1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ValueEnumerator.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/Config/llvm-config.h" 16 #include "llvm/IR/Argument.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GlobalAlias.h" 23 #include "llvm/IR/GlobalIFunc.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Use.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/IR/ValueSymbolTable.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <algorithm> 42 #include <cstddef> 43 #include <iterator> 44 #include <tuple> 45 46 using namespace llvm; 47 48 namespace { 49 50 struct OrderMap { 51 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 52 unsigned LastGlobalConstantID = 0; 53 unsigned LastGlobalValueID = 0; 54 55 OrderMap() = default; 56 57 bool isGlobalConstant(unsigned ID) const { 58 return ID <= LastGlobalConstantID; 59 } 60 61 bool isGlobalValue(unsigned ID) const { 62 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 63 } 64 65 unsigned size() const { return IDs.size(); } 66 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 67 68 std::pair<unsigned, bool> lookup(const Value *V) const { 69 return IDs.lookup(V); 70 } 71 72 void index(const Value *V) { 73 // Explicitly sequence get-size and insert-value operations to avoid UB. 74 unsigned ID = IDs.size() + 1; 75 IDs[V].first = ID; 76 } 77 }; 78 79 } // end anonymous namespace 80 81 static void orderValue(const Value *V, OrderMap &OM) { 82 if (OM.lookup(V).first) 83 return; 84 85 if (const Constant *C = dyn_cast<Constant>(V)) { 86 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 87 for (const Value *Op : C->operands()) 88 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 89 orderValue(Op, OM); 90 if (auto *CE = dyn_cast<ConstantExpr>(C)) 91 if (CE->getOpcode() == Instruction::ShuffleVector) 92 orderValue(CE->getShuffleMaskForBitcode(), OM); 93 } 94 } 95 96 // Note: we cannot cache this lookup above, since inserting into the map 97 // changes the map's size, and thus affects the other IDs. 98 OM.index(V); 99 } 100 101 static OrderMap orderModule(const Module &M) { 102 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 103 // and ValueEnumerator::incorporateFunction(). 104 OrderMap OM; 105 106 // In the reader, initializers of GlobalValues are set *after* all the 107 // globals have been read. Rather than awkwardly modeling this behaviour 108 // directly in predictValueUseListOrderImpl(), just assign IDs to 109 // initializers of GlobalValues before GlobalValues themselves to model this 110 // implicitly. 111 for (const GlobalVariable &G : M.globals()) 112 if (G.hasInitializer()) 113 if (!isa<GlobalValue>(G.getInitializer())) 114 orderValue(G.getInitializer(), OM); 115 for (const GlobalAlias &A : M.aliases()) 116 if (!isa<GlobalValue>(A.getAliasee())) 117 orderValue(A.getAliasee(), OM); 118 for (const GlobalIFunc &I : M.ifuncs()) 119 if (!isa<GlobalValue>(I.getResolver())) 120 orderValue(I.getResolver(), OM); 121 for (const Function &F : M) { 122 for (const Use &U : F.operands()) 123 if (!isa<GlobalValue>(U.get())) 124 orderValue(U.get(), OM); 125 } 126 OM.LastGlobalConstantID = OM.size(); 127 128 // Initializers of GlobalValues are processed in 129 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 130 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 131 // by giving IDs in reverse order. 132 // 133 // Since GlobalValues never reference each other directly (just through 134 // initializers), their relative IDs only matter for determining order of 135 // uses in their initializers. 136 for (const Function &F : M) 137 orderValue(&F, OM); 138 for (const GlobalAlias &A : M.aliases()) 139 orderValue(&A, OM); 140 for (const GlobalIFunc &I : M.ifuncs()) 141 orderValue(&I, OM); 142 for (const GlobalVariable &G : M.globals()) 143 orderValue(&G, OM); 144 OM.LastGlobalValueID = OM.size(); 145 146 for (const Function &F : M) { 147 if (F.isDeclaration()) 148 continue; 149 // Here we need to match the union of ValueEnumerator::incorporateFunction() 150 // and WriteFunction(). Basic blocks are implicitly declared before 151 // anything else (by declaring their size). 152 for (const BasicBlock &BB : F) 153 orderValue(&BB, OM); 154 for (const Argument &A : F.args()) 155 orderValue(&A, OM); 156 for (const BasicBlock &BB : F) 157 for (const Instruction &I : BB) { 158 for (const Value *Op : I.operands()) 159 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 160 isa<InlineAsm>(*Op)) 161 orderValue(Op, OM); 162 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 163 orderValue(SVI->getShuffleMaskForBitcode(), OM); 164 } 165 for (const BasicBlock &BB : F) 166 for (const Instruction &I : BB) 167 orderValue(&I, OM); 168 } 169 return OM; 170 } 171 172 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 173 unsigned ID, const OrderMap &OM, 174 UseListOrderStack &Stack) { 175 // Predict use-list order for this one. 176 using Entry = std::pair<const Use *, unsigned>; 177 SmallVector<Entry, 64> List; 178 for (const Use &U : V->uses()) 179 // Check if this user will be serialized. 180 if (OM.lookup(U.getUser()).first) 181 List.push_back(std::make_pair(&U, List.size())); 182 183 if (List.size() < 2) 184 // We may have lost some users. 185 return; 186 187 bool IsGlobalValue = OM.isGlobalValue(ID); 188 llvm::sort(List, [&](const Entry &L, const Entry &R) { 189 const Use *LU = L.first; 190 const Use *RU = R.first; 191 if (LU == RU) 192 return false; 193 194 auto LID = OM.lookup(LU->getUser()).first; 195 auto RID = OM.lookup(RU->getUser()).first; 196 197 // Global values are processed in reverse order. 198 // 199 // Moreover, initializers of GlobalValues are set *after* all the globals 200 // have been read (despite having earlier IDs). Rather than awkwardly 201 // modeling this behaviour here, orderModule() has assigned IDs to 202 // initializers of GlobalValues before GlobalValues themselves. 203 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 204 return LID < RID; 205 206 // If ID is 4, then expect: 7 6 5 1 2 3. 207 if (LID < RID) { 208 if (RID <= ID) 209 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 210 return true; 211 return false; 212 } 213 if (RID < LID) { 214 if (LID <= ID) 215 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 216 return false; 217 return true; 218 } 219 220 // LID and RID are equal, so we have different operands of the same user. 221 // Assume operands are added in order for all instructions. 222 if (LID <= ID) 223 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 224 return LU->getOperandNo() < RU->getOperandNo(); 225 return LU->getOperandNo() > RU->getOperandNo(); 226 }); 227 228 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 229 return L.second < R.second; 230 })) 231 // Order is already correct. 232 return; 233 234 // Store the shuffle. 235 Stack.emplace_back(V, F, List.size()); 236 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 237 for (size_t I = 0, E = List.size(); I != E; ++I) 238 Stack.back().Shuffle[I] = List[I].second; 239 } 240 241 static void predictValueUseListOrder(const Value *V, const Function *F, 242 OrderMap &OM, UseListOrderStack &Stack) { 243 auto &IDPair = OM[V]; 244 assert(IDPair.first && "Unmapped value"); 245 if (IDPair.second) 246 // Already predicted. 247 return; 248 249 // Do the actual prediction. 250 IDPair.second = true; 251 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 252 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 253 254 // Recursive descent into constants. 255 if (const Constant *C = dyn_cast<Constant>(V)) { 256 if (C->getNumOperands()) { // Visit GlobalValues. 257 for (const Value *Op : C->operands()) 258 if (isa<Constant>(Op)) // Visit GlobalValues. 259 predictValueUseListOrder(Op, F, OM, Stack); 260 if (auto *CE = dyn_cast<ConstantExpr>(C)) 261 if (CE->getOpcode() == Instruction::ShuffleVector) 262 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 263 Stack); 264 } 265 } 266 } 267 268 static UseListOrderStack predictUseListOrder(const Module &M) { 269 OrderMap OM = orderModule(M); 270 271 // Use-list orders need to be serialized after all the users have been added 272 // to a value, or else the shuffles will be incomplete. Store them per 273 // function in a stack. 274 // 275 // Aside from function order, the order of values doesn't matter much here. 276 UseListOrderStack Stack; 277 278 // We want to visit the functions backward now so we can list function-local 279 // constants in the last Function they're used in. Module-level constants 280 // have already been visited above. 281 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 282 const Function &F = *I; 283 if (F.isDeclaration()) 284 continue; 285 for (const BasicBlock &BB : F) 286 predictValueUseListOrder(&BB, &F, OM, Stack); 287 for (const Argument &A : F.args()) 288 predictValueUseListOrder(&A, &F, OM, Stack); 289 for (const BasicBlock &BB : F) 290 for (const Instruction &I : BB) { 291 for (const Value *Op : I.operands()) 292 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 293 predictValueUseListOrder(Op, &F, OM, Stack); 294 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 295 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 296 Stack); 297 } 298 for (const BasicBlock &BB : F) 299 for (const Instruction &I : BB) 300 predictValueUseListOrder(&I, &F, OM, Stack); 301 } 302 303 // Visit globals last, since the module-level use-list block will be seen 304 // before the function bodies are processed. 305 for (const GlobalVariable &G : M.globals()) 306 predictValueUseListOrder(&G, nullptr, OM, Stack); 307 for (const Function &F : M) 308 predictValueUseListOrder(&F, nullptr, OM, Stack); 309 for (const GlobalAlias &A : M.aliases()) 310 predictValueUseListOrder(&A, nullptr, OM, Stack); 311 for (const GlobalIFunc &I : M.ifuncs()) 312 predictValueUseListOrder(&I, nullptr, OM, Stack); 313 for (const GlobalVariable &G : M.globals()) 314 if (G.hasInitializer()) 315 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 316 for (const GlobalAlias &A : M.aliases()) 317 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 318 for (const GlobalIFunc &I : M.ifuncs()) 319 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 320 for (const Function &F : M) { 321 for (const Use &U : F.operands()) 322 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 323 } 324 325 return Stack; 326 } 327 328 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 329 return V.first->getType()->isIntOrIntVectorTy(); 330 } 331 332 ValueEnumerator::ValueEnumerator(const Module &M, 333 bool ShouldPreserveUseListOrder) 334 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 335 if (ShouldPreserveUseListOrder) 336 UseListOrders = predictUseListOrder(M); 337 338 // Enumerate the global variables. 339 for (const GlobalVariable &GV : M.globals()) 340 EnumerateValue(&GV); 341 342 // Enumerate the functions. 343 for (const Function & F : M) { 344 EnumerateValue(&F); 345 EnumerateAttributes(F.getAttributes()); 346 } 347 348 // Enumerate the aliases. 349 for (const GlobalAlias &GA : M.aliases()) 350 EnumerateValue(&GA); 351 352 // Enumerate the ifuncs. 353 for (const GlobalIFunc &GIF : M.ifuncs()) 354 EnumerateValue(&GIF); 355 356 // Remember what is the cutoff between globalvalue's and other constants. 357 unsigned FirstConstant = Values.size(); 358 359 // Enumerate the global variable initializers and attributes. 360 for (const GlobalVariable &GV : M.globals()) { 361 if (GV.hasInitializer()) 362 EnumerateValue(GV.getInitializer()); 363 if (GV.hasAttributes()) 364 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 365 } 366 367 // Enumerate the aliasees. 368 for (const GlobalAlias &GA : M.aliases()) 369 EnumerateValue(GA.getAliasee()); 370 371 // Enumerate the ifunc resolvers. 372 for (const GlobalIFunc &GIF : M.ifuncs()) 373 EnumerateValue(GIF.getResolver()); 374 375 // Enumerate any optional Function data. 376 for (const Function &F : M) 377 for (const Use &U : F.operands()) 378 EnumerateValue(U.get()); 379 380 // Enumerate the metadata type. 381 // 382 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 383 // only encodes the metadata type when it's used as a value. 384 EnumerateType(Type::getMetadataTy(M.getContext())); 385 386 // Insert constants and metadata that are named at module level into the slot 387 // pool so that the module symbol table can refer to them... 388 EnumerateValueSymbolTable(M.getValueSymbolTable()); 389 EnumerateNamedMetadata(M); 390 391 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 392 for (const GlobalVariable &GV : M.globals()) { 393 MDs.clear(); 394 GV.getAllMetadata(MDs); 395 for (const auto &I : MDs) 396 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 397 // to write metadata to the global variable's own metadata block 398 // (PR28134). 399 EnumerateMetadata(nullptr, I.second); 400 } 401 402 // Enumerate types used by function bodies and argument lists. 403 for (const Function &F : M) { 404 for (const Argument &A : F.args()) 405 EnumerateType(A.getType()); 406 407 // Enumerate metadata attached to this function. 408 MDs.clear(); 409 F.getAllMetadata(MDs); 410 for (const auto &I : MDs) 411 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 412 413 for (const BasicBlock &BB : F) 414 for (const Instruction &I : BB) { 415 for (const Use &Op : I.operands()) { 416 auto *MD = dyn_cast<MetadataAsValue>(&Op); 417 if (!MD) { 418 EnumerateOperandType(Op); 419 continue; 420 } 421 422 // Local metadata is enumerated during function-incorporation. 423 if (isa<LocalAsMetadata>(MD->getMetadata())) 424 continue; 425 426 EnumerateMetadata(&F, MD->getMetadata()); 427 } 428 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 429 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 430 EnumerateType(I.getType()); 431 if (const auto *Call = dyn_cast<CallBase>(&I)) 432 EnumerateAttributes(Call->getAttributes()); 433 434 // Enumerate metadata attached with this instruction. 435 MDs.clear(); 436 I.getAllMetadataOtherThanDebugLoc(MDs); 437 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 438 EnumerateMetadata(&F, MDs[i].second); 439 440 // Don't enumerate the location directly -- it has a special record 441 // type -- but enumerate its operands. 442 if (DILocation *L = I.getDebugLoc()) 443 for (const Metadata *Op : L->operands()) 444 EnumerateMetadata(&F, Op); 445 } 446 } 447 448 // Optimize constant ordering. 449 OptimizeConstants(FirstConstant, Values.size()); 450 451 // Organize metadata ordering. 452 organizeMetadata(); 453 } 454 455 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 456 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 457 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 458 return I->second; 459 } 460 461 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 462 unsigned ComdatID = Comdats.idFor(C); 463 assert(ComdatID && "Comdat not found!"); 464 return ComdatID; 465 } 466 467 void ValueEnumerator::setInstructionID(const Instruction *I) { 468 InstructionMap[I] = InstructionCount++; 469 } 470 471 unsigned ValueEnumerator::getValueID(const Value *V) const { 472 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 473 return getMetadataID(MD->getMetadata()); 474 475 ValueMapType::const_iterator I = ValueMap.find(V); 476 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 477 return I->second-1; 478 } 479 480 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 481 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 482 print(dbgs(), ValueMap, "Default"); 483 dbgs() << '\n'; 484 print(dbgs(), MetadataMap, "MetaData"); 485 dbgs() << '\n'; 486 } 487 #endif 488 489 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 490 const char *Name) const { 491 OS << "Map Name: " << Name << "\n"; 492 OS << "Size: " << Map.size() << "\n"; 493 for (ValueMapType::const_iterator I = Map.begin(), 494 E = Map.end(); I != E; ++I) { 495 const Value *V = I->first; 496 if (V->hasName()) 497 OS << "Value: " << V->getName(); 498 else 499 OS << "Value: [null]\n"; 500 V->print(errs()); 501 errs() << '\n'; 502 503 OS << " Uses(" << V->getNumUses() << "):"; 504 for (const Use &U : V->uses()) { 505 if (&U != &*V->use_begin()) 506 OS << ","; 507 if(U->hasName()) 508 OS << " " << U->getName(); 509 else 510 OS << " [null]"; 511 512 } 513 OS << "\n\n"; 514 } 515 } 516 517 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 518 const char *Name) const { 519 OS << "Map Name: " << Name << "\n"; 520 OS << "Size: " << Map.size() << "\n"; 521 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 522 const Metadata *MD = I->first; 523 OS << "Metadata: slot = " << I->second.ID << "\n"; 524 OS << "Metadata: function = " << I->second.F << "\n"; 525 MD->print(OS); 526 OS << "\n"; 527 } 528 } 529 530 /// OptimizeConstants - Reorder constant pool for denser encoding. 531 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 532 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 533 534 if (ShouldPreserveUseListOrder) 535 // Optimizing constants makes the use-list order difficult to predict. 536 // Disable it for now when trying to preserve the order. 537 return; 538 539 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 540 [this](const std::pair<const Value *, unsigned> &LHS, 541 const std::pair<const Value *, unsigned> &RHS) { 542 // Sort by plane. 543 if (LHS.first->getType() != RHS.first->getType()) 544 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 545 // Then by frequency. 546 return LHS.second > RHS.second; 547 }); 548 549 // Ensure that integer and vector of integer constants are at the start of the 550 // constant pool. This is important so that GEP structure indices come before 551 // gep constant exprs. 552 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 553 isIntOrIntVectorValue); 554 555 // Rebuild the modified portion of ValueMap. 556 for (; CstStart != CstEnd; ++CstStart) 557 ValueMap[Values[CstStart].first] = CstStart+1; 558 } 559 560 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 561 /// table into the values table. 562 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 563 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 564 VI != VE; ++VI) 565 EnumerateValue(VI->getValue()); 566 } 567 568 /// Insert all of the values referenced by named metadata in the specified 569 /// module. 570 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 571 for (const auto &I : M.named_metadata()) 572 EnumerateNamedMDNode(&I); 573 } 574 575 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 576 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 577 EnumerateMetadata(nullptr, MD->getOperand(i)); 578 } 579 580 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 581 return F ? getValueID(F) + 1 : 0; 582 } 583 584 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 585 EnumerateMetadata(getMetadataFunctionID(F), MD); 586 } 587 588 void ValueEnumerator::EnumerateFunctionLocalMetadata( 589 const Function &F, const LocalAsMetadata *Local) { 590 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 591 } 592 593 void ValueEnumerator::dropFunctionFromMetadata( 594 MetadataMapType::value_type &FirstMD) { 595 SmallVector<const MDNode *, 64> Worklist; 596 auto push = [&Worklist](MetadataMapType::value_type &MD) { 597 auto &Entry = MD.second; 598 599 // Nothing to do if this metadata isn't tagged. 600 if (!Entry.F) 601 return; 602 603 // Drop the function tag. 604 Entry.F = 0; 605 606 // If this is has an ID and is an MDNode, then its operands have entries as 607 // well. We need to drop the function from them too. 608 if (Entry.ID) 609 if (auto *N = dyn_cast<MDNode>(MD.first)) 610 Worklist.push_back(N); 611 }; 612 push(FirstMD); 613 while (!Worklist.empty()) 614 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 615 if (!Op) 616 continue; 617 auto MD = MetadataMap.find(Op); 618 if (MD != MetadataMap.end()) 619 push(*MD); 620 } 621 } 622 623 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 624 // It's vital for reader efficiency that uniqued subgraphs are done in 625 // post-order; it's expensive when their operands have forward references. 626 // If a distinct node is referenced from a uniqued node, it'll be delayed 627 // until the uniqued subgraph has been completely traversed. 628 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 629 630 // Start by enumerating MD, and then work through its transitive operands in 631 // post-order. This requires a depth-first search. 632 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 633 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 634 Worklist.push_back(std::make_pair(N, N->op_begin())); 635 636 while (!Worklist.empty()) { 637 const MDNode *N = Worklist.back().first; 638 639 // Enumerate operands until we hit a new node. We need to traverse these 640 // nodes' operands before visiting the rest of N's operands. 641 MDNode::op_iterator I = std::find_if( 642 Worklist.back().second, N->op_end(), 643 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 644 if (I != N->op_end()) { 645 auto *Op = cast<MDNode>(*I); 646 Worklist.back().second = ++I; 647 648 // Delay traversing Op if it's a distinct node and N is uniqued. 649 if (Op->isDistinct() && !N->isDistinct()) 650 DelayedDistinctNodes.push_back(Op); 651 else 652 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 653 continue; 654 } 655 656 // All the operands have been visited. Now assign an ID. 657 Worklist.pop_back(); 658 MDs.push_back(N); 659 MetadataMap[N].ID = MDs.size(); 660 661 // Flush out any delayed distinct nodes; these are all the distinct nodes 662 // that are leaves in last uniqued subgraph. 663 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 664 for (const MDNode *N : DelayedDistinctNodes) 665 Worklist.push_back(std::make_pair(N, N->op_begin())); 666 DelayedDistinctNodes.clear(); 667 } 668 } 669 } 670 671 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 672 if (!MD) 673 return nullptr; 674 675 assert( 676 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 677 "Invalid metadata kind"); 678 679 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 680 MDIndex &Entry = Insertion.first->second; 681 if (!Insertion.second) { 682 // Already mapped. If F doesn't match the function tag, drop it. 683 if (Entry.hasDifferentFunction(F)) 684 dropFunctionFromMetadata(*Insertion.first); 685 return nullptr; 686 } 687 688 // Don't assign IDs to metadata nodes. 689 if (auto *N = dyn_cast<MDNode>(MD)) 690 return N; 691 692 // Save the metadata. 693 MDs.push_back(MD); 694 Entry.ID = MDs.size(); 695 696 // Enumerate the constant, if any. 697 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 698 EnumerateValue(C->getValue()); 699 700 return nullptr; 701 } 702 703 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 704 /// information reachable from the metadata. 705 void ValueEnumerator::EnumerateFunctionLocalMetadata( 706 unsigned F, const LocalAsMetadata *Local) { 707 assert(F && "Expected a function"); 708 709 // Check to see if it's already in! 710 MDIndex &Index = MetadataMap[Local]; 711 if (Index.ID) { 712 assert(Index.F == F && "Expected the same function"); 713 return; 714 } 715 716 MDs.push_back(Local); 717 Index.F = F; 718 Index.ID = MDs.size(); 719 720 EnumerateValue(Local->getValue()); 721 } 722 723 static unsigned getMetadataTypeOrder(const Metadata *MD) { 724 // Strings are emitted in bulk and must come first. 725 if (isa<MDString>(MD)) 726 return 0; 727 728 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 729 // to the front since we can detect it. 730 auto *N = dyn_cast<MDNode>(MD); 731 if (!N) 732 return 1; 733 734 // The reader is fast forward references for distinct node operands, but slow 735 // when uniqued operands are unresolved. 736 return N->isDistinct() ? 2 : 3; 737 } 738 739 void ValueEnumerator::organizeMetadata() { 740 assert(MetadataMap.size() == MDs.size() && 741 "Metadata map and vector out of sync"); 742 743 if (MDs.empty()) 744 return; 745 746 // Copy out the index information from MetadataMap in order to choose a new 747 // order. 748 SmallVector<MDIndex, 64> Order; 749 Order.reserve(MetadataMap.size()); 750 for (const Metadata *MD : MDs) 751 Order.push_back(MetadataMap.lookup(MD)); 752 753 // Partition: 754 // - by function, then 755 // - by isa<MDString> 756 // and then sort by the original/current ID. Since the IDs are guaranteed to 757 // be unique, the result of std::sort will be deterministic. There's no need 758 // for std::stable_sort. 759 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 760 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 761 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 762 }); 763 764 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 765 // and fix up MetadataMap. 766 std::vector<const Metadata *> OldMDs; 767 MDs.swap(OldMDs); 768 MDs.reserve(OldMDs.size()); 769 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 770 auto *MD = Order[I].get(OldMDs); 771 MDs.push_back(MD); 772 MetadataMap[MD].ID = I + 1; 773 if (isa<MDString>(MD)) 774 ++NumMDStrings; 775 } 776 777 // Return early if there's nothing for the functions. 778 if (MDs.size() == Order.size()) 779 return; 780 781 // Build the function metadata ranges. 782 MDRange R; 783 FunctionMDs.reserve(OldMDs.size()); 784 unsigned PrevF = 0; 785 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 786 ++I) { 787 unsigned F = Order[I].F; 788 if (!PrevF) { 789 PrevF = F; 790 } else if (PrevF != F) { 791 R.Last = FunctionMDs.size(); 792 std::swap(R, FunctionMDInfo[PrevF]); 793 R.First = FunctionMDs.size(); 794 795 ID = MDs.size(); 796 PrevF = F; 797 } 798 799 auto *MD = Order[I].get(OldMDs); 800 FunctionMDs.push_back(MD); 801 MetadataMap[MD].ID = ++ID; 802 if (isa<MDString>(MD)) 803 ++R.NumStrings; 804 } 805 R.Last = FunctionMDs.size(); 806 FunctionMDInfo[PrevF] = R; 807 } 808 809 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 810 NumModuleMDs = MDs.size(); 811 812 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 813 NumMDStrings = R.NumStrings; 814 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 815 FunctionMDs.begin() + R.Last); 816 } 817 818 void ValueEnumerator::EnumerateValue(const Value *V) { 819 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 820 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 821 822 // Check to see if it's already in! 823 unsigned &ValueID = ValueMap[V]; 824 if (ValueID) { 825 // Increment use count. 826 Values[ValueID-1].second++; 827 return; 828 } 829 830 if (auto *GO = dyn_cast<GlobalObject>(V)) 831 if (const Comdat *C = GO->getComdat()) 832 Comdats.insert(C); 833 834 // Enumerate the type of this value. 835 EnumerateType(V->getType()); 836 837 if (const Constant *C = dyn_cast<Constant>(V)) { 838 if (isa<GlobalValue>(C)) { 839 // Initializers for globals are handled explicitly elsewhere. 840 } else if (C->getNumOperands()) { 841 // If a constant has operands, enumerate them. This makes sure that if a 842 // constant has uses (for example an array of const ints), that they are 843 // inserted also. 844 845 // We prefer to enumerate them with values before we enumerate the user 846 // itself. This makes it more likely that we can avoid forward references 847 // in the reader. We know that there can be no cycles in the constants 848 // graph that don't go through a global variable. 849 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 850 I != E; ++I) 851 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 852 EnumerateValue(*I); 853 if (auto *CE = dyn_cast<ConstantExpr>(C)) 854 if (CE->getOpcode() == Instruction::ShuffleVector) 855 EnumerateValue(CE->getShuffleMaskForBitcode()); 856 857 // Finally, add the value. Doing this could make the ValueID reference be 858 // dangling, don't reuse it. 859 Values.push_back(std::make_pair(V, 1U)); 860 ValueMap[V] = Values.size(); 861 return; 862 } 863 } 864 865 // Add the value. 866 Values.push_back(std::make_pair(V, 1U)); 867 ValueID = Values.size(); 868 } 869 870 871 void ValueEnumerator::EnumerateType(Type *Ty) { 872 unsigned *TypeID = &TypeMap[Ty]; 873 874 // We've already seen this type. 875 if (*TypeID) 876 return; 877 878 // If it is a non-anonymous struct, mark the type as being visited so that we 879 // don't recursively visit it. This is safe because we allow forward 880 // references of these in the bitcode reader. 881 if (StructType *STy = dyn_cast<StructType>(Ty)) 882 if (!STy->isLiteral()) 883 *TypeID = ~0U; 884 885 // Enumerate all of the subtypes before we enumerate this type. This ensures 886 // that the type will be enumerated in an order that can be directly built. 887 for (Type *SubTy : Ty->subtypes()) 888 EnumerateType(SubTy); 889 890 // Refresh the TypeID pointer in case the table rehashed. 891 TypeID = &TypeMap[Ty]; 892 893 // Check to see if we got the pointer another way. This can happen when 894 // enumerating recursive types that hit the base case deeper than they start. 895 // 896 // If this is actually a struct that we are treating as forward ref'able, 897 // then emit the definition now that all of its contents are available. 898 if (*TypeID && *TypeID != ~0U) 899 return; 900 901 // Add this type now that its contents are all happily enumerated. 902 Types.push_back(Ty); 903 904 *TypeID = Types.size(); 905 } 906 907 // Enumerate the types for the specified value. If the value is a constant, 908 // walk through it, enumerating the types of the constant. 909 void ValueEnumerator::EnumerateOperandType(const Value *V) { 910 EnumerateType(V->getType()); 911 912 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 913 914 const Constant *C = dyn_cast<Constant>(V); 915 if (!C) 916 return; 917 918 // If this constant is already enumerated, ignore it, we know its type must 919 // be enumerated. 920 if (ValueMap.count(C)) 921 return; 922 923 // This constant may have operands, make sure to enumerate the types in 924 // them. 925 for (const Value *Op : C->operands()) { 926 // Don't enumerate basic blocks here, this happens as operands to 927 // blockaddress. 928 if (isa<BasicBlock>(Op)) 929 continue; 930 931 EnumerateOperandType(Op); 932 } 933 if (auto *CE = dyn_cast<ConstantExpr>(C)) 934 if (CE->getOpcode() == Instruction::ShuffleVector) 935 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 936 } 937 938 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 939 if (PAL.isEmpty()) return; // null is always 0. 940 941 // Do a lookup. 942 unsigned &Entry = AttributeListMap[PAL]; 943 if (Entry == 0) { 944 // Never saw this before, add it. 945 AttributeLists.push_back(PAL); 946 Entry = AttributeLists.size(); 947 } 948 949 // Do lookups for all attribute groups. 950 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 951 AttributeSet AS = PAL.getAttributes(i); 952 if (!AS.hasAttributes()) 953 continue; 954 IndexAndAttrSet Pair = {i, AS}; 955 unsigned &Entry = AttributeGroupMap[Pair]; 956 if (Entry == 0) { 957 AttributeGroups.push_back(Pair); 958 Entry = AttributeGroups.size(); 959 } 960 } 961 } 962 963 void ValueEnumerator::incorporateFunction(const Function &F) { 964 InstructionCount = 0; 965 NumModuleValues = Values.size(); 966 967 // Add global metadata to the function block. This doesn't include 968 // LocalAsMetadata. 969 incorporateFunctionMetadata(F); 970 971 // Adding function arguments to the value table. 972 for (const auto &I : F.args()) { 973 EnumerateValue(&I); 974 if (I.hasAttribute(Attribute::ByVal)) 975 EnumerateType(I.getParamByValType()); 976 else if (I.hasAttribute(Attribute::StructRet)) 977 EnumerateType(I.getParamStructRetType()); 978 } 979 FirstFuncConstantID = Values.size(); 980 981 // Add all function-level constants to the value table. 982 for (const BasicBlock &BB : F) { 983 for (const Instruction &I : BB) { 984 for (const Use &OI : I.operands()) { 985 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 986 EnumerateValue(OI); 987 } 988 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 989 EnumerateValue(SVI->getShuffleMaskForBitcode()); 990 } 991 BasicBlocks.push_back(&BB); 992 ValueMap[&BB] = BasicBlocks.size(); 993 } 994 995 // Optimize the constant layout. 996 OptimizeConstants(FirstFuncConstantID, Values.size()); 997 998 // Add the function's parameter attributes so they are available for use in 999 // the function's instruction. 1000 EnumerateAttributes(F.getAttributes()); 1001 1002 FirstInstID = Values.size(); 1003 1004 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1005 // Add all of the instructions. 1006 for (const BasicBlock &BB : F) { 1007 for (const Instruction &I : BB) { 1008 for (const Use &OI : I.operands()) { 1009 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 1010 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 1011 // Enumerate metadata after the instructions they might refer to. 1012 FnLocalMDVector.push_back(Local); 1013 } 1014 1015 if (!I.getType()->isVoidTy()) 1016 EnumerateValue(&I); 1017 } 1018 } 1019 1020 // Add all of the function-local metadata. 1021 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1022 // At this point, every local values have been incorporated, we shouldn't 1023 // have a metadata operand that references a value that hasn't been seen. 1024 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1025 "Missing value for metadata operand"); 1026 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1027 } 1028 } 1029 1030 void ValueEnumerator::purgeFunction() { 1031 /// Remove purged values from the ValueMap. 1032 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1033 ValueMap.erase(Values[i].first); 1034 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1035 MetadataMap.erase(MDs[i]); 1036 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 1037 ValueMap.erase(BasicBlocks[i]); 1038 1039 Values.resize(NumModuleValues); 1040 MDs.resize(NumModuleMDs); 1041 BasicBlocks.clear(); 1042 NumMDStrings = 0; 1043 } 1044 1045 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1046 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1047 unsigned Counter = 0; 1048 for (const BasicBlock &BB : *F) 1049 IDMap[&BB] = ++Counter; 1050 } 1051 1052 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1053 /// specified basic block. This is relatively expensive information, so it 1054 /// should only be used by rare constructs such as address-of-label. 1055 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1056 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1057 if (Idx != 0) 1058 return Idx-1; 1059 1060 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1061 return getGlobalBasicBlockID(BB); 1062 } 1063 1064 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1065 return Log2_32_Ceil(getTypes().size() + 1); 1066 } 1067