1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ValueEnumerator.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/IR/Argument.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalIFunc.h" 26 #include "llvm/IR/GlobalObject.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Use.h" 35 #include "llvm/IR/UseListOrder.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/ValueSymbolTable.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <algorithm> 45 #include <cassert> 46 #include <cstddef> 47 #include <iterator> 48 #include <tuple> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 namespace { 55 56 struct OrderMap { 57 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 58 unsigned LastGlobalConstantID = 0; 59 unsigned LastGlobalValueID = 0; 60 61 OrderMap() = default; 62 63 bool isGlobalConstant(unsigned ID) const { 64 return ID <= LastGlobalConstantID; 65 } 66 67 bool isGlobalValue(unsigned ID) const { 68 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 69 } 70 71 unsigned size() const { return IDs.size(); } 72 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 73 74 std::pair<unsigned, bool> lookup(const Value *V) const { 75 return IDs.lookup(V); 76 } 77 78 void index(const Value *V) { 79 // Explicitly sequence get-size and insert-value operations to avoid UB. 80 unsigned ID = IDs.size() + 1; 81 IDs[V].first = ID; 82 } 83 }; 84 85 } // end anonymous namespace 86 87 static void orderValue(const Value *V, OrderMap &OM) { 88 if (OM.lookup(V).first) 89 return; 90 91 if (const Constant *C = dyn_cast<Constant>(V)) 92 if (C->getNumOperands() && !isa<GlobalValue>(C)) 93 for (const Value *Op : C->operands()) 94 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 95 orderValue(Op, OM); 96 97 // Note: we cannot cache this lookup above, since inserting into the map 98 // changes the map's size, and thus affects the other IDs. 99 OM.index(V); 100 } 101 102 static OrderMap orderModule(const Module &M) { 103 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 104 // and ValueEnumerator::incorporateFunction(). 105 OrderMap OM; 106 107 // In the reader, initializers of GlobalValues are set *after* all the 108 // globals have been read. Rather than awkwardly modeling this behaviour 109 // directly in predictValueUseListOrderImpl(), just assign IDs to 110 // initializers of GlobalValues before GlobalValues themselves to model this 111 // implicitly. 112 for (const GlobalVariable &G : M.globals()) 113 if (G.hasInitializer()) 114 if (!isa<GlobalValue>(G.getInitializer())) 115 orderValue(G.getInitializer(), OM); 116 for (const GlobalAlias &A : M.aliases()) 117 if (!isa<GlobalValue>(A.getAliasee())) 118 orderValue(A.getAliasee(), OM); 119 for (const GlobalIFunc &I : M.ifuncs()) 120 if (!isa<GlobalValue>(I.getResolver())) 121 orderValue(I.getResolver(), OM); 122 for (const Function &F : M) { 123 for (const Use &U : F.operands()) 124 if (!isa<GlobalValue>(U.get())) 125 orderValue(U.get(), OM); 126 } 127 OM.LastGlobalConstantID = OM.size(); 128 129 // Initializers of GlobalValues are processed in 130 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 131 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 132 // by giving IDs in reverse order. 133 // 134 // Since GlobalValues never reference each other directly (just through 135 // initializers), their relative IDs only matter for determining order of 136 // uses in their initializers. 137 for (const Function &F : M) 138 orderValue(&F, OM); 139 for (const GlobalAlias &A : M.aliases()) 140 orderValue(&A, OM); 141 for (const GlobalIFunc &I : M.ifuncs()) 142 orderValue(&I, OM); 143 for (const GlobalVariable &G : M.globals()) 144 orderValue(&G, OM); 145 OM.LastGlobalValueID = OM.size(); 146 147 for (const Function &F : M) { 148 if (F.isDeclaration()) 149 continue; 150 // Here we need to match the union of ValueEnumerator::incorporateFunction() 151 // and WriteFunction(). Basic blocks are implicitly declared before 152 // anything else (by declaring their size). 153 for (const BasicBlock &BB : F) 154 orderValue(&BB, OM); 155 for (const Argument &A : F.args()) 156 orderValue(&A, OM); 157 for (const BasicBlock &BB : F) 158 for (const Instruction &I : BB) 159 for (const Value *Op : I.operands()) 160 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 161 isa<InlineAsm>(*Op)) 162 orderValue(Op, OM); 163 for (const BasicBlock &BB : F) 164 for (const Instruction &I : BB) 165 orderValue(&I, OM); 166 } 167 return OM; 168 } 169 170 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 171 unsigned ID, const OrderMap &OM, 172 UseListOrderStack &Stack) { 173 // Predict use-list order for this one. 174 using Entry = std::pair<const Use *, unsigned>; 175 SmallVector<Entry, 64> List; 176 for (const Use &U : V->uses()) 177 // Check if this user will be serialized. 178 if (OM.lookup(U.getUser()).first) 179 List.push_back(std::make_pair(&U, List.size())); 180 181 if (List.size() < 2) 182 // We may have lost some users. 183 return; 184 185 bool IsGlobalValue = OM.isGlobalValue(ID); 186 llvm::sort(List, [&](const Entry &L, const Entry &R) { 187 const Use *LU = L.first; 188 const Use *RU = R.first; 189 if (LU == RU) 190 return false; 191 192 auto LID = OM.lookup(LU->getUser()).first; 193 auto RID = OM.lookup(RU->getUser()).first; 194 195 // Global values are processed in reverse order. 196 // 197 // Moreover, initializers of GlobalValues are set *after* all the globals 198 // have been read (despite having earlier IDs). Rather than awkwardly 199 // modeling this behaviour here, orderModule() has assigned IDs to 200 // initializers of GlobalValues before GlobalValues themselves. 201 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 202 return LID < RID; 203 204 // If ID is 4, then expect: 7 6 5 1 2 3. 205 if (LID < RID) { 206 if (RID <= ID) 207 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 208 return true; 209 return false; 210 } 211 if (RID < LID) { 212 if (LID <= ID) 213 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 214 return false; 215 return true; 216 } 217 218 // LID and RID are equal, so we have different operands of the same user. 219 // Assume operands are added in order for all instructions. 220 if (LID <= ID) 221 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 222 return LU->getOperandNo() < RU->getOperandNo(); 223 return LU->getOperandNo() > RU->getOperandNo(); 224 }); 225 226 if (std::is_sorted( 227 List.begin(), List.end(), 228 [](const Entry &L, const Entry &R) { return L.second < R.second; })) 229 // Order is already correct. 230 return; 231 232 // Store the shuffle. 233 Stack.emplace_back(V, F, List.size()); 234 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 235 for (size_t I = 0, E = List.size(); I != E; ++I) 236 Stack.back().Shuffle[I] = List[I].second; 237 } 238 239 static void predictValueUseListOrder(const Value *V, const Function *F, 240 OrderMap &OM, UseListOrderStack &Stack) { 241 auto &IDPair = OM[V]; 242 assert(IDPair.first && "Unmapped value"); 243 if (IDPair.second) 244 // Already predicted. 245 return; 246 247 // Do the actual prediction. 248 IDPair.second = true; 249 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 250 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 251 252 // Recursive descent into constants. 253 if (const Constant *C = dyn_cast<Constant>(V)) 254 if (C->getNumOperands()) // Visit GlobalValues. 255 for (const Value *Op : C->operands()) 256 if (isa<Constant>(Op)) // Visit GlobalValues. 257 predictValueUseListOrder(Op, F, OM, Stack); 258 } 259 260 static UseListOrderStack predictUseListOrder(const Module &M) { 261 OrderMap OM = orderModule(M); 262 263 // Use-list orders need to be serialized after all the users have been added 264 // to a value, or else the shuffles will be incomplete. Store them per 265 // function in a stack. 266 // 267 // Aside from function order, the order of values doesn't matter much here. 268 UseListOrderStack Stack; 269 270 // We want to visit the functions backward now so we can list function-local 271 // constants in the last Function they're used in. Module-level constants 272 // have already been visited above. 273 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 274 const Function &F = *I; 275 if (F.isDeclaration()) 276 continue; 277 for (const BasicBlock &BB : F) 278 predictValueUseListOrder(&BB, &F, OM, Stack); 279 for (const Argument &A : F.args()) 280 predictValueUseListOrder(&A, &F, OM, Stack); 281 for (const BasicBlock &BB : F) 282 for (const Instruction &I : BB) 283 for (const Value *Op : I.operands()) 284 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 285 predictValueUseListOrder(Op, &F, OM, Stack); 286 for (const BasicBlock &BB : F) 287 for (const Instruction &I : BB) 288 predictValueUseListOrder(&I, &F, OM, Stack); 289 } 290 291 // Visit globals last, since the module-level use-list block will be seen 292 // before the function bodies are processed. 293 for (const GlobalVariable &G : M.globals()) 294 predictValueUseListOrder(&G, nullptr, OM, Stack); 295 for (const Function &F : M) 296 predictValueUseListOrder(&F, nullptr, OM, Stack); 297 for (const GlobalAlias &A : M.aliases()) 298 predictValueUseListOrder(&A, nullptr, OM, Stack); 299 for (const GlobalIFunc &I : M.ifuncs()) 300 predictValueUseListOrder(&I, nullptr, OM, Stack); 301 for (const GlobalVariable &G : M.globals()) 302 if (G.hasInitializer()) 303 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 304 for (const GlobalAlias &A : M.aliases()) 305 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 306 for (const GlobalIFunc &I : M.ifuncs()) 307 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 308 for (const Function &F : M) { 309 for (const Use &U : F.operands()) 310 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 311 } 312 313 return Stack; 314 } 315 316 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 317 return V.first->getType()->isIntOrIntVectorTy(); 318 } 319 320 ValueEnumerator::ValueEnumerator(const Module &M, 321 bool ShouldPreserveUseListOrder) 322 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 323 if (ShouldPreserveUseListOrder) 324 UseListOrders = predictUseListOrder(M); 325 326 // Enumerate the global variables. 327 for (const GlobalVariable &GV : M.globals()) 328 EnumerateValue(&GV); 329 330 // Enumerate the functions. 331 for (const Function & F : M) { 332 EnumerateValue(&F); 333 EnumerateAttributes(F.getAttributes()); 334 } 335 336 // Enumerate the aliases. 337 for (const GlobalAlias &GA : M.aliases()) 338 EnumerateValue(&GA); 339 340 // Enumerate the ifuncs. 341 for (const GlobalIFunc &GIF : M.ifuncs()) 342 EnumerateValue(&GIF); 343 344 // Remember what is the cutoff between globalvalue's and other constants. 345 unsigned FirstConstant = Values.size(); 346 347 // Enumerate the global variable initializers and attributes. 348 for (const GlobalVariable &GV : M.globals()) { 349 if (GV.hasInitializer()) 350 EnumerateValue(GV.getInitializer()); 351 if (GV.hasAttributes()) 352 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 353 } 354 355 // Enumerate the aliasees. 356 for (const GlobalAlias &GA : M.aliases()) 357 EnumerateValue(GA.getAliasee()); 358 359 // Enumerate the ifunc resolvers. 360 for (const GlobalIFunc &GIF : M.ifuncs()) 361 EnumerateValue(GIF.getResolver()); 362 363 // Enumerate any optional Function data. 364 for (const Function &F : M) 365 for (const Use &U : F.operands()) 366 EnumerateValue(U.get()); 367 368 // Enumerate the metadata type. 369 // 370 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 371 // only encodes the metadata type when it's used as a value. 372 EnumerateType(Type::getMetadataTy(M.getContext())); 373 374 // Insert constants and metadata that are named at module level into the slot 375 // pool so that the module symbol table can refer to them... 376 EnumerateValueSymbolTable(M.getValueSymbolTable()); 377 EnumerateNamedMetadata(M); 378 379 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 380 for (const GlobalVariable &GV : M.globals()) { 381 MDs.clear(); 382 GV.getAllMetadata(MDs); 383 for (const auto &I : MDs) 384 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 385 // to write metadata to the global variable's own metadata block 386 // (PR28134). 387 EnumerateMetadata(nullptr, I.second); 388 } 389 390 // Enumerate types used by function bodies and argument lists. 391 for (const Function &F : M) { 392 for (const Argument &A : F.args()) 393 EnumerateType(A.getType()); 394 395 // Enumerate metadata attached to this function. 396 MDs.clear(); 397 F.getAllMetadata(MDs); 398 for (const auto &I : MDs) 399 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 400 401 for (const BasicBlock &BB : F) 402 for (const Instruction &I : BB) { 403 for (const Use &Op : I.operands()) { 404 auto *MD = dyn_cast<MetadataAsValue>(&Op); 405 if (!MD) { 406 EnumerateOperandType(Op); 407 continue; 408 } 409 410 // Local metadata is enumerated during function-incorporation. 411 if (isa<LocalAsMetadata>(MD->getMetadata())) 412 continue; 413 414 EnumerateMetadata(&F, MD->getMetadata()); 415 } 416 EnumerateType(I.getType()); 417 if (const auto *Call = dyn_cast<CallBase>(&I)) 418 EnumerateAttributes(Call->getAttributes()); 419 420 // Enumerate metadata attached with this instruction. 421 MDs.clear(); 422 I.getAllMetadataOtherThanDebugLoc(MDs); 423 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 424 EnumerateMetadata(&F, MDs[i].second); 425 426 // Don't enumerate the location directly -- it has a special record 427 // type -- but enumerate its operands. 428 if (DILocation *L = I.getDebugLoc()) 429 for (const Metadata *Op : L->operands()) 430 EnumerateMetadata(&F, Op); 431 } 432 } 433 434 // Optimize constant ordering. 435 OptimizeConstants(FirstConstant, Values.size()); 436 437 // Organize metadata ordering. 438 organizeMetadata(); 439 } 440 441 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 442 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 443 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 444 return I->second; 445 } 446 447 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 448 unsigned ComdatID = Comdats.idFor(C); 449 assert(ComdatID && "Comdat not found!"); 450 return ComdatID; 451 } 452 453 void ValueEnumerator::setInstructionID(const Instruction *I) { 454 InstructionMap[I] = InstructionCount++; 455 } 456 457 unsigned ValueEnumerator::getValueID(const Value *V) const { 458 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 459 return getMetadataID(MD->getMetadata()); 460 461 ValueMapType::const_iterator I = ValueMap.find(V); 462 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 463 return I->second-1; 464 } 465 466 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 467 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 468 print(dbgs(), ValueMap, "Default"); 469 dbgs() << '\n'; 470 print(dbgs(), MetadataMap, "MetaData"); 471 dbgs() << '\n'; 472 } 473 #endif 474 475 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 476 const char *Name) const { 477 OS << "Map Name: " << Name << "\n"; 478 OS << "Size: " << Map.size() << "\n"; 479 for (ValueMapType::const_iterator I = Map.begin(), 480 E = Map.end(); I != E; ++I) { 481 const Value *V = I->first; 482 if (V->hasName()) 483 OS << "Value: " << V->getName(); 484 else 485 OS << "Value: [null]\n"; 486 V->print(errs()); 487 errs() << '\n'; 488 489 OS << " Uses(" << V->getNumUses() << "):"; 490 for (const Use &U : V->uses()) { 491 if (&U != &*V->use_begin()) 492 OS << ","; 493 if(U->hasName()) 494 OS << " " << U->getName(); 495 else 496 OS << " [null]"; 497 498 } 499 OS << "\n\n"; 500 } 501 } 502 503 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 504 const char *Name) const { 505 OS << "Map Name: " << Name << "\n"; 506 OS << "Size: " << Map.size() << "\n"; 507 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 508 const Metadata *MD = I->first; 509 OS << "Metadata: slot = " << I->second.ID << "\n"; 510 OS << "Metadata: function = " << I->second.F << "\n"; 511 MD->print(OS); 512 OS << "\n"; 513 } 514 } 515 516 /// OptimizeConstants - Reorder constant pool for denser encoding. 517 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 518 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 519 520 if (ShouldPreserveUseListOrder) 521 // Optimizing constants makes the use-list order difficult to predict. 522 // Disable it for now when trying to preserve the order. 523 return; 524 525 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 526 [this](const std::pair<const Value *, unsigned> &LHS, 527 const std::pair<const Value *, unsigned> &RHS) { 528 // Sort by plane. 529 if (LHS.first->getType() != RHS.first->getType()) 530 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 531 // Then by frequency. 532 return LHS.second > RHS.second; 533 }); 534 535 // Ensure that integer and vector of integer constants are at the start of the 536 // constant pool. This is important so that GEP structure indices come before 537 // gep constant exprs. 538 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 539 isIntOrIntVectorValue); 540 541 // Rebuild the modified portion of ValueMap. 542 for (; CstStart != CstEnd; ++CstStart) 543 ValueMap[Values[CstStart].first] = CstStart+1; 544 } 545 546 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 547 /// table into the values table. 548 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 549 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 550 VI != VE; ++VI) 551 EnumerateValue(VI->getValue()); 552 } 553 554 /// Insert all of the values referenced by named metadata in the specified 555 /// module. 556 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 557 for (const auto &I : M.named_metadata()) 558 EnumerateNamedMDNode(&I); 559 } 560 561 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 562 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 563 EnumerateMetadata(nullptr, MD->getOperand(i)); 564 } 565 566 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 567 return F ? getValueID(F) + 1 : 0; 568 } 569 570 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 571 EnumerateMetadata(getMetadataFunctionID(F), MD); 572 } 573 574 void ValueEnumerator::EnumerateFunctionLocalMetadata( 575 const Function &F, const LocalAsMetadata *Local) { 576 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 577 } 578 579 void ValueEnumerator::dropFunctionFromMetadata( 580 MetadataMapType::value_type &FirstMD) { 581 SmallVector<const MDNode *, 64> Worklist; 582 auto push = [&Worklist](MetadataMapType::value_type &MD) { 583 auto &Entry = MD.second; 584 585 // Nothing to do if this metadata isn't tagged. 586 if (!Entry.F) 587 return; 588 589 // Drop the function tag. 590 Entry.F = 0; 591 592 // If this is has an ID and is an MDNode, then its operands have entries as 593 // well. We need to drop the function from them too. 594 if (Entry.ID) 595 if (auto *N = dyn_cast<MDNode>(MD.first)) 596 Worklist.push_back(N); 597 }; 598 push(FirstMD); 599 while (!Worklist.empty()) 600 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 601 if (!Op) 602 continue; 603 auto MD = MetadataMap.find(Op); 604 if (MD != MetadataMap.end()) 605 push(*MD); 606 } 607 } 608 609 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 610 // It's vital for reader efficiency that uniqued subgraphs are done in 611 // post-order; it's expensive when their operands have forward references. 612 // If a distinct node is referenced from a uniqued node, it'll be delayed 613 // until the uniqued subgraph has been completely traversed. 614 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 615 616 // Start by enumerating MD, and then work through its transitive operands in 617 // post-order. This requires a depth-first search. 618 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 619 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 620 Worklist.push_back(std::make_pair(N, N->op_begin())); 621 622 while (!Worklist.empty()) { 623 const MDNode *N = Worklist.back().first; 624 625 // Enumerate operands until we hit a new node. We need to traverse these 626 // nodes' operands before visiting the rest of N's operands. 627 MDNode::op_iterator I = std::find_if( 628 Worklist.back().second, N->op_end(), 629 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 630 if (I != N->op_end()) { 631 auto *Op = cast<MDNode>(*I); 632 Worklist.back().second = ++I; 633 634 // Delay traversing Op if it's a distinct node and N is uniqued. 635 if (Op->isDistinct() && !N->isDistinct()) 636 DelayedDistinctNodes.push_back(Op); 637 else 638 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 639 continue; 640 } 641 642 // All the operands have been visited. Now assign an ID. 643 Worklist.pop_back(); 644 MDs.push_back(N); 645 MetadataMap[N].ID = MDs.size(); 646 647 // Flush out any delayed distinct nodes; these are all the distinct nodes 648 // that are leaves in last uniqued subgraph. 649 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 650 for (const MDNode *N : DelayedDistinctNodes) 651 Worklist.push_back(std::make_pair(N, N->op_begin())); 652 DelayedDistinctNodes.clear(); 653 } 654 } 655 } 656 657 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 658 if (!MD) 659 return nullptr; 660 661 assert( 662 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 663 "Invalid metadata kind"); 664 665 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 666 MDIndex &Entry = Insertion.first->second; 667 if (!Insertion.second) { 668 // Already mapped. If F doesn't match the function tag, drop it. 669 if (Entry.hasDifferentFunction(F)) 670 dropFunctionFromMetadata(*Insertion.first); 671 return nullptr; 672 } 673 674 // Don't assign IDs to metadata nodes. 675 if (auto *N = dyn_cast<MDNode>(MD)) 676 return N; 677 678 // Save the metadata. 679 MDs.push_back(MD); 680 Entry.ID = MDs.size(); 681 682 // Enumerate the constant, if any. 683 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 684 EnumerateValue(C->getValue()); 685 686 return nullptr; 687 } 688 689 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 690 /// information reachable from the metadata. 691 void ValueEnumerator::EnumerateFunctionLocalMetadata( 692 unsigned F, const LocalAsMetadata *Local) { 693 assert(F && "Expected a function"); 694 695 // Check to see if it's already in! 696 MDIndex &Index = MetadataMap[Local]; 697 if (Index.ID) { 698 assert(Index.F == F && "Expected the same function"); 699 return; 700 } 701 702 MDs.push_back(Local); 703 Index.F = F; 704 Index.ID = MDs.size(); 705 706 EnumerateValue(Local->getValue()); 707 } 708 709 static unsigned getMetadataTypeOrder(const Metadata *MD) { 710 // Strings are emitted in bulk and must come first. 711 if (isa<MDString>(MD)) 712 return 0; 713 714 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 715 // to the front since we can detect it. 716 auto *N = dyn_cast<MDNode>(MD); 717 if (!N) 718 return 1; 719 720 // The reader is fast forward references for distinct node operands, but slow 721 // when uniqued operands are unresolved. 722 return N->isDistinct() ? 2 : 3; 723 } 724 725 void ValueEnumerator::organizeMetadata() { 726 assert(MetadataMap.size() == MDs.size() && 727 "Metadata map and vector out of sync"); 728 729 if (MDs.empty()) 730 return; 731 732 // Copy out the index information from MetadataMap in order to choose a new 733 // order. 734 SmallVector<MDIndex, 64> Order; 735 Order.reserve(MetadataMap.size()); 736 for (const Metadata *MD : MDs) 737 Order.push_back(MetadataMap.lookup(MD)); 738 739 // Partition: 740 // - by function, then 741 // - by isa<MDString> 742 // and then sort by the original/current ID. Since the IDs are guaranteed to 743 // be unique, the result of std::sort will be deterministic. There's no need 744 // for std::stable_sort. 745 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 746 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 747 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 748 }); 749 750 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 751 // and fix up MetadataMap. 752 std::vector<const Metadata *> OldMDs = std::move(MDs); 753 MDs.reserve(OldMDs.size()); 754 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 755 auto *MD = Order[I].get(OldMDs); 756 MDs.push_back(MD); 757 MetadataMap[MD].ID = I + 1; 758 if (isa<MDString>(MD)) 759 ++NumMDStrings; 760 } 761 762 // Return early if there's nothing for the functions. 763 if (MDs.size() == Order.size()) 764 return; 765 766 // Build the function metadata ranges. 767 MDRange R; 768 FunctionMDs.reserve(OldMDs.size()); 769 unsigned PrevF = 0; 770 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 771 ++I) { 772 unsigned F = Order[I].F; 773 if (!PrevF) { 774 PrevF = F; 775 } else if (PrevF != F) { 776 R.Last = FunctionMDs.size(); 777 std::swap(R, FunctionMDInfo[PrevF]); 778 R.First = FunctionMDs.size(); 779 780 ID = MDs.size(); 781 PrevF = F; 782 } 783 784 auto *MD = Order[I].get(OldMDs); 785 FunctionMDs.push_back(MD); 786 MetadataMap[MD].ID = ++ID; 787 if (isa<MDString>(MD)) 788 ++R.NumStrings; 789 } 790 R.Last = FunctionMDs.size(); 791 FunctionMDInfo[PrevF] = R; 792 } 793 794 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 795 NumModuleMDs = MDs.size(); 796 797 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 798 NumMDStrings = R.NumStrings; 799 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 800 FunctionMDs.begin() + R.Last); 801 } 802 803 void ValueEnumerator::EnumerateValue(const Value *V) { 804 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 805 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 806 807 // Check to see if it's already in! 808 unsigned &ValueID = ValueMap[V]; 809 if (ValueID) { 810 // Increment use count. 811 Values[ValueID-1].second++; 812 return; 813 } 814 815 if (auto *GO = dyn_cast<GlobalObject>(V)) 816 if (const Comdat *C = GO->getComdat()) 817 Comdats.insert(C); 818 819 // Enumerate the type of this value. 820 EnumerateType(V->getType()); 821 822 if (const Constant *C = dyn_cast<Constant>(V)) { 823 if (isa<GlobalValue>(C)) { 824 // Initializers for globals are handled explicitly elsewhere. 825 } else if (C->getNumOperands()) { 826 // If a constant has operands, enumerate them. This makes sure that if a 827 // constant has uses (for example an array of const ints), that they are 828 // inserted also. 829 830 // We prefer to enumerate them with values before we enumerate the user 831 // itself. This makes it more likely that we can avoid forward references 832 // in the reader. We know that there can be no cycles in the constants 833 // graph that don't go through a global variable. 834 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 835 I != E; ++I) 836 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 837 EnumerateValue(*I); 838 839 // Finally, add the value. Doing this could make the ValueID reference be 840 // dangling, don't reuse it. 841 Values.push_back(std::make_pair(V, 1U)); 842 ValueMap[V] = Values.size(); 843 return; 844 } 845 } 846 847 // Add the value. 848 Values.push_back(std::make_pair(V, 1U)); 849 ValueID = Values.size(); 850 } 851 852 853 void ValueEnumerator::EnumerateType(Type *Ty) { 854 unsigned *TypeID = &TypeMap[Ty]; 855 856 // We've already seen this type. 857 if (*TypeID) 858 return; 859 860 // If it is a non-anonymous struct, mark the type as being visited so that we 861 // don't recursively visit it. This is safe because we allow forward 862 // references of these in the bitcode reader. 863 if (StructType *STy = dyn_cast<StructType>(Ty)) 864 if (!STy->isLiteral()) 865 *TypeID = ~0U; 866 867 // Enumerate all of the subtypes before we enumerate this type. This ensures 868 // that the type will be enumerated in an order that can be directly built. 869 for (Type *SubTy : Ty->subtypes()) 870 EnumerateType(SubTy); 871 872 // Refresh the TypeID pointer in case the table rehashed. 873 TypeID = &TypeMap[Ty]; 874 875 // Check to see if we got the pointer another way. This can happen when 876 // enumerating recursive types that hit the base case deeper than they start. 877 // 878 // If this is actually a struct that we are treating as forward ref'able, 879 // then emit the definition now that all of its contents are available. 880 if (*TypeID && *TypeID != ~0U) 881 return; 882 883 // Add this type now that its contents are all happily enumerated. 884 Types.push_back(Ty); 885 886 *TypeID = Types.size(); 887 } 888 889 // Enumerate the types for the specified value. If the value is a constant, 890 // walk through it, enumerating the types of the constant. 891 void ValueEnumerator::EnumerateOperandType(const Value *V) { 892 EnumerateType(V->getType()); 893 894 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 895 896 const Constant *C = dyn_cast<Constant>(V); 897 if (!C) 898 return; 899 900 // If this constant is already enumerated, ignore it, we know its type must 901 // be enumerated. 902 if (ValueMap.count(C)) 903 return; 904 905 // This constant may have operands, make sure to enumerate the types in 906 // them. 907 for (const Value *Op : C->operands()) { 908 // Don't enumerate basic blocks here, this happens as operands to 909 // blockaddress. 910 if (isa<BasicBlock>(Op)) 911 continue; 912 913 EnumerateOperandType(Op); 914 } 915 } 916 917 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 918 if (PAL.isEmpty()) return; // null is always 0. 919 920 // Do a lookup. 921 unsigned &Entry = AttributeListMap[PAL]; 922 if (Entry == 0) { 923 // Never saw this before, add it. 924 AttributeLists.push_back(PAL); 925 Entry = AttributeLists.size(); 926 } 927 928 // Do lookups for all attribute groups. 929 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 930 AttributeSet AS = PAL.getAttributes(i); 931 if (!AS.hasAttributes()) 932 continue; 933 IndexAndAttrSet Pair = {i, AS}; 934 unsigned &Entry = AttributeGroupMap[Pair]; 935 if (Entry == 0) { 936 AttributeGroups.push_back(Pair); 937 Entry = AttributeGroups.size(); 938 } 939 } 940 } 941 942 void ValueEnumerator::incorporateFunction(const Function &F) { 943 InstructionCount = 0; 944 NumModuleValues = Values.size(); 945 946 // Add global metadata to the function block. This doesn't include 947 // LocalAsMetadata. 948 incorporateFunctionMetadata(F); 949 950 // Adding function arguments to the value table. 951 for (const auto &I : F.args()) 952 EnumerateValue(&I); 953 954 FirstFuncConstantID = Values.size(); 955 956 // Add all function-level constants to the value table. 957 for (const BasicBlock &BB : F) { 958 for (const Instruction &I : BB) 959 for (const Use &OI : I.operands()) { 960 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 961 EnumerateValue(OI); 962 } 963 BasicBlocks.push_back(&BB); 964 ValueMap[&BB] = BasicBlocks.size(); 965 } 966 967 // Optimize the constant layout. 968 OptimizeConstants(FirstFuncConstantID, Values.size()); 969 970 // Add the function's parameter attributes so they are available for use in 971 // the function's instruction. 972 EnumerateAttributes(F.getAttributes()); 973 974 FirstInstID = Values.size(); 975 976 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 977 // Add all of the instructions. 978 for (const BasicBlock &BB : F) { 979 for (const Instruction &I : BB) { 980 for (const Use &OI : I.operands()) { 981 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 982 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 983 // Enumerate metadata after the instructions they might refer to. 984 FnLocalMDVector.push_back(Local); 985 } 986 987 if (!I.getType()->isVoidTy()) 988 EnumerateValue(&I); 989 } 990 } 991 992 // Add all of the function-local metadata. 993 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 994 // At this point, every local values have been incorporated, we shouldn't 995 // have a metadata operand that references a value that hasn't been seen. 996 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 997 "Missing value for metadata operand"); 998 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 999 } 1000 } 1001 1002 void ValueEnumerator::purgeFunction() { 1003 /// Remove purged values from the ValueMap. 1004 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1005 ValueMap.erase(Values[i].first); 1006 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1007 MetadataMap.erase(MDs[i]); 1008 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 1009 ValueMap.erase(BasicBlocks[i]); 1010 1011 Values.resize(NumModuleValues); 1012 MDs.resize(NumModuleMDs); 1013 BasicBlocks.clear(); 1014 NumMDStrings = 0; 1015 } 1016 1017 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1018 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1019 unsigned Counter = 0; 1020 for (const BasicBlock &BB : *F) 1021 IDMap[&BB] = ++Counter; 1022 } 1023 1024 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1025 /// specified basic block. This is relatively expensive information, so it 1026 /// should only be used by rare constructs such as address-of-label. 1027 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1028 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1029 if (Idx != 0) 1030 return Idx-1; 1031 1032 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1033 return getGlobalBasicBlockID(BB); 1034 } 1035 1036 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1037 return Log2_32_Ceil(getTypes().size() + 1); 1038 } 1039