 565 // Optimizing constants makes the use-list order difficult to predict. 566 // Disable it for now when trying to preserve the order. 567 return; 568 569 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 570 [this](const std::pair<const Value *, unsigned> &LHS, 571 const std::pair<const Value *, unsigned> &RHS) { 572 // Sort by plane. 573 if (LHS.first->getType() != RHS.first->getType()) 574 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 575 // Then by frequency. 576 return LHS.second > RHS.second; 577 }); 578 579 // Ensure that integer and vector of integer constants are at the start of the 580 // constant pool. This is important so that GEP structure indices come before 581 // gep constant exprs. 582 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 583 isIntOrIntVectorValue); 584 585 // Rebuild the modified portion of ValueMap. 586 for (; CstStart != CstEnd; ++CstStart) 587 ValueMap[Values[CstStart].first] = CstStart+1; 588 } 589 590 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 591 /// table into the values table. 592 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 593 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 594 VI != VE; ++VI) 595 EnumerateValue(VI->getValue()); 596 } 597 598 /// Insert all of the values referenced by named metadata in the specified 599 /// module. 600 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 601 for (const auto &I : M.named_metadata()) 602 EnumerateNamedMDNode(&I); 603 } 604 605 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 606 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 607 EnumerateMetadata(nullptr, MD->getOperand(i)); 608 } 609 610 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 611 return F ? getValueID(F) + 1 : 0; 612 } 613 614 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 615 EnumerateMetadata(getMetadataFunctionID(F), MD); 616 } 617 618 void ValueEnumerator::EnumerateFunctionLocalMetadata( 619 const Function &F, const LocalAsMetadata *Local) { 620 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 621 } 622 623 void ValueEnumerator::dropFunctionFromMetadata( 624 MetadataMapType::value_type &FirstMD) { 625 SmallVector<const MDNode *, 64> Worklist; 626 auto push = [&Worklist](MetadataMapType::value_type &MD) { 627 auto &Entry = MD.second; 628 629 // Nothing to do if this metadata isn't tagged. 630 if (!Entry.F) 631 return; 632 633 // Drop the function tag. 634 Entry.F = 0; 635 636 // If this is has an ID and is an MDNode, then its operands have entries as 637 // well. We need to drop the function from them too. 638 if (Entry.ID) 639 if (auto *N = dyn_cast<MDNode>(MD.first)) 640 Worklist.push_back(N); 641 }; 642 push(FirstMD); 643 while (!Worklist.empty()) 644 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 645 if (!Op) 646 continue; 647 auto MD = MetadataMap.find(Op); 648 if (MD != MetadataMap.end()) 649 push(*MD); 650 } 651 } 652 653 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 654 // It's vital for reader efficiency that uniqued subgraphs are done in 655 // post-order; it's expensive when their operands have forward references. 656 // If a distinct node is referenced from a uniqued node, it'll be delayed 657 // until the uniqued subgraph has been completely traversed. 658 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 659 660 // Start by enumerating MD, and then work through its transitive operands in 661 // post-order. This requires a depth-first search. 662 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 663 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 664 Worklist.push_back(std::make_pair(N, N->op_begin())); 665 666 while (!Worklist.empty()) { 667 const MDNode *N = Worklist.back().first; 668 669 // Enumerate operands until we hit a new node. We need to traverse these 670 // nodes' operands before visiting the rest of N's operands. 671 MDNode::op_iterator I = std::find_if( 672 Worklist.back().second, N->op_end(), 673 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 674 if (I != N->op_end()) { 675 auto *Op = cast<MDNode>(*I); 676 Worklist.back().second = ++I; 677 678 // Delay traversing Op if it's a distinct node and N is uniqued. 679 if (Op->isDistinct() && !N->isDistinct()) 680 DelayedDistinctNodes.push_back(Op); 681 else 682 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 683 continue; 684 } 685 686 // All the operands have been visited. Now assign an ID. 687 Worklist.pop_back(); 688 MDs.push_back(N); 689 MetadataMap[N].ID = MDs.size(); 690 691 // Flush out any delayed distinct nodes; these are all the distinct nodes 692 // that are leaves in last uniqued subgraph. 693 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 694 for (const MDNode *N : DelayedDistinctNodes) 695 Worklist.push_back(std::make_pair(N, N->op_begin())); 696 DelayedDistinctNodes.clear(); 697 } 698 } 699 } 700 701 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 702 if (!MD) 703 return nullptr; 704 705 assert( 706 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 707 "Invalid metadata kind"); 708 709 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 710 MDIndex &Entry = Insertion.first->second; 711 if (!Insertion.second) { 712 // Already mapped. If F doesn't match the function tag, drop it. 713 if (Entry.hasDifferentFunction(F)) 714 dropFunctionFromMetadata(*Insertion.first); 715 return nullptr; 716 } 717 718 // Don't assign IDs to metadata nodes. 719 if (auto *N = dyn_cast<MDNode>(MD)) 720 return N; 721 722 // Save the metadata. 723 MDs.push_back(MD); 724 Entry.ID = MDs.size(); 725 726 // Enumerate the constant, if any. 727 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 728 EnumerateValue(C->getValue()); 729 730 return nullptr; 731 } 732 733 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 734 /// information reachable from the metadata. 735 void ValueEnumerator::EnumerateFunctionLocalMetadata( 736 unsigned F, const LocalAsMetadata *Local) { 737 assert(F && "Expected a function"); 738 739 // Check to see if it's already in! 740 MDIndex &Index = MetadataMap[Local]; 741 if (Index.ID) { 742 assert(Index.F == F && "Expected the same function"); 743 return; 744 } 745 746 MDs.push_back(Local); 747 Index.F = F; 748 Index.ID = MDs.size(); 749 750 EnumerateValue(Local->getValue()); 751 } 752 753 static unsigned getMetadataTypeOrder(const Metadata *MD) { 754 // Strings are emitted in bulk and must come first. 755 if (isa<MDString>(MD)) 756 return 0; 757 758 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 759 // to the front since we can detect it. 760 auto *N = dyn_cast<MDNode>(MD); 761 if (!N) 762 return 1; 763 764 // The reader is fast forward references for distinct node operands, but slow 765 // when uniqued operands are unresolved. 766 return N->isDistinct() ? 2 : 3; 767 } 768 769 void ValueEnumerator::organizeMetadata() { 770 assert(MetadataMap.size() == MDs.size() && 771 "Metadata map and vector out of sync"); 772 773 if (MDs.empty()) 774 return; 775 776 // Copy out the index information from MetadataMap in order to choose a new 777 // order. 778 SmallVector<MDIndex, 64> Order; 779 Order.reserve(MetadataMap.size()); 780 for (const Metadata *MD : MDs) 781 Order.push_back(MetadataMap.lookup(MD)); 782 783 // Partition: 784 // - by function, then 785 // - by isa<MDString> 786 // and then sort by the original/current ID. Since the IDs are guaranteed to 787 // be unique, the result of std::sort will be deterministic. There's no need 788 // for std::stable_sort. 789 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 790 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 791 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 792 }); 793 794 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 795 // and fix up MetadataMap. 796 std::vector<const Metadata *> OldMDs; 797 MDs.swap(OldMDs); 798 MDs.reserve(OldMDs.size()); 799 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 800 auto *MD = Order[I].get(OldMDs); 801 MDs.push_back(MD); 802 MetadataMap[MD].ID = I + 1; 803 if (isa<MDString>(MD)) 804 ++NumMDStrings; 805 } 806 807 // Return early if there's nothing for the functions. 808 if (MDs.size() == Order.size()) 809 return; 810 811 // Build the function metadata ranges. 812 MDRange R; 813 FunctionMDs.reserve(OldMDs.size()); 814 unsigned PrevF = 0; 815 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 816 ++I) { 817 unsigned F = Order[I].F; 818 if (!PrevF) { 819 PrevF = F; 820 } else if (PrevF != F) { 821 R.Last = FunctionMDs.size(); 822 std::swap(R, FunctionMDInfo[PrevF]); 823 R.First = FunctionMDs.size(); 824 825 ID = MDs.size(); 826 PrevF = F; 827 } 828 829 auto *MD = Order[I].get(OldMDs); 830 FunctionMDs.push_back(MD); 831 MetadataMap[MD].ID = ++ID; 832 if (isa<MDString>(MD)) 833 ++R.NumStrings; 834 } 835 R.Last = FunctionMDs.size(); 836 FunctionMDInfo[PrevF] = R; 837 } 838 839 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 840 NumModuleMDs = MDs.size(); 841 842 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 843 NumMDStrings = R.NumStrings; 844 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 845 FunctionMDs.begin() + R.Last); 846 } 847 848 void ValueEnumerator::EnumerateValue(const Value *V) { 849 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 850 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 851 852 // Check to see if it's already in! 853 unsigned &ValueID = ValueMap[V]; 854 if (ValueID) { 855 // Increment use count. 856 Values[ValueID-1].second++; 857 return; 858 } 859 860 if (auto *GO = dyn_cast<GlobalObject>(V)) 861 if (const Comdat *C = GO->getComdat()) 862 Comdats.insert(C); 863 864 // Enumerate the type of this value. 865 EnumerateType(V->getType()); 866 867 if (const Constant *C = dyn_cast<Constant>(V)) { 868 if (isa<GlobalValue>(C)) { 869 // Initializers for globals are handled explicitly elsewhere. 870 } else if (C->getNumOperands()) { 871 // If a constant has operands, enumerate them. This makes sure that if a 872 // constant has uses (for example an array of const ints), that they are 873 // inserted also. 874 875 // We prefer to enumerate them with values before we enumerate the user 876 // itself. This makes it more likely that we can avoid forward references 877 // in the reader. We know that there can be no cycles in the constants 878 // graph that don't go through a global variable. 879 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 880 I != E; ++I) 881 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 882 EnumerateValue(*I); 883 if (auto *CE = dyn_cast<ConstantExpr>(C)) 884 if (CE->getOpcode() == Instruction::ShuffleVector) 885 EnumerateValue(CE->getShuffleMaskForBitcode()); 886 887 // Finally, add the value. Doing this could make the ValueID reference be 888 // dangling, don't reuse it. 889 Values.push_back(std::make_pair(V, 1U)); 890 ValueMap[V] = Values.size(); 891 return; 892 } 893 } 894 895 // Add the value. 896 Values.push_back(std::make_pair(V, 1U)); 897 ValueID = Values.size(); 898 } 899 900 901 void ValueEnumerator::EnumerateType(Type *Ty) { 902 unsigned *TypeID = &TypeMap[Ty]; 903 904 // We've already seen this type. 905 if (*TypeID) 906 return; 907 908 // If it is a non-anonymous struct, mark the type as being visited so that we 909 // don't recursively visit it. This is safe because we allow forward 910 // references of these in the bitcode reader. 911 if (StructType *STy = dyn_cast<StructType>(Ty)) 912 if (!STy->isLiteral()) 913 *TypeID = ~0U; 914 915 // Enumerate all of the subtypes before we enumerate this type. This ensures 916 // that the type will be enumerated in an order that can be directly built. 917 for (Type *SubTy : Ty->subtypes()) 918 EnumerateType(SubTy); 919 920 // Refresh the TypeID pointer in case the table rehashed. 921 TypeID = &TypeMap[Ty]; 922 923 // Check to see if we got the pointer another way. This can happen when 924 // enumerating recursive types that hit the base case deeper than they start. 925 // 926 // If this is actually a struct that we are treating as forward ref'able, 927 // then emit the definition now that all of its contents are available. 928 if (*TypeID && *TypeID != ~0U) 929 return; 930 931 // Add this type now that its contents are all happily enumerated. 932 Types.push_back(Ty); 933 934 *TypeID = Types.size(); 935 } 936 937 // Enumerate the types for the specified value. If the value is a constant, 938 // walk through it, enumerating the types of the constant. 939 void ValueEnumerator::EnumerateOperandType(const Value *V) { 940 EnumerateType(V->getType()); 941 942 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 943 944 const Constant *C = dyn_cast<Constant>(V); 945 if (!C) 946 return; 947 948 // If this constant is already enumerated, ignore it, we know its type must 949 // be enumerated. 950 if (ValueMap.count(C)) 951 return; 952 953 // This constant may have operands, make sure to enumerate the types in 954 // them. 955 for (const Value *Op : C->operands()) { 956 // Don't enumerate basic blocks here, this happens as operands to 957 // blockaddress. 958 if (isa<BasicBlock>(Op)) 959 continue; 960 961 EnumerateOperandType(Op); 962 } 963 if (auto *CE = dyn_cast<ConstantExpr>(C)) 964 if (CE->getOpcode() == Instruction::ShuffleVector) 965 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 966 } 967 968 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 969 if (PAL.isEmpty()) return; // null is always 0. 970 971 // Do a lookup. 972 unsigned &Entry = AttributeListMap[PAL]; 973 if (Entry == 0) { 974 // Never saw this before, add it. 975 AttributeLists.push_back(PAL); 976 Entry = AttributeLists.size(); 977 } 978 979 // Do lookups for all attribute groups. 980 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 981 AttributeSet AS = PAL.getAttributes(i); 982 if (!AS.hasAttributes()) 983 continue; 984 IndexAndAttrSet Pair = {i, AS}; 985 unsigned &Entry = AttributeGroupMap[Pair]; 986 if (Entry == 0) { 987 AttributeGroups.push_back(Pair); 988 Entry = AttributeGroups.size(); 989 } 990 } 991 } 992 993 void ValueEnumerator::incorporateFunction(const Function &F) { 994 InstructionCount = 0; 995 NumModuleValues = Values.size(); 996 997 // Add global metadata to the function block. This doesn't include 998 // LocalAsMetadata. 999 incorporateFunctionMetadata(F); 1000 1001 // Adding function arguments to the value table. 1002 for (const auto &I : F.args()) { 1003 EnumerateValue(&I); 1004 if (I.hasAttribute(Attribute::ByVal)) 1005 EnumerateType(I.getParamByValType()); 1006 else if (I.hasAttribute(Attribute::StructRet)) 1007 EnumerateType(I.getParamStructRetType()); 1008 else if (I.hasAttribute(Attribute::ByRef)) 1009 EnumerateType(I.getParamByRefType()); 1010 } 1011 FirstFuncConstantID = Values.size(); 1012 1013 // Add all function-level constants to the value table. 1014 for (const BasicBlock &BB : F) { 1015 for (const Instruction &I : BB) { 1016 for (const Use &OI : I.operands()) { 1017 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 1018 EnumerateValue(OI); 1019 } 1020 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 1021 EnumerateValue(SVI->getShuffleMaskForBitcode()); 1022 } 1023 BasicBlocks.push_back(&BB); 1024 ValueMap[&BB] = BasicBlocks.size(); 1025 } 1026 1027 // Optimize the constant layout. 1028 OptimizeConstants(FirstFuncConstantID, Values.size()); 1029 1030 // Add the function's parameter attributes so they are available for use in 1031 // the function's instruction. 1032 EnumerateAttributes(F.getAttributes()); 1033 1034 FirstInstID = Values.size(); 1035 1036 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1037 SmallVector<DIArgList *, 8> ArgListMDVector; 1038 // Add all of the instructions. 1039 for (const BasicBlock &BB : F) { 1040 for (const Instruction &I : BB) { 1041 for (const Use &OI : I.operands()) { 1042 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) { 1043 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) { 1044 // Enumerate metadata after the instructions they might refer to. 1045 FnLocalMDVector.push_back(Local); 1046 } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) { 1047 ArgListMDVector.push_back(ArgList); 1048 for (ValueAsMetadata *VMD : ArgList->getArgs()) { 1049 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) { 1050 // Enumerate metadata after the instructions they might refer 1051 // to. 1052 FnLocalMDVector.push_back(Local); 1053 } 1054 } 1055 } 1056 } 1057 } 1058 1059 if (!I.getType()->isVoidTy()) 1060 EnumerateValue(&I); 1061 } 1062 } 1063 1064 // Add all of the function-local metadata. 1065 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1066 // At this point, every local values have been incorporated, we shouldn't 1067 // have a metadata operand that references a value that hasn't been seen. 1068 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1069 "Missing value for metadata operand"); 1070 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1071 } 1072 // DIArgList entries must come after function-local metadata, as it is not 1073 // possible to forward-reference them. 1074 for (const DIArgList *ArgList : ArgListMDVector) 1075 EnumerateMetadata(&F, ArgList); 1076 } 1077 1078 void ValueEnumerator::purgeFunction() { 1079 /// Remove purged values from the ValueMap. 1080 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1081 ValueMap.erase(Values[i].first); 1082 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1083 MetadataMap.erase(MDs[i]); 1084 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 1085 ValueMap.erase(BasicBlocks[i]); 1086 1087 Values.resize(NumModuleValues); 1088 MDs.resize(NumModuleMDs); 1089 BasicBlocks.clear(); 1090 NumMDStrings = 0; 1091 } 1092 1093 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1094 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1095 unsigned Counter = 0; 1096 for (const BasicBlock &BB : *F) 1097 IDMap[&BB] = ++Counter; 1098 } 1099 1100 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1101 /// specified basic block. This is relatively expensive information, so it 1102 /// should only be used by rare constructs such as address-of-label. 1103 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1104 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1105 if (Idx != 0) 1106 return Idx-1; 1107 1108 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1109 return getGlobalBasicBlockID(BB); 1110 } 1111 1112 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1113 return Log2_32_Ceil(getTypes().size() + 1); 1114 } 1115