1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/UseListOrder.h"
23 #include "llvm/IR/ValueSymbolTable.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 using namespace llvm;
28 
29 namespace {
30 struct OrderMap {
31   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
32   unsigned LastGlobalConstantID;
33   unsigned LastGlobalValueID;
34 
35   OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {}
36 
37   bool isGlobalConstant(unsigned ID) const {
38     return ID <= LastGlobalConstantID;
39   }
40   bool isGlobalValue(unsigned ID) const {
41     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
42   }
43 
44   unsigned size() const { return IDs.size(); }
45   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
46   std::pair<unsigned, bool> lookup(const Value *V) const {
47     return IDs.lookup(V);
48   }
49   void index(const Value *V) {
50     // Explicitly sequence get-size and insert-value operations to avoid UB.
51     unsigned ID = IDs.size() + 1;
52     IDs[V].first = ID;
53   }
54 };
55 }
56 
57 static void orderValue(const Value *V, OrderMap &OM) {
58   if (OM.lookup(V).first)
59     return;
60 
61   if (const Constant *C = dyn_cast<Constant>(V))
62     if (C->getNumOperands() && !isa<GlobalValue>(C))
63       for (const Value *Op : C->operands())
64         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
65           orderValue(Op, OM);
66 
67   // Note: we cannot cache this lookup above, since inserting into the map
68   // changes the map's size, and thus affects the other IDs.
69   OM.index(V);
70 }
71 
72 static OrderMap orderModule(const Module &M) {
73   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
74   // and ValueEnumerator::incorporateFunction().
75   OrderMap OM;
76 
77   // In the reader, initializers of GlobalValues are set *after* all the
78   // globals have been read.  Rather than awkwardly modeling this behaviour
79   // directly in predictValueUseListOrderImpl(), just assign IDs to
80   // initializers of GlobalValues before GlobalValues themselves to model this
81   // implicitly.
82   for (const GlobalVariable &G : M.globals())
83     if (G.hasInitializer())
84       if (!isa<GlobalValue>(G.getInitializer()))
85         orderValue(G.getInitializer(), OM);
86   for (const GlobalAlias &A : M.aliases())
87     if (!isa<GlobalValue>(A.getAliasee()))
88       orderValue(A.getAliasee(), OM);
89   for (const GlobalIFunc &I : M.ifuncs())
90     if (!isa<GlobalValue>(I.getResolver()))
91       orderValue(I.getResolver(), OM);
92   for (const Function &F : M) {
93     for (const Use &U : F.operands())
94       if (!isa<GlobalValue>(U.get()))
95         orderValue(U.get(), OM);
96   }
97   OM.LastGlobalConstantID = OM.size();
98 
99   // Initializers of GlobalValues are processed in
100   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
101   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
102   // by giving IDs in reverse order.
103   //
104   // Since GlobalValues never reference each other directly (just through
105   // initializers), their relative IDs only matter for determining order of
106   // uses in their initializers.
107   for (const Function &F : M)
108     orderValue(&F, OM);
109   for (const GlobalAlias &A : M.aliases())
110     orderValue(&A, OM);
111   for (const GlobalIFunc &I : M.ifuncs())
112     orderValue(&I, OM);
113   for (const GlobalVariable &G : M.globals())
114     orderValue(&G, OM);
115   OM.LastGlobalValueID = OM.size();
116 
117   for (const Function &F : M) {
118     if (F.isDeclaration())
119       continue;
120     // Here we need to match the union of ValueEnumerator::incorporateFunction()
121     // and WriteFunction().  Basic blocks are implicitly declared before
122     // anything else (by declaring their size).
123     for (const BasicBlock &BB : F)
124       orderValue(&BB, OM);
125     for (const Argument &A : F.args())
126       orderValue(&A, OM);
127     for (const BasicBlock &BB : F)
128       for (const Instruction &I : BB)
129         for (const Value *Op : I.operands())
130           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
131               isa<InlineAsm>(*Op))
132             orderValue(Op, OM);
133     for (const BasicBlock &BB : F)
134       for (const Instruction &I : BB)
135         orderValue(&I, OM);
136   }
137   return OM;
138 }
139 
140 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
141                                          unsigned ID, const OrderMap &OM,
142                                          UseListOrderStack &Stack) {
143   // Predict use-list order for this one.
144   typedef std::pair<const Use *, unsigned> Entry;
145   SmallVector<Entry, 64> List;
146   for (const Use &U : V->uses())
147     // Check if this user will be serialized.
148     if (OM.lookup(U.getUser()).first)
149       List.push_back(std::make_pair(&U, List.size()));
150 
151   if (List.size() < 2)
152     // We may have lost some users.
153     return;
154 
155   bool IsGlobalValue = OM.isGlobalValue(ID);
156   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
157     const Use *LU = L.first;
158     const Use *RU = R.first;
159     if (LU == RU)
160       return false;
161 
162     auto LID = OM.lookup(LU->getUser()).first;
163     auto RID = OM.lookup(RU->getUser()).first;
164 
165     // Global values are processed in reverse order.
166     //
167     // Moreover, initializers of GlobalValues are set *after* all the globals
168     // have been read (despite having earlier IDs).  Rather than awkwardly
169     // modeling this behaviour here, orderModule() has assigned IDs to
170     // initializers of GlobalValues before GlobalValues themselves.
171     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
172       return LID < RID;
173 
174     // If ID is 4, then expect: 7 6 5 1 2 3.
175     if (LID < RID) {
176       if (RID <= ID)
177         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
178           return true;
179       return false;
180     }
181     if (RID < LID) {
182       if (LID <= ID)
183         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
184           return false;
185       return true;
186     }
187 
188     // LID and RID are equal, so we have different operands of the same user.
189     // Assume operands are added in order for all instructions.
190     if (LID <= ID)
191       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
192         return LU->getOperandNo() < RU->getOperandNo();
193     return LU->getOperandNo() > RU->getOperandNo();
194   });
195 
196   if (std::is_sorted(
197           List.begin(), List.end(),
198           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
199     // Order is already correct.
200     return;
201 
202   // Store the shuffle.
203   Stack.emplace_back(V, F, List.size());
204   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
205   for (size_t I = 0, E = List.size(); I != E; ++I)
206     Stack.back().Shuffle[I] = List[I].second;
207 }
208 
209 static void predictValueUseListOrder(const Value *V, const Function *F,
210                                      OrderMap &OM, UseListOrderStack &Stack) {
211   auto &IDPair = OM[V];
212   assert(IDPair.first && "Unmapped value");
213   if (IDPair.second)
214     // Already predicted.
215     return;
216 
217   // Do the actual prediction.
218   IDPair.second = true;
219   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
220     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
221 
222   // Recursive descent into constants.
223   if (const Constant *C = dyn_cast<Constant>(V))
224     if (C->getNumOperands()) // Visit GlobalValues.
225       for (const Value *Op : C->operands())
226         if (isa<Constant>(Op)) // Visit GlobalValues.
227           predictValueUseListOrder(Op, F, OM, Stack);
228 }
229 
230 static UseListOrderStack predictUseListOrder(const Module &M) {
231   OrderMap OM = orderModule(M);
232 
233   // Use-list orders need to be serialized after all the users have been added
234   // to a value, or else the shuffles will be incomplete.  Store them per
235   // function in a stack.
236   //
237   // Aside from function order, the order of values doesn't matter much here.
238   UseListOrderStack Stack;
239 
240   // We want to visit the functions backward now so we can list function-local
241   // constants in the last Function they're used in.  Module-level constants
242   // have already been visited above.
243   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
244     const Function &F = *I;
245     if (F.isDeclaration())
246       continue;
247     for (const BasicBlock &BB : F)
248       predictValueUseListOrder(&BB, &F, OM, Stack);
249     for (const Argument &A : F.args())
250       predictValueUseListOrder(&A, &F, OM, Stack);
251     for (const BasicBlock &BB : F)
252       for (const Instruction &I : BB)
253         for (const Value *Op : I.operands())
254           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
255             predictValueUseListOrder(Op, &F, OM, Stack);
256     for (const BasicBlock &BB : F)
257       for (const Instruction &I : BB)
258         predictValueUseListOrder(&I, &F, OM, Stack);
259   }
260 
261   // Visit globals last, since the module-level use-list block will be seen
262   // before the function bodies are processed.
263   for (const GlobalVariable &G : M.globals())
264     predictValueUseListOrder(&G, nullptr, OM, Stack);
265   for (const Function &F : M)
266     predictValueUseListOrder(&F, nullptr, OM, Stack);
267   for (const GlobalAlias &A : M.aliases())
268     predictValueUseListOrder(&A, nullptr, OM, Stack);
269   for (const GlobalIFunc &I : M.ifuncs())
270     predictValueUseListOrder(&I, nullptr, OM, Stack);
271   for (const GlobalVariable &G : M.globals())
272     if (G.hasInitializer())
273       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
274   for (const GlobalAlias &A : M.aliases())
275     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
276   for (const GlobalIFunc &I : M.ifuncs())
277     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
278   for (const Function &F : M) {
279     for (const Use &U : F.operands())
280       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
281   }
282 
283   return Stack;
284 }
285 
286 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
287   return V.first->getType()->isIntOrIntVectorTy();
288 }
289 
290 ValueEnumerator::ValueEnumerator(const Module &M,
291                                  bool ShouldPreserveUseListOrder)
292     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
293   if (ShouldPreserveUseListOrder)
294     UseListOrders = predictUseListOrder(M);
295 
296   // Enumerate the global variables.
297   for (const GlobalVariable &GV : M.globals())
298     EnumerateValue(&GV);
299 
300   // Enumerate the functions.
301   for (const Function & F : M) {
302     EnumerateValue(&F);
303     EnumerateAttributes(F.getAttributes());
304   }
305 
306   // Enumerate the aliases.
307   for (const GlobalAlias &GA : M.aliases())
308     EnumerateValue(&GA);
309 
310   // Enumerate the ifuncs.
311   for (const GlobalIFunc &GIF : M.ifuncs())
312     EnumerateValue(&GIF);
313 
314   // Remember what is the cutoff between globalvalue's and other constants.
315   unsigned FirstConstant = Values.size();
316 
317   // Enumerate the global variable initializers.
318   for (const GlobalVariable &GV : M.globals())
319     if (GV.hasInitializer())
320       EnumerateValue(GV.getInitializer());
321 
322   // Enumerate the aliasees.
323   for (const GlobalAlias &GA : M.aliases())
324     EnumerateValue(GA.getAliasee());
325 
326   // Enumerate the ifunc resolvers.
327   for (const GlobalIFunc &GIF : M.ifuncs())
328     EnumerateValue(GIF.getResolver());
329 
330   // Enumerate any optional Function data.
331   for (const Function &F : M)
332     for (const Use &U : F.operands())
333       EnumerateValue(U.get());
334 
335   // Enumerate the metadata type.
336   //
337   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
338   // only encodes the metadata type when it's used as a value.
339   EnumerateType(Type::getMetadataTy(M.getContext()));
340 
341   // Insert constants and metadata that are named at module level into the slot
342   // pool so that the module symbol table can refer to them...
343   EnumerateValueSymbolTable(M.getValueSymbolTable());
344   EnumerateNamedMetadata(M);
345 
346   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
347   for (const GlobalVariable &GV : M.globals()) {
348     MDs.clear();
349     GV.getAllMetadata(MDs);
350     for (const auto &I : MDs)
351       EnumerateMetadata(&GV, I.second);
352   }
353 
354   // Enumerate types used by function bodies and argument lists.
355   for (const Function &F : M) {
356     for (const Argument &A : F.args())
357       EnumerateType(A.getType());
358 
359     // Enumerate metadata attached to this function.
360     MDs.clear();
361     F.getAllMetadata(MDs);
362     for (const auto &I : MDs)
363       EnumerateMetadata(&F, I.second);
364 
365     for (const BasicBlock &BB : F)
366       for (const Instruction &I : BB) {
367         for (const Use &Op : I.operands()) {
368           auto *MD = dyn_cast<MetadataAsValue>(&Op);
369           if (!MD) {
370             EnumerateOperandType(Op);
371             continue;
372           }
373 
374           // Local metadata is enumerated during function-incorporation.
375           if (isa<LocalAsMetadata>(MD->getMetadata()))
376             continue;
377 
378           EnumerateMetadata(&F, MD->getMetadata());
379         }
380         EnumerateType(I.getType());
381         if (const CallInst *CI = dyn_cast<CallInst>(&I))
382           EnumerateAttributes(CI->getAttributes());
383         else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I))
384           EnumerateAttributes(II->getAttributes());
385 
386         // Enumerate metadata attached with this instruction.
387         MDs.clear();
388         I.getAllMetadataOtherThanDebugLoc(MDs);
389         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
390           EnumerateMetadata(&F, MDs[i].second);
391 
392         // Don't enumerate the location directly -- it has a special record
393         // type -- but enumerate its operands.
394         if (DILocation *L = I.getDebugLoc())
395           for (const Metadata *Op : L->operands())
396             EnumerateMetadata(&F, Op);
397       }
398   }
399 
400   // Optimize constant ordering.
401   OptimizeConstants(FirstConstant, Values.size());
402 
403   // Organize metadata ordering.
404   organizeMetadata();
405 }
406 
407 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
408   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
409   assert(I != InstructionMap.end() && "Instruction is not mapped!");
410   return I->second;
411 }
412 
413 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
414   unsigned ComdatID = Comdats.idFor(C);
415   assert(ComdatID && "Comdat not found!");
416   return ComdatID;
417 }
418 
419 void ValueEnumerator::setInstructionID(const Instruction *I) {
420   InstructionMap[I] = InstructionCount++;
421 }
422 
423 unsigned ValueEnumerator::getValueID(const Value *V) const {
424   if (auto *MD = dyn_cast<MetadataAsValue>(V))
425     return getMetadataID(MD->getMetadata());
426 
427   ValueMapType::const_iterator I = ValueMap.find(V);
428   assert(I != ValueMap.end() && "Value not in slotcalculator!");
429   return I->second-1;
430 }
431 
432 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
433   print(dbgs(), ValueMap, "Default");
434   dbgs() << '\n';
435   print(dbgs(), MetadataMap, "MetaData");
436   dbgs() << '\n';
437 }
438 
439 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
440                             const char *Name) const {
441 
442   OS << "Map Name: " << Name << "\n";
443   OS << "Size: " << Map.size() << "\n";
444   for (ValueMapType::const_iterator I = Map.begin(),
445          E = Map.end(); I != E; ++I) {
446 
447     const Value *V = I->first;
448     if (V->hasName())
449       OS << "Value: " << V->getName();
450     else
451       OS << "Value: [null]\n";
452     V->dump();
453 
454     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
455     for (const Use &U : V->uses()) {
456       if (&U != &*V->use_begin())
457         OS << ",";
458       if(U->hasName())
459         OS << " " << U->getName();
460       else
461         OS << " [null]";
462 
463     }
464     OS <<  "\n\n";
465   }
466 }
467 
468 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
469                             const char *Name) const {
470 
471   OS << "Map Name: " << Name << "\n";
472   OS << "Size: " << Map.size() << "\n";
473   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
474     const Metadata *MD = I->first;
475     OS << "Metadata: slot = " << I->second.ID << "\n";
476     OS << "Metadata: function = " << I->second.F << "\n";
477     MD->print(OS);
478     OS << "\n";
479   }
480 }
481 
482 /// OptimizeConstants - Reorder constant pool for denser encoding.
483 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
484   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
485 
486   if (ShouldPreserveUseListOrder)
487     // Optimizing constants makes the use-list order difficult to predict.
488     // Disable it for now when trying to preserve the order.
489     return;
490 
491   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
492                    [this](const std::pair<const Value *, unsigned> &LHS,
493                           const std::pair<const Value *, unsigned> &RHS) {
494     // Sort by plane.
495     if (LHS.first->getType() != RHS.first->getType())
496       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
497     // Then by frequency.
498     return LHS.second > RHS.second;
499   });
500 
501   // Ensure that integer and vector of integer constants are at the start of the
502   // constant pool.  This is important so that GEP structure indices come before
503   // gep constant exprs.
504   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
505                         isIntOrIntVectorValue);
506 
507   // Rebuild the modified portion of ValueMap.
508   for (; CstStart != CstEnd; ++CstStart)
509     ValueMap[Values[CstStart].first] = CstStart+1;
510 }
511 
512 
513 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
514 /// table into the values table.
515 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
516   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
517        VI != VE; ++VI)
518     EnumerateValue(VI->getValue());
519 }
520 
521 /// Insert all of the values referenced by named metadata in the specified
522 /// module.
523 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
524   for (const auto &I : M.named_metadata())
525     EnumerateNamedMDNode(&I);
526 }
527 
528 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
529   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
530     EnumerateMetadata(nullptr, MD->getOperand(i));
531 }
532 
533 unsigned ValueEnumerator::getMetadataGlobalID(const GlobalObject *GO) const {
534   return GO ? getValueID(GO) + 1 : 0;
535 }
536 
537 void ValueEnumerator::EnumerateMetadata(const GlobalObject *GO,
538                                         const Metadata *MD) {
539   EnumerateMetadata(getMetadataGlobalID(GO), MD);
540 }
541 
542 void ValueEnumerator::EnumerateFunctionLocalMetadata(
543     const Function &F, const LocalAsMetadata *Local) {
544   EnumerateFunctionLocalMetadata(getMetadataGlobalID(&F), Local);
545 }
546 
547 void ValueEnumerator::dropFunctionFromMetadata(
548     MetadataMapType::value_type &FirstMD) {
549   SmallVector<const MDNode *, 64> Worklist;
550   auto push = [this, &Worklist](MetadataMapType::value_type &MD) {
551     auto &Entry = MD.second;
552 
553     // Nothing to do if this metadata isn't tagged.
554     if (!Entry.F)
555       return;
556 
557     // Drop the function tag.
558     Entry.F = 0;
559 
560     // If this is has an ID and is an MDNode, then its operands have entries as
561     // well.  We need to drop the function from them too.
562     if (Entry.ID)
563       if (auto *N = dyn_cast<MDNode>(MD.first))
564         Worklist.push_back(N);
565   };
566   push(FirstMD);
567   while (!Worklist.empty())
568     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
569       if (!Op)
570         continue;
571       auto MD = MetadataMap.find(Op);
572       if (MD != MetadataMap.end())
573         push(*MD);
574     }
575 }
576 
577 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
578   // It's vital for reader efficiency that uniqued subgraphs are done in
579   // post-order; it's expensive when their operands have forward references.
580   // If a distinct node is referenced from a uniqued node, it'll be delayed
581   // until the uniqued subgraph has been completely traversed.
582   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
583 
584   // Start by enumerating MD, and then work through its transitive operands in
585   // post-order.  This requires a depth-first search.
586   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
587   if (const MDNode *N = enumerateMetadataImpl(F, MD))
588     Worklist.push_back(std::make_pair(N, N->op_begin()));
589 
590   while (!Worklist.empty()) {
591     const MDNode *N = Worklist.back().first;
592 
593     // Enumerate operands until we hit a new node.  We need to traverse these
594     // nodes' operands before visiting the rest of N's operands.
595     MDNode::op_iterator I = std::find_if(
596         Worklist.back().second, N->op_end(),
597         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
598     if (I != N->op_end()) {
599       auto *Op = cast<MDNode>(*I);
600       Worklist.back().second = ++I;
601 
602       // Delay traversing Op if it's a distinct node and N is uniqued.
603       if (Op->isDistinct() && !N->isDistinct())
604         DelayedDistinctNodes.push_back(Op);
605       else
606         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
607       continue;
608     }
609 
610     // All the operands have been visited.  Now assign an ID.
611     Worklist.pop_back();
612     MDs.push_back(N);
613     MetadataMap[N].ID = MDs.size();
614 
615     // Flush out any delayed distinct nodes; these are all the distinct nodes
616     // that are leaves in last uniqued subgraph.
617     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
618       for (const MDNode *N : DelayedDistinctNodes)
619         Worklist.push_back(std::make_pair(N, N->op_begin()));
620       DelayedDistinctNodes.clear();
621     }
622   }
623 }
624 
625 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
626   if (!MD)
627     return nullptr;
628 
629   assert(
630       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
631       "Invalid metadata kind");
632 
633   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
634   MDIndex &Entry = Insertion.first->second;
635   if (!Insertion.second) {
636     // Already mapped.  If F doesn't match the function tag, drop it.
637     if (Entry.hasDifferentFunction(F))
638       dropFunctionFromMetadata(*Insertion.first);
639     return nullptr;
640   }
641 
642   // Don't assign IDs to metadata nodes.
643   if (auto *N = dyn_cast<MDNode>(MD))
644     return N;
645 
646   // Save the metadata.
647   MDs.push_back(MD);
648   Entry.ID = MDs.size();
649 
650   // Enumerate the constant, if any.
651   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
652     EnumerateValue(C->getValue());
653 
654   return nullptr;
655 }
656 
657 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
658 /// information reachable from the metadata.
659 void ValueEnumerator::EnumerateFunctionLocalMetadata(
660     unsigned F, const LocalAsMetadata *Local) {
661   assert(F && "Expected a function");
662 
663   // Check to see if it's already in!
664   MDIndex &Index = MetadataMap[Local];
665   if (Index.ID) {
666     assert(Index.F == F && "Expected the same function");
667     return;
668   }
669 
670   MDs.push_back(Local);
671   Index.F = F;
672   Index.ID = MDs.size();
673 
674   EnumerateValue(Local->getValue());
675 }
676 
677 static unsigned getMetadataTypeOrder(const Metadata *MD) {
678   // Strings are emitted in bulk and must come first.
679   if (isa<MDString>(MD))
680     return 0;
681 
682   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
683   // to the front since we can detect it.
684   auto *N = dyn_cast<MDNode>(MD);
685   if (!N)
686     return 1;
687 
688   // The reader is fast forward references for distinct node operands, but slow
689   // when uniqued operands are unresolved.
690   return N->isDistinct() ? 2 : 3;
691 }
692 
693 void ValueEnumerator::organizeMetadata() {
694   assert(MetadataMap.size() == MDs.size() &&
695          "Metadata map and vector out of sync");
696 
697   if (MDs.empty())
698     return;
699 
700   // Copy out the index information from MetadataMap in order to choose a new
701   // order.
702   SmallVector<MDIndex, 64> Order;
703   Order.reserve(MetadataMap.size());
704   for (const Metadata *MD : MDs)
705     Order.push_back(MetadataMap.lookup(MD));
706 
707   // Partition:
708   //   - by function, then
709   //   - by isa<MDString>
710   // and then sort by the original/current ID.  Since the IDs are guaranteed to
711   // be unique, the result of std::sort will be deterministic.  There's no need
712   // for std::stable_sort.
713   std::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) {
714     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
715            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
716   });
717 
718   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
719   // and fix up MetadataMap.
720   std::vector<const Metadata *> OldMDs = std::move(MDs);
721   MDs.reserve(OldMDs.size());
722   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
723     auto *MD = Order[I].get(OldMDs);
724     MDs.push_back(MD);
725     MetadataMap[MD].ID = I + 1;
726     if (isa<MDString>(MD))
727       ++NumMDStrings;
728   }
729 
730   // Return early if there's nothing for the functions.
731   if (MDs.size() == Order.size())
732     return;
733 
734   // Build the function metadata ranges.
735   MDRange R;
736   FunctionMDs.reserve(OldMDs.size());
737   unsigned PrevF = 0;
738   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
739        ++I) {
740     unsigned F = Order[I].F;
741     if (!PrevF) {
742       PrevF = F;
743     } else if (PrevF != F) {
744       R.Last = FunctionMDs.size();
745       std::swap(R, FunctionMDInfo[PrevF]);
746       R.First = FunctionMDs.size();
747 
748       ID = MDs.size();
749       PrevF = F;
750     }
751 
752     auto *MD = Order[I].get(OldMDs);
753     FunctionMDs.push_back(MD);
754     MetadataMap[MD].ID = ++ID;
755     if (isa<MDString>(MD))
756       ++R.NumStrings;
757   }
758   R.Last = FunctionMDs.size();
759   FunctionMDInfo[PrevF] = R;
760 }
761 
762 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
763   NumModuleMDs = MDs.size();
764 
765   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
766   NumMDStrings = R.NumStrings;
767   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
768              FunctionMDs.begin() + R.Last);
769 }
770 
771 void ValueEnumerator::EnumerateValue(const Value *V) {
772   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
773   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
774 
775   // Check to see if it's already in!
776   unsigned &ValueID = ValueMap[V];
777   if (ValueID) {
778     // Increment use count.
779     Values[ValueID-1].second++;
780     return;
781   }
782 
783   if (auto *GO = dyn_cast<GlobalObject>(V))
784     if (const Comdat *C = GO->getComdat())
785       Comdats.insert(C);
786 
787   // Enumerate the type of this value.
788   EnumerateType(V->getType());
789 
790   if (const Constant *C = dyn_cast<Constant>(V)) {
791     if (isa<GlobalValue>(C)) {
792       // Initializers for globals are handled explicitly elsewhere.
793     } else if (C->getNumOperands()) {
794       // If a constant has operands, enumerate them.  This makes sure that if a
795       // constant has uses (for example an array of const ints), that they are
796       // inserted also.
797 
798       // We prefer to enumerate them with values before we enumerate the user
799       // itself.  This makes it more likely that we can avoid forward references
800       // in the reader.  We know that there can be no cycles in the constants
801       // graph that don't go through a global variable.
802       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
803            I != E; ++I)
804         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
805           EnumerateValue(*I);
806 
807       // Finally, add the value.  Doing this could make the ValueID reference be
808       // dangling, don't reuse it.
809       Values.push_back(std::make_pair(V, 1U));
810       ValueMap[V] = Values.size();
811       return;
812     }
813   }
814 
815   // Add the value.
816   Values.push_back(std::make_pair(V, 1U));
817   ValueID = Values.size();
818 }
819 
820 
821 void ValueEnumerator::EnumerateType(Type *Ty) {
822   unsigned *TypeID = &TypeMap[Ty];
823 
824   // We've already seen this type.
825   if (*TypeID)
826     return;
827 
828   // If it is a non-anonymous struct, mark the type as being visited so that we
829   // don't recursively visit it.  This is safe because we allow forward
830   // references of these in the bitcode reader.
831   if (StructType *STy = dyn_cast<StructType>(Ty))
832     if (!STy->isLiteral())
833       *TypeID = ~0U;
834 
835   // Enumerate all of the subtypes before we enumerate this type.  This ensures
836   // that the type will be enumerated in an order that can be directly built.
837   for (Type *SubTy : Ty->subtypes())
838     EnumerateType(SubTy);
839 
840   // Refresh the TypeID pointer in case the table rehashed.
841   TypeID = &TypeMap[Ty];
842 
843   // Check to see if we got the pointer another way.  This can happen when
844   // enumerating recursive types that hit the base case deeper than they start.
845   //
846   // If this is actually a struct that we are treating as forward ref'able,
847   // then emit the definition now that all of its contents are available.
848   if (*TypeID && *TypeID != ~0U)
849     return;
850 
851   // Add this type now that its contents are all happily enumerated.
852   Types.push_back(Ty);
853 
854   *TypeID = Types.size();
855 }
856 
857 // Enumerate the types for the specified value.  If the value is a constant,
858 // walk through it, enumerating the types of the constant.
859 void ValueEnumerator::EnumerateOperandType(const Value *V) {
860   EnumerateType(V->getType());
861 
862   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
863 
864   const Constant *C = dyn_cast<Constant>(V);
865   if (!C)
866     return;
867 
868   // If this constant is already enumerated, ignore it, we know its type must
869   // be enumerated.
870   if (ValueMap.count(C))
871     return;
872 
873   // This constant may have operands, make sure to enumerate the types in
874   // them.
875   for (const Value *Op : C->operands()) {
876     // Don't enumerate basic blocks here, this happens as operands to
877     // blockaddress.
878     if (isa<BasicBlock>(Op))
879       continue;
880 
881     EnumerateOperandType(Op);
882   }
883 }
884 
885 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
886   if (PAL.isEmpty()) return;  // null is always 0.
887 
888   // Do a lookup.
889   unsigned &Entry = AttributeMap[PAL];
890   if (Entry == 0) {
891     // Never saw this before, add it.
892     Attribute.push_back(PAL);
893     Entry = Attribute.size();
894   }
895 
896   // Do lookups for all attribute groups.
897   for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
898     AttributeSet AS = PAL.getSlotAttributes(i);
899     unsigned &Entry = AttributeGroupMap[AS];
900     if (Entry == 0) {
901       AttributeGroups.push_back(AS);
902       Entry = AttributeGroups.size();
903     }
904   }
905 }
906 
907 void ValueEnumerator::incorporateFunction(const Function &F) {
908   InstructionCount = 0;
909   NumModuleValues = Values.size();
910 
911   // Add global metadata to the function block.  This doesn't include
912   // LocalAsMetadata.
913   incorporateFunctionMetadata(F);
914 
915   // Adding function arguments to the value table.
916   for (const auto &I : F.args())
917     EnumerateValue(&I);
918 
919   FirstFuncConstantID = Values.size();
920 
921   // Add all function-level constants to the value table.
922   for (const BasicBlock &BB : F) {
923     for (const Instruction &I : BB)
924       for (const Use &OI : I.operands()) {
925         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
926           EnumerateValue(OI);
927       }
928     BasicBlocks.push_back(&BB);
929     ValueMap[&BB] = BasicBlocks.size();
930   }
931 
932   // Optimize the constant layout.
933   OptimizeConstants(FirstFuncConstantID, Values.size());
934 
935   // Add the function's parameter attributes so they are available for use in
936   // the function's instruction.
937   EnumerateAttributes(F.getAttributes());
938 
939   FirstInstID = Values.size();
940 
941   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
942   // Add all of the instructions.
943   for (const BasicBlock &BB : F) {
944     for (const Instruction &I : BB) {
945       for (const Use &OI : I.operands()) {
946         if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
947           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
948             // Enumerate metadata after the instructions they might refer to.
949             FnLocalMDVector.push_back(Local);
950       }
951 
952       if (!I.getType()->isVoidTy())
953         EnumerateValue(&I);
954     }
955   }
956 
957   // Add all of the function-local metadata.
958   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
959     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
960 }
961 
962 void ValueEnumerator::purgeFunction() {
963   /// Remove purged values from the ValueMap.
964   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
965     ValueMap.erase(Values[i].first);
966   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
967     MetadataMap.erase(MDs[i]);
968   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
969     ValueMap.erase(BasicBlocks[i]);
970 
971   Values.resize(NumModuleValues);
972   MDs.resize(NumModuleMDs);
973   BasicBlocks.clear();
974   NumMDStrings = 0;
975 }
976 
977 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
978                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
979   unsigned Counter = 0;
980   for (const BasicBlock &BB : *F)
981     IDMap[&BB] = ++Counter;
982 }
983 
984 /// getGlobalBasicBlockID - This returns the function-specific ID for the
985 /// specified basic block.  This is relatively expensive information, so it
986 /// should only be used by rare constructs such as address-of-label.
987 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
988   unsigned &Idx = GlobalBasicBlockIDs[BB];
989   if (Idx != 0)
990     return Idx-1;
991 
992   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
993   return getGlobalBasicBlockID(BB);
994 }
995 
996 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
997   return Log2_32_Ceil(getTypes().size() + 1);
998 }
999