1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/System/Program.h"
30 using namespace llvm;
31 
32 /// These are manifest constants used by the bitcode writer. They do not need to
33 /// be kept in sync with the reader, but need to be consistent within this file.
34 enum {
35   CurVersion = 0,
36 
37   // VALUE_SYMTAB_BLOCK abbrev id's.
38   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
39   VST_ENTRY_7_ABBREV,
40   VST_ENTRY_6_ABBREV,
41   VST_BBENTRY_6_ABBREV,
42 
43   // CONSTANTS_BLOCK abbrev id's.
44   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   CONSTANTS_INTEGER_ABBREV,
46   CONSTANTS_CE_CAST_Abbrev,
47   CONSTANTS_NULL_Abbrev,
48 
49   // FUNCTION_BLOCK abbrev id's.
50   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   FUNCTION_INST_BINOP_ABBREV,
52   FUNCTION_INST_BINOP_FLAGS_ABBREV,
53   FUNCTION_INST_CAST_ABBREV,
54   FUNCTION_INST_RET_VOID_ABBREV,
55   FUNCTION_INST_RET_VAL_ABBREV,
56   FUNCTION_INST_UNREACHABLE_ABBREV
57 };
58 
59 
60 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
61   switch (Opcode) {
62   default: llvm_unreachable("Unknown cast instruction!");
63   case Instruction::Trunc   : return bitc::CAST_TRUNC;
64   case Instruction::ZExt    : return bitc::CAST_ZEXT;
65   case Instruction::SExt    : return bitc::CAST_SEXT;
66   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
67   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
68   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
69   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
70   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
71   case Instruction::FPExt   : return bitc::CAST_FPEXT;
72   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
73   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
74   case Instruction::BitCast : return bitc::CAST_BITCAST;
75   }
76 }
77 
78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
79   switch (Opcode) {
80   default: llvm_unreachable("Unknown binary instruction!");
81   case Instruction::Add:
82   case Instruction::FAdd: return bitc::BINOP_ADD;
83   case Instruction::Sub:
84   case Instruction::FSub: return bitc::BINOP_SUB;
85   case Instruction::Mul:
86   case Instruction::FMul: return bitc::BINOP_MUL;
87   case Instruction::UDiv: return bitc::BINOP_UDIV;
88   case Instruction::FDiv:
89   case Instruction::SDiv: return bitc::BINOP_SDIV;
90   case Instruction::URem: return bitc::BINOP_UREM;
91   case Instruction::FRem:
92   case Instruction::SRem: return bitc::BINOP_SREM;
93   case Instruction::Shl:  return bitc::BINOP_SHL;
94   case Instruction::LShr: return bitc::BINOP_LSHR;
95   case Instruction::AShr: return bitc::BINOP_ASHR;
96   case Instruction::And:  return bitc::BINOP_AND;
97   case Instruction::Or:   return bitc::BINOP_OR;
98   case Instruction::Xor:  return bitc::BINOP_XOR;
99   }
100 }
101 
102 
103 
104 static void WriteStringRecord(unsigned Code, const std::string &Str,
105                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
106   SmallVector<unsigned, 64> Vals;
107 
108   // Code: [strchar x N]
109   for (unsigned i = 0, e = Str.size(); i != e; ++i)
110     Vals.push_back(Str[i]);
111 
112   // Emit the finished record.
113   Stream.EmitRecord(Code, Vals, AbbrevToUse);
114 }
115 
116 // Emit information about parameter attributes.
117 static void WriteAttributeTable(const ValueEnumerator &VE,
118                                 BitstreamWriter &Stream) {
119   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
120   if (Attrs.empty()) return;
121 
122   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
123 
124   SmallVector<uint64_t, 64> Record;
125   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
126     const AttrListPtr &A = Attrs[i];
127     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
128       const AttributeWithIndex &PAWI = A.getSlot(i);
129       Record.push_back(PAWI.Index);
130 
131       // FIXME: remove in LLVM 3.0
132       // Store the alignment in the bitcode as a 16-bit raw value instead of a
133       // 5-bit log2 encoded value. Shift the bits above the alignment up by
134       // 11 bits.
135       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
136       if (PAWI.Attrs & Attribute::Alignment)
137         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
138       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
139 
140       Record.push_back(FauxAttr);
141     }
142 
143     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
144     Record.clear();
145   }
146 
147   Stream.ExitBlock();
148 }
149 
150 /// WriteTypeTable - Write out the type table for a module.
151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
152   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
153 
154   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
155   SmallVector<uint64_t, 64> TypeVals;
156 
157   // Abbrev for TYPE_CODE_POINTER.
158   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
159   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
160   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
161                             Log2_32_Ceil(VE.getTypes().size()+1)));
162   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
163   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
164 
165   // Abbrev for TYPE_CODE_FUNCTION.
166   Abbv = new BitCodeAbbrev();
167   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
168   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
169   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
171   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
172                             Log2_32_Ceil(VE.getTypes().size()+1)));
173   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
174 
175   // Abbrev for TYPE_CODE_STRUCT.
176   Abbv = new BitCodeAbbrev();
177   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
178   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
181                             Log2_32_Ceil(VE.getTypes().size()+1)));
182   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
183 
184   // Abbrev for TYPE_CODE_ARRAY.
185   Abbv = new BitCodeAbbrev();
186   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
187   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
188   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
189                             Log2_32_Ceil(VE.getTypes().size()+1)));
190   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
191 
192   // Emit an entry count so the reader can reserve space.
193   TypeVals.push_back(TypeList.size());
194   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
195   TypeVals.clear();
196 
197   // Loop over all of the types, emitting each in turn.
198   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
199     const Type *T = TypeList[i].first;
200     int AbbrevToUse = 0;
201     unsigned Code = 0;
202 
203     switch (T->getTypeID()) {
204     default: llvm_unreachable("Unknown type!");
205     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
206     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
207     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
208     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
209     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
210     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
211     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
212     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
213     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
214     case Type::IntegerTyID:
215       // INTEGER: [width]
216       Code = bitc::TYPE_CODE_INTEGER;
217       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
218       break;
219     case Type::PointerTyID: {
220       const PointerType *PTy = cast<PointerType>(T);
221       // POINTER: [pointee type, address space]
222       Code = bitc::TYPE_CODE_POINTER;
223       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
224       unsigned AddressSpace = PTy->getAddressSpace();
225       TypeVals.push_back(AddressSpace);
226       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
227       break;
228     }
229     case Type::FunctionTyID: {
230       const FunctionType *FT = cast<FunctionType>(T);
231       // FUNCTION: [isvararg, attrid, retty, paramty x N]
232       Code = bitc::TYPE_CODE_FUNCTION;
233       TypeVals.push_back(FT->isVarArg());
234       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
235       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
236       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
237         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
238       AbbrevToUse = FunctionAbbrev;
239       break;
240     }
241     case Type::StructTyID: {
242       const StructType *ST = cast<StructType>(T);
243       // STRUCT: [ispacked, eltty x N]
244       Code = bitc::TYPE_CODE_STRUCT;
245       TypeVals.push_back(ST->isPacked());
246       // Output all of the element types.
247       for (StructType::element_iterator I = ST->element_begin(),
248            E = ST->element_end(); I != E; ++I)
249         TypeVals.push_back(VE.getTypeID(*I));
250       AbbrevToUse = StructAbbrev;
251       break;
252     }
253     case Type::ArrayTyID: {
254       const ArrayType *AT = cast<ArrayType>(T);
255       // ARRAY: [numelts, eltty]
256       Code = bitc::TYPE_CODE_ARRAY;
257       TypeVals.push_back(AT->getNumElements());
258       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
259       AbbrevToUse = ArrayAbbrev;
260       break;
261     }
262     case Type::VectorTyID: {
263       const VectorType *VT = cast<VectorType>(T);
264       // VECTOR [numelts, eltty]
265       Code = bitc::TYPE_CODE_VECTOR;
266       TypeVals.push_back(VT->getNumElements());
267       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
268       break;
269     }
270     }
271 
272     // Emit the finished record.
273     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
274     TypeVals.clear();
275   }
276 
277   Stream.ExitBlock();
278 }
279 
280 static unsigned getEncodedLinkage(const GlobalValue *GV) {
281   switch (GV->getLinkage()) {
282   default: llvm_unreachable("Invalid linkage!");
283   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
284   case GlobalValue::ExternalLinkage:            return 0;
285   case GlobalValue::WeakAnyLinkage:             return 1;
286   case GlobalValue::AppendingLinkage:           return 2;
287   case GlobalValue::InternalLinkage:            return 3;
288   case GlobalValue::LinkOnceAnyLinkage:         return 4;
289   case GlobalValue::DLLImportLinkage:           return 5;
290   case GlobalValue::DLLExportLinkage:           return 6;
291   case GlobalValue::ExternalWeakLinkage:        return 7;
292   case GlobalValue::CommonLinkage:              return 8;
293   case GlobalValue::PrivateLinkage:             return 9;
294   case GlobalValue::WeakODRLinkage:             return 10;
295   case GlobalValue::LinkOnceODRLinkage:         return 11;
296   case GlobalValue::AvailableExternallyLinkage: return 12;
297   case GlobalValue::LinkerPrivateLinkage:       return 13;
298   }
299 }
300 
301 static unsigned getEncodedVisibility(const GlobalValue *GV) {
302   switch (GV->getVisibility()) {
303   default: llvm_unreachable("Invalid visibility!");
304   case GlobalValue::DefaultVisibility:   return 0;
305   case GlobalValue::HiddenVisibility:    return 1;
306   case GlobalValue::ProtectedVisibility: return 2;
307   }
308 }
309 
310 // Emit top-level description of module, including target triple, inline asm,
311 // descriptors for global variables, and function prototype info.
312 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
313                             BitstreamWriter &Stream) {
314   // Emit the list of dependent libraries for the Module.
315   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
316     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
317 
318   // Emit various pieces of data attached to a module.
319   if (!M->getTargetTriple().empty())
320     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
321                       0/*TODO*/, Stream);
322   if (!M->getDataLayout().empty())
323     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
324                       0/*TODO*/, Stream);
325   if (!M->getModuleInlineAsm().empty())
326     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
327                       0/*TODO*/, Stream);
328 
329   // Emit information about sections and GC, computing how many there are. Also
330   // compute the maximum alignment value.
331   std::map<std::string, unsigned> SectionMap;
332   std::map<std::string, unsigned> GCMap;
333   unsigned MaxAlignment = 0;
334   unsigned MaxGlobalType = 0;
335   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
336        GV != E; ++GV) {
337     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
338     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
339 
340     if (!GV->hasSection()) continue;
341     // Give section names unique ID's.
342     unsigned &Entry = SectionMap[GV->getSection()];
343     if (Entry != 0) continue;
344     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
345                       0/*TODO*/, Stream);
346     Entry = SectionMap.size();
347   }
348   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
349     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
350     if (F->hasSection()) {
351       // Give section names unique ID's.
352       unsigned &Entry = SectionMap[F->getSection()];
353       if (!Entry) {
354         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
355                           0/*TODO*/, Stream);
356         Entry = SectionMap.size();
357       }
358     }
359     if (F->hasGC()) {
360       // Same for GC names.
361       unsigned &Entry = GCMap[F->getGC()];
362       if (!Entry) {
363         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
364                           0/*TODO*/, Stream);
365         Entry = GCMap.size();
366       }
367     }
368   }
369 
370   // Emit abbrev for globals, now that we know # sections and max alignment.
371   unsigned SimpleGVarAbbrev = 0;
372   if (!M->global_empty()) {
373     // Add an abbrev for common globals with no visibility or thread localness.
374     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
375     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
376     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
377                               Log2_32_Ceil(MaxGlobalType+1)));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
381     if (MaxAlignment == 0)                                      // Alignment.
382       Abbv->Add(BitCodeAbbrevOp(0));
383     else {
384       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
385       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
386                                Log2_32_Ceil(MaxEncAlignment+1)));
387     }
388     if (SectionMap.empty())                                    // Section.
389       Abbv->Add(BitCodeAbbrevOp(0));
390     else
391       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
392                                Log2_32_Ceil(SectionMap.size()+1)));
393     // Don't bother emitting vis + thread local.
394     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
395   }
396 
397   // Emit the global variable information.
398   SmallVector<unsigned, 64> Vals;
399   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
400        GV != E; ++GV) {
401     unsigned AbbrevToUse = 0;
402 
403     // GLOBALVAR: [type, isconst, initid,
404     //             linkage, alignment, section, visibility, threadlocal]
405     Vals.push_back(VE.getTypeID(GV->getType()));
406     Vals.push_back(GV->isConstant());
407     Vals.push_back(GV->isDeclaration() ? 0 :
408                    (VE.getValueID(GV->getInitializer()) + 1));
409     Vals.push_back(getEncodedLinkage(GV));
410     Vals.push_back(Log2_32(GV->getAlignment())+1);
411     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
412     if (GV->isThreadLocal() ||
413         GV->getVisibility() != GlobalValue::DefaultVisibility) {
414       Vals.push_back(getEncodedVisibility(GV));
415       Vals.push_back(GV->isThreadLocal());
416     } else {
417       AbbrevToUse = SimpleGVarAbbrev;
418     }
419 
420     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
421     Vals.clear();
422   }
423 
424   // Emit the function proto information.
425   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
426     // FUNCTION:  [type, callingconv, isproto, paramattr,
427     //             linkage, alignment, section, visibility, gc]
428     Vals.push_back(VE.getTypeID(F->getType()));
429     Vals.push_back(F->getCallingConv());
430     Vals.push_back(F->isDeclaration());
431     Vals.push_back(getEncodedLinkage(F));
432     Vals.push_back(VE.getAttributeID(F->getAttributes()));
433     Vals.push_back(Log2_32(F->getAlignment())+1);
434     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
435     Vals.push_back(getEncodedVisibility(F));
436     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
437 
438     unsigned AbbrevToUse = 0;
439     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
440     Vals.clear();
441   }
442 
443 
444   // Emit the alias information.
445   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
446        AI != E; ++AI) {
447     Vals.push_back(VE.getTypeID(AI->getType()));
448     Vals.push_back(VE.getValueID(AI->getAliasee()));
449     Vals.push_back(getEncodedLinkage(AI));
450     Vals.push_back(getEncodedVisibility(AI));
451     unsigned AbbrevToUse = 0;
452     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
453     Vals.clear();
454   }
455 }
456 
457 static uint64_t GetOptimizationFlags(const Value *V) {
458   uint64_t Flags = 0;
459 
460   if (const OverflowingBinaryOperator *OBO =
461         dyn_cast<OverflowingBinaryOperator>(V)) {
462     if (OBO->hasNoSignedWrap())
463       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
464     if (OBO->hasNoUnsignedWrap())
465       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
466   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
467     if (Div->isExact())
468       Flags |= 1 << bitc::SDIV_EXACT;
469   }
470 
471   return Flags;
472 }
473 
474 static void WriteMDNode(const MDNode *N,
475                         const ValueEnumerator &VE,
476                         BitstreamWriter &Stream,
477                         SmallVector<uint64_t, 64> &Record) {
478   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
479     if (N->getOperand(i)) {
480       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
481       Record.push_back(VE.getValueID(N->getOperand(i)));
482     } else {
483       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
484       Record.push_back(0);
485     }
486   }
487   Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
488   Record.clear();
489 }
490 
491 static void WriteModuleMetadata(const ValueEnumerator &VE,
492                                 BitstreamWriter &Stream) {
493   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
494   bool StartedMetadataBlock = false;
495   unsigned MDSAbbrev = 0;
496   SmallVector<uint64_t, 64> Record;
497   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
498 
499     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
500       if (!StartedMetadataBlock) {
501         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
502         StartedMetadataBlock = true;
503       }
504       WriteMDNode(N, VE, Stream, Record);
505     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
506       if (!StartedMetadataBlock)  {
507         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
508 
509         // Abbrev for METADATA_STRING.
510         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
511         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
512         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
513         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
514         MDSAbbrev = Stream.EmitAbbrev(Abbv);
515         StartedMetadataBlock = true;
516       }
517 
518       // Code: [strchar x N]
519       Record.append(MDS->begin(), MDS->end());
520 
521       // Emit the finished record.
522       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
523       Record.clear();
524     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
525       if (!StartedMetadataBlock)  {
526         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
527         StartedMetadataBlock = true;
528       }
529 
530       // Write name.
531       StringRef Str = NMD->getName();
532       for (unsigned i = 0, e = Str.size(); i != e; ++i)
533         Record.push_back(Str[i]);
534       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
535       Record.clear();
536 
537       // Write named metadata operands.
538       for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
539         if (NMD->getOperand(i))
540           Record.push_back(VE.getValueID(NMD->getOperand(i)));
541         else
542           Record.push_back(~0U);
543       }
544       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
545       Record.clear();
546     }
547   }
548 
549   if (StartedMetadataBlock)
550     Stream.ExitBlock();
551 }
552 
553 static void WriteMetadataAttachment(const Function &F,
554                                     const ValueEnumerator &VE,
555                                     BitstreamWriter &Stream) {
556   bool StartedMetadataBlock = false;
557   SmallVector<uint64_t, 64> Record;
558 
559   // Write metadata attachments
560   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
561   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
562 
563   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
564     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
565          I != E; ++I) {
566       MDs.clear();
567       I->getAllMetadata(MDs);
568 
569       // If no metadata, ignore instruction.
570       if (MDs.empty()) continue;
571 
572       Record.push_back(VE.getInstructionID(I));
573 
574       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
575         Record.push_back(MDs[i].first);
576         Record.push_back(VE.getValueID(MDs[i].second));
577       }
578       if (!StartedMetadataBlock)  {
579         Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
580         StartedMetadataBlock = true;
581       }
582       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
583       Record.clear();
584     }
585 
586   if (StartedMetadataBlock)
587     Stream.ExitBlock();
588 }
589 
590 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
591   SmallVector<uint64_t, 64> Record;
592 
593   // Write metadata kinds
594   // METADATA_KIND - [n x [id, name]]
595   SmallVector<StringRef, 4> Names;
596   M->getMDKindNames(Names);
597 
598   assert(Names[0] == "" && "MDKind #0 is invalid");
599   if (Names.size() == 1) return;
600 
601   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
602 
603   for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) {
604     Record.push_back(MDKindID);
605     StringRef KName = Names[MDKindID];
606     Record.append(KName.begin(), KName.end());
607 
608     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
609     Record.clear();
610   }
611 
612   Stream.ExitBlock();
613 }
614 
615 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
616                            const ValueEnumerator &VE,
617                            BitstreamWriter &Stream, bool isGlobal) {
618   if (FirstVal == LastVal) return;
619 
620   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
621 
622   unsigned AggregateAbbrev = 0;
623   unsigned String8Abbrev = 0;
624   unsigned CString7Abbrev = 0;
625   unsigned CString6Abbrev = 0;
626   // If this is a constant pool for the module, emit module-specific abbrevs.
627   if (isGlobal) {
628     // Abbrev for CST_CODE_AGGREGATE.
629     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
630     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
631     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
632     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
633     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
634 
635     // Abbrev for CST_CODE_STRING.
636     Abbv = new BitCodeAbbrev();
637     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
638     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
639     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
640     String8Abbrev = Stream.EmitAbbrev(Abbv);
641     // Abbrev for CST_CODE_CSTRING.
642     Abbv = new BitCodeAbbrev();
643     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
644     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
645     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
646     CString7Abbrev = Stream.EmitAbbrev(Abbv);
647     // Abbrev for CST_CODE_CSTRING.
648     Abbv = new BitCodeAbbrev();
649     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
650     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
651     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
652     CString6Abbrev = Stream.EmitAbbrev(Abbv);
653   }
654 
655   SmallVector<uint64_t, 64> Record;
656 
657   const ValueEnumerator::ValueList &Vals = VE.getValues();
658   const Type *LastTy = 0;
659   for (unsigned i = FirstVal; i != LastVal; ++i) {
660     const Value *V = Vals[i].first;
661     // If we need to switch types, do so now.
662     if (V->getType() != LastTy) {
663       LastTy = V->getType();
664       Record.push_back(VE.getTypeID(LastTy));
665       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
666                         CONSTANTS_SETTYPE_ABBREV);
667       Record.clear();
668     }
669 
670     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
671       Record.push_back(unsigned(IA->hasSideEffects()) |
672                        unsigned(IA->isAlignStack()) << 1);
673 
674       // Add the asm string.
675       const std::string &AsmStr = IA->getAsmString();
676       Record.push_back(AsmStr.size());
677       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
678         Record.push_back(AsmStr[i]);
679 
680       // Add the constraint string.
681       const std::string &ConstraintStr = IA->getConstraintString();
682       Record.push_back(ConstraintStr.size());
683       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
684         Record.push_back(ConstraintStr[i]);
685       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
686       Record.clear();
687       continue;
688     }
689     const Constant *C = cast<Constant>(V);
690     unsigned Code = -1U;
691     unsigned AbbrevToUse = 0;
692     if (C->isNullValue()) {
693       Code = bitc::CST_CODE_NULL;
694     } else if (isa<UndefValue>(C)) {
695       Code = bitc::CST_CODE_UNDEF;
696     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
697       if (IV->getBitWidth() <= 64) {
698         int64_t V = IV->getSExtValue();
699         if (V >= 0)
700           Record.push_back(V << 1);
701         else
702           Record.push_back((-V << 1) | 1);
703         Code = bitc::CST_CODE_INTEGER;
704         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
705       } else {                             // Wide integers, > 64 bits in size.
706         // We have an arbitrary precision integer value to write whose
707         // bit width is > 64. However, in canonical unsigned integer
708         // format it is likely that the high bits are going to be zero.
709         // So, we only write the number of active words.
710         unsigned NWords = IV->getValue().getActiveWords();
711         const uint64_t *RawWords = IV->getValue().getRawData();
712         for (unsigned i = 0; i != NWords; ++i) {
713           int64_t V = RawWords[i];
714           if (V >= 0)
715             Record.push_back(V << 1);
716           else
717             Record.push_back((-V << 1) | 1);
718         }
719         Code = bitc::CST_CODE_WIDE_INTEGER;
720       }
721     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
722       Code = bitc::CST_CODE_FLOAT;
723       const Type *Ty = CFP->getType();
724       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
725         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
726       } else if (Ty->isX86_FP80Ty()) {
727         // api needed to prevent premature destruction
728         // bits are not in the same order as a normal i80 APInt, compensate.
729         APInt api = CFP->getValueAPF().bitcastToAPInt();
730         const uint64_t *p = api.getRawData();
731         Record.push_back((p[1] << 48) | (p[0] >> 16));
732         Record.push_back(p[0] & 0xffffLL);
733       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
734         APInt api = CFP->getValueAPF().bitcastToAPInt();
735         const uint64_t *p = api.getRawData();
736         Record.push_back(p[0]);
737         Record.push_back(p[1]);
738       } else {
739         assert (0 && "Unknown FP type!");
740       }
741     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
742       const ConstantArray *CA = cast<ConstantArray>(C);
743       // Emit constant strings specially.
744       unsigned NumOps = CA->getNumOperands();
745       // If this is a null-terminated string, use the denser CSTRING encoding.
746       if (CA->getOperand(NumOps-1)->isNullValue()) {
747         Code = bitc::CST_CODE_CSTRING;
748         --NumOps;  // Don't encode the null, which isn't allowed by char6.
749       } else {
750         Code = bitc::CST_CODE_STRING;
751         AbbrevToUse = String8Abbrev;
752       }
753       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
754       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
755       for (unsigned i = 0; i != NumOps; ++i) {
756         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
757         Record.push_back(V);
758         isCStr7 &= (V & 128) == 0;
759         if (isCStrChar6)
760           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
761       }
762 
763       if (isCStrChar6)
764         AbbrevToUse = CString6Abbrev;
765       else if (isCStr7)
766         AbbrevToUse = CString7Abbrev;
767     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
768                isa<ConstantVector>(V)) {
769       Code = bitc::CST_CODE_AGGREGATE;
770       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
771         Record.push_back(VE.getValueID(C->getOperand(i)));
772       AbbrevToUse = AggregateAbbrev;
773     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
774       switch (CE->getOpcode()) {
775       default:
776         if (Instruction::isCast(CE->getOpcode())) {
777           Code = bitc::CST_CODE_CE_CAST;
778           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
779           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
780           Record.push_back(VE.getValueID(C->getOperand(0)));
781           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
782         } else {
783           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
784           Code = bitc::CST_CODE_CE_BINOP;
785           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
786           Record.push_back(VE.getValueID(C->getOperand(0)));
787           Record.push_back(VE.getValueID(C->getOperand(1)));
788           uint64_t Flags = GetOptimizationFlags(CE);
789           if (Flags != 0)
790             Record.push_back(Flags);
791         }
792         break;
793       case Instruction::GetElementPtr:
794         Code = bitc::CST_CODE_CE_GEP;
795         if (cast<GEPOperator>(C)->isInBounds())
796           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
797         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
798           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
799           Record.push_back(VE.getValueID(C->getOperand(i)));
800         }
801         break;
802       case Instruction::Select:
803         Code = bitc::CST_CODE_CE_SELECT;
804         Record.push_back(VE.getValueID(C->getOperand(0)));
805         Record.push_back(VE.getValueID(C->getOperand(1)));
806         Record.push_back(VE.getValueID(C->getOperand(2)));
807         break;
808       case Instruction::ExtractElement:
809         Code = bitc::CST_CODE_CE_EXTRACTELT;
810         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
811         Record.push_back(VE.getValueID(C->getOperand(0)));
812         Record.push_back(VE.getValueID(C->getOperand(1)));
813         break;
814       case Instruction::InsertElement:
815         Code = bitc::CST_CODE_CE_INSERTELT;
816         Record.push_back(VE.getValueID(C->getOperand(0)));
817         Record.push_back(VE.getValueID(C->getOperand(1)));
818         Record.push_back(VE.getValueID(C->getOperand(2)));
819         break;
820       case Instruction::ShuffleVector:
821         // If the return type and argument types are the same, this is a
822         // standard shufflevector instruction.  If the types are different,
823         // then the shuffle is widening or truncating the input vectors, and
824         // the argument type must also be encoded.
825         if (C->getType() == C->getOperand(0)->getType()) {
826           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
827         } else {
828           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
829           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
830         }
831         Record.push_back(VE.getValueID(C->getOperand(0)));
832         Record.push_back(VE.getValueID(C->getOperand(1)));
833         Record.push_back(VE.getValueID(C->getOperand(2)));
834         break;
835       case Instruction::ICmp:
836       case Instruction::FCmp:
837         Code = bitc::CST_CODE_CE_CMP;
838         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
839         Record.push_back(VE.getValueID(C->getOperand(0)));
840         Record.push_back(VE.getValueID(C->getOperand(1)));
841         Record.push_back(CE->getPredicate());
842         break;
843       }
844     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
845       assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
846              "Malformed blockaddress");
847       Code = bitc::CST_CODE_BLOCKADDRESS;
848       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
849       Record.push_back(VE.getValueID(BA->getFunction()));
850       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
851     } else {
852       llvm_unreachable("Unknown constant!");
853     }
854     Stream.EmitRecord(Code, Record, AbbrevToUse);
855     Record.clear();
856   }
857 
858   Stream.ExitBlock();
859 }
860 
861 static void WriteModuleConstants(const ValueEnumerator &VE,
862                                  BitstreamWriter &Stream) {
863   const ValueEnumerator::ValueList &Vals = VE.getValues();
864 
865   // Find the first constant to emit, which is the first non-globalvalue value.
866   // We know globalvalues have been emitted by WriteModuleInfo.
867   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
868     if (!isa<GlobalValue>(Vals[i].first)) {
869       WriteConstants(i, Vals.size(), VE, Stream, true);
870       return;
871     }
872   }
873 }
874 
875 /// PushValueAndType - The file has to encode both the value and type id for
876 /// many values, because we need to know what type to create for forward
877 /// references.  However, most operands are not forward references, so this type
878 /// field is not needed.
879 ///
880 /// This function adds V's value ID to Vals.  If the value ID is higher than the
881 /// instruction ID, then it is a forward reference, and it also includes the
882 /// type ID.
883 static bool PushValueAndType(const Value *V, unsigned InstID,
884                              SmallVector<unsigned, 64> &Vals,
885                              ValueEnumerator &VE) {
886   unsigned ValID = VE.getValueID(V);
887   Vals.push_back(ValID);
888   if (ValID >= InstID) {
889     Vals.push_back(VE.getTypeID(V->getType()));
890     return true;
891   }
892   return false;
893 }
894 
895 /// WriteInstruction - Emit an instruction to the specified stream.
896 static void WriteInstruction(const Instruction &I, unsigned InstID,
897                              ValueEnumerator &VE, BitstreamWriter &Stream,
898                              SmallVector<unsigned, 64> &Vals) {
899   unsigned Code = 0;
900   unsigned AbbrevToUse = 0;
901   VE.setInstructionID(&I);
902   switch (I.getOpcode()) {
903   default:
904     if (Instruction::isCast(I.getOpcode())) {
905       Code = bitc::FUNC_CODE_INST_CAST;
906       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
907         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
908       Vals.push_back(VE.getTypeID(I.getType()));
909       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
910     } else {
911       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
912       Code = bitc::FUNC_CODE_INST_BINOP;
913       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
914         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
915       Vals.push_back(VE.getValueID(I.getOperand(1)));
916       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
917       uint64_t Flags = GetOptimizationFlags(&I);
918       if (Flags != 0) {
919         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
920           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
921         Vals.push_back(Flags);
922       }
923     }
924     break;
925 
926   case Instruction::GetElementPtr:
927     Code = bitc::FUNC_CODE_INST_GEP;
928     if (cast<GEPOperator>(&I)->isInBounds())
929       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
930     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
931       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
932     break;
933   case Instruction::ExtractValue: {
934     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
935     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
936     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
937     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
938       Vals.push_back(*i);
939     break;
940   }
941   case Instruction::InsertValue: {
942     Code = bitc::FUNC_CODE_INST_INSERTVAL;
943     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
944     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
945     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
946     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
947       Vals.push_back(*i);
948     break;
949   }
950   case Instruction::Select:
951     Code = bitc::FUNC_CODE_INST_VSELECT;
952     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
953     Vals.push_back(VE.getValueID(I.getOperand(2)));
954     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
955     break;
956   case Instruction::ExtractElement:
957     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
958     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
959     Vals.push_back(VE.getValueID(I.getOperand(1)));
960     break;
961   case Instruction::InsertElement:
962     Code = bitc::FUNC_CODE_INST_INSERTELT;
963     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
964     Vals.push_back(VE.getValueID(I.getOperand(1)));
965     Vals.push_back(VE.getValueID(I.getOperand(2)));
966     break;
967   case Instruction::ShuffleVector:
968     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
969     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
970     Vals.push_back(VE.getValueID(I.getOperand(1)));
971     Vals.push_back(VE.getValueID(I.getOperand(2)));
972     break;
973   case Instruction::ICmp:
974   case Instruction::FCmp:
975     // compare returning Int1Ty or vector of Int1Ty
976     Code = bitc::FUNC_CODE_INST_CMP2;
977     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
978     Vals.push_back(VE.getValueID(I.getOperand(1)));
979     Vals.push_back(cast<CmpInst>(I).getPredicate());
980     break;
981 
982   case Instruction::Ret:
983     {
984       Code = bitc::FUNC_CODE_INST_RET;
985       unsigned NumOperands = I.getNumOperands();
986       if (NumOperands == 0)
987         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
988       else if (NumOperands == 1) {
989         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
990           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
991       } else {
992         for (unsigned i = 0, e = NumOperands; i != e; ++i)
993           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
994       }
995     }
996     break;
997   case Instruction::Br:
998     {
999       Code = bitc::FUNC_CODE_INST_BR;
1000       BranchInst &II = cast<BranchInst>(I);
1001       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1002       if (II.isConditional()) {
1003         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1004         Vals.push_back(VE.getValueID(II.getCondition()));
1005       }
1006     }
1007     break;
1008   case Instruction::Switch:
1009     Code = bitc::FUNC_CODE_INST_SWITCH;
1010     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1011     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1012       Vals.push_back(VE.getValueID(I.getOperand(i)));
1013     break;
1014   case Instruction::IndirectBr:
1015     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1016     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1017     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1018       Vals.push_back(VE.getValueID(I.getOperand(i)));
1019     break;
1020 
1021   case Instruction::Invoke: {
1022     const InvokeInst *II = cast<InvokeInst>(&I);
1023     const Value *Callee(II->getCalledValue());
1024     const PointerType *PTy = cast<PointerType>(Callee->getType());
1025     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1026     Code = bitc::FUNC_CODE_INST_INVOKE;
1027 
1028     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1029     Vals.push_back(II->getCallingConv());
1030     Vals.push_back(VE.getValueID(II->getNormalDest()));
1031     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1032     PushValueAndType(Callee, InstID, Vals, VE);
1033 
1034     // Emit value #'s for the fixed parameters.
1035     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1036       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1037 
1038     // Emit type/value pairs for varargs params.
1039     if (FTy->isVarArg()) {
1040       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1041            i != e; ++i)
1042         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1043     }
1044     break;
1045   }
1046   case Instruction::Unwind:
1047     Code = bitc::FUNC_CODE_INST_UNWIND;
1048     break;
1049   case Instruction::Unreachable:
1050     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1051     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1052     break;
1053 
1054   case Instruction::PHI:
1055     Code = bitc::FUNC_CODE_INST_PHI;
1056     Vals.push_back(VE.getTypeID(I.getType()));
1057     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1058       Vals.push_back(VE.getValueID(I.getOperand(i)));
1059     break;
1060 
1061   case Instruction::Alloca:
1062     Code = bitc::FUNC_CODE_INST_ALLOCA;
1063     Vals.push_back(VE.getTypeID(I.getType()));
1064     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1065     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1066     break;
1067 
1068   case Instruction::Load:
1069     Code = bitc::FUNC_CODE_INST_LOAD;
1070     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1071       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1072 
1073     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1074     Vals.push_back(cast<LoadInst>(I).isVolatile());
1075     break;
1076   case Instruction::Store:
1077     Code = bitc::FUNC_CODE_INST_STORE2;
1078     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1079     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1080     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1081     Vals.push_back(cast<StoreInst>(I).isVolatile());
1082     break;
1083   case Instruction::Call: {
1084     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1085     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1086 
1087     Code = bitc::FUNC_CODE_INST_CALL;
1088 
1089     const CallInst *CI = cast<CallInst>(&I);
1090     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1091     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1092     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1093 
1094     // Emit value #'s for the fixed parameters.
1095     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1096       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1097 
1098     // Emit type/value pairs for varargs params.
1099     if (FTy->isVarArg()) {
1100       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1101       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1102            i != e; ++i)
1103         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1104     }
1105     break;
1106   }
1107   case Instruction::VAArg:
1108     Code = bitc::FUNC_CODE_INST_VAARG;
1109     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1110     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1111     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1112     break;
1113   }
1114 
1115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1116   Vals.clear();
1117 }
1118 
1119 // Emit names for globals/functions etc.
1120 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1121                                   const ValueEnumerator &VE,
1122                                   BitstreamWriter &Stream) {
1123   if (VST.empty()) return;
1124   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1125 
1126   // FIXME: Set up the abbrev, we know how many values there are!
1127   // FIXME: We know if the type names can use 7-bit ascii.
1128   SmallVector<unsigned, 64> NameVals;
1129 
1130   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1131        SI != SE; ++SI) {
1132 
1133     const ValueName &Name = *SI;
1134 
1135     // Figure out the encoding to use for the name.
1136     bool is7Bit = true;
1137     bool isChar6 = true;
1138     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1139          C != E; ++C) {
1140       if (isChar6)
1141         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1142       if ((unsigned char)*C & 128) {
1143         is7Bit = false;
1144         break;  // don't bother scanning the rest.
1145       }
1146     }
1147 
1148     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1149 
1150     // VST_ENTRY:   [valueid, namechar x N]
1151     // VST_BBENTRY: [bbid, namechar x N]
1152     unsigned Code;
1153     if (isa<BasicBlock>(SI->getValue())) {
1154       Code = bitc::VST_CODE_BBENTRY;
1155       if (isChar6)
1156         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1157     } else {
1158       Code = bitc::VST_CODE_ENTRY;
1159       if (isChar6)
1160         AbbrevToUse = VST_ENTRY_6_ABBREV;
1161       else if (is7Bit)
1162         AbbrevToUse = VST_ENTRY_7_ABBREV;
1163     }
1164 
1165     NameVals.push_back(VE.getValueID(SI->getValue()));
1166     for (const char *P = Name.getKeyData(),
1167          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1168       NameVals.push_back((unsigned char)*P);
1169 
1170     // Emit the finished record.
1171     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1172     NameVals.clear();
1173   }
1174   Stream.ExitBlock();
1175 }
1176 
1177 /// WriteFunction - Emit a function body to the module stream.
1178 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1179                           BitstreamWriter &Stream) {
1180   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1181   VE.incorporateFunction(F);
1182 
1183   SmallVector<unsigned, 64> Vals;
1184 
1185   // Emit the number of basic blocks, so the reader can create them ahead of
1186   // time.
1187   Vals.push_back(VE.getBasicBlocks().size());
1188   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1189   Vals.clear();
1190 
1191   // If there are function-local constants, emit them now.
1192   unsigned CstStart, CstEnd;
1193   VE.getFunctionConstantRange(CstStart, CstEnd);
1194   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1195 
1196   // Keep a running idea of what the instruction ID is.
1197   unsigned InstID = CstEnd;
1198 
1199   // Finally, emit all the instructions, in order.
1200   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1201     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1202          I != E; ++I) {
1203       WriteInstruction(*I, InstID, VE, Stream, Vals);
1204       if (!I->getType()->isVoidTy())
1205         ++InstID;
1206     }
1207 
1208   // Emit names for all the instructions etc.
1209   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1210 
1211   WriteMetadataAttachment(F, VE, Stream);
1212   VE.purgeFunction();
1213   Stream.ExitBlock();
1214 }
1215 
1216 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1217 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1218                                  const ValueEnumerator &VE,
1219                                  BitstreamWriter &Stream) {
1220   if (TST.empty()) return;
1221 
1222   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1223 
1224   // 7-bit fixed width VST_CODE_ENTRY strings.
1225   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1226   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1227   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1228                             Log2_32_Ceil(VE.getTypes().size()+1)));
1229   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1230   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1231   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1232 
1233   SmallVector<unsigned, 64> NameVals;
1234 
1235   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1236        TI != TE; ++TI) {
1237     // TST_ENTRY: [typeid, namechar x N]
1238     NameVals.push_back(VE.getTypeID(TI->second));
1239 
1240     const std::string &Str = TI->first;
1241     bool is7Bit = true;
1242     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1243       NameVals.push_back((unsigned char)Str[i]);
1244       if (Str[i] & 128)
1245         is7Bit = false;
1246     }
1247 
1248     // Emit the finished record.
1249     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1250     NameVals.clear();
1251   }
1252 
1253   Stream.ExitBlock();
1254 }
1255 
1256 // Emit blockinfo, which defines the standard abbreviations etc.
1257 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1258   // We only want to emit block info records for blocks that have multiple
1259   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1260   // blocks can defined their abbrevs inline.
1261   Stream.EnterBlockInfoBlock(2);
1262 
1263   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1264     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1265     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1266     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1267     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1269     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1270                                    Abbv) != VST_ENTRY_8_ABBREV)
1271       llvm_unreachable("Unexpected abbrev ordering!");
1272   }
1273 
1274   { // 7-bit fixed width VST_ENTRY strings.
1275     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1276     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1280     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1281                                    Abbv) != VST_ENTRY_7_ABBREV)
1282       llvm_unreachable("Unexpected abbrev ordering!");
1283   }
1284   { // 6-bit char6 VST_ENTRY strings.
1285     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1286     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1288     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1290     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1291                                    Abbv) != VST_ENTRY_6_ABBREV)
1292       llvm_unreachable("Unexpected abbrev ordering!");
1293   }
1294   { // 6-bit char6 VST_BBENTRY strings.
1295     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1296     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1297     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1298     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1300     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1301                                    Abbv) != VST_BBENTRY_6_ABBREV)
1302       llvm_unreachable("Unexpected abbrev ordering!");
1303   }
1304 
1305 
1306 
1307   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1308     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1309     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1310     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1311                               Log2_32_Ceil(VE.getTypes().size()+1)));
1312     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1313                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1314       llvm_unreachable("Unexpected abbrev ordering!");
1315   }
1316 
1317   { // INTEGER abbrev for CONSTANTS_BLOCK.
1318     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1319     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1320     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1321     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1322                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1323       llvm_unreachable("Unexpected abbrev ordering!");
1324   }
1325 
1326   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1327     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1328     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1329     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1330     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1331                               Log2_32_Ceil(VE.getTypes().size()+1)));
1332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1333 
1334     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1335                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1336       llvm_unreachable("Unexpected abbrev ordering!");
1337   }
1338   { // NULL abbrev for CONSTANTS_BLOCK.
1339     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1340     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1341     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1342                                    Abbv) != CONSTANTS_NULL_Abbrev)
1343       llvm_unreachable("Unexpected abbrev ordering!");
1344   }
1345 
1346   // FIXME: This should only use space for first class types!
1347 
1348   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1349     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1350     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1351     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1352     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1353     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1354     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1355                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1356       llvm_unreachable("Unexpected abbrev ordering!");
1357   }
1358   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1359     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1360     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1361     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1362     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1363     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1364     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1365                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1366       llvm_unreachable("Unexpected abbrev ordering!");
1367   }
1368   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1369     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1370     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1371     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1372     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1373     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1375     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1376                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1377       llvm_unreachable("Unexpected abbrev ordering!");
1378   }
1379   { // INST_CAST abbrev for FUNCTION_BLOCK.
1380     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1381     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1384                               Log2_32_Ceil(VE.getTypes().size()+1)));
1385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1386     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1387                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1388       llvm_unreachable("Unexpected abbrev ordering!");
1389   }
1390 
1391   { // INST_RET abbrev for FUNCTION_BLOCK.
1392     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1393     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1394     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1395                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1396       llvm_unreachable("Unexpected abbrev ordering!");
1397   }
1398   { // INST_RET abbrev for FUNCTION_BLOCK.
1399     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1400     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1401     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1402     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1403                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1404       llvm_unreachable("Unexpected abbrev ordering!");
1405   }
1406   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1407     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1408     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1409     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1410                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1411       llvm_unreachable("Unexpected abbrev ordering!");
1412   }
1413 
1414   Stream.ExitBlock();
1415 }
1416 
1417 
1418 /// WriteModule - Emit the specified module to the bitstream.
1419 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1420   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1421 
1422   // Emit the version number if it is non-zero.
1423   if (CurVersion) {
1424     SmallVector<unsigned, 1> Vals;
1425     Vals.push_back(CurVersion);
1426     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1427   }
1428 
1429   // Analyze the module, enumerating globals, functions, etc.
1430   ValueEnumerator VE(M);
1431 
1432   // Emit blockinfo, which defines the standard abbreviations etc.
1433   WriteBlockInfo(VE, Stream);
1434 
1435   // Emit information about parameter attributes.
1436   WriteAttributeTable(VE, Stream);
1437 
1438   // Emit information describing all of the types in the module.
1439   WriteTypeTable(VE, Stream);
1440 
1441   // Emit top-level description of module, including target triple, inline asm,
1442   // descriptors for global variables, and function prototype info.
1443   WriteModuleInfo(M, VE, Stream);
1444 
1445   // Emit constants.
1446   WriteModuleConstants(VE, Stream);
1447 
1448   // Emit metadata.
1449   WriteModuleMetadata(VE, Stream);
1450 
1451   // Emit function bodies.
1452   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1453     if (!I->isDeclaration())
1454       WriteFunction(*I, VE, Stream);
1455 
1456   // Emit metadata.
1457   WriteModuleMetadataStore(M, Stream);
1458 
1459   // Emit the type symbol table information.
1460   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1461 
1462   // Emit names for globals/functions etc.
1463   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1464 
1465   Stream.ExitBlock();
1466 }
1467 
1468 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1469 /// header and trailer to make it compatible with the system archiver.  To do
1470 /// this we emit the following header, and then emit a trailer that pads the
1471 /// file out to be a multiple of 16 bytes.
1472 ///
1473 /// struct bc_header {
1474 ///   uint32_t Magic;         // 0x0B17C0DE
1475 ///   uint32_t Version;       // Version, currently always 0.
1476 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1477 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1478 ///   uint32_t CPUType;       // CPU specifier.
1479 ///   ... potentially more later ...
1480 /// };
1481 enum {
1482   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1483   DarwinBCHeaderSize = 5*4
1484 };
1485 
1486 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1487                                const std::string &TT) {
1488   unsigned CPUType = ~0U;
1489 
1490   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1491   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1492   // specific constants here because they are implicitly part of the Darwin ABI.
1493   enum {
1494     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1495     DARWIN_CPU_TYPE_X86        = 7,
1496     DARWIN_CPU_TYPE_POWERPC    = 18
1497   };
1498 
1499   if (TT.find("x86_64-") == 0)
1500     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1501   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1502            TT[4] == '-' && TT[1] - '3' < 6)
1503     CPUType = DARWIN_CPU_TYPE_X86;
1504   else if (TT.find("powerpc-") == 0)
1505     CPUType = DARWIN_CPU_TYPE_POWERPC;
1506   else if (TT.find("powerpc64-") == 0)
1507     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1508 
1509   // Traditional Bitcode starts after header.
1510   unsigned BCOffset = DarwinBCHeaderSize;
1511 
1512   Stream.Emit(0x0B17C0DE, 32);
1513   Stream.Emit(0         , 32);  // Version.
1514   Stream.Emit(BCOffset  , 32);
1515   Stream.Emit(0         , 32);  // Filled in later.
1516   Stream.Emit(CPUType   , 32);
1517 }
1518 
1519 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1520 /// finalize the header.
1521 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1522   // Update the size field in the header.
1523   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1524 
1525   // If the file is not a multiple of 16 bytes, insert dummy padding.
1526   while (BufferSize & 15) {
1527     Stream.Emit(0, 8);
1528     ++BufferSize;
1529   }
1530 }
1531 
1532 
1533 /// WriteBitcodeToFile - Write the specified module to the specified output
1534 /// stream.
1535 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1536   std::vector<unsigned char> Buffer;
1537   BitstreamWriter Stream(Buffer);
1538 
1539   Buffer.reserve(256*1024);
1540 
1541   WriteBitcodeToStream( M, Stream );
1542 
1543   // If writing to stdout, set binary mode.
1544   if (&llvm::outs() == &Out)
1545     sys::Program::ChangeStdoutToBinary();
1546 
1547   // Write the generated bitstream to "Out".
1548   Out.write((char*)&Buffer.front(), Buffer.size());
1549 
1550   // Make sure it hits disk now.
1551   Out.flush();
1552 }
1553 
1554 /// WriteBitcodeToStream - Write the specified module to the specified output
1555 /// stream.
1556 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1557   // If this is darwin, emit a file header and trailer if needed.
1558   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1559   if (isDarwin)
1560     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1561 
1562   // Emit the file header.
1563   Stream.Emit((unsigned)'B', 8);
1564   Stream.Emit((unsigned)'C', 8);
1565   Stream.Emit(0x0, 4);
1566   Stream.Emit(0xC, 4);
1567   Stream.Emit(0xE, 4);
1568   Stream.Emit(0xD, 4);
1569 
1570   // Emit the module.
1571   WriteModule(M, Stream);
1572 
1573   if (isDarwin)
1574     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1575 }
1576