1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ValueEnumerator class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/Constants.h" 16 #include "llvm/DerivedTypes.h" 17 #include "llvm/Module.h" 18 #include "llvm/TypeSymbolTable.h" 19 #include "llvm/ValueSymbolTable.h" 20 #include "llvm/Instructions.h" 21 #include <algorithm> 22 using namespace llvm; 23 24 static bool isSingleValueType(const std::pair<const llvm::Type*, 25 unsigned int> &P) { 26 return P.first->isSingleValueType(); 27 } 28 29 static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) { 30 return V.first->getType()->isIntegerTy(); 31 } 32 33 static bool CompareByFrequency(const std::pair<const llvm::Type*, 34 unsigned int> &P1, 35 const std::pair<const llvm::Type*, 36 unsigned int> &P2) { 37 return P1.second > P2.second; 38 } 39 40 /// ValueEnumerator - Enumerate module-level information. 41 ValueEnumerator::ValueEnumerator(const Module *M) { 42 // Enumerate the global variables. 43 for (Module::const_global_iterator I = M->global_begin(), 44 E = M->global_end(); I != E; ++I) 45 EnumerateValue(I); 46 47 // Enumerate the functions. 48 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { 49 EnumerateValue(I); 50 EnumerateAttributes(cast<Function>(I)->getAttributes()); 51 } 52 53 // Enumerate the aliases. 54 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); 55 I != E; ++I) 56 EnumerateValue(I); 57 58 // Remember what is the cutoff between globalvalue's and other constants. 59 unsigned FirstConstant = Values.size(); 60 61 // Enumerate the global variable initializers. 62 for (Module::const_global_iterator I = M->global_begin(), 63 E = M->global_end(); I != E; ++I) 64 if (I->hasInitializer()) 65 EnumerateValue(I->getInitializer()); 66 67 // Enumerate the aliasees. 68 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); 69 I != E; ++I) 70 EnumerateValue(I->getAliasee()); 71 72 // Enumerate types used by the type symbol table. 73 EnumerateTypeSymbolTable(M->getTypeSymbolTable()); 74 75 // Insert constants and metadata that are named at module level into the slot 76 // pool so that the module symbol table can refer to them... 77 EnumerateValueSymbolTable(M->getValueSymbolTable()); 78 EnumerateMDSymbolTable(M->getMDSymbolTable()); 79 80 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; 81 82 // Enumerate types used by function bodies and argument lists. 83 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 84 85 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 86 I != E; ++I) 87 EnumerateType(I->getType()); 88 89 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 90 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ 91 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 92 OI != E; ++OI) { 93 if (MDNode *MD = dyn_cast<MDNode>(*OI)) 94 if (MD->isFunctionLocal() && MD->getFunction()) 95 // These will get enumerated during function-incorporation. 96 continue; 97 EnumerateOperandType(*OI); 98 } 99 EnumerateType(I->getType()); 100 if (const CallInst *CI = dyn_cast<CallInst>(I)) 101 EnumerateAttributes(CI->getAttributes()); 102 else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) 103 EnumerateAttributes(II->getAttributes()); 104 105 // Enumerate metadata attached with this instruction. 106 MDs.clear(); 107 I->getAllMetadataOtherThanDebugLoc(MDs); 108 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 109 EnumerateMetadata(MDs[i].second); 110 111 if (!I->getDebugLoc().isUnknown()) { 112 MDNode *Scope, *IA; 113 I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); 114 if (Scope) EnumerateMetadata(Scope); 115 if (IA) EnumerateMetadata(IA); 116 } 117 } 118 } 119 120 // Optimize constant ordering. 121 OptimizeConstants(FirstConstant, Values.size()); 122 123 // Sort the type table by frequency so that most commonly used types are early 124 // in the table (have low bit-width). 125 std::stable_sort(Types.begin(), Types.end(), CompareByFrequency); 126 127 // Partition the Type ID's so that the single-value types occur before the 128 // aggregate types. This allows the aggregate types to be dropped from the 129 // type table after parsing the global variable initializers. 130 std::partition(Types.begin(), Types.end(), isSingleValueType); 131 132 // Now that we rearranged the type table, rebuild TypeMap. 133 for (unsigned i = 0, e = Types.size(); i != e; ++i) 134 TypeMap[Types[i].first] = i+1; 135 } 136 137 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 138 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 139 assert (I != InstructionMap.end() && "Instruction is not mapped!"); 140 return I->second; 141 } 142 143 void ValueEnumerator::setInstructionID(const Instruction *I) { 144 InstructionMap[I] = InstructionCount++; 145 } 146 147 unsigned ValueEnumerator::getValueID(const Value *V) const { 148 if (isa<MDNode>(V) || isa<MDString>(V)) { 149 ValueMapType::const_iterator I = MDValueMap.find(V); 150 assert(I != MDValueMap.end() && "Value not in slotcalculator!"); 151 return I->second-1; 152 } 153 154 ValueMapType::const_iterator I = ValueMap.find(V); 155 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 156 return I->second-1; 157 } 158 159 // Optimize constant ordering. 160 namespace { 161 struct CstSortPredicate { 162 ValueEnumerator &VE; 163 explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} 164 bool operator()(const std::pair<const Value*, unsigned> &LHS, 165 const std::pair<const Value*, unsigned> &RHS) { 166 // Sort by plane. 167 if (LHS.first->getType() != RHS.first->getType()) 168 return VE.getTypeID(LHS.first->getType()) < 169 VE.getTypeID(RHS.first->getType()); 170 // Then by frequency. 171 return LHS.second > RHS.second; 172 } 173 }; 174 } 175 176 /// OptimizeConstants - Reorder constant pool for denser encoding. 177 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 178 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 179 180 CstSortPredicate P(*this); 181 std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); 182 183 // Ensure that integer constants are at the start of the constant pool. This 184 // is important so that GEP structure indices come before gep constant exprs. 185 std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, 186 isIntegerValue); 187 188 // Rebuild the modified portion of ValueMap. 189 for (; CstStart != CstEnd; ++CstStart) 190 ValueMap[Values[CstStart].first] = CstStart+1; 191 } 192 193 194 /// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol 195 /// table. 196 void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) { 197 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 198 TI != TE; ++TI) 199 EnumerateType(TI->second); 200 } 201 202 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 203 /// table into the values table. 204 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 205 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 206 VI != VE; ++VI) 207 EnumerateValue(VI->getValue()); 208 } 209 210 /// EnumerateMDSymbolTable - Insert all of the values in the specified metadata 211 /// table. 212 void ValueEnumerator::EnumerateMDSymbolTable(const MDSymbolTable &MST) { 213 for (MDSymbolTable::const_iterator MI = MST.begin(), ME = MST.end(); 214 MI != ME; ++MI) 215 EnumerateValue(MI->getValue()); 216 } 217 218 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 219 // Check to see if it's already in! 220 unsigned &MDValueID = MDValueMap[MD]; 221 if (MDValueID) { 222 // Increment use count. 223 MDValues[MDValueID-1].second++; 224 return; 225 } 226 227 // Enumerate the type of this value. 228 EnumerateType(MD->getType()); 229 230 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 231 if (MDNode *E = MD->getOperand(i)) 232 EnumerateValue(E); 233 MDValues.push_back(std::make_pair(MD, 1U)); 234 MDValueMap[MD] = Values.size(); 235 } 236 237 void ValueEnumerator::EnumerateMetadata(const Value *MD) { 238 assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind"); 239 // Check to see if it's already in! 240 unsigned &MDValueID = MDValueMap[MD]; 241 if (MDValueID) { 242 // Increment use count. 243 MDValues[MDValueID-1].second++; 244 return; 245 } 246 247 // Enumerate the type of this value. 248 EnumerateType(MD->getType()); 249 250 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 251 MDValues.push_back(std::make_pair(MD, 1U)); 252 MDValueMap[MD] = MDValues.size(); 253 MDValueID = MDValues.size(); 254 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 255 if (Value *V = N->getOperand(i)) 256 EnumerateValue(V); 257 else 258 EnumerateType(Type::getVoidTy(MD->getContext())); 259 } 260 if (N->isFunctionLocal() && N->getFunction()) 261 FunctionLocalMDs.push_back(N); 262 return; 263 } 264 265 // Add the value. 266 assert(isa<MDString>(MD) && "Unknown metadata kind"); 267 MDValues.push_back(std::make_pair(MD, 1U)); 268 MDValueID = MDValues.size(); 269 } 270 271 void ValueEnumerator::EnumerateValue(const Value *V) { 272 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 273 if (isa<MDNode>(V) || isa<MDString>(V)) 274 return EnumerateMetadata(V); 275 else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V)) 276 return EnumerateNamedMDNode(NMD); 277 278 // Check to see if it's already in! 279 unsigned &ValueID = ValueMap[V]; 280 if (ValueID) { 281 // Increment use count. 282 Values[ValueID-1].second++; 283 return; 284 } 285 286 // Enumerate the type of this value. 287 EnumerateType(V->getType()); 288 289 if (const Constant *C = dyn_cast<Constant>(V)) { 290 if (isa<GlobalValue>(C)) { 291 // Initializers for globals are handled explicitly elsewhere. 292 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 293 // Do not enumerate the initializers for an array of simple characters. 294 // The initializers just polute the value table, and we emit the strings 295 // specially. 296 } else if (C->getNumOperands()) { 297 // If a constant has operands, enumerate them. This makes sure that if a 298 // constant has uses (for example an array of const ints), that they are 299 // inserted also. 300 301 // We prefer to enumerate them with values before we enumerate the user 302 // itself. This makes it more likely that we can avoid forward references 303 // in the reader. We know that there can be no cycles in the constants 304 // graph that don't go through a global variable. 305 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 306 I != E; ++I) 307 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 308 EnumerateValue(*I); 309 310 // Finally, add the value. Doing this could make the ValueID reference be 311 // dangling, don't reuse it. 312 Values.push_back(std::make_pair(V, 1U)); 313 ValueMap[V] = Values.size(); 314 return; 315 } 316 } 317 318 // Add the value. 319 Values.push_back(std::make_pair(V, 1U)); 320 ValueID = Values.size(); 321 } 322 323 324 void ValueEnumerator::EnumerateType(const Type *Ty) { 325 unsigned &TypeID = TypeMap[Ty]; 326 327 if (TypeID) { 328 // If we've already seen this type, just increase its occurrence count. 329 Types[TypeID-1].second++; 330 return; 331 } 332 333 // First time we saw this type, add it. 334 Types.push_back(std::make_pair(Ty, 1U)); 335 TypeID = Types.size(); 336 337 // Enumerate subtypes. 338 for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); 339 I != E; ++I) 340 EnumerateType(*I); 341 } 342 343 // Enumerate the types for the specified value. If the value is a constant, 344 // walk through it, enumerating the types of the constant. 345 void ValueEnumerator::EnumerateOperandType(const Value *V) { 346 EnumerateType(V->getType()); 347 348 if (const Constant *C = dyn_cast<Constant>(V)) { 349 // If this constant is already enumerated, ignore it, we know its type must 350 // be enumerated. 351 if (ValueMap.count(V)) return; 352 353 // This constant may have operands, make sure to enumerate the types in 354 // them. 355 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 356 const User *Op = C->getOperand(i); 357 358 // Don't enumerate basic blocks here, this happens as operands to 359 // blockaddress. 360 if (isa<BasicBlock>(Op)) continue; 361 362 EnumerateOperandType(cast<Constant>(Op)); 363 } 364 365 if (const MDNode *N = dyn_cast<MDNode>(V)) { 366 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 367 if (Value *Elem = N->getOperand(i)) 368 EnumerateOperandType(Elem); 369 } 370 } else if (isa<MDString>(V) || isa<MDNode>(V)) 371 EnumerateValue(V); 372 } 373 374 void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) { 375 if (PAL.isEmpty()) return; // null is always 0. 376 // Do a lookup. 377 unsigned &Entry = AttributeMap[PAL.getRawPointer()]; 378 if (Entry == 0) { 379 // Never saw this before, add it. 380 Attributes.push_back(PAL); 381 Entry = Attributes.size(); 382 } 383 } 384 385 386 void ValueEnumerator::incorporateFunction(const Function &F) { 387 InstructionCount = 0; 388 NumModuleValues = Values.size(); 389 390 // Adding function arguments to the value table. 391 for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 392 I != E; ++I) 393 EnumerateValue(I); 394 395 FirstFuncConstantID = Values.size(); 396 397 // Add all function-level constants to the value table. 398 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 399 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) 400 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 401 OI != E; ++OI) { 402 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 403 isa<InlineAsm>(*OI)) 404 EnumerateValue(*OI); 405 } 406 BasicBlocks.push_back(BB); 407 ValueMap[BB] = BasicBlocks.size(); 408 } 409 410 // Optimize the constant layout. 411 OptimizeConstants(FirstFuncConstantID, Values.size()); 412 413 // Add the function's parameter attributes so they are available for use in 414 // the function's instruction. 415 EnumerateAttributes(F.getAttributes()); 416 417 FirstInstID = Values.size(); 418 419 FunctionLocalMDs.clear(); 420 SmallVector<MDNode *, 8> FnLocalMDVector; 421 // Add all of the instructions. 422 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 423 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { 424 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 425 OI != E; ++OI) { 426 if (MDNode *MD = dyn_cast<MDNode>(*OI)) 427 if (MD->isFunctionLocal() && MD->getFunction()) 428 // Enumerate metadata after the instructions they might refer to. 429 FnLocalMDVector.push_back(MD); 430 } 431 if (!I->getType()->isVoidTy()) 432 EnumerateValue(I); 433 } 434 } 435 436 // Add all of the function-local metadata. 437 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) 438 EnumerateOperandType(FnLocalMDVector[i]); 439 } 440 441 void ValueEnumerator::purgeFunction() { 442 /// Remove purged values from the ValueMap. 443 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 444 ValueMap.erase(Values[i].first); 445 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 446 ValueMap.erase(BasicBlocks[i]); 447 448 Values.resize(NumModuleValues); 449 BasicBlocks.clear(); 450 } 451 452 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 453 DenseMap<const BasicBlock*, unsigned> &IDMap) { 454 unsigned Counter = 0; 455 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 456 IDMap[BB] = ++Counter; 457 } 458 459 /// getGlobalBasicBlockID - This returns the function-specific ID for the 460 /// specified basic block. This is relatively expensive information, so it 461 /// should only be used by rare constructs such as address-of-label. 462 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 463 unsigned &Idx = GlobalBasicBlockIDs[BB]; 464 if (Idx != 0) 465 return Idx-1; 466 467 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 468 return getGlobalBasicBlockID(BB); 469 } 470 471