1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Use.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/ValueSymbolTable.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 #include <cstddef>
43 #include <iterator>
44 #include <tuple>
45 
46 using namespace llvm;
47 
48 namespace {
49 
50 struct OrderMap {
51   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
52   unsigned LastGlobalConstantID = 0;
53   unsigned LastGlobalValueID = 0;
54 
55   OrderMap() = default;
56 
57   bool isGlobalConstant(unsigned ID) const {
58     return ID <= LastGlobalConstantID;
59   }
60 
61   bool isGlobalValue(unsigned ID) const {
62     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
63   }
64 
65   unsigned size() const { return IDs.size(); }
66   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
67 
68   std::pair<unsigned, bool> lookup(const Value *V) const {
69     return IDs.lookup(V);
70   }
71 
72   void index(const Value *V) {
73     // Explicitly sequence get-size and insert-value operations to avoid UB.
74     unsigned ID = IDs.size() + 1;
75     IDs[V].first = ID;
76   }
77 };
78 
79 } // end anonymous namespace
80 
81 static void orderValue(const Value *V, OrderMap &OM) {
82   if (OM.lookup(V).first)
83     return;
84 
85   if (const Constant *C = dyn_cast<Constant>(V)) {
86     if (C->getNumOperands() && !isa<GlobalValue>(C)) {
87       for (const Value *Op : C->operands())
88         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
89           orderValue(Op, OM);
90       if (auto *CE = dyn_cast<ConstantExpr>(C))
91         if (CE->getOpcode() == Instruction::ShuffleVector)
92           orderValue(CE->getShuffleMaskForBitcode(), OM);
93     }
94   }
95 
96   // Note: we cannot cache this lookup above, since inserting into the map
97   // changes the map's size, and thus affects the other IDs.
98   OM.index(V);
99 }
100 
101 static OrderMap orderModule(const Module &M) {
102   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
103   // and ValueEnumerator::incorporateFunction().
104   OrderMap OM;
105 
106   // In the reader, initializers of GlobalValues are set *after* all the
107   // globals have been read.  Rather than awkwardly modeling this behaviour
108   // directly in predictValueUseListOrderImpl(), just assign IDs to
109   // initializers of GlobalValues before GlobalValues themselves to model this
110   // implicitly.
111   for (const GlobalVariable &G : M.globals())
112     if (G.hasInitializer())
113       if (!isa<GlobalValue>(G.getInitializer()))
114         orderValue(G.getInitializer(), OM);
115   for (const GlobalAlias &A : M.aliases())
116     if (!isa<GlobalValue>(A.getAliasee()))
117       orderValue(A.getAliasee(), OM);
118   for (const GlobalIFunc &I : M.ifuncs())
119     if (!isa<GlobalValue>(I.getResolver()))
120       orderValue(I.getResolver(), OM);
121   for (const Function &F : M) {
122     for (const Use &U : F.operands())
123       if (!isa<GlobalValue>(U.get()))
124         orderValue(U.get(), OM);
125   }
126 
127   // As constants used in metadata operands are emitted as module-level
128   // constants, we must order them before other operands. Also, we must order
129   // these before global values, as these will be read before setting the
130   // global values' initializers. The latter matters for constants which have
131   // uses towards other constants that are used as initializers.
132   auto orderConstantValue = [&OM](const Value *V) {
133     if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
134       orderValue(V, OM);
135   };
136   for (const Function &F : M) {
137     if (F.isDeclaration())
138       continue;
139     for (const BasicBlock &BB : F)
140       for (const Instruction &I : BB)
141         for (const Value *V : I.operands()) {
142           if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
143             if (const auto *VAM =
144                     dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
145               orderConstantValue(VAM->getValue());
146             } else if (const auto *AL =
147                            dyn_cast<DIArgList>(MAV->getMetadata())) {
148               for (const auto *VAM : AL->getArgs())
149                 orderConstantValue(VAM->getValue());
150             }
151           }
152         }
153   }
154   OM.LastGlobalConstantID = OM.size();
155 
156   // Initializers of GlobalValues are processed in
157   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
158   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
159   // by giving IDs in reverse order.
160   //
161   // Since GlobalValues never reference each other directly (just through
162   // initializers), their relative IDs only matter for determining order of
163   // uses in their initializers.
164   for (const Function &F : M)
165     orderValue(&F, OM);
166   for (const GlobalAlias &A : M.aliases())
167     orderValue(&A, OM);
168   for (const GlobalIFunc &I : M.ifuncs())
169     orderValue(&I, OM);
170   for (const GlobalVariable &G : M.globals())
171     orderValue(&G, OM);
172   OM.LastGlobalValueID = OM.size();
173 
174   for (const Function &F : M) {
175     if (F.isDeclaration())
176       continue;
177     // Here we need to match the union of ValueEnumerator::incorporateFunction()
178     // and WriteFunction().  Basic blocks are implicitly declared before
179     // anything else (by declaring their size).
180     for (const BasicBlock &BB : F)
181       orderValue(&BB, OM);
182     for (const Argument &A : F.args())
183       orderValue(&A, OM);
184     for (const BasicBlock &BB : F)
185       for (const Instruction &I : BB) {
186         for (const Value *Op : I.operands())
187           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
188               isa<InlineAsm>(*Op))
189             orderValue(Op, OM);
190         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
191           orderValue(SVI->getShuffleMaskForBitcode(), OM);
192       }
193     for (const BasicBlock &BB : F)
194       for (const Instruction &I : BB)
195         orderValue(&I, OM);
196   }
197   return OM;
198 }
199 
200 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
201                                          unsigned ID, const OrderMap &OM,
202                                          UseListOrderStack &Stack) {
203   // Predict use-list order for this one.
204   using Entry = std::pair<const Use *, unsigned>;
205   SmallVector<Entry, 64> List;
206   for (const Use &U : V->uses())
207     // Check if this user will be serialized.
208     if (OM.lookup(U.getUser()).first)
209       List.push_back(std::make_pair(&U, List.size()));
210 
211   if (List.size() < 2)
212     // We may have lost some users.
213     return;
214 
215   bool IsGlobalValue = OM.isGlobalValue(ID);
216   llvm::sort(List, [&](const Entry &L, const Entry &R) {
217     const Use *LU = L.first;
218     const Use *RU = R.first;
219     if (LU == RU)
220       return false;
221 
222     auto LID = OM.lookup(LU->getUser()).first;
223     auto RID = OM.lookup(RU->getUser()).first;
224 
225     // Global values are processed in reverse order.
226     //
227     // Moreover, initializers of GlobalValues are set *after* all the globals
228     // have been read (despite having earlier IDs).  Rather than awkwardly
229     // modeling this behaviour here, orderModule() has assigned IDs to
230     // initializers of GlobalValues before GlobalValues themselves.
231     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
232       return LID < RID;
233 
234     // If ID is 4, then expect: 7 6 5 1 2 3.
235     if (LID < RID) {
236       if (RID <= ID)
237         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
238           return true;
239       return false;
240     }
241     if (RID < LID) {
242       if (LID <= ID)
243         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
244           return false;
245       return true;
246     }
247 
248     // LID and RID are equal, so we have different operands of the same user.
249     // Assume operands are added in order for all instructions.
250     if (LID <= ID)
251       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
252         return LU->getOperandNo() < RU->getOperandNo();
253     return LU->getOperandNo() > RU->getOperandNo();
254   });
255 
256   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
257         return L.second < R.second;
258       }))
259     // Order is already correct.
260     return;
261 
262   // Store the shuffle.
263   Stack.emplace_back(V, F, List.size());
264   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
265   for (size_t I = 0, E = List.size(); I != E; ++I)
266     Stack.back().Shuffle[I] = List[I].second;
267 }
268 
269 static void predictValueUseListOrder(const Value *V, const Function *F,
270                                      OrderMap &OM, UseListOrderStack &Stack) {
271   auto &IDPair = OM[V];
272   assert(IDPair.first && "Unmapped value");
273   if (IDPair.second)
274     // Already predicted.
275     return;
276 
277   // Do the actual prediction.
278   IDPair.second = true;
279   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
280     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
281 
282   // Recursive descent into constants.
283   if (const Constant *C = dyn_cast<Constant>(V)) {
284     if (C->getNumOperands()) { // Visit GlobalValues.
285       for (const Value *Op : C->operands())
286         if (isa<Constant>(Op)) // Visit GlobalValues.
287           predictValueUseListOrder(Op, F, OM, Stack);
288       if (auto *CE = dyn_cast<ConstantExpr>(C))
289         if (CE->getOpcode() == Instruction::ShuffleVector)
290           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
291                                    Stack);
292     }
293   }
294 }
295 
296 static UseListOrderStack predictUseListOrder(const Module &M) {
297   OrderMap OM = orderModule(M);
298 
299   // Use-list orders need to be serialized after all the users have been added
300   // to a value, or else the shuffles will be incomplete.  Store them per
301   // function in a stack.
302   //
303   // Aside from function order, the order of values doesn't matter much here.
304   UseListOrderStack Stack;
305 
306   // We want to visit the functions backward now so we can list function-local
307   // constants in the last Function they're used in.  Module-level constants
308   // have already been visited above.
309   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
310     const Function &F = *I;
311     if (F.isDeclaration())
312       continue;
313     for (const BasicBlock &BB : F)
314       predictValueUseListOrder(&BB, &F, OM, Stack);
315     for (const Argument &A : F.args())
316       predictValueUseListOrder(&A, &F, OM, Stack);
317     for (const BasicBlock &BB : F)
318       for (const Instruction &I : BB) {
319         for (const Value *Op : I.operands())
320           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
321             predictValueUseListOrder(Op, &F, OM, Stack);
322         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
323           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
324                                    Stack);
325       }
326     for (const BasicBlock &BB : F)
327       for (const Instruction &I : BB)
328         predictValueUseListOrder(&I, &F, OM, Stack);
329   }
330 
331   // Visit globals last, since the module-level use-list block will be seen
332   // before the function bodies are processed.
333   for (const GlobalVariable &G : M.globals())
334     predictValueUseListOrder(&G, nullptr, OM, Stack);
335   for (const Function &F : M)
336     predictValueUseListOrder(&F, nullptr, OM, Stack);
337   for (const GlobalAlias &A : M.aliases())
338     predictValueUseListOrder(&A, nullptr, OM, Stack);
339   for (const GlobalIFunc &I : M.ifuncs())
340     predictValueUseListOrder(&I, nullptr, OM, Stack);
341   for (const GlobalVariable &G : M.globals())
342     if (G.hasInitializer())
343       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
344   for (const GlobalAlias &A : M.aliases())
345     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
346   for (const GlobalIFunc &I : M.ifuncs())
347     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
348   for (const Function &F : M) {
349     for (const Use &U : F.operands())
350       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
351   }
352 
353   return Stack;
354 }
355 
356 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
357   return V.first->getType()->isIntOrIntVectorTy();
358 }
359 
360 ValueEnumerator::ValueEnumerator(const Module &M,
361                                  bool ShouldPreserveUseListOrder)
362     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
363   if (ShouldPreserveUseListOrder)
364     UseListOrders = predictUseListOrder(M);
365 
366   // Enumerate the global variables.
367   for (const GlobalVariable &GV : M.globals())
368     EnumerateValue(&GV);
369 
370   // Enumerate the functions.
371   for (const Function & F : M) {
372     EnumerateValue(&F);
373     EnumerateAttributes(F.getAttributes());
374   }
375 
376   // Enumerate the aliases.
377   for (const GlobalAlias &GA : M.aliases())
378     EnumerateValue(&GA);
379 
380   // Enumerate the ifuncs.
381   for (const GlobalIFunc &GIF : M.ifuncs())
382     EnumerateValue(&GIF);
383 
384   // Remember what is the cutoff between globalvalue's and other constants.
385   unsigned FirstConstant = Values.size();
386 
387   // Enumerate the global variable initializers and attributes.
388   for (const GlobalVariable &GV : M.globals()) {
389     if (GV.hasInitializer())
390       EnumerateValue(GV.getInitializer());
391     if (GV.hasAttributes())
392       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
393   }
394 
395   // Enumerate the aliasees.
396   for (const GlobalAlias &GA : M.aliases())
397     EnumerateValue(GA.getAliasee());
398 
399   // Enumerate the ifunc resolvers.
400   for (const GlobalIFunc &GIF : M.ifuncs())
401     EnumerateValue(GIF.getResolver());
402 
403   // Enumerate any optional Function data.
404   for (const Function &F : M)
405     for (const Use &U : F.operands())
406       EnumerateValue(U.get());
407 
408   // Enumerate the metadata type.
409   //
410   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
411   // only encodes the metadata type when it's used as a value.
412   EnumerateType(Type::getMetadataTy(M.getContext()));
413 
414   // Insert constants and metadata that are named at module level into the slot
415   // pool so that the module symbol table can refer to them...
416   EnumerateValueSymbolTable(M.getValueSymbolTable());
417   EnumerateNamedMetadata(M);
418 
419   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
420   for (const GlobalVariable &GV : M.globals()) {
421     MDs.clear();
422     GV.getAllMetadata(MDs);
423     for (const auto &I : MDs)
424       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
425       // to write metadata to the global variable's own metadata block
426       // (PR28134).
427       EnumerateMetadata(nullptr, I.second);
428   }
429 
430   // Enumerate types used by function bodies and argument lists.
431   for (const Function &F : M) {
432     for (const Argument &A : F.args())
433       EnumerateType(A.getType());
434 
435     // Enumerate metadata attached to this function.
436     MDs.clear();
437     F.getAllMetadata(MDs);
438     for (const auto &I : MDs)
439       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
440 
441     for (const BasicBlock &BB : F)
442       for (const Instruction &I : BB) {
443         for (const Use &Op : I.operands()) {
444           auto *MD = dyn_cast<MetadataAsValue>(&Op);
445           if (!MD) {
446             EnumerateOperandType(Op);
447             continue;
448           }
449 
450           // Local metadata is enumerated during function-incorporation, but
451           // any ConstantAsMetadata arguments in a DIArgList should be examined
452           // now.
453           if (isa<LocalAsMetadata>(MD->getMetadata()))
454             continue;
455           if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
456             for (auto *VAM : AL->getArgs())
457               if (isa<ConstantAsMetadata>(VAM))
458                 EnumerateMetadata(&F, VAM);
459             continue;
460           }
461 
462           EnumerateMetadata(&F, MD->getMetadata());
463         }
464         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
465           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
466         if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
467           EnumerateType(GEP->getSourceElementType());
468         EnumerateType(I.getType());
469         if (const auto *Call = dyn_cast<CallBase>(&I))
470           EnumerateAttributes(Call->getAttributes());
471 
472         // Enumerate metadata attached with this instruction.
473         MDs.clear();
474         I.getAllMetadataOtherThanDebugLoc(MDs);
475         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
476           EnumerateMetadata(&F, MDs[i].second);
477 
478         // Don't enumerate the location directly -- it has a special record
479         // type -- but enumerate its operands.
480         if (DILocation *L = I.getDebugLoc())
481           for (const Metadata *Op : L->operands())
482             EnumerateMetadata(&F, Op);
483       }
484   }
485 
486   // Optimize constant ordering.
487   OptimizeConstants(FirstConstant, Values.size());
488 
489   // Organize metadata ordering.
490   organizeMetadata();
491 }
492 
493 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
494   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
495   assert(I != InstructionMap.end() && "Instruction is not mapped!");
496   return I->second;
497 }
498 
499 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
500   unsigned ComdatID = Comdats.idFor(C);
501   assert(ComdatID && "Comdat not found!");
502   return ComdatID;
503 }
504 
505 void ValueEnumerator::setInstructionID(const Instruction *I) {
506   InstructionMap[I] = InstructionCount++;
507 }
508 
509 unsigned ValueEnumerator::getValueID(const Value *V) const {
510   if (auto *MD = dyn_cast<MetadataAsValue>(V))
511     return getMetadataID(MD->getMetadata());
512 
513   ValueMapType::const_iterator I = ValueMap.find(V);
514   assert(I != ValueMap.end() && "Value not in slotcalculator!");
515   return I->second-1;
516 }
517 
518 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
519 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
520   print(dbgs(), ValueMap, "Default");
521   dbgs() << '\n';
522   print(dbgs(), MetadataMap, "MetaData");
523   dbgs() << '\n';
524 }
525 #endif
526 
527 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
528                             const char *Name) const {
529   OS << "Map Name: " << Name << "\n";
530   OS << "Size: " << Map.size() << "\n";
531   for (ValueMapType::const_iterator I = Map.begin(),
532          E = Map.end(); I != E; ++I) {
533     const Value *V = I->first;
534     if (V->hasName())
535       OS << "Value: " << V->getName();
536     else
537       OS << "Value: [null]\n";
538     V->print(errs());
539     errs() << '\n';
540 
541     OS << " Uses(" << V->getNumUses() << "):";
542     for (const Use &U : V->uses()) {
543       if (&U != &*V->use_begin())
544         OS << ",";
545       if(U->hasName())
546         OS << " " << U->getName();
547       else
548         OS << " [null]";
549 
550     }
551     OS <<  "\n\n";
552   }
553 }
554 
555 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
556                             const char *Name) const {
557   OS << "Map Name: " << Name << "\n";
558   OS << "Size: " << Map.size() << "\n";
559   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
560     const Metadata *MD = I->first;
561     OS << "Metadata: slot = " << I->second.ID << "\n";
562     OS << "Metadata: function = " << I->second.F << "\n";
563     MD->print(OS);
564     OS << "\n";
565   }
566 }
567 
568 /// OptimizeConstants - Reorder constant pool for denser encoding.
569 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
570   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
571 
572   if (ShouldPreserveUseListOrder)
573     // Optimizing constants makes the use-list order difficult to predict.
574     // Disable it for now when trying to preserve the order.
575     return;
576 
577   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
578                    [this](const std::pair<const Value *, unsigned> &LHS,
579                           const std::pair<const Value *, unsigned> &RHS) {
580     // Sort by plane.
581     if (LHS.first->getType() != RHS.first->getType())
582       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
583     // Then by frequency.
584     return LHS.second > RHS.second;
585   });
586 
587   // Ensure that integer and vector of integer constants are at the start of the
588   // constant pool.  This is important so that GEP structure indices come before
589   // gep constant exprs.
590   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
591                         isIntOrIntVectorValue);
592 
593   // Rebuild the modified portion of ValueMap.
594   for (; CstStart != CstEnd; ++CstStart)
595     ValueMap[Values[CstStart].first] = CstStart+1;
596 }
597 
598 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
599 /// table into the values table.
600 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
601   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
602        VI != VE; ++VI)
603     EnumerateValue(VI->getValue());
604 }
605 
606 /// Insert all of the values referenced by named metadata in the specified
607 /// module.
608 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
609   for (const auto &I : M.named_metadata())
610     EnumerateNamedMDNode(&I);
611 }
612 
613 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
614   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
615     EnumerateMetadata(nullptr, MD->getOperand(i));
616 }
617 
618 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
619   return F ? getValueID(F) + 1 : 0;
620 }
621 
622 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
623   EnumerateMetadata(getMetadataFunctionID(F), MD);
624 }
625 
626 void ValueEnumerator::EnumerateFunctionLocalMetadata(
627     const Function &F, const LocalAsMetadata *Local) {
628   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
629 }
630 
631 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
632     const Function &F, const DIArgList *ArgList) {
633   EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
634 }
635 
636 void ValueEnumerator::dropFunctionFromMetadata(
637     MetadataMapType::value_type &FirstMD) {
638   SmallVector<const MDNode *, 64> Worklist;
639   auto push = [&Worklist](MetadataMapType::value_type &MD) {
640     auto &Entry = MD.second;
641 
642     // Nothing to do if this metadata isn't tagged.
643     if (!Entry.F)
644       return;
645 
646     // Drop the function tag.
647     Entry.F = 0;
648 
649     // If this is has an ID and is an MDNode, then its operands have entries as
650     // well.  We need to drop the function from them too.
651     if (Entry.ID)
652       if (auto *N = dyn_cast<MDNode>(MD.first))
653         Worklist.push_back(N);
654   };
655   push(FirstMD);
656   while (!Worklist.empty())
657     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
658       if (!Op)
659         continue;
660       auto MD = MetadataMap.find(Op);
661       if (MD != MetadataMap.end())
662         push(*MD);
663     }
664 }
665 
666 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
667   // It's vital for reader efficiency that uniqued subgraphs are done in
668   // post-order; it's expensive when their operands have forward references.
669   // If a distinct node is referenced from a uniqued node, it'll be delayed
670   // until the uniqued subgraph has been completely traversed.
671   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
672 
673   // Start by enumerating MD, and then work through its transitive operands in
674   // post-order.  This requires a depth-first search.
675   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
676   if (const MDNode *N = enumerateMetadataImpl(F, MD))
677     Worklist.push_back(std::make_pair(N, N->op_begin()));
678 
679   while (!Worklist.empty()) {
680     const MDNode *N = Worklist.back().first;
681 
682     // Enumerate operands until we hit a new node.  We need to traverse these
683     // nodes' operands before visiting the rest of N's operands.
684     MDNode::op_iterator I = std::find_if(
685         Worklist.back().second, N->op_end(),
686         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
687     if (I != N->op_end()) {
688       auto *Op = cast<MDNode>(*I);
689       Worklist.back().second = ++I;
690 
691       // Delay traversing Op if it's a distinct node and N is uniqued.
692       if (Op->isDistinct() && !N->isDistinct())
693         DelayedDistinctNodes.push_back(Op);
694       else
695         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
696       continue;
697     }
698 
699     // All the operands have been visited.  Now assign an ID.
700     Worklist.pop_back();
701     MDs.push_back(N);
702     MetadataMap[N].ID = MDs.size();
703 
704     // Flush out any delayed distinct nodes; these are all the distinct nodes
705     // that are leaves in last uniqued subgraph.
706     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
707       for (const MDNode *N : DelayedDistinctNodes)
708         Worklist.push_back(std::make_pair(N, N->op_begin()));
709       DelayedDistinctNodes.clear();
710     }
711   }
712 }
713 
714 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
715   if (!MD)
716     return nullptr;
717 
718   assert(
719       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
720       "Invalid metadata kind");
721 
722   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
723   MDIndex &Entry = Insertion.first->second;
724   if (!Insertion.second) {
725     // Already mapped.  If F doesn't match the function tag, drop it.
726     if (Entry.hasDifferentFunction(F))
727       dropFunctionFromMetadata(*Insertion.first);
728     return nullptr;
729   }
730 
731   // Don't assign IDs to metadata nodes.
732   if (auto *N = dyn_cast<MDNode>(MD))
733     return N;
734 
735   // Save the metadata.
736   MDs.push_back(MD);
737   Entry.ID = MDs.size();
738 
739   // Enumerate the constant, if any.
740   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
741     EnumerateValue(C->getValue());
742 
743   return nullptr;
744 }
745 
746 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
747 /// information reachable from the metadata.
748 void ValueEnumerator::EnumerateFunctionLocalMetadata(
749     unsigned F, const LocalAsMetadata *Local) {
750   assert(F && "Expected a function");
751 
752   // Check to see if it's already in!
753   MDIndex &Index = MetadataMap[Local];
754   if (Index.ID) {
755     assert(Index.F == F && "Expected the same function");
756     return;
757   }
758 
759   MDs.push_back(Local);
760   Index.F = F;
761   Index.ID = MDs.size();
762 
763   EnumerateValue(Local->getValue());
764 }
765 
766 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
767 /// information reachable from the metadata.
768 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
769     unsigned F, const DIArgList *ArgList) {
770   assert(F && "Expected a function");
771 
772   // Check to see if it's already in!
773   MDIndex &Index = MetadataMap[ArgList];
774   if (Index.ID) {
775     assert(Index.F == F && "Expected the same function");
776     return;
777   }
778 
779   for (ValueAsMetadata *VAM : ArgList->getArgs()) {
780     if (isa<LocalAsMetadata>(VAM)) {
781       assert(MetadataMap.count(VAM) &&
782              "LocalAsMetadata should be enumerated before DIArgList");
783       assert(MetadataMap[VAM].F == F &&
784              "Expected LocalAsMetadata in the same function");
785     } else {
786       assert(isa<ConstantAsMetadata>(VAM) &&
787              "Expected LocalAsMetadata or ConstantAsMetadata");
788       assert(ValueMap.count(VAM->getValue()) &&
789              "Constant should be enumerated beforeDIArgList");
790       EnumerateMetadata(F, VAM);
791     }
792   }
793 
794   MDs.push_back(ArgList);
795   Index.F = F;
796   Index.ID = MDs.size();
797 }
798 
799 static unsigned getMetadataTypeOrder(const Metadata *MD) {
800   // Strings are emitted in bulk and must come first.
801   if (isa<MDString>(MD))
802     return 0;
803 
804   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
805   // to the front since we can detect it.
806   auto *N = dyn_cast<MDNode>(MD);
807   if (!N)
808     return 1;
809 
810   // The reader is fast forward references for distinct node operands, but slow
811   // when uniqued operands are unresolved.
812   return N->isDistinct() ? 2 : 3;
813 }
814 
815 void ValueEnumerator::organizeMetadata() {
816   assert(MetadataMap.size() == MDs.size() &&
817          "Metadata map and vector out of sync");
818 
819   if (MDs.empty())
820     return;
821 
822   // Copy out the index information from MetadataMap in order to choose a new
823   // order.
824   SmallVector<MDIndex, 64> Order;
825   Order.reserve(MetadataMap.size());
826   for (const Metadata *MD : MDs)
827     Order.push_back(MetadataMap.lookup(MD));
828 
829   // Partition:
830   //   - by function, then
831   //   - by isa<MDString>
832   // and then sort by the original/current ID.  Since the IDs are guaranteed to
833   // be unique, the result of std::sort will be deterministic.  There's no need
834   // for std::stable_sort.
835   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
836     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
837            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
838   });
839 
840   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
841   // and fix up MetadataMap.
842   std::vector<const Metadata *> OldMDs;
843   MDs.swap(OldMDs);
844   MDs.reserve(OldMDs.size());
845   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
846     auto *MD = Order[I].get(OldMDs);
847     MDs.push_back(MD);
848     MetadataMap[MD].ID = I + 1;
849     if (isa<MDString>(MD))
850       ++NumMDStrings;
851   }
852 
853   // Return early if there's nothing for the functions.
854   if (MDs.size() == Order.size())
855     return;
856 
857   // Build the function metadata ranges.
858   MDRange R;
859   FunctionMDs.reserve(OldMDs.size());
860   unsigned PrevF = 0;
861   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
862        ++I) {
863     unsigned F = Order[I].F;
864     if (!PrevF) {
865       PrevF = F;
866     } else if (PrevF != F) {
867       R.Last = FunctionMDs.size();
868       std::swap(R, FunctionMDInfo[PrevF]);
869       R.First = FunctionMDs.size();
870 
871       ID = MDs.size();
872       PrevF = F;
873     }
874 
875     auto *MD = Order[I].get(OldMDs);
876     FunctionMDs.push_back(MD);
877     MetadataMap[MD].ID = ++ID;
878     if (isa<MDString>(MD))
879       ++R.NumStrings;
880   }
881   R.Last = FunctionMDs.size();
882   FunctionMDInfo[PrevF] = R;
883 }
884 
885 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
886   NumModuleMDs = MDs.size();
887 
888   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
889   NumMDStrings = R.NumStrings;
890   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
891              FunctionMDs.begin() + R.Last);
892 }
893 
894 void ValueEnumerator::EnumerateValue(const Value *V) {
895   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
896   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
897 
898   // Check to see if it's already in!
899   unsigned &ValueID = ValueMap[V];
900   if (ValueID) {
901     // Increment use count.
902     Values[ValueID-1].second++;
903     return;
904   }
905 
906   if (auto *GO = dyn_cast<GlobalObject>(V))
907     if (const Comdat *C = GO->getComdat())
908       Comdats.insert(C);
909 
910   // Enumerate the type of this value.
911   EnumerateType(V->getType());
912 
913   if (const Constant *C = dyn_cast<Constant>(V)) {
914     if (isa<GlobalValue>(C)) {
915       // Initializers for globals are handled explicitly elsewhere.
916     } else if (C->getNumOperands()) {
917       // If a constant has operands, enumerate them.  This makes sure that if a
918       // constant has uses (for example an array of const ints), that they are
919       // inserted also.
920 
921       // We prefer to enumerate them with values before we enumerate the user
922       // itself.  This makes it more likely that we can avoid forward references
923       // in the reader.  We know that there can be no cycles in the constants
924       // graph that don't go through a global variable.
925       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
926            I != E; ++I)
927         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
928           EnumerateValue(*I);
929       if (auto *CE = dyn_cast<ConstantExpr>(C))
930         if (CE->getOpcode() == Instruction::ShuffleVector)
931           EnumerateValue(CE->getShuffleMaskForBitcode());
932 
933       // Finally, add the value.  Doing this could make the ValueID reference be
934       // dangling, don't reuse it.
935       Values.push_back(std::make_pair(V, 1U));
936       ValueMap[V] = Values.size();
937       return;
938     }
939   }
940 
941   // Add the value.
942   Values.push_back(std::make_pair(V, 1U));
943   ValueID = Values.size();
944 }
945 
946 
947 void ValueEnumerator::EnumerateType(Type *Ty) {
948   unsigned *TypeID = &TypeMap[Ty];
949 
950   // We've already seen this type.
951   if (*TypeID)
952     return;
953 
954   // If it is a non-anonymous struct, mark the type as being visited so that we
955   // don't recursively visit it.  This is safe because we allow forward
956   // references of these in the bitcode reader.
957   if (StructType *STy = dyn_cast<StructType>(Ty))
958     if (!STy->isLiteral())
959       *TypeID = ~0U;
960 
961   // Enumerate all of the subtypes before we enumerate this type.  This ensures
962   // that the type will be enumerated in an order that can be directly built.
963   for (Type *SubTy : Ty->subtypes())
964     EnumerateType(SubTy);
965 
966   // Refresh the TypeID pointer in case the table rehashed.
967   TypeID = &TypeMap[Ty];
968 
969   // Check to see if we got the pointer another way.  This can happen when
970   // enumerating recursive types that hit the base case deeper than they start.
971   //
972   // If this is actually a struct that we are treating as forward ref'able,
973   // then emit the definition now that all of its contents are available.
974   if (*TypeID && *TypeID != ~0U)
975     return;
976 
977   // Add this type now that its contents are all happily enumerated.
978   Types.push_back(Ty);
979 
980   *TypeID = Types.size();
981 }
982 
983 // Enumerate the types for the specified value.  If the value is a constant,
984 // walk through it, enumerating the types of the constant.
985 void ValueEnumerator::EnumerateOperandType(const Value *V) {
986   EnumerateType(V->getType());
987 
988   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
989 
990   const Constant *C = dyn_cast<Constant>(V);
991   if (!C)
992     return;
993 
994   // If this constant is already enumerated, ignore it, we know its type must
995   // be enumerated.
996   if (ValueMap.count(C))
997     return;
998 
999   // This constant may have operands, make sure to enumerate the types in
1000   // them.
1001   for (const Value *Op : C->operands()) {
1002     // Don't enumerate basic blocks here, this happens as operands to
1003     // blockaddress.
1004     if (isa<BasicBlock>(Op))
1005       continue;
1006 
1007     EnumerateOperandType(Op);
1008   }
1009   if (auto *CE = dyn_cast<ConstantExpr>(C))
1010     if (CE->getOpcode() == Instruction::ShuffleVector)
1011       EnumerateOperandType(CE->getShuffleMaskForBitcode());
1012 }
1013 
1014 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
1015   if (PAL.isEmpty()) return;  // null is always 0.
1016 
1017   // Do a lookup.
1018   unsigned &Entry = AttributeListMap[PAL];
1019   if (Entry == 0) {
1020     // Never saw this before, add it.
1021     AttributeLists.push_back(PAL);
1022     Entry = AttributeLists.size();
1023   }
1024 
1025   // Do lookups for all attribute groups.
1026   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
1027     AttributeSet AS = PAL.getAttributes(i);
1028     if (!AS.hasAttributes())
1029       continue;
1030     IndexAndAttrSet Pair = {i, AS};
1031     unsigned &Entry = AttributeGroupMap[Pair];
1032     if (Entry == 0) {
1033       AttributeGroups.push_back(Pair);
1034       Entry = AttributeGroups.size();
1035     }
1036   }
1037 }
1038 
1039 void ValueEnumerator::incorporateFunction(const Function &F) {
1040   InstructionCount = 0;
1041   NumModuleValues = Values.size();
1042 
1043   // Add global metadata to the function block.  This doesn't include
1044   // LocalAsMetadata.
1045   incorporateFunctionMetadata(F);
1046 
1047   // Adding function arguments to the value table.
1048   for (const auto &I : F.args()) {
1049     EnumerateValue(&I);
1050     if (I.hasAttribute(Attribute::ByVal))
1051       EnumerateType(I.getParamByValType());
1052     else if (I.hasAttribute(Attribute::StructRet))
1053       EnumerateType(I.getParamStructRetType());
1054     else if (I.hasAttribute(Attribute::ByRef))
1055       EnumerateType(I.getParamByRefType());
1056   }
1057   FirstFuncConstantID = Values.size();
1058 
1059   // Add all function-level constants to the value table.
1060   for (const BasicBlock &BB : F) {
1061     for (const Instruction &I : BB) {
1062       for (const Use &OI : I.operands()) {
1063         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1064           EnumerateValue(OI);
1065       }
1066       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1067         EnumerateValue(SVI->getShuffleMaskForBitcode());
1068     }
1069     BasicBlocks.push_back(&BB);
1070     ValueMap[&BB] = BasicBlocks.size();
1071   }
1072 
1073   // Optimize the constant layout.
1074   OptimizeConstants(FirstFuncConstantID, Values.size());
1075 
1076   // Add the function's parameter attributes so they are available for use in
1077   // the function's instruction.
1078   EnumerateAttributes(F.getAttributes());
1079 
1080   FirstInstID = Values.size();
1081 
1082   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1083   SmallVector<DIArgList *, 8> ArgListMDVector;
1084   // Add all of the instructions.
1085   for (const BasicBlock &BB : F) {
1086     for (const Instruction &I : BB) {
1087       for (const Use &OI : I.operands()) {
1088         if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1089           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1090             // Enumerate metadata after the instructions they might refer to.
1091             FnLocalMDVector.push_back(Local);
1092           } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1093             ArgListMDVector.push_back(ArgList);
1094             for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1095               if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1096                 // Enumerate metadata after the instructions they might refer
1097                 // to.
1098                 FnLocalMDVector.push_back(Local);
1099               }
1100             }
1101           }
1102         }
1103       }
1104 
1105       if (!I.getType()->isVoidTy())
1106         EnumerateValue(&I);
1107     }
1108   }
1109 
1110   // Add all of the function-local metadata.
1111   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1112     // At this point, every local values have been incorporated, we shouldn't
1113     // have a metadata operand that references a value that hasn't been seen.
1114     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1115            "Missing value for metadata operand");
1116     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1117   }
1118   // DIArgList entries must come after function-local metadata, as it is not
1119   // possible to forward-reference them.
1120   for (const DIArgList *ArgList : ArgListMDVector)
1121     EnumerateFunctionLocalListMetadata(F, ArgList);
1122 }
1123 
1124 void ValueEnumerator::purgeFunction() {
1125   /// Remove purged values from the ValueMap.
1126   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1127     ValueMap.erase(Values[i].first);
1128   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1129     MetadataMap.erase(MDs[i]);
1130   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1131     ValueMap.erase(BasicBlocks[i]);
1132 
1133   Values.resize(NumModuleValues);
1134   MDs.resize(NumModuleMDs);
1135   BasicBlocks.clear();
1136   NumMDStrings = 0;
1137 }
1138 
1139 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1140                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1141   unsigned Counter = 0;
1142   for (const BasicBlock &BB : *F)
1143     IDMap[&BB] = ++Counter;
1144 }
1145 
1146 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1147 /// specified basic block.  This is relatively expensive information, so it
1148 /// should only be used by rare constructs such as address-of-label.
1149 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1150   unsigned &Idx = GlobalBasicBlockIDs[BB];
1151   if (Idx != 0)
1152     return Idx-1;
1153 
1154   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1155   return getGlobalBasicBlockID(BB);
1156 }
1157 
1158 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1159   return Log2_32_Ceil(getTypes().size() + 1);
1160 }
1161