1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_BINOP_ABBREV, 116 FUNCTION_INST_BINOP_FLAGS_ABBREV, 117 FUNCTION_INST_CAST_ABBREV, 118 FUNCTION_INST_RET_VOID_ABBREV, 119 FUNCTION_INST_RET_VAL_ABBREV, 120 FUNCTION_INST_UNREACHABLE_ABBREV, 121 FUNCTION_INST_GEP_ABBREV, 122 }; 123 124 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 125 /// file type. 126 class BitcodeWriterBase { 127 protected: 128 /// The stream created and owned by the client. 129 BitstreamWriter &Stream; 130 131 StringTableBuilder &StrtabBuilder; 132 133 public: 134 /// Constructs a BitcodeWriterBase object that writes to the provided 135 /// \p Stream. 136 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 137 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 138 139 protected: 140 void writeBitcodeHeader(); 141 void writeModuleVersion(); 142 }; 143 144 void BitcodeWriterBase::writeModuleVersion() { 145 // VERSION: [version#] 146 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 147 } 148 149 /// Base class to manage the module bitcode writing, currently subclassed for 150 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 151 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 152 protected: 153 /// The Module to write to bitcode. 154 const Module &M; 155 156 /// Enumerates ids for all values in the module. 157 ValueEnumerator VE; 158 159 /// Optional per-module index to write for ThinLTO. 160 const ModuleSummaryIndex *Index; 161 162 /// Map that holds the correspondence between GUIDs in the summary index, 163 /// that came from indirect call profiles, and a value id generated by this 164 /// class to use in the VST and summary block records. 165 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 166 167 /// Tracks the last value id recorded in the GUIDToValueMap. 168 unsigned GlobalValueId; 169 170 /// Saves the offset of the VSTOffset record that must eventually be 171 /// backpatched with the offset of the actual VST. 172 uint64_t VSTOffsetPlaceholder = 0; 173 174 public: 175 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 176 /// writing to the provided \p Buffer. 177 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 178 BitstreamWriter &Stream, 179 bool ShouldPreserveUseListOrder, 180 const ModuleSummaryIndex *Index) 181 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 182 VE(M, ShouldPreserveUseListOrder), Index(Index) { 183 // Assign ValueIds to any callee values in the index that came from 184 // indirect call profiles and were recorded as a GUID not a Value* 185 // (which would have been assigned an ID by the ValueEnumerator). 186 // The starting ValueId is just after the number of values in the 187 // ValueEnumerator, so that they can be emitted in the VST. 188 GlobalValueId = VE.getValues().size(); 189 if (!Index) 190 return; 191 for (const auto &GUIDSummaryLists : *Index) 192 // Examine all summaries for this GUID. 193 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 194 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 195 // For each call in the function summary, see if the call 196 // is to a GUID (which means it is for an indirect call, 197 // otherwise we would have a Value for it). If so, synthesize 198 // a value id. 199 for (auto &CallEdge : FS->calls()) 200 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 201 assignValueId(CallEdge.first.getGUID()); 202 } 203 204 protected: 205 void writePerModuleGlobalValueSummary(); 206 207 private: 208 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 209 GlobalValueSummary *Summary, 210 unsigned ValueID, 211 unsigned FSCallsAbbrev, 212 unsigned FSCallsProfileAbbrev, 213 const Function &F); 214 void writeModuleLevelReferences(const GlobalVariable &V, 215 SmallVector<uint64_t, 64> &NameVals, 216 unsigned FSModRefsAbbrev); 217 218 void assignValueId(GlobalValue::GUID ValGUID) { 219 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 220 } 221 222 unsigned getValueId(GlobalValue::GUID ValGUID) { 223 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 224 // Expect that any GUID value had a value Id assigned by an 225 // earlier call to assignValueId. 226 assert(VMI != GUIDToValueIdMap.end() && 227 "GUID does not have assigned value Id"); 228 return VMI->second; 229 } 230 231 // Helper to get the valueId for the type of value recorded in VI. 232 unsigned getValueId(ValueInfo VI) { 233 if (!VI.haveGVs() || !VI.getValue()) 234 return getValueId(VI.getGUID()); 235 return VE.getValueID(VI.getValue()); 236 } 237 238 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 239 }; 240 241 /// Class to manage the bitcode writing for a module. 242 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 243 /// Pointer to the buffer allocated by caller for bitcode writing. 244 const SmallVectorImpl<char> &Buffer; 245 246 /// True if a module hash record should be written. 247 bool GenerateHash; 248 249 /// If non-null, when GenerateHash is true, the resulting hash is written 250 /// into ModHash. 251 ModuleHash *ModHash; 252 253 SHA1 Hasher; 254 255 /// The start bit of the identification block. 256 uint64_t BitcodeStartBit; 257 258 public: 259 /// Constructs a ModuleBitcodeWriter object for the given Module, 260 /// writing to the provided \p Buffer. 261 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 262 StringTableBuilder &StrtabBuilder, 263 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 264 const ModuleSummaryIndex *Index, bool GenerateHash, 265 ModuleHash *ModHash = nullptr) 266 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 267 ShouldPreserveUseListOrder, Index), 268 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 269 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 270 271 /// Emit the current module to the bitstream. 272 void write(); 273 274 private: 275 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 276 277 size_t addToStrtab(StringRef Str); 278 279 void writeAttributeGroupTable(); 280 void writeAttributeTable(); 281 void writeTypeTable(); 282 void writeComdats(); 283 void writeValueSymbolTableForwardDecl(); 284 void writeModuleInfo(); 285 void writeValueAsMetadata(const ValueAsMetadata *MD, 286 SmallVectorImpl<uint64_t> &Record); 287 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 unsigned createDILocationAbbrev(); 290 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned &Abbrev); 292 unsigned createGenericDINodeAbbrev(); 293 void writeGenericDINode(const GenericDINode *N, 294 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 295 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned Abbrev); 297 void writeDIEnumerator(const DIEnumerator *N, 298 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 299 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIDerivedType(const DIDerivedType *N, 302 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 303 void writeDICompositeType(const DICompositeType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubroutineType(const DISubroutineType *N, 306 SmallVectorImpl<uint64_t> &Record, 307 unsigned Abbrev); 308 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDICompileUnit(const DICompileUnit *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDISubprogram(const DISubprogram *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDILexicalBlock(const DILexicalBlock *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 331 SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIGlobalVariable(const DIGlobalVariable *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDILocalVariable(const DILocalVariable *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILabel(const DILabel *N, 339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 340 void writeDIExpression(const DIExpression *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIObjCProperty(const DIObjCProperty *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIImportedEntity(const DIImportedEntity *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 unsigned createNamedMetadataAbbrev(); 351 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 352 unsigned createMetadataStringsAbbrev(); 353 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 354 SmallVectorImpl<uint64_t> &Record); 355 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 356 SmallVectorImpl<uint64_t> &Record, 357 std::vector<unsigned> *MDAbbrevs = nullptr, 358 std::vector<uint64_t> *IndexPos = nullptr); 359 void writeModuleMetadata(); 360 void writeFunctionMetadata(const Function &F); 361 void writeFunctionMetadataAttachment(const Function &F); 362 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 363 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 364 const GlobalObject &GO); 365 void writeModuleMetadataKinds(); 366 void writeOperandBundleTags(); 367 void writeSyncScopeNames(); 368 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 369 void writeModuleConstants(); 370 bool pushValueAndType(const Value *V, unsigned InstID, 371 SmallVectorImpl<unsigned> &Vals); 372 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 373 void pushValue(const Value *V, unsigned InstID, 374 SmallVectorImpl<unsigned> &Vals); 375 void pushValueSigned(const Value *V, unsigned InstID, 376 SmallVectorImpl<uint64_t> &Vals); 377 void writeInstruction(const Instruction &I, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 380 void writeGlobalValueSymbolTable( 381 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 382 void writeUseList(UseListOrder &&Order); 383 void writeUseListBlock(const Function *F); 384 void 385 writeFunction(const Function &F, 386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 387 void writeBlockInfo(); 388 void writeModuleHash(size_t BlockStartPos); 389 390 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 391 return unsigned(SSID); 392 } 393 }; 394 395 /// Class to manage the bitcode writing for a combined index. 396 class IndexBitcodeWriter : public BitcodeWriterBase { 397 /// The combined index to write to bitcode. 398 const ModuleSummaryIndex &Index; 399 400 /// When writing a subset of the index for distributed backends, client 401 /// provides a map of modules to the corresponding GUIDs/summaries to write. 402 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 403 404 /// Map that holds the correspondence between the GUID used in the combined 405 /// index and a value id generated by this class to use in references. 406 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 407 408 /// Tracks the last value id recorded in the GUIDToValueMap. 409 unsigned GlobalValueId = 0; 410 411 public: 412 /// Constructs a IndexBitcodeWriter object for the given combined index, 413 /// writing to the provided \p Buffer. When writing a subset of the index 414 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 415 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 416 const ModuleSummaryIndex &Index, 417 const std::map<std::string, GVSummaryMapTy> 418 *ModuleToSummariesForIndex = nullptr) 419 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 420 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 421 // Assign unique value ids to all summaries to be written, for use 422 // in writing out the call graph edges. Save the mapping from GUID 423 // to the new global value id to use when writing those edges, which 424 // are currently saved in the index in terms of GUID. 425 forEachSummary([&](GVInfo I, bool) { 426 GUIDToValueIdMap[I.first] = ++GlobalValueId; 427 }); 428 } 429 430 /// The below iterator returns the GUID and associated summary. 431 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 432 433 /// Calls the callback for each value GUID and summary to be written to 434 /// bitcode. This hides the details of whether they are being pulled from the 435 /// entire index or just those in a provided ModuleToSummariesForIndex map. 436 template<typename Functor> 437 void forEachSummary(Functor Callback) { 438 if (ModuleToSummariesForIndex) { 439 for (auto &M : *ModuleToSummariesForIndex) 440 for (auto &Summary : M.second) { 441 Callback(Summary, false); 442 // Ensure aliasee is handled, e.g. for assigning a valueId, 443 // even if we are not importing the aliasee directly (the 444 // imported alias will contain a copy of aliasee). 445 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 446 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 447 } 448 } else { 449 for (auto &Summaries : Index) 450 for (auto &Summary : Summaries.second.SummaryList) 451 Callback({Summaries.first, Summary.get()}, false); 452 } 453 } 454 455 /// Calls the callback for each entry in the modulePaths StringMap that 456 /// should be written to the module path string table. This hides the details 457 /// of whether they are being pulled from the entire index or just those in a 458 /// provided ModuleToSummariesForIndex map. 459 template <typename Functor> void forEachModule(Functor Callback) { 460 if (ModuleToSummariesForIndex) { 461 for (const auto &M : *ModuleToSummariesForIndex) { 462 const auto &MPI = Index.modulePaths().find(M.first); 463 if (MPI == Index.modulePaths().end()) { 464 // This should only happen if the bitcode file was empty, in which 465 // case we shouldn't be importing (the ModuleToSummariesForIndex 466 // would only include the module we are writing and index for). 467 assert(ModuleToSummariesForIndex->size() == 1); 468 continue; 469 } 470 Callback(*MPI); 471 } 472 } else { 473 for (const auto &MPSE : Index.modulePaths()) 474 Callback(MPSE); 475 } 476 } 477 478 /// Main entry point for writing a combined index to bitcode. 479 void write(); 480 481 private: 482 void writeModStrings(); 483 void writeCombinedGlobalValueSummary(); 484 485 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 486 auto VMI = GUIDToValueIdMap.find(ValGUID); 487 if (VMI == GUIDToValueIdMap.end()) 488 return None; 489 return VMI->second; 490 } 491 492 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 493 }; 494 495 } // end anonymous namespace 496 497 static unsigned getEncodedCastOpcode(unsigned Opcode) { 498 switch (Opcode) { 499 default: llvm_unreachable("Unknown cast instruction!"); 500 case Instruction::Trunc : return bitc::CAST_TRUNC; 501 case Instruction::ZExt : return bitc::CAST_ZEXT; 502 case Instruction::SExt : return bitc::CAST_SEXT; 503 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 504 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 505 case Instruction::UIToFP : return bitc::CAST_UITOFP; 506 case Instruction::SIToFP : return bitc::CAST_SITOFP; 507 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 508 case Instruction::FPExt : return bitc::CAST_FPEXT; 509 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 510 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 511 case Instruction::BitCast : return bitc::CAST_BITCAST; 512 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 513 } 514 } 515 516 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 517 switch (Opcode) { 518 default: llvm_unreachable("Unknown binary instruction!"); 519 case Instruction::Add: 520 case Instruction::FAdd: return bitc::BINOP_ADD; 521 case Instruction::Sub: 522 case Instruction::FSub: return bitc::BINOP_SUB; 523 case Instruction::Mul: 524 case Instruction::FMul: return bitc::BINOP_MUL; 525 case Instruction::UDiv: return bitc::BINOP_UDIV; 526 case Instruction::FDiv: 527 case Instruction::SDiv: return bitc::BINOP_SDIV; 528 case Instruction::URem: return bitc::BINOP_UREM; 529 case Instruction::FRem: 530 case Instruction::SRem: return bitc::BINOP_SREM; 531 case Instruction::Shl: return bitc::BINOP_SHL; 532 case Instruction::LShr: return bitc::BINOP_LSHR; 533 case Instruction::AShr: return bitc::BINOP_ASHR; 534 case Instruction::And: return bitc::BINOP_AND; 535 case Instruction::Or: return bitc::BINOP_OR; 536 case Instruction::Xor: return bitc::BINOP_XOR; 537 } 538 } 539 540 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 541 switch (Op) { 542 default: llvm_unreachable("Unknown RMW operation!"); 543 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 544 case AtomicRMWInst::Add: return bitc::RMW_ADD; 545 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 546 case AtomicRMWInst::And: return bitc::RMW_AND; 547 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 548 case AtomicRMWInst::Or: return bitc::RMW_OR; 549 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 550 case AtomicRMWInst::Max: return bitc::RMW_MAX; 551 case AtomicRMWInst::Min: return bitc::RMW_MIN; 552 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 553 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 554 } 555 } 556 557 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 558 switch (Ordering) { 559 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 560 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 561 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 562 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 563 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 564 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 565 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 566 } 567 llvm_unreachable("Invalid ordering"); 568 } 569 570 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 571 StringRef Str, unsigned AbbrevToUse) { 572 SmallVector<unsigned, 64> Vals; 573 574 // Code: [strchar x N] 575 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 576 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 577 AbbrevToUse = 0; 578 Vals.push_back(Str[i]); 579 } 580 581 // Emit the finished record. 582 Stream.EmitRecord(Code, Vals, AbbrevToUse); 583 } 584 585 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 586 switch (Kind) { 587 case Attribute::Alignment: 588 return bitc::ATTR_KIND_ALIGNMENT; 589 case Attribute::AllocSize: 590 return bitc::ATTR_KIND_ALLOC_SIZE; 591 case Attribute::AlwaysInline: 592 return bitc::ATTR_KIND_ALWAYS_INLINE; 593 case Attribute::ArgMemOnly: 594 return bitc::ATTR_KIND_ARGMEMONLY; 595 case Attribute::Builtin: 596 return bitc::ATTR_KIND_BUILTIN; 597 case Attribute::ByVal: 598 return bitc::ATTR_KIND_BY_VAL; 599 case Attribute::Convergent: 600 return bitc::ATTR_KIND_CONVERGENT; 601 case Attribute::InAlloca: 602 return bitc::ATTR_KIND_IN_ALLOCA; 603 case Attribute::Cold: 604 return bitc::ATTR_KIND_COLD; 605 case Attribute::InaccessibleMemOnly: 606 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 607 case Attribute::InaccessibleMemOrArgMemOnly: 608 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 609 case Attribute::InlineHint: 610 return bitc::ATTR_KIND_INLINE_HINT; 611 case Attribute::InReg: 612 return bitc::ATTR_KIND_IN_REG; 613 case Attribute::JumpTable: 614 return bitc::ATTR_KIND_JUMP_TABLE; 615 case Attribute::MinSize: 616 return bitc::ATTR_KIND_MIN_SIZE; 617 case Attribute::Naked: 618 return bitc::ATTR_KIND_NAKED; 619 case Attribute::Nest: 620 return bitc::ATTR_KIND_NEST; 621 case Attribute::NoAlias: 622 return bitc::ATTR_KIND_NO_ALIAS; 623 case Attribute::NoBuiltin: 624 return bitc::ATTR_KIND_NO_BUILTIN; 625 case Attribute::NoCapture: 626 return bitc::ATTR_KIND_NO_CAPTURE; 627 case Attribute::NoDuplicate: 628 return bitc::ATTR_KIND_NO_DUPLICATE; 629 case Attribute::NoImplicitFloat: 630 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 631 case Attribute::NoInline: 632 return bitc::ATTR_KIND_NO_INLINE; 633 case Attribute::NoRecurse: 634 return bitc::ATTR_KIND_NO_RECURSE; 635 case Attribute::NonLazyBind: 636 return bitc::ATTR_KIND_NON_LAZY_BIND; 637 case Attribute::NonNull: 638 return bitc::ATTR_KIND_NON_NULL; 639 case Attribute::Dereferenceable: 640 return bitc::ATTR_KIND_DEREFERENCEABLE; 641 case Attribute::DereferenceableOrNull: 642 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 643 case Attribute::NoRedZone: 644 return bitc::ATTR_KIND_NO_RED_ZONE; 645 case Attribute::NoReturn: 646 return bitc::ATTR_KIND_NO_RETURN; 647 case Attribute::NoCfCheck: 648 return bitc::ATTR_KIND_NOCF_CHECK; 649 case Attribute::NoUnwind: 650 return bitc::ATTR_KIND_NO_UNWIND; 651 case Attribute::OptForFuzzing: 652 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 653 case Attribute::OptimizeForSize: 654 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 655 case Attribute::OptimizeNone: 656 return bitc::ATTR_KIND_OPTIMIZE_NONE; 657 case Attribute::ReadNone: 658 return bitc::ATTR_KIND_READ_NONE; 659 case Attribute::ReadOnly: 660 return bitc::ATTR_KIND_READ_ONLY; 661 case Attribute::Returned: 662 return bitc::ATTR_KIND_RETURNED; 663 case Attribute::ReturnsTwice: 664 return bitc::ATTR_KIND_RETURNS_TWICE; 665 case Attribute::SExt: 666 return bitc::ATTR_KIND_S_EXT; 667 case Attribute::Speculatable: 668 return bitc::ATTR_KIND_SPECULATABLE; 669 case Attribute::StackAlignment: 670 return bitc::ATTR_KIND_STACK_ALIGNMENT; 671 case Attribute::StackProtect: 672 return bitc::ATTR_KIND_STACK_PROTECT; 673 case Attribute::StackProtectReq: 674 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 675 case Attribute::StackProtectStrong: 676 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 677 case Attribute::SafeStack: 678 return bitc::ATTR_KIND_SAFESTACK; 679 case Attribute::ShadowCallStack: 680 return bitc::ATTR_KIND_SHADOWCALLSTACK; 681 case Attribute::StrictFP: 682 return bitc::ATTR_KIND_STRICT_FP; 683 case Attribute::StructRet: 684 return bitc::ATTR_KIND_STRUCT_RET; 685 case Attribute::SanitizeAddress: 686 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 687 case Attribute::SanitizeHWAddress: 688 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 689 case Attribute::SanitizeThread: 690 return bitc::ATTR_KIND_SANITIZE_THREAD; 691 case Attribute::SanitizeMemory: 692 return bitc::ATTR_KIND_SANITIZE_MEMORY; 693 case Attribute::SpeculativeLoadHardening: 694 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 695 case Attribute::SwiftError: 696 return bitc::ATTR_KIND_SWIFT_ERROR; 697 case Attribute::SwiftSelf: 698 return bitc::ATTR_KIND_SWIFT_SELF; 699 case Attribute::UWTable: 700 return bitc::ATTR_KIND_UW_TABLE; 701 case Attribute::WriteOnly: 702 return bitc::ATTR_KIND_WRITEONLY; 703 case Attribute::ZExt: 704 return bitc::ATTR_KIND_Z_EXT; 705 case Attribute::EndAttrKinds: 706 llvm_unreachable("Can not encode end-attribute kinds marker."); 707 case Attribute::None: 708 llvm_unreachable("Can not encode none-attribute."); 709 } 710 711 llvm_unreachable("Trying to encode unknown attribute"); 712 } 713 714 void ModuleBitcodeWriter::writeAttributeGroupTable() { 715 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 716 VE.getAttributeGroups(); 717 if (AttrGrps.empty()) return; 718 719 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 720 721 SmallVector<uint64_t, 64> Record; 722 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 723 unsigned AttrListIndex = Pair.first; 724 AttributeSet AS = Pair.second; 725 Record.push_back(VE.getAttributeGroupID(Pair)); 726 Record.push_back(AttrListIndex); 727 728 for (Attribute Attr : AS) { 729 if (Attr.isEnumAttribute()) { 730 Record.push_back(0); 731 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 732 } else if (Attr.isIntAttribute()) { 733 Record.push_back(1); 734 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 735 Record.push_back(Attr.getValueAsInt()); 736 } else { 737 StringRef Kind = Attr.getKindAsString(); 738 StringRef Val = Attr.getValueAsString(); 739 740 Record.push_back(Val.empty() ? 3 : 4); 741 Record.append(Kind.begin(), Kind.end()); 742 Record.push_back(0); 743 if (!Val.empty()) { 744 Record.append(Val.begin(), Val.end()); 745 Record.push_back(0); 746 } 747 } 748 } 749 750 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 751 Record.clear(); 752 } 753 754 Stream.ExitBlock(); 755 } 756 757 void ModuleBitcodeWriter::writeAttributeTable() { 758 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 759 if (Attrs.empty()) return; 760 761 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 762 763 SmallVector<uint64_t, 64> Record; 764 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 765 AttributeList AL = Attrs[i]; 766 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 767 AttributeSet AS = AL.getAttributes(i); 768 if (AS.hasAttributes()) 769 Record.push_back(VE.getAttributeGroupID({i, AS})); 770 } 771 772 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 773 Record.clear(); 774 } 775 776 Stream.ExitBlock(); 777 } 778 779 /// WriteTypeTable - Write out the type table for a module. 780 void ModuleBitcodeWriter::writeTypeTable() { 781 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 782 783 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 784 SmallVector<uint64_t, 64> TypeVals; 785 786 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 787 788 // Abbrev for TYPE_CODE_POINTER. 789 auto Abbv = std::make_shared<BitCodeAbbrev>(); 790 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 792 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 793 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 794 795 // Abbrev for TYPE_CODE_FUNCTION. 796 Abbv = std::make_shared<BitCodeAbbrev>(); 797 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 801 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 802 803 // Abbrev for TYPE_CODE_STRUCT_ANON. 804 Abbv = std::make_shared<BitCodeAbbrev>(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 809 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_NAME. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 816 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 817 818 // Abbrev for TYPE_CODE_STRUCT_NAMED. 819 Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_ARRAY. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 831 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 832 833 // Emit an entry count so the reader can reserve space. 834 TypeVals.push_back(TypeList.size()); 835 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 836 TypeVals.clear(); 837 838 // Loop over all of the types, emitting each in turn. 839 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 840 Type *T = TypeList[i]; 841 int AbbrevToUse = 0; 842 unsigned Code = 0; 843 844 switch (T->getTypeID()) { 845 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 846 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 847 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 848 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 849 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 850 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 851 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 852 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 853 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 854 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 855 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 856 case Type::IntegerTyID: 857 // INTEGER: [width] 858 Code = bitc::TYPE_CODE_INTEGER; 859 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 860 break; 861 case Type::PointerTyID: { 862 PointerType *PTy = cast<PointerType>(T); 863 // POINTER: [pointee type, address space] 864 Code = bitc::TYPE_CODE_POINTER; 865 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 866 unsigned AddressSpace = PTy->getAddressSpace(); 867 TypeVals.push_back(AddressSpace); 868 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 869 break; 870 } 871 case Type::FunctionTyID: { 872 FunctionType *FT = cast<FunctionType>(T); 873 // FUNCTION: [isvararg, retty, paramty x N] 874 Code = bitc::TYPE_CODE_FUNCTION; 875 TypeVals.push_back(FT->isVarArg()); 876 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 877 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 878 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 879 AbbrevToUse = FunctionAbbrev; 880 break; 881 } 882 case Type::StructTyID: { 883 StructType *ST = cast<StructType>(T); 884 // STRUCT: [ispacked, eltty x N] 885 TypeVals.push_back(ST->isPacked()); 886 // Output all of the element types. 887 for (StructType::element_iterator I = ST->element_begin(), 888 E = ST->element_end(); I != E; ++I) 889 TypeVals.push_back(VE.getTypeID(*I)); 890 891 if (ST->isLiteral()) { 892 Code = bitc::TYPE_CODE_STRUCT_ANON; 893 AbbrevToUse = StructAnonAbbrev; 894 } else { 895 if (ST->isOpaque()) { 896 Code = bitc::TYPE_CODE_OPAQUE; 897 } else { 898 Code = bitc::TYPE_CODE_STRUCT_NAMED; 899 AbbrevToUse = StructNamedAbbrev; 900 } 901 902 // Emit the name if it is present. 903 if (!ST->getName().empty()) 904 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 905 StructNameAbbrev); 906 } 907 break; 908 } 909 case Type::ArrayTyID: { 910 ArrayType *AT = cast<ArrayType>(T); 911 // ARRAY: [numelts, eltty] 912 Code = bitc::TYPE_CODE_ARRAY; 913 TypeVals.push_back(AT->getNumElements()); 914 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 915 AbbrevToUse = ArrayAbbrev; 916 break; 917 } 918 case Type::VectorTyID: { 919 VectorType *VT = cast<VectorType>(T); 920 // VECTOR [numelts, eltty] 921 Code = bitc::TYPE_CODE_VECTOR; 922 TypeVals.push_back(VT->getNumElements()); 923 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 924 break; 925 } 926 } 927 928 // Emit the finished record. 929 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 930 TypeVals.clear(); 931 } 932 933 Stream.ExitBlock(); 934 } 935 936 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 937 switch (Linkage) { 938 case GlobalValue::ExternalLinkage: 939 return 0; 940 case GlobalValue::WeakAnyLinkage: 941 return 16; 942 case GlobalValue::AppendingLinkage: 943 return 2; 944 case GlobalValue::InternalLinkage: 945 return 3; 946 case GlobalValue::LinkOnceAnyLinkage: 947 return 18; 948 case GlobalValue::ExternalWeakLinkage: 949 return 7; 950 case GlobalValue::CommonLinkage: 951 return 8; 952 case GlobalValue::PrivateLinkage: 953 return 9; 954 case GlobalValue::WeakODRLinkage: 955 return 17; 956 case GlobalValue::LinkOnceODRLinkage: 957 return 19; 958 case GlobalValue::AvailableExternallyLinkage: 959 return 12; 960 } 961 llvm_unreachable("Invalid linkage"); 962 } 963 964 static unsigned getEncodedLinkage(const GlobalValue &GV) { 965 return getEncodedLinkage(GV.getLinkage()); 966 } 967 968 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 969 uint64_t RawFlags = 0; 970 RawFlags |= Flags.ReadNone; 971 RawFlags |= (Flags.ReadOnly << 1); 972 RawFlags |= (Flags.NoRecurse << 2); 973 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 974 RawFlags |= (Flags.NoInline << 4); 975 return RawFlags; 976 } 977 978 // Decode the flags for GlobalValue in the summary 979 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 980 uint64_t RawFlags = 0; 981 982 RawFlags |= Flags.NotEligibleToImport; // bool 983 RawFlags |= (Flags.Live << 1); 984 RawFlags |= (Flags.DSOLocal << 2); 985 986 // Linkage don't need to be remapped at that time for the summary. Any future 987 // change to the getEncodedLinkage() function will need to be taken into 988 // account here as well. 989 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 990 991 return RawFlags; 992 } 993 994 static unsigned getEncodedVisibility(const GlobalValue &GV) { 995 switch (GV.getVisibility()) { 996 case GlobalValue::DefaultVisibility: return 0; 997 case GlobalValue::HiddenVisibility: return 1; 998 case GlobalValue::ProtectedVisibility: return 2; 999 } 1000 llvm_unreachable("Invalid visibility"); 1001 } 1002 1003 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1004 switch (GV.getDLLStorageClass()) { 1005 case GlobalValue::DefaultStorageClass: return 0; 1006 case GlobalValue::DLLImportStorageClass: return 1; 1007 case GlobalValue::DLLExportStorageClass: return 2; 1008 } 1009 llvm_unreachable("Invalid DLL storage class"); 1010 } 1011 1012 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1013 switch (GV.getThreadLocalMode()) { 1014 case GlobalVariable::NotThreadLocal: return 0; 1015 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1016 case GlobalVariable::LocalDynamicTLSModel: return 2; 1017 case GlobalVariable::InitialExecTLSModel: return 3; 1018 case GlobalVariable::LocalExecTLSModel: return 4; 1019 } 1020 llvm_unreachable("Invalid TLS model"); 1021 } 1022 1023 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1024 switch (C.getSelectionKind()) { 1025 case Comdat::Any: 1026 return bitc::COMDAT_SELECTION_KIND_ANY; 1027 case Comdat::ExactMatch: 1028 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1029 case Comdat::Largest: 1030 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1031 case Comdat::NoDuplicates: 1032 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1033 case Comdat::SameSize: 1034 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1035 } 1036 llvm_unreachable("Invalid selection kind"); 1037 } 1038 1039 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1040 switch (GV.getUnnamedAddr()) { 1041 case GlobalValue::UnnamedAddr::None: return 0; 1042 case GlobalValue::UnnamedAddr::Local: return 2; 1043 case GlobalValue::UnnamedAddr::Global: return 1; 1044 } 1045 llvm_unreachable("Invalid unnamed_addr"); 1046 } 1047 1048 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1049 if (GenerateHash) 1050 Hasher.update(Str); 1051 return StrtabBuilder.add(Str); 1052 } 1053 1054 void ModuleBitcodeWriter::writeComdats() { 1055 SmallVector<unsigned, 64> Vals; 1056 for (const Comdat *C : VE.getComdats()) { 1057 // COMDAT: [strtab offset, strtab size, selection_kind] 1058 Vals.push_back(addToStrtab(C->getName())); 1059 Vals.push_back(C->getName().size()); 1060 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1061 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1062 Vals.clear(); 1063 } 1064 } 1065 1066 /// Write a record that will eventually hold the word offset of the 1067 /// module-level VST. For now the offset is 0, which will be backpatched 1068 /// after the real VST is written. Saves the bit offset to backpatch. 1069 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1070 // Write a placeholder value in for the offset of the real VST, 1071 // which is written after the function blocks so that it can include 1072 // the offset of each function. The placeholder offset will be 1073 // updated when the real VST is written. 1074 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1075 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1076 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1077 // hold the real VST offset. Must use fixed instead of VBR as we don't 1078 // know how many VBR chunks to reserve ahead of time. 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1080 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1081 1082 // Emit the placeholder 1083 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1084 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1085 1086 // Compute and save the bit offset to the placeholder, which will be 1087 // patched when the real VST is written. We can simply subtract the 32-bit 1088 // fixed size from the current bit number to get the location to backpatch. 1089 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1090 } 1091 1092 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1093 1094 /// Determine the encoding to use for the given string name and length. 1095 static StringEncoding getStringEncoding(StringRef Str) { 1096 bool isChar6 = true; 1097 for (char C : Str) { 1098 if (isChar6) 1099 isChar6 = BitCodeAbbrevOp::isChar6(C); 1100 if ((unsigned char)C & 128) 1101 // don't bother scanning the rest. 1102 return SE_Fixed8; 1103 } 1104 if (isChar6) 1105 return SE_Char6; 1106 return SE_Fixed7; 1107 } 1108 1109 /// Emit top-level description of module, including target triple, inline asm, 1110 /// descriptors for global variables, and function prototype info. 1111 /// Returns the bit offset to backpatch with the location of the real VST. 1112 void ModuleBitcodeWriter::writeModuleInfo() { 1113 // Emit various pieces of data attached to a module. 1114 if (!M.getTargetTriple().empty()) 1115 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1116 0 /*TODO*/); 1117 const std::string &DL = M.getDataLayoutStr(); 1118 if (!DL.empty()) 1119 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1120 if (!M.getModuleInlineAsm().empty()) 1121 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1122 0 /*TODO*/); 1123 1124 // Emit information about sections and GC, computing how many there are. Also 1125 // compute the maximum alignment value. 1126 std::map<std::string, unsigned> SectionMap; 1127 std::map<std::string, unsigned> GCMap; 1128 unsigned MaxAlignment = 0; 1129 unsigned MaxGlobalType = 0; 1130 for (const GlobalValue &GV : M.globals()) { 1131 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1132 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1133 if (GV.hasSection()) { 1134 // Give section names unique ID's. 1135 unsigned &Entry = SectionMap[GV.getSection()]; 1136 if (!Entry) { 1137 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1138 0 /*TODO*/); 1139 Entry = SectionMap.size(); 1140 } 1141 } 1142 } 1143 for (const Function &F : M) { 1144 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1145 if (F.hasSection()) { 1146 // Give section names unique ID's. 1147 unsigned &Entry = SectionMap[F.getSection()]; 1148 if (!Entry) { 1149 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1150 0 /*TODO*/); 1151 Entry = SectionMap.size(); 1152 } 1153 } 1154 if (F.hasGC()) { 1155 // Same for GC names. 1156 unsigned &Entry = GCMap[F.getGC()]; 1157 if (!Entry) { 1158 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1159 0 /*TODO*/); 1160 Entry = GCMap.size(); 1161 } 1162 } 1163 } 1164 1165 // Emit abbrev for globals, now that we know # sections and max alignment. 1166 unsigned SimpleGVarAbbrev = 0; 1167 if (!M.global_empty()) { 1168 // Add an abbrev for common globals with no visibility or thread localness. 1169 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1170 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1174 Log2_32_Ceil(MaxGlobalType+1))); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1176 //| explicitType << 1 1177 //| constant 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1180 if (MaxAlignment == 0) // Alignment. 1181 Abbv->Add(BitCodeAbbrevOp(0)); 1182 else { 1183 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1185 Log2_32_Ceil(MaxEncAlignment+1))); 1186 } 1187 if (SectionMap.empty()) // Section. 1188 Abbv->Add(BitCodeAbbrevOp(0)); 1189 else 1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1191 Log2_32_Ceil(SectionMap.size()+1))); 1192 // Don't bother emitting vis + thread local. 1193 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1194 } 1195 1196 SmallVector<unsigned, 64> Vals; 1197 // Emit the module's source file name. 1198 { 1199 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1200 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1201 if (Bits == SE_Char6) 1202 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1203 else if (Bits == SE_Fixed7) 1204 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1205 1206 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1207 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1208 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1210 Abbv->Add(AbbrevOpToUse); 1211 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1212 1213 for (const auto P : M.getSourceFileName()) 1214 Vals.push_back((unsigned char)P); 1215 1216 // Emit the finished record. 1217 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1218 Vals.clear(); 1219 } 1220 1221 // Emit the global variable information. 1222 for (const GlobalVariable &GV : M.globals()) { 1223 unsigned AbbrevToUse = 0; 1224 1225 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1226 // linkage, alignment, section, visibility, threadlocal, 1227 // unnamed_addr, externally_initialized, dllstorageclass, 1228 // comdat, attributes, DSO_Local] 1229 Vals.push_back(addToStrtab(GV.getName())); 1230 Vals.push_back(GV.getName().size()); 1231 Vals.push_back(VE.getTypeID(GV.getValueType())); 1232 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1233 Vals.push_back(GV.isDeclaration() ? 0 : 1234 (VE.getValueID(GV.getInitializer()) + 1)); 1235 Vals.push_back(getEncodedLinkage(GV)); 1236 Vals.push_back(Log2_32(GV.getAlignment())+1); 1237 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1238 if (GV.isThreadLocal() || 1239 GV.getVisibility() != GlobalValue::DefaultVisibility || 1240 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1241 GV.isExternallyInitialized() || 1242 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1243 GV.hasComdat() || 1244 GV.hasAttributes() || 1245 GV.isDSOLocal()) { 1246 Vals.push_back(getEncodedVisibility(GV)); 1247 Vals.push_back(getEncodedThreadLocalMode(GV)); 1248 Vals.push_back(getEncodedUnnamedAddr(GV)); 1249 Vals.push_back(GV.isExternallyInitialized()); 1250 Vals.push_back(getEncodedDLLStorageClass(GV)); 1251 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1252 1253 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1254 Vals.push_back(VE.getAttributeListID(AL)); 1255 1256 Vals.push_back(GV.isDSOLocal()); 1257 } else { 1258 AbbrevToUse = SimpleGVarAbbrev; 1259 } 1260 1261 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1262 Vals.clear(); 1263 } 1264 1265 // Emit the function proto information. 1266 for (const Function &F : M) { 1267 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1268 // linkage, paramattrs, alignment, section, visibility, gc, 1269 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1270 // prefixdata, personalityfn, DSO_Local, addrspace] 1271 Vals.push_back(addToStrtab(F.getName())); 1272 Vals.push_back(F.getName().size()); 1273 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1274 Vals.push_back(F.getCallingConv()); 1275 Vals.push_back(F.isDeclaration()); 1276 Vals.push_back(getEncodedLinkage(F)); 1277 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1278 Vals.push_back(Log2_32(F.getAlignment())+1); 1279 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1280 Vals.push_back(getEncodedVisibility(F)); 1281 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1282 Vals.push_back(getEncodedUnnamedAddr(F)); 1283 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1284 : 0); 1285 Vals.push_back(getEncodedDLLStorageClass(F)); 1286 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1287 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1288 : 0); 1289 Vals.push_back( 1290 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1291 1292 Vals.push_back(F.isDSOLocal()); 1293 Vals.push_back(F.getAddressSpace()); 1294 1295 unsigned AbbrevToUse = 0; 1296 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1297 Vals.clear(); 1298 } 1299 1300 // Emit the alias information. 1301 for (const GlobalAlias &A : M.aliases()) { 1302 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1303 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1304 // DSO_Local] 1305 Vals.push_back(addToStrtab(A.getName())); 1306 Vals.push_back(A.getName().size()); 1307 Vals.push_back(VE.getTypeID(A.getValueType())); 1308 Vals.push_back(A.getType()->getAddressSpace()); 1309 Vals.push_back(VE.getValueID(A.getAliasee())); 1310 Vals.push_back(getEncodedLinkage(A)); 1311 Vals.push_back(getEncodedVisibility(A)); 1312 Vals.push_back(getEncodedDLLStorageClass(A)); 1313 Vals.push_back(getEncodedThreadLocalMode(A)); 1314 Vals.push_back(getEncodedUnnamedAddr(A)); 1315 Vals.push_back(A.isDSOLocal()); 1316 1317 unsigned AbbrevToUse = 0; 1318 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1319 Vals.clear(); 1320 } 1321 1322 // Emit the ifunc information. 1323 for (const GlobalIFunc &I : M.ifuncs()) { 1324 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1325 // val#, linkage, visibility, DSO_Local] 1326 Vals.push_back(addToStrtab(I.getName())); 1327 Vals.push_back(I.getName().size()); 1328 Vals.push_back(VE.getTypeID(I.getValueType())); 1329 Vals.push_back(I.getType()->getAddressSpace()); 1330 Vals.push_back(VE.getValueID(I.getResolver())); 1331 Vals.push_back(getEncodedLinkage(I)); 1332 Vals.push_back(getEncodedVisibility(I)); 1333 Vals.push_back(I.isDSOLocal()); 1334 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1335 Vals.clear(); 1336 } 1337 1338 writeValueSymbolTableForwardDecl(); 1339 } 1340 1341 static uint64_t getOptimizationFlags(const Value *V) { 1342 uint64_t Flags = 0; 1343 1344 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1345 if (OBO->hasNoSignedWrap()) 1346 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1347 if (OBO->hasNoUnsignedWrap()) 1348 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1349 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1350 if (PEO->isExact()) 1351 Flags |= 1 << bitc::PEO_EXACT; 1352 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1353 if (FPMO->hasAllowReassoc()) 1354 Flags |= bitc::AllowReassoc; 1355 if (FPMO->hasNoNaNs()) 1356 Flags |= bitc::NoNaNs; 1357 if (FPMO->hasNoInfs()) 1358 Flags |= bitc::NoInfs; 1359 if (FPMO->hasNoSignedZeros()) 1360 Flags |= bitc::NoSignedZeros; 1361 if (FPMO->hasAllowReciprocal()) 1362 Flags |= bitc::AllowReciprocal; 1363 if (FPMO->hasAllowContract()) 1364 Flags |= bitc::AllowContract; 1365 if (FPMO->hasApproxFunc()) 1366 Flags |= bitc::ApproxFunc; 1367 } 1368 1369 return Flags; 1370 } 1371 1372 void ModuleBitcodeWriter::writeValueAsMetadata( 1373 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1374 // Mimic an MDNode with a value as one operand. 1375 Value *V = MD->getValue(); 1376 Record.push_back(VE.getTypeID(V->getType())); 1377 Record.push_back(VE.getValueID(V)); 1378 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1379 Record.clear(); 1380 } 1381 1382 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1383 SmallVectorImpl<uint64_t> &Record, 1384 unsigned Abbrev) { 1385 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1386 Metadata *MD = N->getOperand(i); 1387 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1388 "Unexpected function-local metadata"); 1389 Record.push_back(VE.getMetadataOrNullID(MD)); 1390 } 1391 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1392 : bitc::METADATA_NODE, 1393 Record, Abbrev); 1394 Record.clear(); 1395 } 1396 1397 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1398 // Assume the column is usually under 128, and always output the inlined-at 1399 // location (it's never more expensive than building an array size 1). 1400 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1401 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1408 return Stream.EmitAbbrev(std::move(Abbv)); 1409 } 1410 1411 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1412 SmallVectorImpl<uint64_t> &Record, 1413 unsigned &Abbrev) { 1414 if (!Abbrev) 1415 Abbrev = createDILocationAbbrev(); 1416 1417 Record.push_back(N->isDistinct()); 1418 Record.push_back(N->getLine()); 1419 Record.push_back(N->getColumn()); 1420 Record.push_back(VE.getMetadataID(N->getScope())); 1421 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1422 Record.push_back(N->isImplicitCode()); 1423 1424 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1425 Record.clear(); 1426 } 1427 1428 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1429 // Assume the column is usually under 128, and always output the inlined-at 1430 // location (it's never more expensive than building an array size 1). 1431 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1432 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1439 return Stream.EmitAbbrev(std::move(Abbv)); 1440 } 1441 1442 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1443 SmallVectorImpl<uint64_t> &Record, 1444 unsigned &Abbrev) { 1445 if (!Abbrev) 1446 Abbrev = createGenericDINodeAbbrev(); 1447 1448 Record.push_back(N->isDistinct()); 1449 Record.push_back(N->getTag()); 1450 Record.push_back(0); // Per-tag version field; unused for now. 1451 1452 for (auto &I : N->operands()) 1453 Record.push_back(VE.getMetadataOrNullID(I)); 1454 1455 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1456 Record.clear(); 1457 } 1458 1459 static uint64_t rotateSign(int64_t I) { 1460 uint64_t U = I; 1461 return I < 0 ? ~(U << 1) : U << 1; 1462 } 1463 1464 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1465 SmallVectorImpl<uint64_t> &Record, 1466 unsigned Abbrev) { 1467 const uint64_t Version = 1 << 1; 1468 Record.push_back((uint64_t)N->isDistinct() | Version); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1470 Record.push_back(rotateSign(N->getLowerBound())); 1471 1472 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1473 Record.clear(); 1474 } 1475 1476 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1477 SmallVectorImpl<uint64_t> &Record, 1478 unsigned Abbrev) { 1479 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1480 Record.push_back(rotateSign(N->getValue())); 1481 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1482 1483 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1484 Record.clear(); 1485 } 1486 1487 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1488 SmallVectorImpl<uint64_t> &Record, 1489 unsigned Abbrev) { 1490 Record.push_back(N->isDistinct()); 1491 Record.push_back(N->getTag()); 1492 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1493 Record.push_back(N->getSizeInBits()); 1494 Record.push_back(N->getAlignInBits()); 1495 Record.push_back(N->getEncoding()); 1496 Record.push_back(N->getFlags()); 1497 1498 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1499 Record.clear(); 1500 } 1501 1502 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1503 SmallVectorImpl<uint64_t> &Record, 1504 unsigned Abbrev) { 1505 Record.push_back(N->isDistinct()); 1506 Record.push_back(N->getTag()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1509 Record.push_back(N->getLine()); 1510 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1511 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1512 Record.push_back(N->getSizeInBits()); 1513 Record.push_back(N->getAlignInBits()); 1514 Record.push_back(N->getOffsetInBits()); 1515 Record.push_back(N->getFlags()); 1516 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1517 1518 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1519 // that there is no DWARF address space associated with DIDerivedType. 1520 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1521 Record.push_back(*DWARFAddressSpace + 1); 1522 else 1523 Record.push_back(0); 1524 1525 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1526 Record.clear(); 1527 } 1528 1529 void ModuleBitcodeWriter::writeDICompositeType( 1530 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1531 unsigned Abbrev) { 1532 const unsigned IsNotUsedInOldTypeRef = 0x2; 1533 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1534 Record.push_back(N->getTag()); 1535 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1536 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1537 Record.push_back(N->getLine()); 1538 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1539 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1540 Record.push_back(N->getSizeInBits()); 1541 Record.push_back(N->getAlignInBits()); 1542 Record.push_back(N->getOffsetInBits()); 1543 Record.push_back(N->getFlags()); 1544 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1545 Record.push_back(N->getRuntimeLang()); 1546 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1547 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1549 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1550 1551 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1552 Record.clear(); 1553 } 1554 1555 void ModuleBitcodeWriter::writeDISubroutineType( 1556 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1557 unsigned Abbrev) { 1558 const unsigned HasNoOldTypeRefs = 0x2; 1559 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1560 Record.push_back(N->getFlags()); 1561 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1562 Record.push_back(N->getCC()); 1563 1564 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1565 Record.clear(); 1566 } 1567 1568 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1569 SmallVectorImpl<uint64_t> &Record, 1570 unsigned Abbrev) { 1571 Record.push_back(N->isDistinct()); 1572 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1573 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1574 if (N->getRawChecksum()) { 1575 Record.push_back(N->getRawChecksum()->Kind); 1576 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1577 } else { 1578 // Maintain backwards compatibility with the old internal representation of 1579 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1580 Record.push_back(0); 1581 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1582 } 1583 auto Source = N->getRawSource(); 1584 if (Source) 1585 Record.push_back(VE.getMetadataOrNullID(*Source)); 1586 1587 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1588 Record.clear(); 1589 } 1590 1591 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1592 SmallVectorImpl<uint64_t> &Record, 1593 unsigned Abbrev) { 1594 assert(N->isDistinct() && "Expected distinct compile units"); 1595 Record.push_back(/* IsDistinct */ true); 1596 Record.push_back(N->getSourceLanguage()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1599 Record.push_back(N->isOptimized()); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1601 Record.push_back(N->getRuntimeVersion()); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1603 Record.push_back(N->getEmissionKind()); 1604 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1606 Record.push_back(/* subprograms */ 0); 1607 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1609 Record.push_back(N->getDWOId()); 1610 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1611 Record.push_back(N->getSplitDebugInlining()); 1612 Record.push_back(N->getDebugInfoForProfiling()); 1613 Record.push_back((unsigned)N->getNameTableKind()); 1614 1615 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1620 SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 uint64_t HasUnitFlag = 1 << 1; 1623 Record.push_back(N->isDistinct() | HasUnitFlag); 1624 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1628 Record.push_back(N->getLine()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1630 Record.push_back(N->isLocalToUnit()); 1631 Record.push_back(N->isDefinition()); 1632 Record.push_back(N->getScopeLine()); 1633 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1634 Record.push_back(N->getVirtuality()); 1635 Record.push_back(N->getVirtualIndex()); 1636 Record.push_back(N->getFlags()); 1637 Record.push_back(N->isOptimized()); 1638 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1640 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1642 Record.push_back(N->getThisAdjustment()); 1643 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1644 1645 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1646 Record.clear(); 1647 } 1648 1649 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1650 SmallVectorImpl<uint64_t> &Record, 1651 unsigned Abbrev) { 1652 Record.push_back(N->isDistinct()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1655 Record.push_back(N->getLine()); 1656 Record.push_back(N->getColumn()); 1657 1658 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1659 Record.clear(); 1660 } 1661 1662 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1663 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1664 unsigned Abbrev) { 1665 Record.push_back(N->isDistinct()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1668 Record.push_back(N->getDiscriminator()); 1669 1670 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1678 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1680 1681 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1682 Record.clear(); 1683 } 1684 1685 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1686 SmallVectorImpl<uint64_t> &Record, 1687 unsigned Abbrev) { 1688 Record.push_back(N->isDistinct()); 1689 Record.push_back(N->getMacinfoType()); 1690 Record.push_back(N->getLine()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1693 1694 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1695 Record.clear(); 1696 } 1697 1698 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1699 SmallVectorImpl<uint64_t> &Record, 1700 unsigned Abbrev) { 1701 Record.push_back(N->isDistinct()); 1702 Record.push_back(N->getMacinfoType()); 1703 Record.push_back(N->getLine()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1706 1707 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1708 Record.clear(); 1709 } 1710 1711 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1712 SmallVectorImpl<uint64_t> &Record, 1713 unsigned Abbrev) { 1714 Record.push_back(N->isDistinct()); 1715 for (auto &I : N->operands()) 1716 Record.push_back(VE.getMetadataOrNullID(I)); 1717 1718 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1719 Record.clear(); 1720 } 1721 1722 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1723 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1724 unsigned Abbrev) { 1725 Record.push_back(N->isDistinct()); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1728 1729 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1730 Record.clear(); 1731 } 1732 1733 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1734 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1735 unsigned Abbrev) { 1736 Record.push_back(N->isDistinct()); 1737 Record.push_back(N->getTag()); 1738 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1741 1742 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1743 Record.clear(); 1744 } 1745 1746 void ModuleBitcodeWriter::writeDIGlobalVariable( 1747 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1748 unsigned Abbrev) { 1749 const uint64_t Version = 2 << 1; 1750 Record.push_back((uint64_t)N->isDistinct() | Version); 1751 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1755 Record.push_back(N->getLine()); 1756 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1757 Record.push_back(N->isLocalToUnit()); 1758 Record.push_back(N->isDefinition()); 1759 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1760 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1761 Record.push_back(N->getAlignInBits()); 1762 1763 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1764 Record.clear(); 1765 } 1766 1767 void ModuleBitcodeWriter::writeDILocalVariable( 1768 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1769 unsigned Abbrev) { 1770 // In order to support all possible bitcode formats in BitcodeReader we need 1771 // to distinguish the following cases: 1772 // 1) Record has no artificial tag (Record[1]), 1773 // has no obsolete inlinedAt field (Record[9]). 1774 // In this case Record size will be 8, HasAlignment flag is false. 1775 // 2) Record has artificial tag (Record[1]), 1776 // has no obsolete inlignedAt field (Record[9]). 1777 // In this case Record size will be 9, HasAlignment flag is false. 1778 // 3) Record has both artificial tag (Record[1]) and 1779 // obsolete inlignedAt field (Record[9]). 1780 // In this case Record size will be 10, HasAlignment flag is false. 1781 // 4) Record has neither artificial tag, nor inlignedAt field, but 1782 // HasAlignment flag is true and Record[8] contains alignment value. 1783 const uint64_t HasAlignmentFlag = 1 << 1; 1784 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1785 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1788 Record.push_back(N->getLine()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1790 Record.push_back(N->getArg()); 1791 Record.push_back(N->getFlags()); 1792 Record.push_back(N->getAlignInBits()); 1793 1794 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1795 Record.clear(); 1796 } 1797 1798 void ModuleBitcodeWriter::writeDILabel( 1799 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1800 unsigned Abbrev) { 1801 Record.push_back((uint64_t)N->isDistinct()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1805 Record.push_back(N->getLine()); 1806 1807 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1808 Record.clear(); 1809 } 1810 1811 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1812 SmallVectorImpl<uint64_t> &Record, 1813 unsigned Abbrev) { 1814 Record.reserve(N->getElements().size() + 1); 1815 const uint64_t Version = 3 << 1; 1816 Record.push_back((uint64_t)N->isDistinct() | Version); 1817 Record.append(N->elements_begin(), N->elements_end()); 1818 1819 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1824 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 Record.push_back(N->isDistinct()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1829 1830 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1831 Record.clear(); 1832 } 1833 1834 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1835 SmallVectorImpl<uint64_t> &Record, 1836 unsigned Abbrev) { 1837 Record.push_back(N->isDistinct()); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1840 Record.push_back(N->getLine()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1843 Record.push_back(N->getAttributes()); 1844 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1845 1846 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1847 Record.clear(); 1848 } 1849 1850 void ModuleBitcodeWriter::writeDIImportedEntity( 1851 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1852 unsigned Abbrev) { 1853 Record.push_back(N->isDistinct()); 1854 Record.push_back(N->getTag()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1857 Record.push_back(N->getLine()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1860 1861 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1862 Record.clear(); 1863 } 1864 1865 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1866 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1867 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1870 return Stream.EmitAbbrev(std::move(Abbv)); 1871 } 1872 1873 void ModuleBitcodeWriter::writeNamedMetadata( 1874 SmallVectorImpl<uint64_t> &Record) { 1875 if (M.named_metadata_empty()) 1876 return; 1877 1878 unsigned Abbrev = createNamedMetadataAbbrev(); 1879 for (const NamedMDNode &NMD : M.named_metadata()) { 1880 // Write name. 1881 StringRef Str = NMD.getName(); 1882 Record.append(Str.bytes_begin(), Str.bytes_end()); 1883 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1884 Record.clear(); 1885 1886 // Write named metadata operands. 1887 for (const MDNode *N : NMD.operands()) 1888 Record.push_back(VE.getMetadataID(N)); 1889 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1890 Record.clear(); 1891 } 1892 } 1893 1894 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1895 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1896 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1900 return Stream.EmitAbbrev(std::move(Abbv)); 1901 } 1902 1903 /// Write out a record for MDString. 1904 /// 1905 /// All the metadata strings in a metadata block are emitted in a single 1906 /// record. The sizes and strings themselves are shoved into a blob. 1907 void ModuleBitcodeWriter::writeMetadataStrings( 1908 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1909 if (Strings.empty()) 1910 return; 1911 1912 // Start the record with the number of strings. 1913 Record.push_back(bitc::METADATA_STRINGS); 1914 Record.push_back(Strings.size()); 1915 1916 // Emit the sizes of the strings in the blob. 1917 SmallString<256> Blob; 1918 { 1919 BitstreamWriter W(Blob); 1920 for (const Metadata *MD : Strings) 1921 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1922 W.FlushToWord(); 1923 } 1924 1925 // Add the offset to the strings to the record. 1926 Record.push_back(Blob.size()); 1927 1928 // Add the strings to the blob. 1929 for (const Metadata *MD : Strings) 1930 Blob.append(cast<MDString>(MD)->getString()); 1931 1932 // Emit the final record. 1933 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1934 Record.clear(); 1935 } 1936 1937 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1938 enum MetadataAbbrev : unsigned { 1939 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1940 #include "llvm/IR/Metadata.def" 1941 LastPlusOne 1942 }; 1943 1944 void ModuleBitcodeWriter::writeMetadataRecords( 1945 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1946 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1947 if (MDs.empty()) 1948 return; 1949 1950 // Initialize MDNode abbreviations. 1951 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1952 #include "llvm/IR/Metadata.def" 1953 1954 for (const Metadata *MD : MDs) { 1955 if (IndexPos) 1956 IndexPos->push_back(Stream.GetCurrentBitNo()); 1957 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1958 assert(N->isResolved() && "Expected forward references to be resolved"); 1959 1960 switch (N->getMetadataID()) { 1961 default: 1962 llvm_unreachable("Invalid MDNode subclass"); 1963 #define HANDLE_MDNODE_LEAF(CLASS) \ 1964 case Metadata::CLASS##Kind: \ 1965 if (MDAbbrevs) \ 1966 write##CLASS(cast<CLASS>(N), Record, \ 1967 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1968 else \ 1969 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1970 continue; 1971 #include "llvm/IR/Metadata.def" 1972 } 1973 } 1974 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1975 } 1976 } 1977 1978 void ModuleBitcodeWriter::writeModuleMetadata() { 1979 if (!VE.hasMDs() && M.named_metadata_empty()) 1980 return; 1981 1982 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1983 SmallVector<uint64_t, 64> Record; 1984 1985 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1986 // block and load any metadata. 1987 std::vector<unsigned> MDAbbrevs; 1988 1989 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1990 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1991 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1992 createGenericDINodeAbbrev(); 1993 1994 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1995 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1998 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1999 2000 Abbv = std::make_shared<BitCodeAbbrev>(); 2001 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2004 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2005 2006 // Emit MDStrings together upfront. 2007 writeMetadataStrings(VE.getMDStrings(), Record); 2008 2009 // We only emit an index for the metadata record if we have more than a given 2010 // (naive) threshold of metadatas, otherwise it is not worth it. 2011 if (VE.getNonMDStrings().size() > IndexThreshold) { 2012 // Write a placeholder value in for the offset of the metadata index, 2013 // which is written after the records, so that it can include 2014 // the offset of each entry. The placeholder offset will be 2015 // updated after all records are emitted. 2016 uint64_t Vals[] = {0, 0}; 2017 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2018 } 2019 2020 // Compute and save the bit offset to the current position, which will be 2021 // patched when we emit the index later. We can simply subtract the 64-bit 2022 // fixed size from the current bit number to get the location to backpatch. 2023 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2024 2025 // This index will contain the bitpos for each individual record. 2026 std::vector<uint64_t> IndexPos; 2027 IndexPos.reserve(VE.getNonMDStrings().size()); 2028 2029 // Write all the records 2030 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2031 2032 if (VE.getNonMDStrings().size() > IndexThreshold) { 2033 // Now that we have emitted all the records we will emit the index. But 2034 // first 2035 // backpatch the forward reference so that the reader can skip the records 2036 // efficiently. 2037 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2038 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2039 2040 // Delta encode the index. 2041 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2042 for (auto &Elt : IndexPos) { 2043 auto EltDelta = Elt - PreviousValue; 2044 PreviousValue = Elt; 2045 Elt = EltDelta; 2046 } 2047 // Emit the index record. 2048 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2049 IndexPos.clear(); 2050 } 2051 2052 // Write the named metadata now. 2053 writeNamedMetadata(Record); 2054 2055 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2056 SmallVector<uint64_t, 4> Record; 2057 Record.push_back(VE.getValueID(&GO)); 2058 pushGlobalMetadataAttachment(Record, GO); 2059 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2060 }; 2061 for (const Function &F : M) 2062 if (F.isDeclaration() && F.hasMetadata()) 2063 AddDeclAttachedMetadata(F); 2064 // FIXME: Only store metadata for declarations here, and move data for global 2065 // variable definitions to a separate block (PR28134). 2066 for (const GlobalVariable &GV : M.globals()) 2067 if (GV.hasMetadata()) 2068 AddDeclAttachedMetadata(GV); 2069 2070 Stream.ExitBlock(); 2071 } 2072 2073 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2074 if (!VE.hasMDs()) 2075 return; 2076 2077 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2078 SmallVector<uint64_t, 64> Record; 2079 writeMetadataStrings(VE.getMDStrings(), Record); 2080 writeMetadataRecords(VE.getNonMDStrings(), Record); 2081 Stream.ExitBlock(); 2082 } 2083 2084 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2085 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2086 // [n x [id, mdnode]] 2087 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2088 GO.getAllMetadata(MDs); 2089 for (const auto &I : MDs) { 2090 Record.push_back(I.first); 2091 Record.push_back(VE.getMetadataID(I.second)); 2092 } 2093 } 2094 2095 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2096 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2097 2098 SmallVector<uint64_t, 64> Record; 2099 2100 if (F.hasMetadata()) { 2101 pushGlobalMetadataAttachment(Record, F); 2102 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2103 Record.clear(); 2104 } 2105 2106 // Write metadata attachments 2107 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2108 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2109 for (const BasicBlock &BB : F) 2110 for (const Instruction &I : BB) { 2111 MDs.clear(); 2112 I.getAllMetadataOtherThanDebugLoc(MDs); 2113 2114 // If no metadata, ignore instruction. 2115 if (MDs.empty()) continue; 2116 2117 Record.push_back(VE.getInstructionID(&I)); 2118 2119 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2120 Record.push_back(MDs[i].first); 2121 Record.push_back(VE.getMetadataID(MDs[i].second)); 2122 } 2123 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2124 Record.clear(); 2125 } 2126 2127 Stream.ExitBlock(); 2128 } 2129 2130 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2131 SmallVector<uint64_t, 64> Record; 2132 2133 // Write metadata kinds 2134 // METADATA_KIND - [n x [id, name]] 2135 SmallVector<StringRef, 8> Names; 2136 M.getMDKindNames(Names); 2137 2138 if (Names.empty()) return; 2139 2140 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2141 2142 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2143 Record.push_back(MDKindID); 2144 StringRef KName = Names[MDKindID]; 2145 Record.append(KName.begin(), KName.end()); 2146 2147 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2148 Record.clear(); 2149 } 2150 2151 Stream.ExitBlock(); 2152 } 2153 2154 void ModuleBitcodeWriter::writeOperandBundleTags() { 2155 // Write metadata kinds 2156 // 2157 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2158 // 2159 // OPERAND_BUNDLE_TAG - [strchr x N] 2160 2161 SmallVector<StringRef, 8> Tags; 2162 M.getOperandBundleTags(Tags); 2163 2164 if (Tags.empty()) 2165 return; 2166 2167 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2168 2169 SmallVector<uint64_t, 64> Record; 2170 2171 for (auto Tag : Tags) { 2172 Record.append(Tag.begin(), Tag.end()); 2173 2174 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2175 Record.clear(); 2176 } 2177 2178 Stream.ExitBlock(); 2179 } 2180 2181 void ModuleBitcodeWriter::writeSyncScopeNames() { 2182 SmallVector<StringRef, 8> SSNs; 2183 M.getContext().getSyncScopeNames(SSNs); 2184 if (SSNs.empty()) 2185 return; 2186 2187 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2188 2189 SmallVector<uint64_t, 64> Record; 2190 for (auto SSN : SSNs) { 2191 Record.append(SSN.begin(), SSN.end()); 2192 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2193 Record.clear(); 2194 } 2195 2196 Stream.ExitBlock(); 2197 } 2198 2199 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2200 if ((int64_t)V >= 0) 2201 Vals.push_back(V << 1); 2202 else 2203 Vals.push_back((-V << 1) | 1); 2204 } 2205 2206 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2207 bool isGlobal) { 2208 if (FirstVal == LastVal) return; 2209 2210 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2211 2212 unsigned AggregateAbbrev = 0; 2213 unsigned String8Abbrev = 0; 2214 unsigned CString7Abbrev = 0; 2215 unsigned CString6Abbrev = 0; 2216 // If this is a constant pool for the module, emit module-specific abbrevs. 2217 if (isGlobal) { 2218 // Abbrev for CST_CODE_AGGREGATE. 2219 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2220 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2223 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2224 2225 // Abbrev for CST_CODE_STRING. 2226 Abbv = std::make_shared<BitCodeAbbrev>(); 2227 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2230 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2231 // Abbrev for CST_CODE_CSTRING. 2232 Abbv = std::make_shared<BitCodeAbbrev>(); 2233 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2236 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2237 // Abbrev for CST_CODE_CSTRING. 2238 Abbv = std::make_shared<BitCodeAbbrev>(); 2239 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2242 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2243 } 2244 2245 SmallVector<uint64_t, 64> Record; 2246 2247 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2248 Type *LastTy = nullptr; 2249 for (unsigned i = FirstVal; i != LastVal; ++i) { 2250 const Value *V = Vals[i].first; 2251 // If we need to switch types, do so now. 2252 if (V->getType() != LastTy) { 2253 LastTy = V->getType(); 2254 Record.push_back(VE.getTypeID(LastTy)); 2255 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2256 CONSTANTS_SETTYPE_ABBREV); 2257 Record.clear(); 2258 } 2259 2260 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2261 Record.push_back(unsigned(IA->hasSideEffects()) | 2262 unsigned(IA->isAlignStack()) << 1 | 2263 unsigned(IA->getDialect()&1) << 2); 2264 2265 // Add the asm string. 2266 const std::string &AsmStr = IA->getAsmString(); 2267 Record.push_back(AsmStr.size()); 2268 Record.append(AsmStr.begin(), AsmStr.end()); 2269 2270 // Add the constraint string. 2271 const std::string &ConstraintStr = IA->getConstraintString(); 2272 Record.push_back(ConstraintStr.size()); 2273 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2274 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2275 Record.clear(); 2276 continue; 2277 } 2278 const Constant *C = cast<Constant>(V); 2279 unsigned Code = -1U; 2280 unsigned AbbrevToUse = 0; 2281 if (C->isNullValue()) { 2282 Code = bitc::CST_CODE_NULL; 2283 } else if (isa<UndefValue>(C)) { 2284 Code = bitc::CST_CODE_UNDEF; 2285 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2286 if (IV->getBitWidth() <= 64) { 2287 uint64_t V = IV->getSExtValue(); 2288 emitSignedInt64(Record, V); 2289 Code = bitc::CST_CODE_INTEGER; 2290 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2291 } else { // Wide integers, > 64 bits in size. 2292 // We have an arbitrary precision integer value to write whose 2293 // bit width is > 64. However, in canonical unsigned integer 2294 // format it is likely that the high bits are going to be zero. 2295 // So, we only write the number of active words. 2296 unsigned NWords = IV->getValue().getActiveWords(); 2297 const uint64_t *RawWords = IV->getValue().getRawData(); 2298 for (unsigned i = 0; i != NWords; ++i) { 2299 emitSignedInt64(Record, RawWords[i]); 2300 } 2301 Code = bitc::CST_CODE_WIDE_INTEGER; 2302 } 2303 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2304 Code = bitc::CST_CODE_FLOAT; 2305 Type *Ty = CFP->getType(); 2306 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2307 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2308 } else if (Ty->isX86_FP80Ty()) { 2309 // api needed to prevent premature destruction 2310 // bits are not in the same order as a normal i80 APInt, compensate. 2311 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2312 const uint64_t *p = api.getRawData(); 2313 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2314 Record.push_back(p[0] & 0xffffLL); 2315 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2316 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2317 const uint64_t *p = api.getRawData(); 2318 Record.push_back(p[0]); 2319 Record.push_back(p[1]); 2320 } else { 2321 assert(0 && "Unknown FP type!"); 2322 } 2323 } else if (isa<ConstantDataSequential>(C) && 2324 cast<ConstantDataSequential>(C)->isString()) { 2325 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2326 // Emit constant strings specially. 2327 unsigned NumElts = Str->getNumElements(); 2328 // If this is a null-terminated string, use the denser CSTRING encoding. 2329 if (Str->isCString()) { 2330 Code = bitc::CST_CODE_CSTRING; 2331 --NumElts; // Don't encode the null, which isn't allowed by char6. 2332 } else { 2333 Code = bitc::CST_CODE_STRING; 2334 AbbrevToUse = String8Abbrev; 2335 } 2336 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2337 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2338 for (unsigned i = 0; i != NumElts; ++i) { 2339 unsigned char V = Str->getElementAsInteger(i); 2340 Record.push_back(V); 2341 isCStr7 &= (V & 128) == 0; 2342 if (isCStrChar6) 2343 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2344 } 2345 2346 if (isCStrChar6) 2347 AbbrevToUse = CString6Abbrev; 2348 else if (isCStr7) 2349 AbbrevToUse = CString7Abbrev; 2350 } else if (const ConstantDataSequential *CDS = 2351 dyn_cast<ConstantDataSequential>(C)) { 2352 Code = bitc::CST_CODE_DATA; 2353 Type *EltTy = CDS->getType()->getElementType(); 2354 if (isa<IntegerType>(EltTy)) { 2355 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2356 Record.push_back(CDS->getElementAsInteger(i)); 2357 } else { 2358 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2359 Record.push_back( 2360 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2361 } 2362 } else if (isa<ConstantAggregate>(C)) { 2363 Code = bitc::CST_CODE_AGGREGATE; 2364 for (const Value *Op : C->operands()) 2365 Record.push_back(VE.getValueID(Op)); 2366 AbbrevToUse = AggregateAbbrev; 2367 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2368 switch (CE->getOpcode()) { 2369 default: 2370 if (Instruction::isCast(CE->getOpcode())) { 2371 Code = bitc::CST_CODE_CE_CAST; 2372 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2373 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2374 Record.push_back(VE.getValueID(C->getOperand(0))); 2375 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2376 } else { 2377 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2378 Code = bitc::CST_CODE_CE_BINOP; 2379 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2380 Record.push_back(VE.getValueID(C->getOperand(0))); 2381 Record.push_back(VE.getValueID(C->getOperand(1))); 2382 uint64_t Flags = getOptimizationFlags(CE); 2383 if (Flags != 0) 2384 Record.push_back(Flags); 2385 } 2386 break; 2387 case Instruction::GetElementPtr: { 2388 Code = bitc::CST_CODE_CE_GEP; 2389 const auto *GO = cast<GEPOperator>(C); 2390 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2391 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2392 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2393 Record.push_back((*Idx << 1) | GO->isInBounds()); 2394 } else if (GO->isInBounds()) 2395 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2396 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2397 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2398 Record.push_back(VE.getValueID(C->getOperand(i))); 2399 } 2400 break; 2401 } 2402 case Instruction::Select: 2403 Code = bitc::CST_CODE_CE_SELECT; 2404 Record.push_back(VE.getValueID(C->getOperand(0))); 2405 Record.push_back(VE.getValueID(C->getOperand(1))); 2406 Record.push_back(VE.getValueID(C->getOperand(2))); 2407 break; 2408 case Instruction::ExtractElement: 2409 Code = bitc::CST_CODE_CE_EXTRACTELT; 2410 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2411 Record.push_back(VE.getValueID(C->getOperand(0))); 2412 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2413 Record.push_back(VE.getValueID(C->getOperand(1))); 2414 break; 2415 case Instruction::InsertElement: 2416 Code = bitc::CST_CODE_CE_INSERTELT; 2417 Record.push_back(VE.getValueID(C->getOperand(0))); 2418 Record.push_back(VE.getValueID(C->getOperand(1))); 2419 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2420 Record.push_back(VE.getValueID(C->getOperand(2))); 2421 break; 2422 case Instruction::ShuffleVector: 2423 // If the return type and argument types are the same, this is a 2424 // standard shufflevector instruction. If the types are different, 2425 // then the shuffle is widening or truncating the input vectors, and 2426 // the argument type must also be encoded. 2427 if (C->getType() == C->getOperand(0)->getType()) { 2428 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2429 } else { 2430 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2431 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2432 } 2433 Record.push_back(VE.getValueID(C->getOperand(0))); 2434 Record.push_back(VE.getValueID(C->getOperand(1))); 2435 Record.push_back(VE.getValueID(C->getOperand(2))); 2436 break; 2437 case Instruction::ICmp: 2438 case Instruction::FCmp: 2439 Code = bitc::CST_CODE_CE_CMP; 2440 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2441 Record.push_back(VE.getValueID(C->getOperand(0))); 2442 Record.push_back(VE.getValueID(C->getOperand(1))); 2443 Record.push_back(CE->getPredicate()); 2444 break; 2445 } 2446 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2447 Code = bitc::CST_CODE_BLOCKADDRESS; 2448 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2449 Record.push_back(VE.getValueID(BA->getFunction())); 2450 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2451 } else { 2452 #ifndef NDEBUG 2453 C->dump(); 2454 #endif 2455 llvm_unreachable("Unknown constant!"); 2456 } 2457 Stream.EmitRecord(Code, Record, AbbrevToUse); 2458 Record.clear(); 2459 } 2460 2461 Stream.ExitBlock(); 2462 } 2463 2464 void ModuleBitcodeWriter::writeModuleConstants() { 2465 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2466 2467 // Find the first constant to emit, which is the first non-globalvalue value. 2468 // We know globalvalues have been emitted by WriteModuleInfo. 2469 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2470 if (!isa<GlobalValue>(Vals[i].first)) { 2471 writeConstants(i, Vals.size(), true); 2472 return; 2473 } 2474 } 2475 } 2476 2477 /// pushValueAndType - The file has to encode both the value and type id for 2478 /// many values, because we need to know what type to create for forward 2479 /// references. However, most operands are not forward references, so this type 2480 /// field is not needed. 2481 /// 2482 /// This function adds V's value ID to Vals. If the value ID is higher than the 2483 /// instruction ID, then it is a forward reference, and it also includes the 2484 /// type ID. The value ID that is written is encoded relative to the InstID. 2485 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2486 SmallVectorImpl<unsigned> &Vals) { 2487 unsigned ValID = VE.getValueID(V); 2488 // Make encoding relative to the InstID. 2489 Vals.push_back(InstID - ValID); 2490 if (ValID >= InstID) { 2491 Vals.push_back(VE.getTypeID(V->getType())); 2492 return true; 2493 } 2494 return false; 2495 } 2496 2497 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2498 unsigned InstID) { 2499 SmallVector<unsigned, 64> Record; 2500 LLVMContext &C = CS.getInstruction()->getContext(); 2501 2502 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2503 const auto &Bundle = CS.getOperandBundleAt(i); 2504 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2505 2506 for (auto &Input : Bundle.Inputs) 2507 pushValueAndType(Input, InstID, Record); 2508 2509 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2510 Record.clear(); 2511 } 2512 } 2513 2514 /// pushValue - Like pushValueAndType, but where the type of the value is 2515 /// omitted (perhaps it was already encoded in an earlier operand). 2516 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2517 SmallVectorImpl<unsigned> &Vals) { 2518 unsigned ValID = VE.getValueID(V); 2519 Vals.push_back(InstID - ValID); 2520 } 2521 2522 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2523 SmallVectorImpl<uint64_t> &Vals) { 2524 unsigned ValID = VE.getValueID(V); 2525 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2526 emitSignedInt64(Vals, diff); 2527 } 2528 2529 /// WriteInstruction - Emit an instruction to the specified stream. 2530 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2531 unsigned InstID, 2532 SmallVectorImpl<unsigned> &Vals) { 2533 unsigned Code = 0; 2534 unsigned AbbrevToUse = 0; 2535 VE.setInstructionID(&I); 2536 switch (I.getOpcode()) { 2537 default: 2538 if (Instruction::isCast(I.getOpcode())) { 2539 Code = bitc::FUNC_CODE_INST_CAST; 2540 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2541 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2542 Vals.push_back(VE.getTypeID(I.getType())); 2543 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2544 } else { 2545 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2546 Code = bitc::FUNC_CODE_INST_BINOP; 2547 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2548 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2549 pushValue(I.getOperand(1), InstID, Vals); 2550 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2551 uint64_t Flags = getOptimizationFlags(&I); 2552 if (Flags != 0) { 2553 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2554 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2555 Vals.push_back(Flags); 2556 } 2557 } 2558 break; 2559 2560 case Instruction::GetElementPtr: { 2561 Code = bitc::FUNC_CODE_INST_GEP; 2562 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2563 auto &GEPInst = cast<GetElementPtrInst>(I); 2564 Vals.push_back(GEPInst.isInBounds()); 2565 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2566 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2567 pushValueAndType(I.getOperand(i), InstID, Vals); 2568 break; 2569 } 2570 case Instruction::ExtractValue: { 2571 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2572 pushValueAndType(I.getOperand(0), InstID, Vals); 2573 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2574 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2575 break; 2576 } 2577 case Instruction::InsertValue: { 2578 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2579 pushValueAndType(I.getOperand(0), InstID, Vals); 2580 pushValueAndType(I.getOperand(1), InstID, Vals); 2581 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2582 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2583 break; 2584 } 2585 case Instruction::Select: 2586 Code = bitc::FUNC_CODE_INST_VSELECT; 2587 pushValueAndType(I.getOperand(1), InstID, Vals); 2588 pushValue(I.getOperand(2), InstID, Vals); 2589 pushValueAndType(I.getOperand(0), InstID, Vals); 2590 break; 2591 case Instruction::ExtractElement: 2592 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2593 pushValueAndType(I.getOperand(0), InstID, Vals); 2594 pushValueAndType(I.getOperand(1), InstID, Vals); 2595 break; 2596 case Instruction::InsertElement: 2597 Code = bitc::FUNC_CODE_INST_INSERTELT; 2598 pushValueAndType(I.getOperand(0), InstID, Vals); 2599 pushValue(I.getOperand(1), InstID, Vals); 2600 pushValueAndType(I.getOperand(2), InstID, Vals); 2601 break; 2602 case Instruction::ShuffleVector: 2603 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2604 pushValueAndType(I.getOperand(0), InstID, Vals); 2605 pushValue(I.getOperand(1), InstID, Vals); 2606 pushValue(I.getOperand(2), InstID, Vals); 2607 break; 2608 case Instruction::ICmp: 2609 case Instruction::FCmp: { 2610 // compare returning Int1Ty or vector of Int1Ty 2611 Code = bitc::FUNC_CODE_INST_CMP2; 2612 pushValueAndType(I.getOperand(0), InstID, Vals); 2613 pushValue(I.getOperand(1), InstID, Vals); 2614 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2615 uint64_t Flags = getOptimizationFlags(&I); 2616 if (Flags != 0) 2617 Vals.push_back(Flags); 2618 break; 2619 } 2620 2621 case Instruction::Ret: 2622 { 2623 Code = bitc::FUNC_CODE_INST_RET; 2624 unsigned NumOperands = I.getNumOperands(); 2625 if (NumOperands == 0) 2626 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2627 else if (NumOperands == 1) { 2628 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2629 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2630 } else { 2631 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2632 pushValueAndType(I.getOperand(i), InstID, Vals); 2633 } 2634 } 2635 break; 2636 case Instruction::Br: 2637 { 2638 Code = bitc::FUNC_CODE_INST_BR; 2639 const BranchInst &II = cast<BranchInst>(I); 2640 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2641 if (II.isConditional()) { 2642 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2643 pushValue(II.getCondition(), InstID, Vals); 2644 } 2645 } 2646 break; 2647 case Instruction::Switch: 2648 { 2649 Code = bitc::FUNC_CODE_INST_SWITCH; 2650 const SwitchInst &SI = cast<SwitchInst>(I); 2651 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2652 pushValue(SI.getCondition(), InstID, Vals); 2653 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2654 for (auto Case : SI.cases()) { 2655 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2656 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2657 } 2658 } 2659 break; 2660 case Instruction::IndirectBr: 2661 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2662 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2663 // Encode the address operand as relative, but not the basic blocks. 2664 pushValue(I.getOperand(0), InstID, Vals); 2665 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2666 Vals.push_back(VE.getValueID(I.getOperand(i))); 2667 break; 2668 2669 case Instruction::Invoke: { 2670 const InvokeInst *II = cast<InvokeInst>(&I); 2671 const Value *Callee = II->getCalledValue(); 2672 FunctionType *FTy = II->getFunctionType(); 2673 2674 if (II->hasOperandBundles()) 2675 writeOperandBundles(II, InstID); 2676 2677 Code = bitc::FUNC_CODE_INST_INVOKE; 2678 2679 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2680 Vals.push_back(II->getCallingConv() | 1 << 13); 2681 Vals.push_back(VE.getValueID(II->getNormalDest())); 2682 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2683 Vals.push_back(VE.getTypeID(FTy)); 2684 pushValueAndType(Callee, InstID, Vals); 2685 2686 // Emit value #'s for the fixed parameters. 2687 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2688 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2689 2690 // Emit type/value pairs for varargs params. 2691 if (FTy->isVarArg()) { 2692 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2693 i != e; ++i) 2694 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2695 } 2696 break; 2697 } 2698 case Instruction::Resume: 2699 Code = bitc::FUNC_CODE_INST_RESUME; 2700 pushValueAndType(I.getOperand(0), InstID, Vals); 2701 break; 2702 case Instruction::CleanupRet: { 2703 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2704 const auto &CRI = cast<CleanupReturnInst>(I); 2705 pushValue(CRI.getCleanupPad(), InstID, Vals); 2706 if (CRI.hasUnwindDest()) 2707 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2708 break; 2709 } 2710 case Instruction::CatchRet: { 2711 Code = bitc::FUNC_CODE_INST_CATCHRET; 2712 const auto &CRI = cast<CatchReturnInst>(I); 2713 pushValue(CRI.getCatchPad(), InstID, Vals); 2714 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2715 break; 2716 } 2717 case Instruction::CleanupPad: 2718 case Instruction::CatchPad: { 2719 const auto &FuncletPad = cast<FuncletPadInst>(I); 2720 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2721 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2722 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2723 2724 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2725 Vals.push_back(NumArgOperands); 2726 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2727 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2728 break; 2729 } 2730 case Instruction::CatchSwitch: { 2731 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2732 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2733 2734 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2735 2736 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2737 Vals.push_back(NumHandlers); 2738 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2739 Vals.push_back(VE.getValueID(CatchPadBB)); 2740 2741 if (CatchSwitch.hasUnwindDest()) 2742 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2743 break; 2744 } 2745 case Instruction::Unreachable: 2746 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2747 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2748 break; 2749 2750 case Instruction::PHI: { 2751 const PHINode &PN = cast<PHINode>(I); 2752 Code = bitc::FUNC_CODE_INST_PHI; 2753 // With the newer instruction encoding, forward references could give 2754 // negative valued IDs. This is most common for PHIs, so we use 2755 // signed VBRs. 2756 SmallVector<uint64_t, 128> Vals64; 2757 Vals64.push_back(VE.getTypeID(PN.getType())); 2758 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2759 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2760 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2761 } 2762 // Emit a Vals64 vector and exit. 2763 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2764 Vals64.clear(); 2765 return; 2766 } 2767 2768 case Instruction::LandingPad: { 2769 const LandingPadInst &LP = cast<LandingPadInst>(I); 2770 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2771 Vals.push_back(VE.getTypeID(LP.getType())); 2772 Vals.push_back(LP.isCleanup()); 2773 Vals.push_back(LP.getNumClauses()); 2774 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2775 if (LP.isCatch(I)) 2776 Vals.push_back(LandingPadInst::Catch); 2777 else 2778 Vals.push_back(LandingPadInst::Filter); 2779 pushValueAndType(LP.getClause(I), InstID, Vals); 2780 } 2781 break; 2782 } 2783 2784 case Instruction::Alloca: { 2785 Code = bitc::FUNC_CODE_INST_ALLOCA; 2786 const AllocaInst &AI = cast<AllocaInst>(I); 2787 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2788 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2789 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2790 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2791 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2792 "not enough bits for maximum alignment"); 2793 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2794 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2795 AlignRecord |= 1 << 6; 2796 AlignRecord |= AI.isSwiftError() << 7; 2797 Vals.push_back(AlignRecord); 2798 break; 2799 } 2800 2801 case Instruction::Load: 2802 if (cast<LoadInst>(I).isAtomic()) { 2803 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2804 pushValueAndType(I.getOperand(0), InstID, Vals); 2805 } else { 2806 Code = bitc::FUNC_CODE_INST_LOAD; 2807 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2808 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2809 } 2810 Vals.push_back(VE.getTypeID(I.getType())); 2811 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2812 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2813 if (cast<LoadInst>(I).isAtomic()) { 2814 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2815 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2816 } 2817 break; 2818 case Instruction::Store: 2819 if (cast<StoreInst>(I).isAtomic()) 2820 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2821 else 2822 Code = bitc::FUNC_CODE_INST_STORE; 2823 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2824 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2825 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2826 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2827 if (cast<StoreInst>(I).isAtomic()) { 2828 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2829 Vals.push_back( 2830 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2831 } 2832 break; 2833 case Instruction::AtomicCmpXchg: 2834 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2835 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2836 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2837 pushValue(I.getOperand(2), InstID, Vals); // newval. 2838 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2839 Vals.push_back( 2840 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2841 Vals.push_back( 2842 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2843 Vals.push_back( 2844 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2845 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2846 break; 2847 case Instruction::AtomicRMW: 2848 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2849 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2850 pushValue(I.getOperand(1), InstID, Vals); // val. 2851 Vals.push_back( 2852 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2853 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2854 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2855 Vals.push_back( 2856 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2857 break; 2858 case Instruction::Fence: 2859 Code = bitc::FUNC_CODE_INST_FENCE; 2860 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2861 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2862 break; 2863 case Instruction::Call: { 2864 const CallInst &CI = cast<CallInst>(I); 2865 FunctionType *FTy = CI.getFunctionType(); 2866 2867 if (CI.hasOperandBundles()) 2868 writeOperandBundles(&CI, InstID); 2869 2870 Code = bitc::FUNC_CODE_INST_CALL; 2871 2872 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2873 2874 unsigned Flags = getOptimizationFlags(&I); 2875 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2876 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2877 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2878 1 << bitc::CALL_EXPLICIT_TYPE | 2879 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2880 unsigned(Flags != 0) << bitc::CALL_FMF); 2881 if (Flags != 0) 2882 Vals.push_back(Flags); 2883 2884 Vals.push_back(VE.getTypeID(FTy)); 2885 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2886 2887 // Emit value #'s for the fixed parameters. 2888 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2889 // Check for labels (can happen with asm labels). 2890 if (FTy->getParamType(i)->isLabelTy()) 2891 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2892 else 2893 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2894 } 2895 2896 // Emit type/value pairs for varargs params. 2897 if (FTy->isVarArg()) { 2898 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2899 i != e; ++i) 2900 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2901 } 2902 break; 2903 } 2904 case Instruction::VAArg: 2905 Code = bitc::FUNC_CODE_INST_VAARG; 2906 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2907 pushValue(I.getOperand(0), InstID, Vals); // valist. 2908 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2909 break; 2910 } 2911 2912 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2913 Vals.clear(); 2914 } 2915 2916 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2917 /// to allow clients to efficiently find the function body. 2918 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2919 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2920 // Get the offset of the VST we are writing, and backpatch it into 2921 // the VST forward declaration record. 2922 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2923 // The BitcodeStartBit was the stream offset of the identification block. 2924 VSTOffset -= bitcodeStartBit(); 2925 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2926 // Note that we add 1 here because the offset is relative to one word 2927 // before the start of the identification block, which was historically 2928 // always the start of the regular bitcode header. 2929 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2930 2931 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2932 2933 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2934 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2937 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2938 2939 for (const Function &F : M) { 2940 uint64_t Record[2]; 2941 2942 if (F.isDeclaration()) 2943 continue; 2944 2945 Record[0] = VE.getValueID(&F); 2946 2947 // Save the word offset of the function (from the start of the 2948 // actual bitcode written to the stream). 2949 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2950 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2951 // Note that we add 1 here because the offset is relative to one word 2952 // before the start of the identification block, which was historically 2953 // always the start of the regular bitcode header. 2954 Record[1] = BitcodeIndex / 32 + 1; 2955 2956 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2957 } 2958 2959 Stream.ExitBlock(); 2960 } 2961 2962 /// Emit names for arguments, instructions and basic blocks in a function. 2963 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2964 const ValueSymbolTable &VST) { 2965 if (VST.empty()) 2966 return; 2967 2968 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2969 2970 // FIXME: Set up the abbrev, we know how many values there are! 2971 // FIXME: We know if the type names can use 7-bit ascii. 2972 SmallVector<uint64_t, 64> NameVals; 2973 2974 for (const ValueName &Name : VST) { 2975 // Figure out the encoding to use for the name. 2976 StringEncoding Bits = getStringEncoding(Name.getKey()); 2977 2978 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2979 NameVals.push_back(VE.getValueID(Name.getValue())); 2980 2981 // VST_CODE_ENTRY: [valueid, namechar x N] 2982 // VST_CODE_BBENTRY: [bbid, namechar x N] 2983 unsigned Code; 2984 if (isa<BasicBlock>(Name.getValue())) { 2985 Code = bitc::VST_CODE_BBENTRY; 2986 if (Bits == SE_Char6) 2987 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2988 } else { 2989 Code = bitc::VST_CODE_ENTRY; 2990 if (Bits == SE_Char6) 2991 AbbrevToUse = VST_ENTRY_6_ABBREV; 2992 else if (Bits == SE_Fixed7) 2993 AbbrevToUse = VST_ENTRY_7_ABBREV; 2994 } 2995 2996 for (const auto P : Name.getKey()) 2997 NameVals.push_back((unsigned char)P); 2998 2999 // Emit the finished record. 3000 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3001 NameVals.clear(); 3002 } 3003 3004 Stream.ExitBlock(); 3005 } 3006 3007 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3008 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3009 unsigned Code; 3010 if (isa<BasicBlock>(Order.V)) 3011 Code = bitc::USELIST_CODE_BB; 3012 else 3013 Code = bitc::USELIST_CODE_DEFAULT; 3014 3015 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3016 Record.push_back(VE.getValueID(Order.V)); 3017 Stream.EmitRecord(Code, Record); 3018 } 3019 3020 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3021 assert(VE.shouldPreserveUseListOrder() && 3022 "Expected to be preserving use-list order"); 3023 3024 auto hasMore = [&]() { 3025 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3026 }; 3027 if (!hasMore()) 3028 // Nothing to do. 3029 return; 3030 3031 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3032 while (hasMore()) { 3033 writeUseList(std::move(VE.UseListOrders.back())); 3034 VE.UseListOrders.pop_back(); 3035 } 3036 Stream.ExitBlock(); 3037 } 3038 3039 /// Emit a function body to the module stream. 3040 void ModuleBitcodeWriter::writeFunction( 3041 const Function &F, 3042 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3043 // Save the bitcode index of the start of this function block for recording 3044 // in the VST. 3045 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3046 3047 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3048 VE.incorporateFunction(F); 3049 3050 SmallVector<unsigned, 64> Vals; 3051 3052 // Emit the number of basic blocks, so the reader can create them ahead of 3053 // time. 3054 Vals.push_back(VE.getBasicBlocks().size()); 3055 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3056 Vals.clear(); 3057 3058 // If there are function-local constants, emit them now. 3059 unsigned CstStart, CstEnd; 3060 VE.getFunctionConstantRange(CstStart, CstEnd); 3061 writeConstants(CstStart, CstEnd, false); 3062 3063 // If there is function-local metadata, emit it now. 3064 writeFunctionMetadata(F); 3065 3066 // Keep a running idea of what the instruction ID is. 3067 unsigned InstID = CstEnd; 3068 3069 bool NeedsMetadataAttachment = F.hasMetadata(); 3070 3071 DILocation *LastDL = nullptr; 3072 // Finally, emit all the instructions, in order. 3073 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3074 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3075 I != E; ++I) { 3076 writeInstruction(*I, InstID, Vals); 3077 3078 if (!I->getType()->isVoidTy()) 3079 ++InstID; 3080 3081 // If the instruction has metadata, write a metadata attachment later. 3082 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3083 3084 // If the instruction has a debug location, emit it. 3085 DILocation *DL = I->getDebugLoc(); 3086 if (!DL) 3087 continue; 3088 3089 if (DL == LastDL) { 3090 // Just repeat the same debug loc as last time. 3091 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3092 continue; 3093 } 3094 3095 Vals.push_back(DL->getLine()); 3096 Vals.push_back(DL->getColumn()); 3097 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3098 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3099 Vals.push_back(DL->isImplicitCode()); 3100 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3101 Vals.clear(); 3102 3103 LastDL = DL; 3104 } 3105 3106 // Emit names for all the instructions etc. 3107 if (auto *Symtab = F.getValueSymbolTable()) 3108 writeFunctionLevelValueSymbolTable(*Symtab); 3109 3110 if (NeedsMetadataAttachment) 3111 writeFunctionMetadataAttachment(F); 3112 if (VE.shouldPreserveUseListOrder()) 3113 writeUseListBlock(&F); 3114 VE.purgeFunction(); 3115 Stream.ExitBlock(); 3116 } 3117 3118 // Emit blockinfo, which defines the standard abbreviations etc. 3119 void ModuleBitcodeWriter::writeBlockInfo() { 3120 // We only want to emit block info records for blocks that have multiple 3121 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3122 // Other blocks can define their abbrevs inline. 3123 Stream.EnterBlockInfoBlock(); 3124 3125 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3126 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3131 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3132 VST_ENTRY_8_ABBREV) 3133 llvm_unreachable("Unexpected abbrev ordering!"); 3134 } 3135 3136 { // 7-bit fixed width VST_CODE_ENTRY strings. 3137 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3138 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3142 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3143 VST_ENTRY_7_ABBREV) 3144 llvm_unreachable("Unexpected abbrev ordering!"); 3145 } 3146 { // 6-bit char6 VST_CODE_ENTRY strings. 3147 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3148 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3152 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3153 VST_ENTRY_6_ABBREV) 3154 llvm_unreachable("Unexpected abbrev ordering!"); 3155 } 3156 { // 6-bit char6 VST_CODE_BBENTRY strings. 3157 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3158 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3162 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3163 VST_BBENTRY_6_ABBREV) 3164 llvm_unreachable("Unexpected abbrev ordering!"); 3165 } 3166 3167 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3168 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3169 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3171 VE.computeBitsRequiredForTypeIndicies())); 3172 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3173 CONSTANTS_SETTYPE_ABBREV) 3174 llvm_unreachable("Unexpected abbrev ordering!"); 3175 } 3176 3177 { // INTEGER abbrev for CONSTANTS_BLOCK. 3178 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3179 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3181 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3182 CONSTANTS_INTEGER_ABBREV) 3183 llvm_unreachable("Unexpected abbrev ordering!"); 3184 } 3185 3186 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3187 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3188 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3191 VE.computeBitsRequiredForTypeIndicies())); 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3193 3194 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3195 CONSTANTS_CE_CAST_Abbrev) 3196 llvm_unreachable("Unexpected abbrev ordering!"); 3197 } 3198 { // NULL abbrev for CONSTANTS_BLOCK. 3199 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3200 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3201 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3202 CONSTANTS_NULL_Abbrev) 3203 llvm_unreachable("Unexpected abbrev ordering!"); 3204 } 3205 3206 // FIXME: This should only use space for first class types! 3207 3208 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3209 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3210 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3213 VE.computeBitsRequiredForTypeIndicies())); 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3216 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3217 FUNCTION_INST_LOAD_ABBREV) 3218 llvm_unreachable("Unexpected abbrev ordering!"); 3219 } 3220 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3221 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3222 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3226 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3227 FUNCTION_INST_BINOP_ABBREV) 3228 llvm_unreachable("Unexpected abbrev ordering!"); 3229 } 3230 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3231 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3232 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3237 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3238 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3239 llvm_unreachable("Unexpected abbrev ordering!"); 3240 } 3241 { // INST_CAST abbrev for FUNCTION_BLOCK. 3242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3243 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3246 VE.computeBitsRequiredForTypeIndicies())); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3248 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3249 FUNCTION_INST_CAST_ABBREV) 3250 llvm_unreachable("Unexpected abbrev ordering!"); 3251 } 3252 3253 { // INST_RET abbrev for FUNCTION_BLOCK. 3254 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3255 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3256 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3257 FUNCTION_INST_RET_VOID_ABBREV) 3258 llvm_unreachable("Unexpected abbrev ordering!"); 3259 } 3260 { // INST_RET abbrev for FUNCTION_BLOCK. 3261 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3262 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3264 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3265 FUNCTION_INST_RET_VAL_ABBREV) 3266 llvm_unreachable("Unexpected abbrev ordering!"); 3267 } 3268 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3269 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3270 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3271 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3272 FUNCTION_INST_UNREACHABLE_ABBREV) 3273 llvm_unreachable("Unexpected abbrev ordering!"); 3274 } 3275 { 3276 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3277 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3280 Log2_32_Ceil(VE.getTypes().size() + 1))); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3283 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3284 FUNCTION_INST_GEP_ABBREV) 3285 llvm_unreachable("Unexpected abbrev ordering!"); 3286 } 3287 3288 Stream.ExitBlock(); 3289 } 3290 3291 /// Write the module path strings, currently only used when generating 3292 /// a combined index file. 3293 void IndexBitcodeWriter::writeModStrings() { 3294 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3295 3296 // TODO: See which abbrev sizes we actually need to emit 3297 3298 // 8-bit fixed-width MST_ENTRY strings. 3299 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3300 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3304 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3305 3306 // 7-bit fixed width MST_ENTRY strings. 3307 Abbv = std::make_shared<BitCodeAbbrev>(); 3308 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3312 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3313 3314 // 6-bit char6 MST_ENTRY strings. 3315 Abbv = std::make_shared<BitCodeAbbrev>(); 3316 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3320 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3321 3322 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3323 Abbv = std::make_shared<BitCodeAbbrev>(); 3324 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3330 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3331 3332 SmallVector<unsigned, 64> Vals; 3333 forEachModule( 3334 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3335 StringRef Key = MPSE.getKey(); 3336 const auto &Value = MPSE.getValue(); 3337 StringEncoding Bits = getStringEncoding(Key); 3338 unsigned AbbrevToUse = Abbrev8Bit; 3339 if (Bits == SE_Char6) 3340 AbbrevToUse = Abbrev6Bit; 3341 else if (Bits == SE_Fixed7) 3342 AbbrevToUse = Abbrev7Bit; 3343 3344 Vals.push_back(Value.first); 3345 Vals.append(Key.begin(), Key.end()); 3346 3347 // Emit the finished record. 3348 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3349 3350 // Emit an optional hash for the module now 3351 const auto &Hash = Value.second; 3352 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3353 Vals.assign(Hash.begin(), Hash.end()); 3354 // Emit the hash record. 3355 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3356 } 3357 3358 Vals.clear(); 3359 }); 3360 Stream.ExitBlock(); 3361 } 3362 3363 /// Write the function type metadata related records that need to appear before 3364 /// a function summary entry (whether per-module or combined). 3365 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3366 FunctionSummary *FS) { 3367 if (!FS->type_tests().empty()) 3368 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3369 3370 SmallVector<uint64_t, 64> Record; 3371 3372 auto WriteVFuncIdVec = [&](uint64_t Ty, 3373 ArrayRef<FunctionSummary::VFuncId> VFs) { 3374 if (VFs.empty()) 3375 return; 3376 Record.clear(); 3377 for (auto &VF : VFs) { 3378 Record.push_back(VF.GUID); 3379 Record.push_back(VF.Offset); 3380 } 3381 Stream.EmitRecord(Ty, Record); 3382 }; 3383 3384 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3385 FS->type_test_assume_vcalls()); 3386 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3387 FS->type_checked_load_vcalls()); 3388 3389 auto WriteConstVCallVec = [&](uint64_t Ty, 3390 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3391 for (auto &VC : VCs) { 3392 Record.clear(); 3393 Record.push_back(VC.VFunc.GUID); 3394 Record.push_back(VC.VFunc.Offset); 3395 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3396 Stream.EmitRecord(Ty, Record); 3397 } 3398 }; 3399 3400 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3401 FS->type_test_assume_const_vcalls()); 3402 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3403 FS->type_checked_load_const_vcalls()); 3404 } 3405 3406 /// Collect type IDs from type tests used by function. 3407 static void 3408 getReferencedTypeIds(FunctionSummary *FS, 3409 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3410 if (!FS->type_tests().empty()) 3411 for (auto &TT : FS->type_tests()) 3412 ReferencedTypeIds.insert(TT); 3413 3414 auto GetReferencedTypesFromVFuncIdVec = 3415 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3416 for (auto &VF : VFs) 3417 ReferencedTypeIds.insert(VF.GUID); 3418 }; 3419 3420 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3421 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3422 3423 auto GetReferencedTypesFromConstVCallVec = 3424 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3425 for (auto &VC : VCs) 3426 ReferencedTypeIds.insert(VC.VFunc.GUID); 3427 }; 3428 3429 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3430 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3431 } 3432 3433 static void writeWholeProgramDevirtResolutionByArg( 3434 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3435 const WholeProgramDevirtResolution::ByArg &ByArg) { 3436 NameVals.push_back(args.size()); 3437 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3438 3439 NameVals.push_back(ByArg.TheKind); 3440 NameVals.push_back(ByArg.Info); 3441 NameVals.push_back(ByArg.Byte); 3442 NameVals.push_back(ByArg.Bit); 3443 } 3444 3445 static void writeWholeProgramDevirtResolution( 3446 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3447 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3448 NameVals.push_back(Id); 3449 3450 NameVals.push_back(Wpd.TheKind); 3451 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3452 NameVals.push_back(Wpd.SingleImplName.size()); 3453 3454 NameVals.push_back(Wpd.ResByArg.size()); 3455 for (auto &A : Wpd.ResByArg) 3456 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3457 } 3458 3459 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3460 StringTableBuilder &StrtabBuilder, 3461 const std::string &Id, 3462 const TypeIdSummary &Summary) { 3463 NameVals.push_back(StrtabBuilder.add(Id)); 3464 NameVals.push_back(Id.size()); 3465 3466 NameVals.push_back(Summary.TTRes.TheKind); 3467 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3468 NameVals.push_back(Summary.TTRes.AlignLog2); 3469 NameVals.push_back(Summary.TTRes.SizeM1); 3470 NameVals.push_back(Summary.TTRes.BitMask); 3471 NameVals.push_back(Summary.TTRes.InlineBits); 3472 3473 for (auto &W : Summary.WPDRes) 3474 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3475 W.second); 3476 } 3477 3478 // Helper to emit a single function summary record. 3479 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3480 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3481 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3482 const Function &F) { 3483 NameVals.push_back(ValueID); 3484 3485 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3486 writeFunctionTypeMetadataRecords(Stream, FS); 3487 3488 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3489 NameVals.push_back(FS->instCount()); 3490 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3491 NameVals.push_back(FS->refs().size()); 3492 3493 for (auto &RI : FS->refs()) 3494 NameVals.push_back(VE.getValueID(RI.getValue())); 3495 3496 bool HasProfileData = 3497 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3498 for (auto &ECI : FS->calls()) { 3499 NameVals.push_back(getValueId(ECI.first)); 3500 if (HasProfileData) 3501 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3502 else if (WriteRelBFToSummary) 3503 NameVals.push_back(ECI.second.RelBlockFreq); 3504 } 3505 3506 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3507 unsigned Code = 3508 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3509 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3510 : bitc::FS_PERMODULE)); 3511 3512 // Emit the finished record. 3513 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3514 NameVals.clear(); 3515 } 3516 3517 // Collect the global value references in the given variable's initializer, 3518 // and emit them in a summary record. 3519 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3520 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3521 unsigned FSModRefsAbbrev) { 3522 auto VI = Index->getValueInfo(V.getGUID()); 3523 if (!VI || VI.getSummaryList().empty()) { 3524 // Only declarations should not have a summary (a declaration might however 3525 // have a summary if the def was in module level asm). 3526 assert(V.isDeclaration()); 3527 return; 3528 } 3529 auto *Summary = VI.getSummaryList()[0].get(); 3530 NameVals.push_back(VE.getValueID(&V)); 3531 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3532 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3533 3534 unsigned SizeBeforeRefs = NameVals.size(); 3535 for (auto &RI : VS->refs()) 3536 NameVals.push_back(VE.getValueID(RI.getValue())); 3537 // Sort the refs for determinism output, the vector returned by FS->refs() has 3538 // been initialized from a DenseSet. 3539 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3540 3541 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3542 FSModRefsAbbrev); 3543 NameVals.clear(); 3544 } 3545 3546 // Current version for the summary. 3547 // This is bumped whenever we introduce changes in the way some record are 3548 // interpreted, like flags for instance. 3549 static const uint64_t INDEX_VERSION = 4; 3550 3551 /// Emit the per-module summary section alongside the rest of 3552 /// the module's bitcode. 3553 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3554 // By default we compile with ThinLTO if the module has a summary, but the 3555 // client can request full LTO with a module flag. 3556 bool IsThinLTO = true; 3557 if (auto *MD = 3558 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3559 IsThinLTO = MD->getZExtValue(); 3560 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3561 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3562 4); 3563 3564 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3565 3566 if (Index->begin() == Index->end()) { 3567 Stream.ExitBlock(); 3568 return; 3569 } 3570 3571 for (const auto &GVI : valueIds()) { 3572 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3573 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3574 } 3575 3576 // Abbrev for FS_PERMODULE_PROFILE. 3577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3584 // numrefs x valueid, n x (valueid, hotness) 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3587 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3588 3589 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3590 Abbv = std::make_shared<BitCodeAbbrev>(); 3591 if (WriteRelBFToSummary) 3592 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3593 else 3594 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3600 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3603 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3604 3605 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3606 Abbv = std::make_shared<BitCodeAbbrev>(); 3607 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3612 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3613 3614 // Abbrev for FS_ALIAS. 3615 Abbv = std::make_shared<BitCodeAbbrev>(); 3616 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3620 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3621 3622 SmallVector<uint64_t, 64> NameVals; 3623 // Iterate over the list of functions instead of the Index to 3624 // ensure the ordering is stable. 3625 for (const Function &F : M) { 3626 // Summary emission does not support anonymous functions, they have to 3627 // renamed using the anonymous function renaming pass. 3628 if (!F.hasName()) 3629 report_fatal_error("Unexpected anonymous function when writing summary"); 3630 3631 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3632 if (!VI || VI.getSummaryList().empty()) { 3633 // Only declarations should not have a summary (a declaration might 3634 // however have a summary if the def was in module level asm). 3635 assert(F.isDeclaration()); 3636 continue; 3637 } 3638 auto *Summary = VI.getSummaryList()[0].get(); 3639 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3640 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3641 } 3642 3643 // Capture references from GlobalVariable initializers, which are outside 3644 // of a function scope. 3645 for (const GlobalVariable &G : M.globals()) 3646 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3647 3648 for (const GlobalAlias &A : M.aliases()) { 3649 auto *Aliasee = A.getBaseObject(); 3650 if (!Aliasee->hasName()) 3651 // Nameless function don't have an entry in the summary, skip it. 3652 continue; 3653 auto AliasId = VE.getValueID(&A); 3654 auto AliaseeId = VE.getValueID(Aliasee); 3655 NameVals.push_back(AliasId); 3656 auto *Summary = Index->getGlobalValueSummary(A); 3657 AliasSummary *AS = cast<AliasSummary>(Summary); 3658 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3659 NameVals.push_back(AliaseeId); 3660 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3661 NameVals.clear(); 3662 } 3663 3664 Stream.ExitBlock(); 3665 } 3666 3667 /// Emit the combined summary section into the combined index file. 3668 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3669 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3670 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3671 3672 // Write the index flags. 3673 uint64_t Flags = 0; 3674 if (Index.withGlobalValueDeadStripping()) 3675 Flags |= 0x1; 3676 if (Index.skipModuleByDistributedBackend()) 3677 Flags |= 0x2; 3678 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3679 3680 for (const auto &GVI : valueIds()) { 3681 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3682 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3683 } 3684 3685 // Abbrev for FS_COMBINED. 3686 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3687 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3694 // numrefs x valueid, n x (valueid) 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3697 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3698 3699 // Abbrev for FS_COMBINED_PROFILE. 3700 Abbv = std::make_shared<BitCodeAbbrev>(); 3701 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3708 // numrefs x valueid, n x (valueid, hotness) 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3711 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3712 3713 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3714 Abbv = std::make_shared<BitCodeAbbrev>(); 3715 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3721 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3722 3723 // Abbrev for FS_COMBINED_ALIAS. 3724 Abbv = std::make_shared<BitCodeAbbrev>(); 3725 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3730 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3731 3732 // The aliases are emitted as a post-pass, and will point to the value 3733 // id of the aliasee. Save them in a vector for post-processing. 3734 SmallVector<AliasSummary *, 64> Aliases; 3735 3736 // Save the value id for each summary for alias emission. 3737 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3738 3739 SmallVector<uint64_t, 64> NameVals; 3740 3741 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3742 // with the type ids referenced by this index file. 3743 std::set<GlobalValue::GUID> ReferencedTypeIds; 3744 3745 // For local linkage, we also emit the original name separately 3746 // immediately after the record. 3747 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3748 if (!GlobalValue::isLocalLinkage(S.linkage())) 3749 return; 3750 NameVals.push_back(S.getOriginalName()); 3751 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3752 NameVals.clear(); 3753 }; 3754 3755 forEachSummary([&](GVInfo I, bool IsAliasee) { 3756 GlobalValueSummary *S = I.second; 3757 assert(S); 3758 3759 auto ValueId = getValueId(I.first); 3760 assert(ValueId); 3761 SummaryToValueIdMap[S] = *ValueId; 3762 3763 // If this is invoked for an aliasee, we want to record the above 3764 // mapping, but then not emit a summary entry (if the aliasee is 3765 // to be imported, we will invoke this separately with IsAliasee=false). 3766 if (IsAliasee) 3767 return; 3768 3769 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3770 // Will process aliases as a post-pass because the reader wants all 3771 // global to be loaded first. 3772 Aliases.push_back(AS); 3773 return; 3774 } 3775 3776 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3777 NameVals.push_back(*ValueId); 3778 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3779 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3780 for (auto &RI : VS->refs()) { 3781 auto RefValueId = getValueId(RI.getGUID()); 3782 if (!RefValueId) 3783 continue; 3784 NameVals.push_back(*RefValueId); 3785 } 3786 3787 // Emit the finished record. 3788 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3789 FSModRefsAbbrev); 3790 NameVals.clear(); 3791 MaybeEmitOriginalName(*S); 3792 return; 3793 } 3794 3795 auto *FS = cast<FunctionSummary>(S); 3796 writeFunctionTypeMetadataRecords(Stream, FS); 3797 getReferencedTypeIds(FS, ReferencedTypeIds); 3798 3799 NameVals.push_back(*ValueId); 3800 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3801 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3802 NameVals.push_back(FS->instCount()); 3803 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3804 // Fill in below 3805 NameVals.push_back(0); 3806 3807 unsigned Count = 0; 3808 for (auto &RI : FS->refs()) { 3809 auto RefValueId = getValueId(RI.getGUID()); 3810 if (!RefValueId) 3811 continue; 3812 NameVals.push_back(*RefValueId); 3813 Count++; 3814 } 3815 NameVals[5] = Count; 3816 3817 bool HasProfileData = false; 3818 for (auto &EI : FS->calls()) { 3819 HasProfileData |= 3820 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3821 if (HasProfileData) 3822 break; 3823 } 3824 3825 for (auto &EI : FS->calls()) { 3826 // If this GUID doesn't have a value id, it doesn't have a function 3827 // summary and we don't need to record any calls to it. 3828 GlobalValue::GUID GUID = EI.first.getGUID(); 3829 auto CallValueId = getValueId(GUID); 3830 if (!CallValueId) { 3831 // For SamplePGO, the indirect call targets for local functions will 3832 // have its original name annotated in profile. We try to find the 3833 // corresponding PGOFuncName as the GUID. 3834 GUID = Index.getGUIDFromOriginalID(GUID); 3835 if (GUID == 0) 3836 continue; 3837 CallValueId = getValueId(GUID); 3838 if (!CallValueId) 3839 continue; 3840 // The mapping from OriginalId to GUID may return a GUID 3841 // that corresponds to a static variable. Filter it out here. 3842 // This can happen when 3843 // 1) There is a call to a library function which does not have 3844 // a CallValidId; 3845 // 2) There is a static variable with the OriginalGUID identical 3846 // to the GUID of the library function in 1); 3847 // When this happens, the logic for SamplePGO kicks in and 3848 // the static variable in 2) will be found, which needs to be 3849 // filtered out. 3850 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3851 if (GVSum && 3852 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3853 continue; 3854 } 3855 NameVals.push_back(*CallValueId); 3856 if (HasProfileData) 3857 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3858 } 3859 3860 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3861 unsigned Code = 3862 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3863 3864 // Emit the finished record. 3865 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3866 NameVals.clear(); 3867 MaybeEmitOriginalName(*S); 3868 }); 3869 3870 for (auto *AS : Aliases) { 3871 auto AliasValueId = SummaryToValueIdMap[AS]; 3872 assert(AliasValueId); 3873 NameVals.push_back(AliasValueId); 3874 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3875 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3876 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3877 assert(AliaseeValueId); 3878 NameVals.push_back(AliaseeValueId); 3879 3880 // Emit the finished record. 3881 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3882 NameVals.clear(); 3883 MaybeEmitOriginalName(*AS); 3884 3885 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 3886 getReferencedTypeIds(FS, ReferencedTypeIds); 3887 } 3888 3889 if (!Index.cfiFunctionDefs().empty()) { 3890 for (auto &S : Index.cfiFunctionDefs()) { 3891 NameVals.push_back(StrtabBuilder.add(S)); 3892 NameVals.push_back(S.size()); 3893 } 3894 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3895 NameVals.clear(); 3896 } 3897 3898 if (!Index.cfiFunctionDecls().empty()) { 3899 for (auto &S : Index.cfiFunctionDecls()) { 3900 NameVals.push_back(StrtabBuilder.add(S)); 3901 NameVals.push_back(S.size()); 3902 } 3903 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3904 NameVals.clear(); 3905 } 3906 3907 // Walk the GUIDs that were referenced, and write the 3908 // corresponding type id records. 3909 for (auto &T : ReferencedTypeIds) { 3910 auto TidIter = Index.typeIds().equal_range(T); 3911 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3912 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 3913 It->second.second); 3914 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 3915 NameVals.clear(); 3916 } 3917 } 3918 3919 Stream.ExitBlock(); 3920 } 3921 3922 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3923 /// current llvm version, and a record for the epoch number. 3924 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3925 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3926 3927 // Write the "user readable" string identifying the bitcode producer 3928 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3929 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3932 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3933 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3934 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3935 3936 // Write the epoch version 3937 Abbv = std::make_shared<BitCodeAbbrev>(); 3938 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3940 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3941 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3942 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3943 Stream.ExitBlock(); 3944 } 3945 3946 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3947 // Emit the module's hash. 3948 // MODULE_CODE_HASH: [5*i32] 3949 if (GenerateHash) { 3950 uint32_t Vals[5]; 3951 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3952 Buffer.size() - BlockStartPos)); 3953 StringRef Hash = Hasher.result(); 3954 for (int Pos = 0; Pos < 20; Pos += 4) { 3955 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3956 } 3957 3958 // Emit the finished record. 3959 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3960 3961 if (ModHash) 3962 // Save the written hash value. 3963 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3964 } 3965 } 3966 3967 void ModuleBitcodeWriter::write() { 3968 writeIdentificationBlock(Stream); 3969 3970 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3971 size_t BlockStartPos = Buffer.size(); 3972 3973 writeModuleVersion(); 3974 3975 // Emit blockinfo, which defines the standard abbreviations etc. 3976 writeBlockInfo(); 3977 3978 // Emit information about attribute groups. 3979 writeAttributeGroupTable(); 3980 3981 // Emit information about parameter attributes. 3982 writeAttributeTable(); 3983 3984 // Emit information describing all of the types in the module. 3985 writeTypeTable(); 3986 3987 writeComdats(); 3988 3989 // Emit top-level description of module, including target triple, inline asm, 3990 // descriptors for global variables, and function prototype info. 3991 writeModuleInfo(); 3992 3993 // Emit constants. 3994 writeModuleConstants(); 3995 3996 // Emit metadata kind names. 3997 writeModuleMetadataKinds(); 3998 3999 // Emit metadata. 4000 writeModuleMetadata(); 4001 4002 // Emit module-level use-lists. 4003 if (VE.shouldPreserveUseListOrder()) 4004 writeUseListBlock(nullptr); 4005 4006 writeOperandBundleTags(); 4007 writeSyncScopeNames(); 4008 4009 // Emit function bodies. 4010 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4011 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4012 if (!F->isDeclaration()) 4013 writeFunction(*F, FunctionToBitcodeIndex); 4014 4015 // Need to write after the above call to WriteFunction which populates 4016 // the summary information in the index. 4017 if (Index) 4018 writePerModuleGlobalValueSummary(); 4019 4020 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4021 4022 writeModuleHash(BlockStartPos); 4023 4024 Stream.ExitBlock(); 4025 } 4026 4027 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4028 uint32_t &Position) { 4029 support::endian::write32le(&Buffer[Position], Value); 4030 Position += 4; 4031 } 4032 4033 /// If generating a bc file on darwin, we have to emit a 4034 /// header and trailer to make it compatible with the system archiver. To do 4035 /// this we emit the following header, and then emit a trailer that pads the 4036 /// file out to be a multiple of 16 bytes. 4037 /// 4038 /// struct bc_header { 4039 /// uint32_t Magic; // 0x0B17C0DE 4040 /// uint32_t Version; // Version, currently always 0. 4041 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4042 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4043 /// uint32_t CPUType; // CPU specifier. 4044 /// ... potentially more later ... 4045 /// }; 4046 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4047 const Triple &TT) { 4048 unsigned CPUType = ~0U; 4049 4050 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4051 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4052 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4053 // specific constants here because they are implicitly part of the Darwin ABI. 4054 enum { 4055 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4056 DARWIN_CPU_TYPE_X86 = 7, 4057 DARWIN_CPU_TYPE_ARM = 12, 4058 DARWIN_CPU_TYPE_POWERPC = 18 4059 }; 4060 4061 Triple::ArchType Arch = TT.getArch(); 4062 if (Arch == Triple::x86_64) 4063 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4064 else if (Arch == Triple::x86) 4065 CPUType = DARWIN_CPU_TYPE_X86; 4066 else if (Arch == Triple::ppc) 4067 CPUType = DARWIN_CPU_TYPE_POWERPC; 4068 else if (Arch == Triple::ppc64) 4069 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4070 else if (Arch == Triple::arm || Arch == Triple::thumb) 4071 CPUType = DARWIN_CPU_TYPE_ARM; 4072 4073 // Traditional Bitcode starts after header. 4074 assert(Buffer.size() >= BWH_HeaderSize && 4075 "Expected header size to be reserved"); 4076 unsigned BCOffset = BWH_HeaderSize; 4077 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4078 4079 // Write the magic and version. 4080 unsigned Position = 0; 4081 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4082 writeInt32ToBuffer(0, Buffer, Position); // Version. 4083 writeInt32ToBuffer(BCOffset, Buffer, Position); 4084 writeInt32ToBuffer(BCSize, Buffer, Position); 4085 writeInt32ToBuffer(CPUType, Buffer, Position); 4086 4087 // If the file is not a multiple of 16 bytes, insert dummy padding. 4088 while (Buffer.size() & 15) 4089 Buffer.push_back(0); 4090 } 4091 4092 /// Helper to write the header common to all bitcode files. 4093 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4094 // Emit the file header. 4095 Stream.Emit((unsigned)'B', 8); 4096 Stream.Emit((unsigned)'C', 8); 4097 Stream.Emit(0x0, 4); 4098 Stream.Emit(0xC, 4); 4099 Stream.Emit(0xE, 4); 4100 Stream.Emit(0xD, 4); 4101 } 4102 4103 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4104 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4105 writeBitcodeHeader(*Stream); 4106 } 4107 4108 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4109 4110 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4111 Stream->EnterSubblock(Block, 3); 4112 4113 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4114 Abbv->Add(BitCodeAbbrevOp(Record)); 4115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4116 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4117 4118 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4119 4120 Stream->ExitBlock(); 4121 } 4122 4123 void BitcodeWriter::writeSymtab() { 4124 assert(!WroteStrtab && !WroteSymtab); 4125 4126 // If any module has module-level inline asm, we will require a registered asm 4127 // parser for the target so that we can create an accurate symbol table for 4128 // the module. 4129 for (Module *M : Mods) { 4130 if (M->getModuleInlineAsm().empty()) 4131 continue; 4132 4133 std::string Err; 4134 const Triple TT(M->getTargetTriple()); 4135 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4136 if (!T || !T->hasMCAsmParser()) 4137 return; 4138 } 4139 4140 WroteSymtab = true; 4141 SmallVector<char, 0> Symtab; 4142 // The irsymtab::build function may be unable to create a symbol table if the 4143 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4144 // table is not required for correctness, but we still want to be able to 4145 // write malformed modules to bitcode files, so swallow the error. 4146 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4147 consumeError(std::move(E)); 4148 return; 4149 } 4150 4151 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4152 {Symtab.data(), Symtab.size()}); 4153 } 4154 4155 void BitcodeWriter::writeStrtab() { 4156 assert(!WroteStrtab); 4157 4158 std::vector<char> Strtab; 4159 StrtabBuilder.finalizeInOrder(); 4160 Strtab.resize(StrtabBuilder.getSize()); 4161 StrtabBuilder.write((uint8_t *)Strtab.data()); 4162 4163 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4164 {Strtab.data(), Strtab.size()}); 4165 4166 WroteStrtab = true; 4167 } 4168 4169 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4170 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4171 WroteStrtab = true; 4172 } 4173 4174 void BitcodeWriter::writeModule(const Module &M, 4175 bool ShouldPreserveUseListOrder, 4176 const ModuleSummaryIndex *Index, 4177 bool GenerateHash, ModuleHash *ModHash) { 4178 assert(!WroteStrtab); 4179 4180 // The Mods vector is used by irsymtab::build, which requires non-const 4181 // Modules in case it needs to materialize metadata. But the bitcode writer 4182 // requires that the module is materialized, so we can cast to non-const here, 4183 // after checking that it is in fact materialized. 4184 assert(M.isMaterialized()); 4185 Mods.push_back(const_cast<Module *>(&M)); 4186 4187 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4188 ShouldPreserveUseListOrder, Index, 4189 GenerateHash, ModHash); 4190 ModuleWriter.write(); 4191 } 4192 4193 void BitcodeWriter::writeIndex( 4194 const ModuleSummaryIndex *Index, 4195 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4196 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4197 ModuleToSummariesForIndex); 4198 IndexWriter.write(); 4199 } 4200 4201 /// Write the specified module to the specified output stream. 4202 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4203 bool ShouldPreserveUseListOrder, 4204 const ModuleSummaryIndex *Index, 4205 bool GenerateHash, ModuleHash *ModHash) { 4206 SmallVector<char, 0> Buffer; 4207 Buffer.reserve(256*1024); 4208 4209 // If this is darwin or another generic macho target, reserve space for the 4210 // header. 4211 Triple TT(M.getTargetTriple()); 4212 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4213 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4214 4215 BitcodeWriter Writer(Buffer); 4216 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4217 ModHash); 4218 Writer.writeSymtab(); 4219 Writer.writeStrtab(); 4220 4221 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4222 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4223 4224 // Write the generated bitstream to "Out". 4225 Out.write((char*)&Buffer.front(), Buffer.size()); 4226 } 4227 4228 void IndexBitcodeWriter::write() { 4229 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4230 4231 writeModuleVersion(); 4232 4233 // Write the module paths in the combined index. 4234 writeModStrings(); 4235 4236 // Write the summary combined index records. 4237 writeCombinedGlobalValueSummary(); 4238 4239 Stream.ExitBlock(); 4240 } 4241 4242 // Write the specified module summary index to the given raw output stream, 4243 // where it will be written in a new bitcode block. This is used when 4244 // writing the combined index file for ThinLTO. When writing a subset of the 4245 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4246 void llvm::WriteIndexToFile( 4247 const ModuleSummaryIndex &Index, raw_ostream &Out, 4248 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4249 SmallVector<char, 0> Buffer; 4250 Buffer.reserve(256 * 1024); 4251 4252 BitcodeWriter Writer(Buffer); 4253 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4254 Writer.writeStrtab(); 4255 4256 Out.write((char *)&Buffer.front(), Buffer.size()); 4257 } 4258 4259 namespace { 4260 4261 /// Class to manage the bitcode writing for a thin link bitcode file. 4262 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4263 /// ModHash is for use in ThinLTO incremental build, generated while writing 4264 /// the module bitcode file. 4265 const ModuleHash *ModHash; 4266 4267 public: 4268 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4269 BitstreamWriter &Stream, 4270 const ModuleSummaryIndex &Index, 4271 const ModuleHash &ModHash) 4272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4273 /*ShouldPreserveUseListOrder=*/false, &Index), 4274 ModHash(&ModHash) {} 4275 4276 void write(); 4277 4278 private: 4279 void writeSimplifiedModuleInfo(); 4280 }; 4281 4282 } // end anonymous namespace 4283 4284 // This function writes a simpilified module info for thin link bitcode file. 4285 // It only contains the source file name along with the name(the offset and 4286 // size in strtab) and linkage for global values. For the global value info 4287 // entry, in order to keep linkage at offset 5, there are three zeros used 4288 // as padding. 4289 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4290 SmallVector<unsigned, 64> Vals; 4291 // Emit the module's source file name. 4292 { 4293 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4294 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4295 if (Bits == SE_Char6) 4296 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4297 else if (Bits == SE_Fixed7) 4298 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4299 4300 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4301 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4302 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4304 Abbv->Add(AbbrevOpToUse); 4305 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4306 4307 for (const auto P : M.getSourceFileName()) 4308 Vals.push_back((unsigned char)P); 4309 4310 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4311 Vals.clear(); 4312 } 4313 4314 // Emit the global variable information. 4315 for (const GlobalVariable &GV : M.globals()) { 4316 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4317 Vals.push_back(StrtabBuilder.add(GV.getName())); 4318 Vals.push_back(GV.getName().size()); 4319 Vals.push_back(0); 4320 Vals.push_back(0); 4321 Vals.push_back(0); 4322 Vals.push_back(getEncodedLinkage(GV)); 4323 4324 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4325 Vals.clear(); 4326 } 4327 4328 // Emit the function proto information. 4329 for (const Function &F : M) { 4330 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4331 Vals.push_back(StrtabBuilder.add(F.getName())); 4332 Vals.push_back(F.getName().size()); 4333 Vals.push_back(0); 4334 Vals.push_back(0); 4335 Vals.push_back(0); 4336 Vals.push_back(getEncodedLinkage(F)); 4337 4338 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4339 Vals.clear(); 4340 } 4341 4342 // Emit the alias information. 4343 for (const GlobalAlias &A : M.aliases()) { 4344 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4345 Vals.push_back(StrtabBuilder.add(A.getName())); 4346 Vals.push_back(A.getName().size()); 4347 Vals.push_back(0); 4348 Vals.push_back(0); 4349 Vals.push_back(0); 4350 Vals.push_back(getEncodedLinkage(A)); 4351 4352 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4353 Vals.clear(); 4354 } 4355 4356 // Emit the ifunc information. 4357 for (const GlobalIFunc &I : M.ifuncs()) { 4358 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4359 Vals.push_back(StrtabBuilder.add(I.getName())); 4360 Vals.push_back(I.getName().size()); 4361 Vals.push_back(0); 4362 Vals.push_back(0); 4363 Vals.push_back(0); 4364 Vals.push_back(getEncodedLinkage(I)); 4365 4366 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4367 Vals.clear(); 4368 } 4369 } 4370 4371 void ThinLinkBitcodeWriter::write() { 4372 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4373 4374 writeModuleVersion(); 4375 4376 writeSimplifiedModuleInfo(); 4377 4378 writePerModuleGlobalValueSummary(); 4379 4380 // Write module hash. 4381 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4382 4383 Stream.ExitBlock(); 4384 } 4385 4386 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4387 const ModuleSummaryIndex &Index, 4388 const ModuleHash &ModHash) { 4389 assert(!WroteStrtab); 4390 4391 // The Mods vector is used by irsymtab::build, which requires non-const 4392 // Modules in case it needs to materialize metadata. But the bitcode writer 4393 // requires that the module is materialized, so we can cast to non-const here, 4394 // after checking that it is in fact materialized. 4395 assert(M.isMaterialized()); 4396 Mods.push_back(const_cast<Module *>(&M)); 4397 4398 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4399 ModHash); 4400 ThinLinkWriter.write(); 4401 } 4402 4403 // Write the specified thin link bitcode file to the given raw output stream, 4404 // where it will be written in a new bitcode block. This is used when 4405 // writing the per-module index file for ThinLTO. 4406 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4407 const ModuleSummaryIndex &Index, 4408 const ModuleHash &ModHash) { 4409 SmallVector<char, 0> Buffer; 4410 Buffer.reserve(256 * 1024); 4411 4412 BitcodeWriter Writer(Buffer); 4413 Writer.writeThinLinkBitcode(M, Index, ModHash); 4414 Writer.writeSymtab(); 4415 Writer.writeStrtab(); 4416 4417 Out.write((char *)&Buffer.front(), Buffer.size()); 4418 } 4419