1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ValueEnumerator class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/UseListOrder.h" 23 #include "llvm/IR/ValueSymbolTable.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 using namespace llvm; 28 29 namespace { 30 struct OrderMap { 31 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 32 unsigned LastGlobalConstantID; 33 unsigned LastGlobalValueID; 34 35 OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {} 36 37 bool isGlobalConstant(unsigned ID) const { 38 return ID <= LastGlobalConstantID; 39 } 40 bool isGlobalValue(unsigned ID) const { 41 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 42 } 43 44 unsigned size() const { return IDs.size(); } 45 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 46 std::pair<unsigned, bool> lookup(const Value *V) const { 47 return IDs.lookup(V); 48 } 49 void index(const Value *V) { 50 // Explicitly sequence get-size and insert-value operations to avoid UB. 51 unsigned ID = IDs.size() + 1; 52 IDs[V].first = ID; 53 } 54 }; 55 } 56 57 static void orderValue(const Value *V, OrderMap &OM) { 58 if (OM.lookup(V).first) 59 return; 60 61 if (const Constant *C = dyn_cast<Constant>(V)) 62 if (C->getNumOperands() && !isa<GlobalValue>(C)) 63 for (const Value *Op : C->operands()) 64 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 65 orderValue(Op, OM); 66 67 // Note: we cannot cache this lookup above, since inserting into the map 68 // changes the map's size, and thus affects the other IDs. 69 OM.index(V); 70 } 71 72 static OrderMap orderModule(const Module &M) { 73 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 74 // and ValueEnumerator::incorporateFunction(). 75 OrderMap OM; 76 77 // In the reader, initializers of GlobalValues are set *after* all the 78 // globals have been read. Rather than awkwardly modeling this behaviour 79 // directly in predictValueUseListOrderImpl(), just assign IDs to 80 // initializers of GlobalValues before GlobalValues themselves to model this 81 // implicitly. 82 for (const GlobalVariable &G : M.globals()) 83 if (G.hasInitializer()) 84 if (!isa<GlobalValue>(G.getInitializer())) 85 orderValue(G.getInitializer(), OM); 86 for (const GlobalAlias &A : M.aliases()) 87 if (!isa<GlobalValue>(A.getAliasee())) 88 orderValue(A.getAliasee(), OM); 89 for (const Function &F : M) { 90 if (F.hasPrefixData()) 91 if (!isa<GlobalValue>(F.getPrefixData())) 92 orderValue(F.getPrefixData(), OM); 93 if (F.hasPrologueData()) 94 if (!isa<GlobalValue>(F.getPrologueData())) 95 orderValue(F.getPrologueData(), OM); 96 } 97 OM.LastGlobalConstantID = OM.size(); 98 99 // Initializers of GlobalValues are processed in 100 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 101 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 102 // by giving IDs in reverse order. 103 // 104 // Since GlobalValues never reference each other directly (just through 105 // initializers), their relative IDs only matter for determining order of 106 // uses in their initializers. 107 for (const Function &F : M) 108 orderValue(&F, OM); 109 for (const GlobalAlias &A : M.aliases()) 110 orderValue(&A, OM); 111 for (const GlobalVariable &G : M.globals()) 112 orderValue(&G, OM); 113 OM.LastGlobalValueID = OM.size(); 114 115 for (const Function &F : M) { 116 if (F.isDeclaration()) 117 continue; 118 // Here we need to match the union of ValueEnumerator::incorporateFunction() 119 // and WriteFunction(). Basic blocks are implicitly declared before 120 // anything else (by declaring their size). 121 for (const BasicBlock &BB : F) 122 orderValue(&BB, OM); 123 for (const Argument &A : F.args()) 124 orderValue(&A, OM); 125 for (const BasicBlock &BB : F) 126 for (const Instruction &I : BB) 127 for (const Value *Op : I.operands()) 128 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 129 isa<InlineAsm>(*Op)) 130 orderValue(Op, OM); 131 for (const BasicBlock &BB : F) 132 for (const Instruction &I : BB) 133 orderValue(&I, OM); 134 } 135 return OM; 136 } 137 138 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 139 unsigned ID, const OrderMap &OM, 140 UseListOrderStack &Stack) { 141 // Predict use-list order for this one. 142 typedef std::pair<const Use *, unsigned> Entry; 143 SmallVector<Entry, 64> List; 144 for (const Use &U : V->uses()) 145 // Check if this user will be serialized. 146 if (OM.lookup(U.getUser()).first) 147 List.push_back(std::make_pair(&U, List.size())); 148 149 if (List.size() < 2) 150 // We may have lost some users. 151 return; 152 153 bool IsGlobalValue = OM.isGlobalValue(ID); 154 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { 155 const Use *LU = L.first; 156 const Use *RU = R.first; 157 if (LU == RU) 158 return false; 159 160 auto LID = OM.lookup(LU->getUser()).first; 161 auto RID = OM.lookup(RU->getUser()).first; 162 163 // Global values are processed in reverse order. 164 // 165 // Moreover, initializers of GlobalValues are set *after* all the globals 166 // have been read (despite having earlier IDs). Rather than awkwardly 167 // modeling this behaviour here, orderModule() has assigned IDs to 168 // initializers of GlobalValues before GlobalValues themselves. 169 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 170 return LID < RID; 171 172 // If ID is 4, then expect: 7 6 5 1 2 3. 173 if (LID < RID) { 174 if (RID <= ID) 175 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 176 return true; 177 return false; 178 } 179 if (RID < LID) { 180 if (LID <= ID) 181 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 182 return false; 183 return true; 184 } 185 186 // LID and RID are equal, so we have different operands of the same user. 187 // Assume operands are added in order for all instructions. 188 if (LID <= ID) 189 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 190 return LU->getOperandNo() < RU->getOperandNo(); 191 return LU->getOperandNo() > RU->getOperandNo(); 192 }); 193 194 if (std::is_sorted( 195 List.begin(), List.end(), 196 [](const Entry &L, const Entry &R) { return L.second < R.second; })) 197 // Order is already correct. 198 return; 199 200 // Store the shuffle. 201 Stack.emplace_back(V, F, List.size()); 202 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 203 for (size_t I = 0, E = List.size(); I != E; ++I) 204 Stack.back().Shuffle[I] = List[I].second; 205 } 206 207 static void predictValueUseListOrder(const Value *V, const Function *F, 208 OrderMap &OM, UseListOrderStack &Stack) { 209 auto &IDPair = OM[V]; 210 assert(IDPair.first && "Unmapped value"); 211 if (IDPair.second) 212 // Already predicted. 213 return; 214 215 // Do the actual prediction. 216 IDPair.second = true; 217 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 218 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 219 220 // Recursive descent into constants. 221 if (const Constant *C = dyn_cast<Constant>(V)) 222 if (C->getNumOperands()) // Visit GlobalValues. 223 for (const Value *Op : C->operands()) 224 if (isa<Constant>(Op)) // Visit GlobalValues. 225 predictValueUseListOrder(Op, F, OM, Stack); 226 } 227 228 static UseListOrderStack predictUseListOrder(const Module &M) { 229 OrderMap OM = orderModule(M); 230 231 // Use-list orders need to be serialized after all the users have been added 232 // to a value, or else the shuffles will be incomplete. Store them per 233 // function in a stack. 234 // 235 // Aside from function order, the order of values doesn't matter much here. 236 UseListOrderStack Stack; 237 238 // We want to visit the functions backward now so we can list function-local 239 // constants in the last Function they're used in. Module-level constants 240 // have already been visited above. 241 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 242 const Function &F = *I; 243 if (F.isDeclaration()) 244 continue; 245 for (const BasicBlock &BB : F) 246 predictValueUseListOrder(&BB, &F, OM, Stack); 247 for (const Argument &A : F.args()) 248 predictValueUseListOrder(&A, &F, OM, Stack); 249 for (const BasicBlock &BB : F) 250 for (const Instruction &I : BB) 251 for (const Value *Op : I.operands()) 252 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 253 predictValueUseListOrder(Op, &F, OM, Stack); 254 for (const BasicBlock &BB : F) 255 for (const Instruction &I : BB) 256 predictValueUseListOrder(&I, &F, OM, Stack); 257 } 258 259 // Visit globals last, since the module-level use-list block will be seen 260 // before the function bodies are processed. 261 for (const GlobalVariable &G : M.globals()) 262 predictValueUseListOrder(&G, nullptr, OM, Stack); 263 for (const Function &F : M) 264 predictValueUseListOrder(&F, nullptr, OM, Stack); 265 for (const GlobalAlias &A : M.aliases()) 266 predictValueUseListOrder(&A, nullptr, OM, Stack); 267 for (const GlobalVariable &G : M.globals()) 268 if (G.hasInitializer()) 269 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 270 for (const GlobalAlias &A : M.aliases()) 271 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 272 for (const Function &F : M) { 273 if (F.hasPrefixData()) 274 predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack); 275 if (F.hasPrologueData()) 276 predictValueUseListOrder(F.getPrologueData(), nullptr, OM, Stack); 277 } 278 279 return Stack; 280 } 281 282 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 283 return V.first->getType()->isIntOrIntVectorTy(); 284 } 285 286 ValueEnumerator::ValueEnumerator(const Module &M, 287 bool ShouldPreserveUseListOrder) 288 : HasMDString(false), HasDILocation(false), HasGenericDINode(false), 289 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 290 if (ShouldPreserveUseListOrder) 291 UseListOrders = predictUseListOrder(M); 292 293 // Enumerate the global variables. 294 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 295 I != E; ++I) 296 EnumerateValue(I); 297 298 // Enumerate the functions. 299 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 300 EnumerateValue(I); 301 EnumerateAttributes(cast<Function>(I)->getAttributes()); 302 } 303 304 // Enumerate the aliases. 305 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 306 I != E; ++I) 307 EnumerateValue(I); 308 309 // Remember what is the cutoff between globalvalue's and other constants. 310 unsigned FirstConstant = Values.size(); 311 312 // Enumerate the global variable initializers. 313 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 314 I != E; ++I) 315 if (I->hasInitializer()) 316 EnumerateValue(I->getInitializer()); 317 318 // Enumerate the aliasees. 319 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 320 I != E; ++I) 321 EnumerateValue(I->getAliasee()); 322 323 // Enumerate the prefix data constants. 324 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) 325 if (I->hasPrefixData()) 326 EnumerateValue(I->getPrefixData()); 327 328 // Enumerate the prologue data constants. 329 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) 330 if (I->hasPrologueData()) 331 EnumerateValue(I->getPrologueData()); 332 333 // Enumerate the metadata type. 334 // 335 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 336 // only encodes the metadata type when it's used as a value. 337 EnumerateType(Type::getMetadataTy(M.getContext())); 338 339 // Insert constants and metadata that are named at module level into the slot 340 // pool so that the module symbol table can refer to them... 341 EnumerateValueSymbolTable(M.getValueSymbolTable()); 342 EnumerateNamedMetadata(M); 343 344 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 345 346 // Enumerate types used by function bodies and argument lists. 347 for (const Function &F : M) { 348 for (const Argument &A : F.args()) 349 EnumerateType(A.getType()); 350 351 // Enumerate metadata attached to this function. 352 F.getAllMetadata(MDs); 353 for (const auto &I : MDs) 354 EnumerateMetadata(I.second); 355 356 for (const BasicBlock &BB : F) 357 for (const Instruction &I : BB) { 358 for (const Use &Op : I.operands()) { 359 auto *MD = dyn_cast<MetadataAsValue>(&Op); 360 if (!MD) { 361 EnumerateOperandType(Op); 362 continue; 363 } 364 365 // Local metadata is enumerated during function-incorporation. 366 if (isa<LocalAsMetadata>(MD->getMetadata())) 367 continue; 368 369 EnumerateMetadata(MD->getMetadata()); 370 } 371 EnumerateType(I.getType()); 372 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 373 EnumerateAttributes(CI->getAttributes()); 374 else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) 375 EnumerateAttributes(II->getAttributes()); 376 377 // Enumerate metadata attached with this instruction. 378 MDs.clear(); 379 I.getAllMetadataOtherThanDebugLoc(MDs); 380 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 381 EnumerateMetadata(MDs[i].second); 382 383 // Don't enumerate the location directly -- it has a special record 384 // type -- but enumerate its operands. 385 if (DILocation *L = I.getDebugLoc()) 386 EnumerateMDNodeOperands(L); 387 } 388 } 389 390 // Optimize constant ordering. 391 OptimizeConstants(FirstConstant, Values.size()); 392 } 393 394 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 395 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 396 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 397 return I->second; 398 } 399 400 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 401 unsigned ComdatID = Comdats.idFor(C); 402 assert(ComdatID && "Comdat not found!"); 403 return ComdatID; 404 } 405 406 void ValueEnumerator::setInstructionID(const Instruction *I) { 407 InstructionMap[I] = InstructionCount++; 408 } 409 410 unsigned ValueEnumerator::getValueID(const Value *V) const { 411 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 412 return getMetadataID(MD->getMetadata()); 413 414 ValueMapType::const_iterator I = ValueMap.find(V); 415 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 416 return I->second-1; 417 } 418 419 void ValueEnumerator::dump() const { 420 print(dbgs(), ValueMap, "Default"); 421 dbgs() << '\n'; 422 print(dbgs(), MDValueMap, "MetaData"); 423 dbgs() << '\n'; 424 } 425 426 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 427 const char *Name) const { 428 429 OS << "Map Name: " << Name << "\n"; 430 OS << "Size: " << Map.size() << "\n"; 431 for (ValueMapType::const_iterator I = Map.begin(), 432 E = Map.end(); I != E; ++I) { 433 434 const Value *V = I->first; 435 if (V->hasName()) 436 OS << "Value: " << V->getName(); 437 else 438 OS << "Value: [null]\n"; 439 V->dump(); 440 441 OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; 442 for (const Use &U : V->uses()) { 443 if (&U != &*V->use_begin()) 444 OS << ","; 445 if(U->hasName()) 446 OS << " " << U->getName(); 447 else 448 OS << " [null]"; 449 450 } 451 OS << "\n\n"; 452 } 453 } 454 455 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 456 const char *Name) const { 457 458 OS << "Map Name: " << Name << "\n"; 459 OS << "Size: " << Map.size() << "\n"; 460 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 461 const Metadata *MD = I->first; 462 OS << "Metadata: slot = " << I->second << "\n"; 463 MD->print(OS); 464 } 465 } 466 467 /// OptimizeConstants - Reorder constant pool for denser encoding. 468 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 469 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 470 471 if (ShouldPreserveUseListOrder) 472 // Optimizing constants makes the use-list order difficult to predict. 473 // Disable it for now when trying to preserve the order. 474 return; 475 476 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 477 [this](const std::pair<const Value *, unsigned> &LHS, 478 const std::pair<const Value *, unsigned> &RHS) { 479 // Sort by plane. 480 if (LHS.first->getType() != RHS.first->getType()) 481 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 482 // Then by frequency. 483 return LHS.second > RHS.second; 484 }); 485 486 // Ensure that integer and vector of integer constants are at the start of the 487 // constant pool. This is important so that GEP structure indices come before 488 // gep constant exprs. 489 std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, 490 isIntOrIntVectorValue); 491 492 // Rebuild the modified portion of ValueMap. 493 for (; CstStart != CstEnd; ++CstStart) 494 ValueMap[Values[CstStart].first] = CstStart+1; 495 } 496 497 498 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 499 /// table into the values table. 500 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 501 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 502 VI != VE; ++VI) 503 EnumerateValue(VI->getValue()); 504 } 505 506 /// Insert all of the values referenced by named metadata in the specified 507 /// module. 508 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 509 for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), 510 E = M.named_metadata_end(); 511 I != E; ++I) 512 EnumerateNamedMDNode(I); 513 } 514 515 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 516 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 517 EnumerateMetadata(MD->getOperand(i)); 518 } 519 520 /// EnumerateMDNodeOperands - Enumerate all non-function-local values 521 /// and types referenced by the given MDNode. 522 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { 523 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 524 Metadata *MD = N->getOperand(i); 525 if (!MD) 526 continue; 527 assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local"); 528 EnumerateMetadata(MD); 529 } 530 } 531 532 void ValueEnumerator::EnumerateMetadata(const Metadata *MD) { 533 assert( 534 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 535 "Invalid metadata kind"); 536 537 // Insert a dummy ID to block the co-recursive call to 538 // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph. 539 // 540 // Return early if there's already an ID. 541 if (!MDValueMap.insert(std::make_pair(MD, 0)).second) 542 return; 543 544 // Visit operands first to minimize RAUW. 545 if (auto *N = dyn_cast<MDNode>(MD)) 546 EnumerateMDNodeOperands(N); 547 else if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 548 EnumerateValue(C->getValue()); 549 550 HasMDString |= isa<MDString>(MD); 551 HasDILocation |= isa<DILocation>(MD); 552 HasGenericDINode |= isa<GenericDINode>(MD); 553 554 // Replace the dummy ID inserted above with the correct one. MDValueMap may 555 // have changed by inserting operands, so we need a fresh lookup here. 556 MDs.push_back(MD); 557 MDValueMap[MD] = MDs.size(); 558 } 559 560 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 561 /// information reachable from the metadata. 562 void ValueEnumerator::EnumerateFunctionLocalMetadata( 563 const LocalAsMetadata *Local) { 564 // Check to see if it's already in! 565 unsigned &MDValueID = MDValueMap[Local]; 566 if (MDValueID) 567 return; 568 569 MDs.push_back(Local); 570 MDValueID = MDs.size(); 571 572 EnumerateValue(Local->getValue()); 573 574 // Also, collect all function-local metadata for easy access. 575 FunctionLocalMDs.push_back(Local); 576 } 577 578 void ValueEnumerator::EnumerateValue(const Value *V) { 579 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 580 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 581 582 // Check to see if it's already in! 583 unsigned &ValueID = ValueMap[V]; 584 if (ValueID) { 585 // Increment use count. 586 Values[ValueID-1].second++; 587 return; 588 } 589 590 if (auto *GO = dyn_cast<GlobalObject>(V)) 591 if (const Comdat *C = GO->getComdat()) 592 Comdats.insert(C); 593 594 // Enumerate the type of this value. 595 EnumerateType(V->getType()); 596 597 if (const Constant *C = dyn_cast<Constant>(V)) { 598 if (isa<GlobalValue>(C)) { 599 // Initializers for globals are handled explicitly elsewhere. 600 } else if (C->getNumOperands()) { 601 // If a constant has operands, enumerate them. This makes sure that if a 602 // constant has uses (for example an array of const ints), that they are 603 // inserted also. 604 605 // We prefer to enumerate them with values before we enumerate the user 606 // itself. This makes it more likely that we can avoid forward references 607 // in the reader. We know that there can be no cycles in the constants 608 // graph that don't go through a global variable. 609 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 610 I != E; ++I) 611 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 612 EnumerateValue(*I); 613 614 // Finally, add the value. Doing this could make the ValueID reference be 615 // dangling, don't reuse it. 616 Values.push_back(std::make_pair(V, 1U)); 617 ValueMap[V] = Values.size(); 618 return; 619 } 620 } 621 622 // Add the value. 623 Values.push_back(std::make_pair(V, 1U)); 624 ValueID = Values.size(); 625 } 626 627 628 void ValueEnumerator::EnumerateType(Type *Ty) { 629 unsigned *TypeID = &TypeMap[Ty]; 630 631 // We've already seen this type. 632 if (*TypeID) 633 return; 634 635 // If it is a non-anonymous struct, mark the type as being visited so that we 636 // don't recursively visit it. This is safe because we allow forward 637 // references of these in the bitcode reader. 638 if (StructType *STy = dyn_cast<StructType>(Ty)) 639 if (!STy->isLiteral()) 640 *TypeID = ~0U; 641 642 // Enumerate all of the subtypes before we enumerate this type. This ensures 643 // that the type will be enumerated in an order that can be directly built. 644 for (Type *SubTy : Ty->subtypes()) 645 EnumerateType(SubTy); 646 647 // Refresh the TypeID pointer in case the table rehashed. 648 TypeID = &TypeMap[Ty]; 649 650 // Check to see if we got the pointer another way. This can happen when 651 // enumerating recursive types that hit the base case deeper than they start. 652 // 653 // If this is actually a struct that we are treating as forward ref'able, 654 // then emit the definition now that all of its contents are available. 655 if (*TypeID && *TypeID != ~0U) 656 return; 657 658 // Add this type now that its contents are all happily enumerated. 659 Types.push_back(Ty); 660 661 *TypeID = Types.size(); 662 } 663 664 // Enumerate the types for the specified value. If the value is a constant, 665 // walk through it, enumerating the types of the constant. 666 void ValueEnumerator::EnumerateOperandType(const Value *V) { 667 EnumerateType(V->getType()); 668 669 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 670 assert(!isa<LocalAsMetadata>(MD->getMetadata()) && 671 "Function-local metadata should be left for later"); 672 673 EnumerateMetadata(MD->getMetadata()); 674 return; 675 } 676 677 const Constant *C = dyn_cast<Constant>(V); 678 if (!C) 679 return; 680 681 // If this constant is already enumerated, ignore it, we know its type must 682 // be enumerated. 683 if (ValueMap.count(C)) 684 return; 685 686 // This constant may have operands, make sure to enumerate the types in 687 // them. 688 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 689 const Value *Op = C->getOperand(i); 690 691 // Don't enumerate basic blocks here, this happens as operands to 692 // blockaddress. 693 if (isa<BasicBlock>(Op)) 694 continue; 695 696 EnumerateOperandType(Op); 697 } 698 } 699 700 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) { 701 if (PAL.isEmpty()) return; // null is always 0. 702 703 // Do a lookup. 704 unsigned &Entry = AttributeMap[PAL]; 705 if (Entry == 0) { 706 // Never saw this before, add it. 707 Attribute.push_back(PAL); 708 Entry = Attribute.size(); 709 } 710 711 // Do lookups for all attribute groups. 712 for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) { 713 AttributeSet AS = PAL.getSlotAttributes(i); 714 unsigned &Entry = AttributeGroupMap[AS]; 715 if (Entry == 0) { 716 AttributeGroups.push_back(AS); 717 Entry = AttributeGroups.size(); 718 } 719 } 720 } 721 722 void ValueEnumerator::incorporateFunction(const Function &F) { 723 InstructionCount = 0; 724 NumModuleValues = Values.size(); 725 NumModuleMDs = MDs.size(); 726 727 // Adding function arguments to the value table. 728 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 729 I != E; ++I) 730 EnumerateValue(I); 731 732 FirstFuncConstantID = Values.size(); 733 734 // Add all function-level constants to the value table. 735 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 736 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) 737 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 738 OI != E; ++OI) { 739 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 740 isa<InlineAsm>(*OI)) 741 EnumerateValue(*OI); 742 } 743 BasicBlocks.push_back(BB); 744 ValueMap[BB] = BasicBlocks.size(); 745 } 746 747 // Optimize the constant layout. 748 OptimizeConstants(FirstFuncConstantID, Values.size()); 749 750 // Add the function's parameter attributes so they are available for use in 751 // the function's instruction. 752 EnumerateAttributes(F.getAttributes()); 753 754 FirstInstID = Values.size(); 755 756 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 757 // Add all of the instructions. 758 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 759 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { 760 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 761 OI != E; ++OI) { 762 if (auto *MD = dyn_cast<MetadataAsValue>(&*OI)) 763 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 764 // Enumerate metadata after the instructions they might refer to. 765 FnLocalMDVector.push_back(Local); 766 } 767 768 if (!I->getType()->isVoidTy()) 769 EnumerateValue(I); 770 } 771 } 772 773 // Add all of the function-local metadata. 774 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) 775 EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); 776 } 777 778 void ValueEnumerator::purgeFunction() { 779 /// Remove purged values from the ValueMap. 780 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 781 ValueMap.erase(Values[i].first); 782 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 783 MDValueMap.erase(MDs[i]); 784 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 785 ValueMap.erase(BasicBlocks[i]); 786 787 Values.resize(NumModuleValues); 788 MDs.resize(NumModuleMDs); 789 BasicBlocks.clear(); 790 FunctionLocalMDs.clear(); 791 } 792 793 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 794 DenseMap<const BasicBlock*, unsigned> &IDMap) { 795 unsigned Counter = 0; 796 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 797 IDMap[BB] = ++Counter; 798 } 799 800 /// getGlobalBasicBlockID - This returns the function-specific ID for the 801 /// specified basic block. This is relatively expensive information, so it 802 /// should only be used by rare constructs such as address-of-label. 803 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 804 unsigned &Idx = GlobalBasicBlockIDs[BB]; 805 if (Idx != 0) 806 return Idx-1; 807 808 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 809 return getGlobalBasicBlockID(BB); 810 } 811 812 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 813 return Log2_32_Ceil(getTypes().size() + 1); 814 } 815