1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ValueEnumerator class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/UseListOrder.h" 23 #include "llvm/IR/ValueSymbolTable.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 using namespace llvm; 28 29 namespace { 30 struct OrderMap { 31 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 32 unsigned LastGlobalConstantID; 33 unsigned LastGlobalValueID; 34 35 OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {} 36 37 bool isGlobalConstant(unsigned ID) const { 38 return ID <= LastGlobalConstantID; 39 } 40 bool isGlobalValue(unsigned ID) const { 41 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 42 } 43 44 unsigned size() const { return IDs.size(); } 45 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 46 std::pair<unsigned, bool> lookup(const Value *V) const { 47 return IDs.lookup(V); 48 } 49 void index(const Value *V) { 50 // Explicitly sequence get-size and insert-value operations to avoid UB. 51 unsigned ID = IDs.size() + 1; 52 IDs[V].first = ID; 53 } 54 }; 55 } 56 57 static void orderValue(const Value *V, OrderMap &OM) { 58 if (OM.lookup(V).first) 59 return; 60 61 if (const Constant *C = dyn_cast<Constant>(V)) 62 if (C->getNumOperands() && !isa<GlobalValue>(C)) 63 for (const Value *Op : C->operands()) 64 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 65 orderValue(Op, OM); 66 67 // Note: we cannot cache this lookup above, since inserting into the map 68 // changes the map's size, and thus affects the other IDs. 69 OM.index(V); 70 } 71 72 static OrderMap orderModule(const Module &M) { 73 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 74 // and ValueEnumerator::incorporateFunction(). 75 OrderMap OM; 76 77 // In the reader, initializers of GlobalValues are set *after* all the 78 // globals have been read. Rather than awkwardly modeling this behaviour 79 // directly in predictValueUseListOrderImpl(), just assign IDs to 80 // initializers of GlobalValues before GlobalValues themselves to model this 81 // implicitly. 82 for (const GlobalVariable &G : M.globals()) 83 if (G.hasInitializer()) 84 if (!isa<GlobalValue>(G.getInitializer())) 85 orderValue(G.getInitializer(), OM); 86 for (const GlobalAlias &A : M.aliases()) 87 if (!isa<GlobalValue>(A.getAliasee())) 88 orderValue(A.getAliasee(), OM); 89 for (const Function &F : M) { 90 if (F.hasPrefixData()) 91 if (!isa<GlobalValue>(F.getPrefixData())) 92 orderValue(F.getPrefixData(), OM); 93 if (F.hasPrologueData()) 94 if (!isa<GlobalValue>(F.getPrologueData())) 95 orderValue(F.getPrologueData(), OM); 96 if (F.hasPersonalityFn()) 97 if (!isa<GlobalValue>(F.getPersonalityFn())) 98 orderValue(F.getPersonalityFn(), OM); 99 } 100 OM.LastGlobalConstantID = OM.size(); 101 102 // Initializers of GlobalValues are processed in 103 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 104 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 105 // by giving IDs in reverse order. 106 // 107 // Since GlobalValues never reference each other directly (just through 108 // initializers), their relative IDs only matter for determining order of 109 // uses in their initializers. 110 for (const Function &F : M) 111 orderValue(&F, OM); 112 for (const GlobalAlias &A : M.aliases()) 113 orderValue(&A, OM); 114 for (const GlobalVariable &G : M.globals()) 115 orderValue(&G, OM); 116 OM.LastGlobalValueID = OM.size(); 117 118 for (const Function &F : M) { 119 if (F.isDeclaration()) 120 continue; 121 // Here we need to match the union of ValueEnumerator::incorporateFunction() 122 // and WriteFunction(). Basic blocks are implicitly declared before 123 // anything else (by declaring their size). 124 for (const BasicBlock &BB : F) 125 orderValue(&BB, OM); 126 for (const Argument &A : F.args()) 127 orderValue(&A, OM); 128 for (const BasicBlock &BB : F) 129 for (const Instruction &I : BB) 130 for (const Value *Op : I.operands()) 131 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 132 isa<InlineAsm>(*Op)) 133 orderValue(Op, OM); 134 for (const BasicBlock &BB : F) 135 for (const Instruction &I : BB) 136 orderValue(&I, OM); 137 } 138 return OM; 139 } 140 141 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 142 unsigned ID, const OrderMap &OM, 143 UseListOrderStack &Stack) { 144 // Predict use-list order for this one. 145 typedef std::pair<const Use *, unsigned> Entry; 146 SmallVector<Entry, 64> List; 147 for (const Use &U : V->uses()) 148 // Check if this user will be serialized. 149 if (OM.lookup(U.getUser()).first) 150 List.push_back(std::make_pair(&U, List.size())); 151 152 if (List.size() < 2) 153 // We may have lost some users. 154 return; 155 156 bool IsGlobalValue = OM.isGlobalValue(ID); 157 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { 158 const Use *LU = L.first; 159 const Use *RU = R.first; 160 if (LU == RU) 161 return false; 162 163 auto LID = OM.lookup(LU->getUser()).first; 164 auto RID = OM.lookup(RU->getUser()).first; 165 166 // Global values are processed in reverse order. 167 // 168 // Moreover, initializers of GlobalValues are set *after* all the globals 169 // have been read (despite having earlier IDs). Rather than awkwardly 170 // modeling this behaviour here, orderModule() has assigned IDs to 171 // initializers of GlobalValues before GlobalValues themselves. 172 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 173 return LID < RID; 174 175 // If ID is 4, then expect: 7 6 5 1 2 3. 176 if (LID < RID) { 177 if (RID <= ID) 178 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 179 return true; 180 return false; 181 } 182 if (RID < LID) { 183 if (LID <= ID) 184 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 185 return false; 186 return true; 187 } 188 189 // LID and RID are equal, so we have different operands of the same user. 190 // Assume operands are added in order for all instructions. 191 if (LID <= ID) 192 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 193 return LU->getOperandNo() < RU->getOperandNo(); 194 return LU->getOperandNo() > RU->getOperandNo(); 195 }); 196 197 if (std::is_sorted( 198 List.begin(), List.end(), 199 [](const Entry &L, const Entry &R) { return L.second < R.second; })) 200 // Order is already correct. 201 return; 202 203 // Store the shuffle. 204 Stack.emplace_back(V, F, List.size()); 205 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 206 for (size_t I = 0, E = List.size(); I != E; ++I) 207 Stack.back().Shuffle[I] = List[I].second; 208 } 209 210 static void predictValueUseListOrder(const Value *V, const Function *F, 211 OrderMap &OM, UseListOrderStack &Stack) { 212 auto &IDPair = OM[V]; 213 assert(IDPair.first && "Unmapped value"); 214 if (IDPair.second) 215 // Already predicted. 216 return; 217 218 // Do the actual prediction. 219 IDPair.second = true; 220 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 221 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 222 223 // Recursive descent into constants. 224 if (const Constant *C = dyn_cast<Constant>(V)) 225 if (C->getNumOperands()) // Visit GlobalValues. 226 for (const Value *Op : C->operands()) 227 if (isa<Constant>(Op)) // Visit GlobalValues. 228 predictValueUseListOrder(Op, F, OM, Stack); 229 } 230 231 static UseListOrderStack predictUseListOrder(const Module &M) { 232 OrderMap OM = orderModule(M); 233 234 // Use-list orders need to be serialized after all the users have been added 235 // to a value, or else the shuffles will be incomplete. Store them per 236 // function in a stack. 237 // 238 // Aside from function order, the order of values doesn't matter much here. 239 UseListOrderStack Stack; 240 241 // We want to visit the functions backward now so we can list function-local 242 // constants in the last Function they're used in. Module-level constants 243 // have already been visited above. 244 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 245 const Function &F = *I; 246 if (F.isDeclaration()) 247 continue; 248 for (const BasicBlock &BB : F) 249 predictValueUseListOrder(&BB, &F, OM, Stack); 250 for (const Argument &A : F.args()) 251 predictValueUseListOrder(&A, &F, OM, Stack); 252 for (const BasicBlock &BB : F) 253 for (const Instruction &I : BB) 254 for (const Value *Op : I.operands()) 255 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 256 predictValueUseListOrder(Op, &F, OM, Stack); 257 for (const BasicBlock &BB : F) 258 for (const Instruction &I : BB) 259 predictValueUseListOrder(&I, &F, OM, Stack); 260 } 261 262 // Visit globals last, since the module-level use-list block will be seen 263 // before the function bodies are processed. 264 for (const GlobalVariable &G : M.globals()) 265 predictValueUseListOrder(&G, nullptr, OM, Stack); 266 for (const Function &F : M) 267 predictValueUseListOrder(&F, nullptr, OM, Stack); 268 for (const GlobalAlias &A : M.aliases()) 269 predictValueUseListOrder(&A, nullptr, OM, Stack); 270 for (const GlobalVariable &G : M.globals()) 271 if (G.hasInitializer()) 272 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 273 for (const GlobalAlias &A : M.aliases()) 274 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 275 for (const Function &F : M) { 276 if (F.hasPrefixData()) 277 predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack); 278 if (F.hasPrologueData()) 279 predictValueUseListOrder(F.getPrologueData(), nullptr, OM, Stack); 280 if (F.hasPersonalityFn()) 281 predictValueUseListOrder(F.getPersonalityFn(), nullptr, OM, Stack); 282 } 283 284 return Stack; 285 } 286 287 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 288 return V.first->getType()->isIntOrIntVectorTy(); 289 } 290 291 ValueEnumerator::ValueEnumerator(const Module &M, 292 bool ShouldPreserveUseListOrder) 293 : HasMDString(false), HasDILocation(false), HasGenericDINode(false), 294 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 295 if (ShouldPreserveUseListOrder) 296 UseListOrders = predictUseListOrder(M); 297 298 // Enumerate the global variables. 299 for (const GlobalVariable &GV : M.globals()) 300 EnumerateValue(&GV); 301 302 // Enumerate the functions. 303 for (const Function & F : M) { 304 EnumerateValue(&F); 305 EnumerateAttributes(F.getAttributes()); 306 } 307 308 // Enumerate the aliases. 309 for (const GlobalAlias &GA : M.aliases()) 310 EnumerateValue(&GA); 311 312 // Remember what is the cutoff between globalvalue's and other constants. 313 unsigned FirstConstant = Values.size(); 314 315 // Enumerate the global variable initializers. 316 for (const GlobalVariable &GV : M.globals()) 317 if (GV.hasInitializer()) 318 EnumerateValue(GV.getInitializer()); 319 320 // Enumerate the aliasees. 321 for (const GlobalAlias &GA : M.aliases()) 322 EnumerateValue(GA.getAliasee()); 323 324 // Enumerate the prefix data constants. 325 for (const Function &F : M) 326 if (F.hasPrefixData()) 327 EnumerateValue(F.getPrefixData()); 328 329 // Enumerate the prologue data constants. 330 for (const Function &F : M) 331 if (F.hasPrologueData()) 332 EnumerateValue(F.getPrologueData()); 333 334 // Enumerate the personality functions. 335 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) 336 if (I->hasPersonalityFn()) 337 EnumerateValue(I->getPersonalityFn()); 338 339 // Enumerate the metadata type. 340 // 341 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 342 // only encodes the metadata type when it's used as a value. 343 EnumerateType(Type::getMetadataTy(M.getContext())); 344 345 // Insert constants and metadata that are named at module level into the slot 346 // pool so that the module symbol table can refer to them... 347 EnumerateValueSymbolTable(M.getValueSymbolTable()); 348 EnumerateNamedMetadata(M); 349 350 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 351 352 // Enumerate types used by function bodies and argument lists. 353 for (const Function &F : M) { 354 for (const Argument &A : F.args()) 355 EnumerateType(A.getType()); 356 357 // Enumerate metadata attached to this function. 358 F.getAllMetadata(MDs); 359 for (const auto &I : MDs) 360 EnumerateMetadata(I.second); 361 362 for (const BasicBlock &BB : F) 363 for (const Instruction &I : BB) { 364 for (const Use &Op : I.operands()) { 365 auto *MD = dyn_cast<MetadataAsValue>(&Op); 366 if (!MD) { 367 EnumerateOperandType(Op); 368 continue; 369 } 370 371 // Local metadata is enumerated during function-incorporation. 372 if (isa<LocalAsMetadata>(MD->getMetadata())) 373 continue; 374 375 EnumerateMetadata(MD->getMetadata()); 376 } 377 EnumerateType(I.getType()); 378 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 379 EnumerateAttributes(CI->getAttributes()); 380 else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) 381 EnumerateAttributes(II->getAttributes()); 382 383 // Enumerate metadata attached with this instruction. 384 MDs.clear(); 385 I.getAllMetadataOtherThanDebugLoc(MDs); 386 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 387 EnumerateMetadata(MDs[i].second); 388 389 // Don't enumerate the location directly -- it has a special record 390 // type -- but enumerate its operands. 391 if (DILocation *L = I.getDebugLoc()) 392 EnumerateMDNodeOperands(L); 393 } 394 } 395 396 // Optimize constant ordering. 397 OptimizeConstants(FirstConstant, Values.size()); 398 } 399 400 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 401 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 402 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 403 return I->second; 404 } 405 406 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 407 unsigned ComdatID = Comdats.idFor(C); 408 assert(ComdatID && "Comdat not found!"); 409 return ComdatID; 410 } 411 412 void ValueEnumerator::setInstructionID(const Instruction *I) { 413 InstructionMap[I] = InstructionCount++; 414 } 415 416 unsigned ValueEnumerator::getValueID(const Value *V) const { 417 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 418 return getMetadataID(MD->getMetadata()); 419 420 ValueMapType::const_iterator I = ValueMap.find(V); 421 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 422 return I->second-1; 423 } 424 425 void ValueEnumerator::dump() const { 426 print(dbgs(), ValueMap, "Default"); 427 dbgs() << '\n'; 428 print(dbgs(), MDValueMap, "MetaData"); 429 dbgs() << '\n'; 430 } 431 432 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 433 const char *Name) const { 434 435 OS << "Map Name: " << Name << "\n"; 436 OS << "Size: " << Map.size() << "\n"; 437 for (ValueMapType::const_iterator I = Map.begin(), 438 E = Map.end(); I != E; ++I) { 439 440 const Value *V = I->first; 441 if (V->hasName()) 442 OS << "Value: " << V->getName(); 443 else 444 OS << "Value: [null]\n"; 445 V->dump(); 446 447 OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; 448 for (const Use &U : V->uses()) { 449 if (&U != &*V->use_begin()) 450 OS << ","; 451 if(U->hasName()) 452 OS << " " << U->getName(); 453 else 454 OS << " [null]"; 455 456 } 457 OS << "\n\n"; 458 } 459 } 460 461 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 462 const char *Name) const { 463 464 OS << "Map Name: " << Name << "\n"; 465 OS << "Size: " << Map.size() << "\n"; 466 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 467 const Metadata *MD = I->first; 468 OS << "Metadata: slot = " << I->second << "\n"; 469 MD->print(OS); 470 } 471 } 472 473 /// OptimizeConstants - Reorder constant pool for denser encoding. 474 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 475 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 476 477 if (ShouldPreserveUseListOrder) 478 // Optimizing constants makes the use-list order difficult to predict. 479 // Disable it for now when trying to preserve the order. 480 return; 481 482 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 483 [this](const std::pair<const Value *, unsigned> &LHS, 484 const std::pair<const Value *, unsigned> &RHS) { 485 // Sort by plane. 486 if (LHS.first->getType() != RHS.first->getType()) 487 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 488 // Then by frequency. 489 return LHS.second > RHS.second; 490 }); 491 492 // Ensure that integer and vector of integer constants are at the start of the 493 // constant pool. This is important so that GEP structure indices come before 494 // gep constant exprs. 495 std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, 496 isIntOrIntVectorValue); 497 498 // Rebuild the modified portion of ValueMap. 499 for (; CstStart != CstEnd; ++CstStart) 500 ValueMap[Values[CstStart].first] = CstStart+1; 501 } 502 503 504 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 505 /// table into the values table. 506 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 507 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 508 VI != VE; ++VI) 509 EnumerateValue(VI->getValue()); 510 } 511 512 /// Insert all of the values referenced by named metadata in the specified 513 /// module. 514 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 515 for (const auto &I : M.named_metadata()) 516 EnumerateNamedMDNode(&I); 517 } 518 519 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 520 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 521 EnumerateMetadata(MD->getOperand(i)); 522 } 523 524 /// EnumerateMDNodeOperands - Enumerate all non-function-local values 525 /// and types referenced by the given MDNode. 526 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { 527 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 528 Metadata *MD = N->getOperand(i); 529 if (!MD) 530 continue; 531 assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local"); 532 EnumerateMetadata(MD); 533 } 534 } 535 536 void ValueEnumerator::EnumerateMetadata(const Metadata *MD) { 537 assert( 538 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 539 "Invalid metadata kind"); 540 541 // Insert a dummy ID to block the co-recursive call to 542 // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph. 543 // 544 // Return early if there's already an ID. 545 if (!MDValueMap.insert(std::make_pair(MD, 0)).second) 546 return; 547 548 // Visit operands first to minimize RAUW. 549 if (auto *N = dyn_cast<MDNode>(MD)) 550 EnumerateMDNodeOperands(N); 551 else if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 552 EnumerateValue(C->getValue()); 553 554 HasMDString |= isa<MDString>(MD); 555 HasDILocation |= isa<DILocation>(MD); 556 HasGenericDINode |= isa<GenericDINode>(MD); 557 558 // Replace the dummy ID inserted above with the correct one. MDValueMap may 559 // have changed by inserting operands, so we need a fresh lookup here. 560 MDs.push_back(MD); 561 MDValueMap[MD] = MDs.size(); 562 } 563 564 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 565 /// information reachable from the metadata. 566 void ValueEnumerator::EnumerateFunctionLocalMetadata( 567 const LocalAsMetadata *Local) { 568 // Check to see if it's already in! 569 unsigned &MDValueID = MDValueMap[Local]; 570 if (MDValueID) 571 return; 572 573 MDs.push_back(Local); 574 MDValueID = MDs.size(); 575 576 EnumerateValue(Local->getValue()); 577 578 // Also, collect all function-local metadata for easy access. 579 FunctionLocalMDs.push_back(Local); 580 } 581 582 void ValueEnumerator::EnumerateValue(const Value *V) { 583 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 584 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 585 586 // Check to see if it's already in! 587 unsigned &ValueID = ValueMap[V]; 588 if (ValueID) { 589 // Increment use count. 590 Values[ValueID-1].second++; 591 return; 592 } 593 594 if (auto *GO = dyn_cast<GlobalObject>(V)) 595 if (const Comdat *C = GO->getComdat()) 596 Comdats.insert(C); 597 598 // Enumerate the type of this value. 599 EnumerateType(V->getType()); 600 601 if (const Constant *C = dyn_cast<Constant>(V)) { 602 if (isa<GlobalValue>(C)) { 603 // Initializers for globals are handled explicitly elsewhere. 604 } else if (C->getNumOperands()) { 605 // If a constant has operands, enumerate them. This makes sure that if a 606 // constant has uses (for example an array of const ints), that they are 607 // inserted also. 608 609 // We prefer to enumerate them with values before we enumerate the user 610 // itself. This makes it more likely that we can avoid forward references 611 // in the reader. We know that there can be no cycles in the constants 612 // graph that don't go through a global variable. 613 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 614 I != E; ++I) 615 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 616 EnumerateValue(*I); 617 618 // Finally, add the value. Doing this could make the ValueID reference be 619 // dangling, don't reuse it. 620 Values.push_back(std::make_pair(V, 1U)); 621 ValueMap[V] = Values.size(); 622 return; 623 } 624 } 625 626 // Add the value. 627 Values.push_back(std::make_pair(V, 1U)); 628 ValueID = Values.size(); 629 } 630 631 632 void ValueEnumerator::EnumerateType(Type *Ty) { 633 unsigned *TypeID = &TypeMap[Ty]; 634 635 // We've already seen this type. 636 if (*TypeID) 637 return; 638 639 // If it is a non-anonymous struct, mark the type as being visited so that we 640 // don't recursively visit it. This is safe because we allow forward 641 // references of these in the bitcode reader. 642 if (StructType *STy = dyn_cast<StructType>(Ty)) 643 if (!STy->isLiteral()) 644 *TypeID = ~0U; 645 646 // Enumerate all of the subtypes before we enumerate this type. This ensures 647 // that the type will be enumerated in an order that can be directly built. 648 for (Type *SubTy : Ty->subtypes()) 649 EnumerateType(SubTy); 650 651 // Refresh the TypeID pointer in case the table rehashed. 652 TypeID = &TypeMap[Ty]; 653 654 // Check to see if we got the pointer another way. This can happen when 655 // enumerating recursive types that hit the base case deeper than they start. 656 // 657 // If this is actually a struct that we are treating as forward ref'able, 658 // then emit the definition now that all of its contents are available. 659 if (*TypeID && *TypeID != ~0U) 660 return; 661 662 // Add this type now that its contents are all happily enumerated. 663 Types.push_back(Ty); 664 665 *TypeID = Types.size(); 666 } 667 668 // Enumerate the types for the specified value. If the value is a constant, 669 // walk through it, enumerating the types of the constant. 670 void ValueEnumerator::EnumerateOperandType(const Value *V) { 671 EnumerateType(V->getType()); 672 673 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 674 assert(!isa<LocalAsMetadata>(MD->getMetadata()) && 675 "Function-local metadata should be left for later"); 676 677 EnumerateMetadata(MD->getMetadata()); 678 return; 679 } 680 681 const Constant *C = dyn_cast<Constant>(V); 682 if (!C) 683 return; 684 685 // If this constant is already enumerated, ignore it, we know its type must 686 // be enumerated. 687 if (ValueMap.count(C)) 688 return; 689 690 // This constant may have operands, make sure to enumerate the types in 691 // them. 692 for (const Value *Op : C->operands()) { 693 // Don't enumerate basic blocks here, this happens as operands to 694 // blockaddress. 695 if (isa<BasicBlock>(Op)) 696 continue; 697 698 EnumerateOperandType(Op); 699 } 700 } 701 702 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) { 703 if (PAL.isEmpty()) return; // null is always 0. 704 705 // Do a lookup. 706 unsigned &Entry = AttributeMap[PAL]; 707 if (Entry == 0) { 708 // Never saw this before, add it. 709 Attribute.push_back(PAL); 710 Entry = Attribute.size(); 711 } 712 713 // Do lookups for all attribute groups. 714 for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) { 715 AttributeSet AS = PAL.getSlotAttributes(i); 716 unsigned &Entry = AttributeGroupMap[AS]; 717 if (Entry == 0) { 718 AttributeGroups.push_back(AS); 719 Entry = AttributeGroups.size(); 720 } 721 } 722 } 723 724 void ValueEnumerator::incorporateFunction(const Function &F) { 725 InstructionCount = 0; 726 NumModuleValues = Values.size(); 727 NumModuleMDs = MDs.size(); 728 729 // Adding function arguments to the value table. 730 for (const auto &I : F.args()) 731 EnumerateValue(&I); 732 733 FirstFuncConstantID = Values.size(); 734 735 // Add all function-level constants to the value table. 736 for (const BasicBlock &BB : F) { 737 for (const Instruction &I : BB) 738 for (const Use &OI : I.operands()) { 739 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 740 EnumerateValue(OI); 741 } 742 BasicBlocks.push_back(&BB); 743 ValueMap[&BB] = BasicBlocks.size(); 744 } 745 746 // Optimize the constant layout. 747 OptimizeConstants(FirstFuncConstantID, Values.size()); 748 749 // Add the function's parameter attributes so they are available for use in 750 // the function's instruction. 751 EnumerateAttributes(F.getAttributes()); 752 753 FirstInstID = Values.size(); 754 755 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 756 // Add all of the instructions. 757 for (const BasicBlock &BB : F) { 758 for (const Instruction &I : BB) { 759 for (const Use &OI : I.operands()) { 760 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 761 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 762 // Enumerate metadata after the instructions they might refer to. 763 FnLocalMDVector.push_back(Local); 764 } 765 766 if (!I.getType()->isVoidTy()) 767 EnumerateValue(&I); 768 } 769 } 770 771 // Add all of the function-local metadata. 772 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) 773 EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); 774 } 775 776 void ValueEnumerator::purgeFunction() { 777 /// Remove purged values from the ValueMap. 778 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 779 ValueMap.erase(Values[i].first); 780 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 781 MDValueMap.erase(MDs[i]); 782 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 783 ValueMap.erase(BasicBlocks[i]); 784 785 Values.resize(NumModuleValues); 786 MDs.resize(NumModuleMDs); 787 BasicBlocks.clear(); 788 FunctionLocalMDs.clear(); 789 } 790 791 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 792 DenseMap<const BasicBlock*, unsigned> &IDMap) { 793 unsigned Counter = 0; 794 for (const BasicBlock &BB : *F) 795 IDMap[&BB] = ++Counter; 796 } 797 798 /// getGlobalBasicBlockID - This returns the function-specific ID for the 799 /// specified basic block. This is relatively expensive information, so it 800 /// should only be used by rare constructs such as address-of-label. 801 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 802 unsigned &Idx = GlobalBasicBlockIDs[BB]; 803 if (Idx != 0) 804 return Idx-1; 805 806 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 807 return getGlobalBasicBlockID(BB); 808 } 809 810 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 811 return Log2_32_Ceil(getTypes().size() + 1); 812 } 813