1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/StringExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/Program.h" 34 #include "llvm/Support/SHA1.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cctype> 37 #include <map> 38 using namespace llvm; 39 40 namespace { 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV, 64 FUNCTION_INST_GEP_ABBREV, 65 }; 66 67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 68 /// file type. Owns the BitstreamWriter, and includes the main entry point for 69 /// writing. 70 class BitcodeWriter { 71 protected: 72 /// Pointer to the buffer allocated by caller for bitcode writing. 73 const SmallVectorImpl<char> &Buffer; 74 75 /// The stream created and owned by the BitodeWriter. 76 BitstreamWriter Stream; 77 78 /// Saves the offset of the VSTOffset record that must eventually be 79 /// backpatched with the offset of the actual VST. 80 uint64_t VSTOffsetPlaceholder = 0; 81 82 public: 83 /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord, 84 /// writing to the provided \p Buffer. 85 BitcodeWriter(SmallVectorImpl<char> &Buffer) 86 : Buffer(Buffer), Stream(Buffer) {} 87 88 virtual ~BitcodeWriter() = default; 89 90 /// Main entry point to write the bitcode file, which writes the bitcode 91 /// header and will then invoke the virtual writeBlocks() method. 92 void write(); 93 94 private: 95 /// Derived classes must implement this to write the corresponding blocks for 96 /// that bitcode file type. 97 virtual void writeBlocks() = 0; 98 99 protected: 100 bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; } 101 void writeValueSymbolTableForwardDecl(); 102 void writeBitcodeHeader(); 103 }; 104 105 /// Class to manage the bitcode writing for a module. 106 class ModuleBitcodeWriter : public BitcodeWriter { 107 /// The Module to write to bitcode. 108 const Module &M; 109 110 /// Enumerates ids for all values in the module. 111 ValueEnumerator VE; 112 113 /// Optional per-module index to write for ThinLTO. 114 const ModuleSummaryIndex *Index; 115 116 /// True if a module hash record should be written. 117 bool GenerateHash; 118 119 /// The start bit of the module block, for use in generating a module hash 120 uint64_t BitcodeStartBit = 0; 121 122 public: 123 /// Constructs a ModuleBitcodeWriter object for the given Module, 124 /// writing to the provided \p Buffer. 125 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 126 bool ShouldPreserveUseListOrder, 127 const ModuleSummaryIndex *Index, bool GenerateHash) 128 : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder), 129 Index(Index), GenerateHash(GenerateHash) { 130 // Save the start bit of the actual bitcode, in case there is space 131 // saved at the start for the darwin header above. The reader stream 132 // will start at the bitcode, and we need the offset of the VST 133 // to line up. 134 BitcodeStartBit = Stream.GetCurrentBitNo(); 135 } 136 137 private: 138 /// Main entry point for writing a module to bitcode, invoked by 139 /// BitcodeWriter::write() after it writes the header. 140 void writeBlocks() override; 141 142 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 143 /// current llvm version, and a record for the epoch number. 144 void writeIdentificationBlock(); 145 146 /// Emit the current module to the bitstream. 147 void writeModule(); 148 149 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 150 151 void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse); 152 void writeAttributeGroupTable(); 153 void writeAttributeTable(); 154 void writeTypeTable(); 155 void writeComdats(); 156 void writeModuleInfo(); 157 void writeValueAsMetadata(const ValueAsMetadata *MD, 158 SmallVectorImpl<uint64_t> &Record); 159 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 160 unsigned Abbrev); 161 unsigned createDILocationAbbrev(); 162 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 163 unsigned &Abbrev); 164 unsigned createGenericDINodeAbbrev(); 165 void writeGenericDINode(const GenericDINode *N, 166 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 167 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 168 unsigned Abbrev); 169 void writeDIEnumerator(const DIEnumerator *N, 170 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 171 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 172 unsigned Abbrev); 173 void writeDIDerivedType(const DIDerivedType *N, 174 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 175 void writeDICompositeType(const DICompositeType *N, 176 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 177 void writeDISubroutineType(const DISubroutineType *N, 178 SmallVectorImpl<uint64_t> &Record, 179 unsigned Abbrev); 180 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 181 unsigned Abbrev); 182 void writeDICompileUnit(const DICompileUnit *N, 183 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 184 void writeDISubprogram(const DISubprogram *N, 185 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 186 void writeDILexicalBlock(const DILexicalBlock *N, 187 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 188 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 189 SmallVectorImpl<uint64_t> &Record, 190 unsigned Abbrev); 191 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 192 unsigned Abbrev); 193 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 194 unsigned Abbrev); 195 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 196 unsigned Abbrev); 197 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 198 unsigned Abbrev); 199 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 200 SmallVectorImpl<uint64_t> &Record, 201 unsigned Abbrev); 202 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIGlobalVariable(const DIGlobalVariable *N, 206 SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDILocalVariable(const DILocalVariable *N, 209 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 210 void writeDIExpression(const DIExpression *N, 211 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 212 void writeDIObjCProperty(const DIObjCProperty *N, 213 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 214 void writeDIImportedEntity(const DIImportedEntity *N, 215 SmallVectorImpl<uint64_t> &Record, 216 unsigned Abbrev); 217 unsigned createNamedMetadataAbbrev(); 218 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 219 unsigned createMetadataStringsAbbrev(); 220 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 221 SmallVectorImpl<uint64_t> &Record); 222 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 223 SmallVectorImpl<uint64_t> &Record); 224 void writeModuleMetadata(); 225 void writeFunctionMetadata(const Function &F); 226 void writeFunctionMetadataAttachment(const Function &F); 227 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 228 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 229 const GlobalObject &GO); 230 void writeModuleMetadataStore(); 231 void writeOperandBundleTags(); 232 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 233 void writeModuleConstants(); 234 bool pushValueAndType(const Value *V, unsigned InstID, 235 SmallVectorImpl<unsigned> &Vals); 236 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 237 void pushValue(const Value *V, unsigned InstID, 238 SmallVectorImpl<unsigned> &Vals); 239 void pushValueSigned(const Value *V, unsigned InstID, 240 SmallVectorImpl<uint64_t> &Vals); 241 void writeInstruction(const Instruction &I, unsigned InstID, 242 SmallVectorImpl<unsigned> &Vals); 243 void writeValueSymbolTable( 244 const ValueSymbolTable &VST, bool IsModuleLevel = false, 245 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr); 246 void writeUseList(UseListOrder &&Order); 247 void writeUseListBlock(const Function *F); 248 void 249 writeFunction(const Function &F, 250 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 251 void writeBlockInfo(); 252 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 253 GlobalValueSummary *Summary, 254 unsigned ValueID, 255 unsigned FSCallsAbbrev, 256 unsigned FSCallsProfileAbbrev, 257 const Function &F); 258 void writeModuleLevelReferences(const GlobalVariable &V, 259 SmallVector<uint64_t, 64> &NameVals, 260 unsigned FSModRefsAbbrev); 261 void writePerModuleGlobalValueSummary(); 262 void writeModuleHash(size_t BlockStartPos); 263 }; 264 265 /// Class to manage the bitcode writing for a combined index. 266 class IndexBitcodeWriter : public BitcodeWriter { 267 /// The combined index to write to bitcode. 268 const ModuleSummaryIndex &Index; 269 270 /// When writing a subset of the index for distributed backends, client 271 /// provides a map of modules to the corresponding GUIDs/summaries to write. 272 std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 273 274 /// Map that holds the correspondence between the GUID used in the combined 275 /// index and a value id generated by this class to use in references. 276 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 277 278 /// Tracks the last value id recorded in the GUIDToValueMap. 279 unsigned GlobalValueId = 0; 280 281 public: 282 /// Constructs a IndexBitcodeWriter object for the given combined index, 283 /// writing to the provided \p Buffer. When writing a subset of the index 284 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 285 IndexBitcodeWriter(SmallVectorImpl<char> &Buffer, 286 const ModuleSummaryIndex &Index, 287 std::map<std::string, GVSummaryMapTy> 288 *ModuleToSummariesForIndex = nullptr) 289 : BitcodeWriter(Buffer), Index(Index), 290 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 291 // Assign unique value ids to all summaries to be written, for use 292 // in writing out the call graph edges. Save the mapping from GUID 293 // to the new global value id to use when writing those edges, which 294 // are currently saved in the index in terms of GUID. 295 for (const auto &I : *this) 296 GUIDToValueIdMap[I.first] = ++GlobalValueId; 297 } 298 299 /// The below iterator returns the GUID and associated summary. 300 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 301 302 /// Iterator over the value GUID and summaries to be written to bitcode, 303 /// hides the details of whether they are being pulled from the entire 304 /// index or just those in a provided ModuleToSummariesForIndex map. 305 class iterator 306 : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag, 307 GVInfo> { 308 /// Enables access to parent class. 309 const IndexBitcodeWriter &Writer; 310 311 // Iterators used when writing only those summaries in a provided 312 // ModuleToSummariesForIndex map: 313 314 /// Points to the last element in outer ModuleToSummariesForIndex map. 315 std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack; 316 /// Iterator on outer ModuleToSummariesForIndex map. 317 std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter; 318 /// Iterator on an inner global variable summary map. 319 GVSummaryMapTy::iterator ModuleGVSummariesIter; 320 321 // Iterators used when writing all summaries in the index: 322 323 /// Points to the last element in the Index outer GlobalValueMap. 324 const_gvsummary_iterator IndexSummariesBack; 325 /// Iterator on outer GlobalValueMap. 326 const_gvsummary_iterator IndexSummariesIter; 327 /// Iterator on an inner GlobalValueSummaryList. 328 GlobalValueSummaryList::const_iterator IndexGVSummariesIter; 329 330 public: 331 /// Construct iterator from parent \p Writer and indicate if we are 332 /// constructing the end iterator. 333 iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) { 334 // Set up the appropriate set of iterators given whether we are writing 335 // the full index or just a subset. 336 // Can't setup the Back or inner iterators if the corresponding map 337 // is empty. This will be handled specially in operator== as well. 338 if (Writer.ModuleToSummariesForIndex && 339 !Writer.ModuleToSummariesForIndex->empty()) { 340 for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin(); 341 std::next(ModuleSummariesBack) != 342 Writer.ModuleToSummariesForIndex->end(); 343 ModuleSummariesBack++) 344 ; 345 ModuleSummariesIter = !IsAtEnd 346 ? Writer.ModuleToSummariesForIndex->begin() 347 : ModuleSummariesBack; 348 ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin() 349 : ModuleSummariesBack->second.end(); 350 } else if (!Writer.ModuleToSummariesForIndex && 351 Writer.Index.begin() != Writer.Index.end()) { 352 for (IndexSummariesBack = Writer.Index.begin(); 353 std::next(IndexSummariesBack) != Writer.Index.end(); 354 IndexSummariesBack++) 355 ; 356 IndexSummariesIter = 357 !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack; 358 IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin() 359 : IndexSummariesBack->second.end(); 360 } 361 } 362 363 /// Increment the appropriate set of iterators. 364 iterator &operator++() { 365 // First the inner iterator is incremented, then if it is at the end 366 // and there are more outer iterations to go, the inner is reset to 367 // the start of the next inner list. 368 if (Writer.ModuleToSummariesForIndex) { 369 ++ModuleGVSummariesIter; 370 if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() && 371 ModuleSummariesIter != ModuleSummariesBack) { 372 ++ModuleSummariesIter; 373 ModuleGVSummariesIter = ModuleSummariesIter->second.begin(); 374 } 375 } else { 376 ++IndexGVSummariesIter; 377 if (IndexGVSummariesIter == IndexSummariesIter->second.end() && 378 IndexSummariesIter != IndexSummariesBack) { 379 ++IndexSummariesIter; 380 IndexGVSummariesIter = IndexSummariesIter->second.begin(); 381 } 382 } 383 return *this; 384 } 385 386 /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current 387 /// outer and inner iterator positions. 388 GVInfo operator*() { 389 if (Writer.ModuleToSummariesForIndex) 390 return std::make_pair(ModuleGVSummariesIter->first, 391 ModuleGVSummariesIter->second); 392 return std::make_pair(IndexSummariesIter->first, 393 IndexGVSummariesIter->get()); 394 } 395 396 /// Checks if the iterators are equal, with special handling for empty 397 /// indexes. 398 bool operator==(const iterator &RHS) const { 399 if (Writer.ModuleToSummariesForIndex) { 400 // First ensure that both are writing the same subset. 401 if (Writer.ModuleToSummariesForIndex != 402 RHS.Writer.ModuleToSummariesForIndex) 403 return false; 404 // Already determined above that maps are the same, so if one is 405 // empty, they both are. 406 if (Writer.ModuleToSummariesForIndex->empty()) 407 return true; 408 // Ensure the ModuleGVSummariesIter are iterating over the same 409 // container before checking them below. 410 if (ModuleSummariesIter != RHS.ModuleSummariesIter) 411 return false; 412 return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter; 413 } 414 // First ensure RHS also writing the full index, and that both are 415 // writing the same full index. 416 if (RHS.Writer.ModuleToSummariesForIndex || 417 &Writer.Index != &RHS.Writer.Index) 418 return false; 419 // Already determined above that maps are the same, so if one is 420 // empty, they both are. 421 if (Writer.Index.begin() == Writer.Index.end()) 422 return true; 423 // Ensure the IndexGVSummariesIter are iterating over the same 424 // container before checking them below. 425 if (IndexSummariesIter != RHS.IndexSummariesIter) 426 return false; 427 return IndexGVSummariesIter == RHS.IndexGVSummariesIter; 428 } 429 }; 430 431 /// Obtain the start iterator over the summaries to be written. 432 iterator begin() { return iterator(*this, /*IsAtEnd=*/false); } 433 /// Obtain the end iterator over the summaries to be written. 434 iterator end() { return iterator(*this, /*IsAtEnd=*/true); } 435 436 private: 437 /// Main entry point for writing a combined index to bitcode, invoked by 438 /// BitcodeWriter::write() after it writes the header. 439 void writeBlocks() override; 440 441 void writeIndex(); 442 void writeModStrings(); 443 void writeCombinedValueSymbolTable(); 444 void writeCombinedGlobalValueSummary(); 445 446 /// Indicates whether the provided \p ModulePath should be written into 447 /// the module string table, e.g. if full index written or if it is in 448 /// the provided subset. 449 bool doIncludeModule(StringRef ModulePath) { 450 return !ModuleToSummariesForIndex || 451 ModuleToSummariesForIndex->count(ModulePath); 452 } 453 454 bool hasValueId(GlobalValue::GUID ValGUID) { 455 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 456 return VMI != GUIDToValueIdMap.end(); 457 } 458 unsigned getValueId(GlobalValue::GUID ValGUID) { 459 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 460 // If this GUID doesn't have an entry, assign one. 461 if (VMI == GUIDToValueIdMap.end()) { 462 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 463 return GlobalValueId; 464 } else { 465 return VMI->second; 466 } 467 } 468 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 469 }; 470 } // end anonymous namespace 471 472 static unsigned getEncodedCastOpcode(unsigned Opcode) { 473 switch (Opcode) { 474 default: llvm_unreachable("Unknown cast instruction!"); 475 case Instruction::Trunc : return bitc::CAST_TRUNC; 476 case Instruction::ZExt : return bitc::CAST_ZEXT; 477 case Instruction::SExt : return bitc::CAST_SEXT; 478 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 479 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 480 case Instruction::UIToFP : return bitc::CAST_UITOFP; 481 case Instruction::SIToFP : return bitc::CAST_SITOFP; 482 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 483 case Instruction::FPExt : return bitc::CAST_FPEXT; 484 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 485 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 486 case Instruction::BitCast : return bitc::CAST_BITCAST; 487 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 488 } 489 } 490 491 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 492 switch (Opcode) { 493 default: llvm_unreachable("Unknown binary instruction!"); 494 case Instruction::Add: 495 case Instruction::FAdd: return bitc::BINOP_ADD; 496 case Instruction::Sub: 497 case Instruction::FSub: return bitc::BINOP_SUB; 498 case Instruction::Mul: 499 case Instruction::FMul: return bitc::BINOP_MUL; 500 case Instruction::UDiv: return bitc::BINOP_UDIV; 501 case Instruction::FDiv: 502 case Instruction::SDiv: return bitc::BINOP_SDIV; 503 case Instruction::URem: return bitc::BINOP_UREM; 504 case Instruction::FRem: 505 case Instruction::SRem: return bitc::BINOP_SREM; 506 case Instruction::Shl: return bitc::BINOP_SHL; 507 case Instruction::LShr: return bitc::BINOP_LSHR; 508 case Instruction::AShr: return bitc::BINOP_ASHR; 509 case Instruction::And: return bitc::BINOP_AND; 510 case Instruction::Or: return bitc::BINOP_OR; 511 case Instruction::Xor: return bitc::BINOP_XOR; 512 } 513 } 514 515 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 516 switch (Op) { 517 default: llvm_unreachable("Unknown RMW operation!"); 518 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 519 case AtomicRMWInst::Add: return bitc::RMW_ADD; 520 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 521 case AtomicRMWInst::And: return bitc::RMW_AND; 522 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 523 case AtomicRMWInst::Or: return bitc::RMW_OR; 524 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 525 case AtomicRMWInst::Max: return bitc::RMW_MAX; 526 case AtomicRMWInst::Min: return bitc::RMW_MIN; 527 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 528 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 529 } 530 } 531 532 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 533 switch (Ordering) { 534 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 535 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 536 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 537 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 538 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 539 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 540 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 541 } 542 llvm_unreachable("Invalid ordering"); 543 } 544 545 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 546 switch (SynchScope) { 547 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 548 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 549 } 550 llvm_unreachable("Invalid synch scope"); 551 } 552 553 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str, 554 unsigned AbbrevToUse) { 555 SmallVector<unsigned, 64> Vals; 556 557 // Code: [strchar x N] 558 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 559 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 560 AbbrevToUse = 0; 561 Vals.push_back(Str[i]); 562 } 563 564 // Emit the finished record. 565 Stream.EmitRecord(Code, Vals, AbbrevToUse); 566 } 567 568 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 569 switch (Kind) { 570 case Attribute::Alignment: 571 return bitc::ATTR_KIND_ALIGNMENT; 572 case Attribute::AllocSize: 573 return bitc::ATTR_KIND_ALLOC_SIZE; 574 case Attribute::AlwaysInline: 575 return bitc::ATTR_KIND_ALWAYS_INLINE; 576 case Attribute::ArgMemOnly: 577 return bitc::ATTR_KIND_ARGMEMONLY; 578 case Attribute::Builtin: 579 return bitc::ATTR_KIND_BUILTIN; 580 case Attribute::ByVal: 581 return bitc::ATTR_KIND_BY_VAL; 582 case Attribute::Convergent: 583 return bitc::ATTR_KIND_CONVERGENT; 584 case Attribute::InAlloca: 585 return bitc::ATTR_KIND_IN_ALLOCA; 586 case Attribute::Cold: 587 return bitc::ATTR_KIND_COLD; 588 case Attribute::InaccessibleMemOnly: 589 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 590 case Attribute::InaccessibleMemOrArgMemOnly: 591 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 592 case Attribute::InlineHint: 593 return bitc::ATTR_KIND_INLINE_HINT; 594 case Attribute::InReg: 595 return bitc::ATTR_KIND_IN_REG; 596 case Attribute::JumpTable: 597 return bitc::ATTR_KIND_JUMP_TABLE; 598 case Attribute::MinSize: 599 return bitc::ATTR_KIND_MIN_SIZE; 600 case Attribute::Naked: 601 return bitc::ATTR_KIND_NAKED; 602 case Attribute::Nest: 603 return bitc::ATTR_KIND_NEST; 604 case Attribute::NoAlias: 605 return bitc::ATTR_KIND_NO_ALIAS; 606 case Attribute::NoBuiltin: 607 return bitc::ATTR_KIND_NO_BUILTIN; 608 case Attribute::NoCapture: 609 return bitc::ATTR_KIND_NO_CAPTURE; 610 case Attribute::NoDuplicate: 611 return bitc::ATTR_KIND_NO_DUPLICATE; 612 case Attribute::NoImplicitFloat: 613 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 614 case Attribute::NoInline: 615 return bitc::ATTR_KIND_NO_INLINE; 616 case Attribute::NoRecurse: 617 return bitc::ATTR_KIND_NO_RECURSE; 618 case Attribute::NonLazyBind: 619 return bitc::ATTR_KIND_NON_LAZY_BIND; 620 case Attribute::NonNull: 621 return bitc::ATTR_KIND_NON_NULL; 622 case Attribute::Dereferenceable: 623 return bitc::ATTR_KIND_DEREFERENCEABLE; 624 case Attribute::DereferenceableOrNull: 625 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 626 case Attribute::NoRedZone: 627 return bitc::ATTR_KIND_NO_RED_ZONE; 628 case Attribute::NoReturn: 629 return bitc::ATTR_KIND_NO_RETURN; 630 case Attribute::NoUnwind: 631 return bitc::ATTR_KIND_NO_UNWIND; 632 case Attribute::OptimizeForSize: 633 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 634 case Attribute::OptimizeNone: 635 return bitc::ATTR_KIND_OPTIMIZE_NONE; 636 case Attribute::ReadNone: 637 return bitc::ATTR_KIND_READ_NONE; 638 case Attribute::ReadOnly: 639 return bitc::ATTR_KIND_READ_ONLY; 640 case Attribute::Returned: 641 return bitc::ATTR_KIND_RETURNED; 642 case Attribute::ReturnsTwice: 643 return bitc::ATTR_KIND_RETURNS_TWICE; 644 case Attribute::SExt: 645 return bitc::ATTR_KIND_S_EXT; 646 case Attribute::StackAlignment: 647 return bitc::ATTR_KIND_STACK_ALIGNMENT; 648 case Attribute::StackProtect: 649 return bitc::ATTR_KIND_STACK_PROTECT; 650 case Attribute::StackProtectReq: 651 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 652 case Attribute::StackProtectStrong: 653 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 654 case Attribute::SafeStack: 655 return bitc::ATTR_KIND_SAFESTACK; 656 case Attribute::StructRet: 657 return bitc::ATTR_KIND_STRUCT_RET; 658 case Attribute::SanitizeAddress: 659 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 660 case Attribute::SanitizeThread: 661 return bitc::ATTR_KIND_SANITIZE_THREAD; 662 case Attribute::SanitizeMemory: 663 return bitc::ATTR_KIND_SANITIZE_MEMORY; 664 case Attribute::SwiftError: 665 return bitc::ATTR_KIND_SWIFT_ERROR; 666 case Attribute::SwiftSelf: 667 return bitc::ATTR_KIND_SWIFT_SELF; 668 case Attribute::UWTable: 669 return bitc::ATTR_KIND_UW_TABLE; 670 case Attribute::ZExt: 671 return bitc::ATTR_KIND_Z_EXT; 672 case Attribute::EndAttrKinds: 673 llvm_unreachable("Can not encode end-attribute kinds marker."); 674 case Attribute::None: 675 llvm_unreachable("Can not encode none-attribute."); 676 } 677 678 llvm_unreachable("Trying to encode unknown attribute"); 679 } 680 681 void ModuleBitcodeWriter::writeAttributeGroupTable() { 682 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 683 if (AttrGrps.empty()) return; 684 685 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 686 687 SmallVector<uint64_t, 64> Record; 688 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 689 AttributeSet AS = AttrGrps[i]; 690 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 691 AttributeSet A = AS.getSlotAttributes(i); 692 693 Record.push_back(VE.getAttributeGroupID(A)); 694 Record.push_back(AS.getSlotIndex(i)); 695 696 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 697 I != E; ++I) { 698 Attribute Attr = *I; 699 if (Attr.isEnumAttribute()) { 700 Record.push_back(0); 701 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 702 } else if (Attr.isIntAttribute()) { 703 Record.push_back(1); 704 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 705 Record.push_back(Attr.getValueAsInt()); 706 } else { 707 StringRef Kind = Attr.getKindAsString(); 708 StringRef Val = Attr.getValueAsString(); 709 710 Record.push_back(Val.empty() ? 3 : 4); 711 Record.append(Kind.begin(), Kind.end()); 712 Record.push_back(0); 713 if (!Val.empty()) { 714 Record.append(Val.begin(), Val.end()); 715 Record.push_back(0); 716 } 717 } 718 } 719 720 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 721 Record.clear(); 722 } 723 } 724 725 Stream.ExitBlock(); 726 } 727 728 void ModuleBitcodeWriter::writeAttributeTable() { 729 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 730 if (Attrs.empty()) return; 731 732 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 733 734 SmallVector<uint64_t, 64> Record; 735 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 736 const AttributeSet &A = Attrs[i]; 737 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 738 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 739 740 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 741 Record.clear(); 742 } 743 744 Stream.ExitBlock(); 745 } 746 747 /// WriteTypeTable - Write out the type table for a module. 748 void ModuleBitcodeWriter::writeTypeTable() { 749 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 750 751 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 752 SmallVector<uint64_t, 64> TypeVals; 753 754 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 755 756 // Abbrev for TYPE_CODE_POINTER. 757 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 758 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 760 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 761 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 762 763 // Abbrev for TYPE_CODE_FUNCTION. 764 Abbv = new BitCodeAbbrev(); 765 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 769 770 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 771 772 // Abbrev for TYPE_CODE_STRUCT_ANON. 773 Abbv = new BitCodeAbbrev(); 774 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 778 779 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 780 781 // Abbrev for TYPE_CODE_STRUCT_NAME. 782 Abbv = new BitCodeAbbrev(); 783 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 786 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 787 788 // Abbrev for TYPE_CODE_STRUCT_NAMED. 789 Abbv = new BitCodeAbbrev(); 790 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 794 795 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 796 797 // Abbrev for TYPE_CODE_ARRAY. 798 Abbv = new BitCodeAbbrev(); 799 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 802 803 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 804 805 // Emit an entry count so the reader can reserve space. 806 TypeVals.push_back(TypeList.size()); 807 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 808 TypeVals.clear(); 809 810 // Loop over all of the types, emitting each in turn. 811 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 812 Type *T = TypeList[i]; 813 int AbbrevToUse = 0; 814 unsigned Code = 0; 815 816 switch (T->getTypeID()) { 817 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 818 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 819 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 820 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 821 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 822 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 823 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 824 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 825 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 826 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 827 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 828 case Type::IntegerTyID: 829 // INTEGER: [width] 830 Code = bitc::TYPE_CODE_INTEGER; 831 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 832 break; 833 case Type::PointerTyID: { 834 PointerType *PTy = cast<PointerType>(T); 835 // POINTER: [pointee type, address space] 836 Code = bitc::TYPE_CODE_POINTER; 837 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 838 unsigned AddressSpace = PTy->getAddressSpace(); 839 TypeVals.push_back(AddressSpace); 840 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 841 break; 842 } 843 case Type::FunctionTyID: { 844 FunctionType *FT = cast<FunctionType>(T); 845 // FUNCTION: [isvararg, retty, paramty x N] 846 Code = bitc::TYPE_CODE_FUNCTION; 847 TypeVals.push_back(FT->isVarArg()); 848 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 849 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 850 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 851 AbbrevToUse = FunctionAbbrev; 852 break; 853 } 854 case Type::StructTyID: { 855 StructType *ST = cast<StructType>(T); 856 // STRUCT: [ispacked, eltty x N] 857 TypeVals.push_back(ST->isPacked()); 858 // Output all of the element types. 859 for (StructType::element_iterator I = ST->element_begin(), 860 E = ST->element_end(); I != E; ++I) 861 TypeVals.push_back(VE.getTypeID(*I)); 862 863 if (ST->isLiteral()) { 864 Code = bitc::TYPE_CODE_STRUCT_ANON; 865 AbbrevToUse = StructAnonAbbrev; 866 } else { 867 if (ST->isOpaque()) { 868 Code = bitc::TYPE_CODE_OPAQUE; 869 } else { 870 Code = bitc::TYPE_CODE_STRUCT_NAMED; 871 AbbrevToUse = StructNamedAbbrev; 872 } 873 874 // Emit the name if it is present. 875 if (!ST->getName().empty()) 876 writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 877 StructNameAbbrev); 878 } 879 break; 880 } 881 case Type::ArrayTyID: { 882 ArrayType *AT = cast<ArrayType>(T); 883 // ARRAY: [numelts, eltty] 884 Code = bitc::TYPE_CODE_ARRAY; 885 TypeVals.push_back(AT->getNumElements()); 886 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 887 AbbrevToUse = ArrayAbbrev; 888 break; 889 } 890 case Type::VectorTyID: { 891 VectorType *VT = cast<VectorType>(T); 892 // VECTOR [numelts, eltty] 893 Code = bitc::TYPE_CODE_VECTOR; 894 TypeVals.push_back(VT->getNumElements()); 895 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 896 break; 897 } 898 } 899 900 // Emit the finished record. 901 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 902 TypeVals.clear(); 903 } 904 905 Stream.ExitBlock(); 906 } 907 908 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 909 switch (Linkage) { 910 case GlobalValue::ExternalLinkage: 911 return 0; 912 case GlobalValue::WeakAnyLinkage: 913 return 16; 914 case GlobalValue::AppendingLinkage: 915 return 2; 916 case GlobalValue::InternalLinkage: 917 return 3; 918 case GlobalValue::LinkOnceAnyLinkage: 919 return 18; 920 case GlobalValue::ExternalWeakLinkage: 921 return 7; 922 case GlobalValue::CommonLinkage: 923 return 8; 924 case GlobalValue::PrivateLinkage: 925 return 9; 926 case GlobalValue::WeakODRLinkage: 927 return 17; 928 case GlobalValue::LinkOnceODRLinkage: 929 return 19; 930 case GlobalValue::AvailableExternallyLinkage: 931 return 12; 932 } 933 llvm_unreachable("Invalid linkage"); 934 } 935 936 static unsigned getEncodedLinkage(const GlobalValue &GV) { 937 return getEncodedLinkage(GV.getLinkage()); 938 } 939 940 // Decode the flags for GlobalValue in the summary 941 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 942 uint64_t RawFlags = 0; 943 944 RawFlags |= Flags.HasSection; // bool 945 946 // Linkage don't need to be remapped at that time for the summary. Any future 947 // change to the getEncodedLinkage() function will need to be taken into 948 // account here as well. 949 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 950 951 return RawFlags; 952 } 953 954 static unsigned getEncodedVisibility(const GlobalValue &GV) { 955 switch (GV.getVisibility()) { 956 case GlobalValue::DefaultVisibility: return 0; 957 case GlobalValue::HiddenVisibility: return 1; 958 case GlobalValue::ProtectedVisibility: return 2; 959 } 960 llvm_unreachable("Invalid visibility"); 961 } 962 963 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 964 switch (GV.getDLLStorageClass()) { 965 case GlobalValue::DefaultStorageClass: return 0; 966 case GlobalValue::DLLImportStorageClass: return 1; 967 case GlobalValue::DLLExportStorageClass: return 2; 968 } 969 llvm_unreachable("Invalid DLL storage class"); 970 } 971 972 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 973 switch (GV.getThreadLocalMode()) { 974 case GlobalVariable::NotThreadLocal: return 0; 975 case GlobalVariable::GeneralDynamicTLSModel: return 1; 976 case GlobalVariable::LocalDynamicTLSModel: return 2; 977 case GlobalVariable::InitialExecTLSModel: return 3; 978 case GlobalVariable::LocalExecTLSModel: return 4; 979 } 980 llvm_unreachable("Invalid TLS model"); 981 } 982 983 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 984 switch (C.getSelectionKind()) { 985 case Comdat::Any: 986 return bitc::COMDAT_SELECTION_KIND_ANY; 987 case Comdat::ExactMatch: 988 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 989 case Comdat::Largest: 990 return bitc::COMDAT_SELECTION_KIND_LARGEST; 991 case Comdat::NoDuplicates: 992 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 993 case Comdat::SameSize: 994 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 995 } 996 llvm_unreachable("Invalid selection kind"); 997 } 998 999 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1000 switch (GV.getUnnamedAddr()) { 1001 case GlobalValue::UnnamedAddr::None: return 0; 1002 case GlobalValue::UnnamedAddr::Local: return 2; 1003 case GlobalValue::UnnamedAddr::Global: return 1; 1004 } 1005 llvm_unreachable("Invalid unnamed_addr"); 1006 } 1007 1008 void ModuleBitcodeWriter::writeComdats() { 1009 SmallVector<unsigned, 64> Vals; 1010 for (const Comdat *C : VE.getComdats()) { 1011 // COMDAT: [selection_kind, name] 1012 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1013 size_t Size = C->getName().size(); 1014 assert(isUInt<32>(Size)); 1015 Vals.push_back(Size); 1016 for (char Chr : C->getName()) 1017 Vals.push_back((unsigned char)Chr); 1018 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1019 Vals.clear(); 1020 } 1021 } 1022 1023 /// Write a record that will eventually hold the word offset of the 1024 /// module-level VST. For now the offset is 0, which will be backpatched 1025 /// after the real VST is written. Saves the bit offset to backpatch. 1026 void BitcodeWriter::writeValueSymbolTableForwardDecl() { 1027 // Write a placeholder value in for the offset of the real VST, 1028 // which is written after the function blocks so that it can include 1029 // the offset of each function. The placeholder offset will be 1030 // updated when the real VST is written. 1031 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1032 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1033 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1034 // hold the real VST offset. Must use fixed instead of VBR as we don't 1035 // know how many VBR chunks to reserve ahead of time. 1036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1037 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 1038 1039 // Emit the placeholder 1040 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1041 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1042 1043 // Compute and save the bit offset to the placeholder, which will be 1044 // patched when the real VST is written. We can simply subtract the 32-bit 1045 // fixed size from the current bit number to get the location to backpatch. 1046 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1047 } 1048 1049 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1050 1051 /// Determine the encoding to use for the given string name and length. 1052 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 1053 bool isChar6 = true; 1054 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 1055 if (isChar6) 1056 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1057 if ((unsigned char)*C & 128) 1058 // don't bother scanning the rest. 1059 return SE_Fixed8; 1060 } 1061 if (isChar6) 1062 return SE_Char6; 1063 else 1064 return SE_Fixed7; 1065 } 1066 1067 /// Emit top-level description of module, including target triple, inline asm, 1068 /// descriptors for global variables, and function prototype info. 1069 /// Returns the bit offset to backpatch with the location of the real VST. 1070 void ModuleBitcodeWriter::writeModuleInfo() { 1071 // Emit various pieces of data attached to a module. 1072 if (!M.getTargetTriple().empty()) 1073 writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1074 0 /*TODO*/); 1075 const std::string &DL = M.getDataLayoutStr(); 1076 if (!DL.empty()) 1077 writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1078 if (!M.getModuleInlineAsm().empty()) 1079 writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1080 0 /*TODO*/); 1081 1082 // Emit information about sections and GC, computing how many there are. Also 1083 // compute the maximum alignment value. 1084 std::map<std::string, unsigned> SectionMap; 1085 std::map<std::string, unsigned> GCMap; 1086 unsigned MaxAlignment = 0; 1087 unsigned MaxGlobalType = 0; 1088 for (const GlobalValue &GV : M.globals()) { 1089 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1090 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1091 if (GV.hasSection()) { 1092 // Give section names unique ID's. 1093 unsigned &Entry = SectionMap[GV.getSection()]; 1094 if (!Entry) { 1095 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1096 0 /*TODO*/); 1097 Entry = SectionMap.size(); 1098 } 1099 } 1100 } 1101 for (const Function &F : M) { 1102 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1103 if (F.hasSection()) { 1104 // Give section names unique ID's. 1105 unsigned &Entry = SectionMap[F.getSection()]; 1106 if (!Entry) { 1107 writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1108 0 /*TODO*/); 1109 Entry = SectionMap.size(); 1110 } 1111 } 1112 if (F.hasGC()) { 1113 // Same for GC names. 1114 unsigned &Entry = GCMap[F.getGC()]; 1115 if (!Entry) { 1116 writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/); 1117 Entry = GCMap.size(); 1118 } 1119 } 1120 } 1121 1122 // Emit abbrev for globals, now that we know # sections and max alignment. 1123 unsigned SimpleGVarAbbrev = 0; 1124 if (!M.global_empty()) { 1125 // Add an abbrev for common globals with no visibility or thread localness. 1126 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1127 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1129 Log2_32_Ceil(MaxGlobalType+1))); 1130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1131 //| explicitType << 1 1132 //| constant 1133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1135 if (MaxAlignment == 0) // Alignment. 1136 Abbv->Add(BitCodeAbbrevOp(0)); 1137 else { 1138 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1140 Log2_32_Ceil(MaxEncAlignment+1))); 1141 } 1142 if (SectionMap.empty()) // Section. 1143 Abbv->Add(BitCodeAbbrevOp(0)); 1144 else 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1146 Log2_32_Ceil(SectionMap.size()+1))); 1147 // Don't bother emitting vis + thread local. 1148 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 1149 } 1150 1151 // Emit the global variable information. 1152 SmallVector<unsigned, 64> Vals; 1153 for (const GlobalVariable &GV : M.globals()) { 1154 unsigned AbbrevToUse = 0; 1155 1156 // GLOBALVAR: [type, isconst, initid, 1157 // linkage, alignment, section, visibility, threadlocal, 1158 // unnamed_addr, externally_initialized, dllstorageclass, 1159 // comdat] 1160 Vals.push_back(VE.getTypeID(GV.getValueType())); 1161 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1162 Vals.push_back(GV.isDeclaration() ? 0 : 1163 (VE.getValueID(GV.getInitializer()) + 1)); 1164 Vals.push_back(getEncodedLinkage(GV)); 1165 Vals.push_back(Log2_32(GV.getAlignment())+1); 1166 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1167 if (GV.isThreadLocal() || 1168 GV.getVisibility() != GlobalValue::DefaultVisibility || 1169 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1170 GV.isExternallyInitialized() || 1171 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1172 GV.hasComdat()) { 1173 Vals.push_back(getEncodedVisibility(GV)); 1174 Vals.push_back(getEncodedThreadLocalMode(GV)); 1175 Vals.push_back(getEncodedUnnamedAddr(GV)); 1176 Vals.push_back(GV.isExternallyInitialized()); 1177 Vals.push_back(getEncodedDLLStorageClass(GV)); 1178 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1179 } else { 1180 AbbrevToUse = SimpleGVarAbbrev; 1181 } 1182 1183 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1184 Vals.clear(); 1185 } 1186 1187 // Emit the function proto information. 1188 for (const Function &F : M) { 1189 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1190 // section, visibility, gc, unnamed_addr, prologuedata, 1191 // dllstorageclass, comdat, prefixdata, personalityfn] 1192 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1193 Vals.push_back(F.getCallingConv()); 1194 Vals.push_back(F.isDeclaration()); 1195 Vals.push_back(getEncodedLinkage(F)); 1196 Vals.push_back(VE.getAttributeID(F.getAttributes())); 1197 Vals.push_back(Log2_32(F.getAlignment())+1); 1198 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1199 Vals.push_back(getEncodedVisibility(F)); 1200 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1201 Vals.push_back(getEncodedUnnamedAddr(F)); 1202 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1203 : 0); 1204 Vals.push_back(getEncodedDLLStorageClass(F)); 1205 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1206 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1207 : 0); 1208 Vals.push_back( 1209 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1210 1211 unsigned AbbrevToUse = 0; 1212 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1213 Vals.clear(); 1214 } 1215 1216 // Emit the alias information. 1217 for (const GlobalAlias &A : M.aliases()) { 1218 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass, 1219 // threadlocal, unnamed_addr] 1220 Vals.push_back(VE.getTypeID(A.getValueType())); 1221 Vals.push_back(A.getType()->getAddressSpace()); 1222 Vals.push_back(VE.getValueID(A.getAliasee())); 1223 Vals.push_back(getEncodedLinkage(A)); 1224 Vals.push_back(getEncodedVisibility(A)); 1225 Vals.push_back(getEncodedDLLStorageClass(A)); 1226 Vals.push_back(getEncodedThreadLocalMode(A)); 1227 Vals.push_back(getEncodedUnnamedAddr(A)); 1228 unsigned AbbrevToUse = 0; 1229 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1230 Vals.clear(); 1231 } 1232 1233 // Emit the ifunc information. 1234 for (const GlobalIFunc &I : M.ifuncs()) { 1235 // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility] 1236 Vals.push_back(VE.getTypeID(I.getValueType())); 1237 Vals.push_back(I.getType()->getAddressSpace()); 1238 Vals.push_back(VE.getValueID(I.getResolver())); 1239 Vals.push_back(getEncodedLinkage(I)); 1240 Vals.push_back(getEncodedVisibility(I)); 1241 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1242 Vals.clear(); 1243 } 1244 1245 // Emit the module's source file name. 1246 { 1247 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1248 M.getSourceFileName().size()); 1249 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1250 if (Bits == SE_Char6) 1251 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1252 else if (Bits == SE_Fixed7) 1253 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1254 1255 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1256 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1257 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1259 Abbv->Add(AbbrevOpToUse); 1260 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 1261 1262 for (const auto P : M.getSourceFileName()) 1263 Vals.push_back((unsigned char)P); 1264 1265 // Emit the finished record. 1266 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1267 Vals.clear(); 1268 } 1269 1270 // If we have a VST, write the VSTOFFSET record placeholder. 1271 if (M.getValueSymbolTable().empty()) 1272 return; 1273 writeValueSymbolTableForwardDecl(); 1274 } 1275 1276 static uint64_t getOptimizationFlags(const Value *V) { 1277 uint64_t Flags = 0; 1278 1279 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1280 if (OBO->hasNoSignedWrap()) 1281 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1282 if (OBO->hasNoUnsignedWrap()) 1283 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1284 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1285 if (PEO->isExact()) 1286 Flags |= 1 << bitc::PEO_EXACT; 1287 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1288 if (FPMO->hasUnsafeAlgebra()) 1289 Flags |= FastMathFlags::UnsafeAlgebra; 1290 if (FPMO->hasNoNaNs()) 1291 Flags |= FastMathFlags::NoNaNs; 1292 if (FPMO->hasNoInfs()) 1293 Flags |= FastMathFlags::NoInfs; 1294 if (FPMO->hasNoSignedZeros()) 1295 Flags |= FastMathFlags::NoSignedZeros; 1296 if (FPMO->hasAllowReciprocal()) 1297 Flags |= FastMathFlags::AllowReciprocal; 1298 } 1299 1300 return Flags; 1301 } 1302 1303 void ModuleBitcodeWriter::writeValueAsMetadata( 1304 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1305 // Mimic an MDNode with a value as one operand. 1306 Value *V = MD->getValue(); 1307 Record.push_back(VE.getTypeID(V->getType())); 1308 Record.push_back(VE.getValueID(V)); 1309 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1310 Record.clear(); 1311 } 1312 1313 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1314 SmallVectorImpl<uint64_t> &Record, 1315 unsigned Abbrev) { 1316 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1317 Metadata *MD = N->getOperand(i); 1318 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1319 "Unexpected function-local metadata"); 1320 Record.push_back(VE.getMetadataOrNullID(MD)); 1321 } 1322 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1323 : bitc::METADATA_NODE, 1324 Record, Abbrev); 1325 Record.clear(); 1326 } 1327 1328 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1329 // Assume the column is usually under 128, and always output the inlined-at 1330 // location (it's never more expensive than building an array size 1). 1331 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1332 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1338 return Stream.EmitAbbrev(Abbv); 1339 } 1340 1341 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1342 SmallVectorImpl<uint64_t> &Record, 1343 unsigned &Abbrev) { 1344 if (!Abbrev) 1345 Abbrev = createDILocationAbbrev(); 1346 1347 Record.push_back(N->isDistinct()); 1348 Record.push_back(N->getLine()); 1349 Record.push_back(N->getColumn()); 1350 Record.push_back(VE.getMetadataID(N->getScope())); 1351 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1352 1353 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1354 Record.clear(); 1355 } 1356 1357 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1358 // Assume the column is usually under 128, and always output the inlined-at 1359 // location (it's never more expensive than building an array size 1). 1360 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1361 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1368 return Stream.EmitAbbrev(Abbv); 1369 } 1370 1371 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1372 SmallVectorImpl<uint64_t> &Record, 1373 unsigned &Abbrev) { 1374 if (!Abbrev) 1375 Abbrev = createGenericDINodeAbbrev(); 1376 1377 Record.push_back(N->isDistinct()); 1378 Record.push_back(N->getTag()); 1379 Record.push_back(0); // Per-tag version field; unused for now. 1380 1381 for (auto &I : N->operands()) 1382 Record.push_back(VE.getMetadataOrNullID(I)); 1383 1384 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1385 Record.clear(); 1386 } 1387 1388 static uint64_t rotateSign(int64_t I) { 1389 uint64_t U = I; 1390 return I < 0 ? ~(U << 1) : U << 1; 1391 } 1392 1393 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1394 SmallVectorImpl<uint64_t> &Record, 1395 unsigned Abbrev) { 1396 Record.push_back(N->isDistinct()); 1397 Record.push_back(N->getCount()); 1398 Record.push_back(rotateSign(N->getLowerBound())); 1399 1400 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1401 Record.clear(); 1402 } 1403 1404 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1405 SmallVectorImpl<uint64_t> &Record, 1406 unsigned Abbrev) { 1407 Record.push_back(N->isDistinct()); 1408 Record.push_back(rotateSign(N->getValue())); 1409 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1410 1411 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1412 Record.clear(); 1413 } 1414 1415 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1416 SmallVectorImpl<uint64_t> &Record, 1417 unsigned Abbrev) { 1418 Record.push_back(N->isDistinct()); 1419 Record.push_back(N->getTag()); 1420 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1421 Record.push_back(N->getSizeInBits()); 1422 Record.push_back(N->getAlignInBits()); 1423 Record.push_back(N->getEncoding()); 1424 1425 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1426 Record.clear(); 1427 } 1428 1429 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1430 SmallVectorImpl<uint64_t> &Record, 1431 unsigned Abbrev) { 1432 Record.push_back(N->isDistinct()); 1433 Record.push_back(N->getTag()); 1434 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1435 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1436 Record.push_back(N->getLine()); 1437 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1438 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1439 Record.push_back(N->getSizeInBits()); 1440 Record.push_back(N->getAlignInBits()); 1441 Record.push_back(N->getOffsetInBits()); 1442 Record.push_back(N->getFlags()); 1443 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1444 1445 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1446 Record.clear(); 1447 } 1448 1449 void ModuleBitcodeWriter::writeDICompositeType( 1450 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1451 unsigned Abbrev) { 1452 const unsigned IsNotUsedInOldTypeRef = 0x2; 1453 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1454 Record.push_back(N->getTag()); 1455 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1456 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1457 Record.push_back(N->getLine()); 1458 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1459 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1460 Record.push_back(N->getSizeInBits()); 1461 Record.push_back(N->getAlignInBits()); 1462 Record.push_back(N->getOffsetInBits()); 1463 Record.push_back(N->getFlags()); 1464 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1465 Record.push_back(N->getRuntimeLang()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1468 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1469 1470 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1471 Record.clear(); 1472 } 1473 1474 void ModuleBitcodeWriter::writeDISubroutineType( 1475 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1476 unsigned Abbrev) { 1477 const unsigned HasNoOldTypeRefs = 0x2; 1478 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1479 Record.push_back(N->getFlags()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1481 Record.push_back(N->getCC()); 1482 1483 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1484 Record.clear(); 1485 } 1486 1487 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1488 SmallVectorImpl<uint64_t> &Record, 1489 unsigned Abbrev) { 1490 Record.push_back(N->isDistinct()); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1492 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1493 1494 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1495 Record.clear(); 1496 } 1497 1498 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1499 SmallVectorImpl<uint64_t> &Record, 1500 unsigned Abbrev) { 1501 assert(N->isDistinct() && "Expected distinct compile units"); 1502 Record.push_back(/* IsDistinct */ true); 1503 Record.push_back(N->getSourceLanguage()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1506 Record.push_back(N->isOptimized()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1508 Record.push_back(N->getRuntimeVersion()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1510 Record.push_back(N->getEmissionKind()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1512 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1513 Record.push_back(/* subprograms */ 0); 1514 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1516 Record.push_back(N->getDWOId()); 1517 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1518 1519 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1520 Record.clear(); 1521 } 1522 1523 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1524 SmallVectorImpl<uint64_t> &Record, 1525 unsigned Abbrev) { 1526 uint64_t HasUnitFlag = 1 << 1; 1527 Record.push_back(N->isDistinct() | HasUnitFlag); 1528 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1532 Record.push_back(N->getLine()); 1533 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1534 Record.push_back(N->isLocalToUnit()); 1535 Record.push_back(N->isDefinition()); 1536 Record.push_back(N->getScopeLine()); 1537 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1538 Record.push_back(N->getVirtuality()); 1539 Record.push_back(N->getVirtualIndex()); 1540 Record.push_back(N->getFlags()); 1541 Record.push_back(N->isOptimized()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1545 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1546 1547 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1548 Record.clear(); 1549 } 1550 1551 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1552 SmallVectorImpl<uint64_t> &Record, 1553 unsigned Abbrev) { 1554 Record.push_back(N->isDistinct()); 1555 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1556 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1557 Record.push_back(N->getLine()); 1558 Record.push_back(N->getColumn()); 1559 1560 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1561 Record.clear(); 1562 } 1563 1564 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1565 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1566 unsigned Abbrev) { 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1569 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1570 Record.push_back(N->getDiscriminator()); 1571 1572 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1573 Record.clear(); 1574 } 1575 1576 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1577 SmallVectorImpl<uint64_t> &Record, 1578 unsigned Abbrev) { 1579 Record.push_back(N->isDistinct()); 1580 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1581 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1583 Record.push_back(N->getLine()); 1584 1585 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1586 Record.clear(); 1587 } 1588 1589 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1590 SmallVectorImpl<uint64_t> &Record, 1591 unsigned Abbrev) { 1592 Record.push_back(N->isDistinct()); 1593 Record.push_back(N->getMacinfoType()); 1594 Record.push_back(N->getLine()); 1595 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1597 1598 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1599 Record.clear(); 1600 } 1601 1602 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1603 SmallVectorImpl<uint64_t> &Record, 1604 unsigned Abbrev) { 1605 Record.push_back(N->isDistinct()); 1606 Record.push_back(N->getMacinfoType()); 1607 Record.push_back(N->getLine()); 1608 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1610 1611 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1612 Record.clear(); 1613 } 1614 1615 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1616 SmallVectorImpl<uint64_t> &Record, 1617 unsigned Abbrev) { 1618 Record.push_back(N->isDistinct()); 1619 for (auto &I : N->operands()) 1620 Record.push_back(VE.getMetadataOrNullID(I)); 1621 1622 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1623 Record.clear(); 1624 } 1625 1626 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1627 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1628 unsigned Abbrev) { 1629 Record.push_back(N->isDistinct()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1632 1633 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1638 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 Record.push_back(N->isDistinct()); 1641 Record.push_back(N->getTag()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1644 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1645 1646 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1647 Record.clear(); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDIGlobalVariable( 1651 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 Record.push_back(N->isDistinct()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1658 Record.push_back(N->getLine()); 1659 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1660 Record.push_back(N->isLocalToUnit()); 1661 Record.push_back(N->isDefinition()); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1664 1665 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDILocalVariable( 1670 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 Record.push_back(N->isDistinct()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1676 Record.push_back(N->getLine()); 1677 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1678 Record.push_back(N->getArg()); 1679 Record.push_back(N->getFlags()); 1680 1681 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1682 Record.clear(); 1683 } 1684 1685 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1686 SmallVectorImpl<uint64_t> &Record, 1687 unsigned Abbrev) { 1688 Record.reserve(N->getElements().size() + 1); 1689 1690 Record.push_back(N->isDistinct()); 1691 Record.append(N->elements_begin(), N->elements_end()); 1692 1693 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.push_back(N->isDistinct()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1702 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1703 Record.push_back(N->getLine()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1706 Record.push_back(N->getAttributes()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1708 1709 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1710 Record.clear(); 1711 } 1712 1713 void ModuleBitcodeWriter::writeDIImportedEntity( 1714 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1715 unsigned Abbrev) { 1716 Record.push_back(N->isDistinct()); 1717 Record.push_back(N->getTag()); 1718 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1720 Record.push_back(N->getLine()); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1722 1723 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1724 Record.clear(); 1725 } 1726 1727 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1728 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1729 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1732 return Stream.EmitAbbrev(Abbv); 1733 } 1734 1735 void ModuleBitcodeWriter::writeNamedMetadata( 1736 SmallVectorImpl<uint64_t> &Record) { 1737 if (M.named_metadata_empty()) 1738 return; 1739 1740 unsigned Abbrev = createNamedMetadataAbbrev(); 1741 for (const NamedMDNode &NMD : M.named_metadata()) { 1742 // Write name. 1743 StringRef Str = NMD.getName(); 1744 Record.append(Str.bytes_begin(), Str.bytes_end()); 1745 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1746 Record.clear(); 1747 1748 // Write named metadata operands. 1749 for (const MDNode *N : NMD.operands()) 1750 Record.push_back(VE.getMetadataID(N)); 1751 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1752 Record.clear(); 1753 } 1754 } 1755 1756 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1757 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1758 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1762 return Stream.EmitAbbrev(Abbv); 1763 } 1764 1765 /// Write out a record for MDString. 1766 /// 1767 /// All the metadata strings in a metadata block are emitted in a single 1768 /// record. The sizes and strings themselves are shoved into a blob. 1769 void ModuleBitcodeWriter::writeMetadataStrings( 1770 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1771 if (Strings.empty()) 1772 return; 1773 1774 // Start the record with the number of strings. 1775 Record.push_back(bitc::METADATA_STRINGS); 1776 Record.push_back(Strings.size()); 1777 1778 // Emit the sizes of the strings in the blob. 1779 SmallString<256> Blob; 1780 { 1781 BitstreamWriter W(Blob); 1782 for (const Metadata *MD : Strings) 1783 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1784 W.FlushToWord(); 1785 } 1786 1787 // Add the offset to the strings to the record. 1788 Record.push_back(Blob.size()); 1789 1790 // Add the strings to the blob. 1791 for (const Metadata *MD : Strings) 1792 Blob.append(cast<MDString>(MD)->getString()); 1793 1794 // Emit the final record. 1795 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1796 Record.clear(); 1797 } 1798 1799 void ModuleBitcodeWriter::writeMetadataRecords( 1800 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) { 1801 if (MDs.empty()) 1802 return; 1803 1804 // Initialize MDNode abbreviations. 1805 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1806 #include "llvm/IR/Metadata.def" 1807 1808 for (const Metadata *MD : MDs) { 1809 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1810 assert(N->isResolved() && "Expected forward references to be resolved"); 1811 1812 switch (N->getMetadataID()) { 1813 default: 1814 llvm_unreachable("Invalid MDNode subclass"); 1815 #define HANDLE_MDNODE_LEAF(CLASS) \ 1816 case Metadata::CLASS##Kind: \ 1817 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1818 continue; 1819 #include "llvm/IR/Metadata.def" 1820 } 1821 } 1822 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1823 } 1824 } 1825 1826 void ModuleBitcodeWriter::writeModuleMetadata() { 1827 if (!VE.hasMDs() && M.named_metadata_empty()) 1828 return; 1829 1830 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1831 SmallVector<uint64_t, 64> Record; 1832 writeMetadataStrings(VE.getMDStrings(), Record); 1833 writeMetadataRecords(VE.getNonMDStrings(), Record); 1834 writeNamedMetadata(Record); 1835 Stream.ExitBlock(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1839 if (!VE.hasMDs()) 1840 return; 1841 1842 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1843 SmallVector<uint64_t, 64> Record; 1844 writeMetadataStrings(VE.getMDStrings(), Record); 1845 writeMetadataRecords(VE.getNonMDStrings(), Record); 1846 Stream.ExitBlock(); 1847 } 1848 1849 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1850 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1851 // [n x [id, mdnode]] 1852 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1853 GO.getAllMetadata(MDs); 1854 for (const auto &I : MDs) { 1855 Record.push_back(I.first); 1856 Record.push_back(VE.getMetadataID(I.second)); 1857 } 1858 } 1859 1860 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1861 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1862 1863 SmallVector<uint64_t, 64> Record; 1864 1865 if (F.hasMetadata()) { 1866 pushGlobalMetadataAttachment(Record, F); 1867 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1868 Record.clear(); 1869 } 1870 1871 // Write metadata attachments 1872 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1873 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1874 for (const BasicBlock &BB : F) 1875 for (const Instruction &I : BB) { 1876 MDs.clear(); 1877 I.getAllMetadataOtherThanDebugLoc(MDs); 1878 1879 // If no metadata, ignore instruction. 1880 if (MDs.empty()) continue; 1881 1882 Record.push_back(VE.getInstructionID(&I)); 1883 1884 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1885 Record.push_back(MDs[i].first); 1886 Record.push_back(VE.getMetadataID(MDs[i].second)); 1887 } 1888 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1889 Record.clear(); 1890 } 1891 1892 Stream.ExitBlock(); 1893 } 1894 1895 void ModuleBitcodeWriter::writeModuleMetadataStore() { 1896 SmallVector<uint64_t, 64> Record; 1897 1898 // Write metadata kinds 1899 // METADATA_KIND - [n x [id, name]] 1900 SmallVector<StringRef, 8> Names; 1901 M.getMDKindNames(Names); 1902 1903 if (Names.empty()) return; 1904 1905 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1906 1907 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1908 Record.push_back(MDKindID); 1909 StringRef KName = Names[MDKindID]; 1910 Record.append(KName.begin(), KName.end()); 1911 1912 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1913 Record.clear(); 1914 } 1915 1916 Stream.ExitBlock(); 1917 } 1918 1919 void ModuleBitcodeWriter::writeOperandBundleTags() { 1920 // Write metadata kinds 1921 // 1922 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1923 // 1924 // OPERAND_BUNDLE_TAG - [strchr x N] 1925 1926 SmallVector<StringRef, 8> Tags; 1927 M.getOperandBundleTags(Tags); 1928 1929 if (Tags.empty()) 1930 return; 1931 1932 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1933 1934 SmallVector<uint64_t, 64> Record; 1935 1936 for (auto Tag : Tags) { 1937 Record.append(Tag.begin(), Tag.end()); 1938 1939 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1940 Record.clear(); 1941 } 1942 1943 Stream.ExitBlock(); 1944 } 1945 1946 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1947 if ((int64_t)V >= 0) 1948 Vals.push_back(V << 1); 1949 else 1950 Vals.push_back((-V << 1) | 1); 1951 } 1952 1953 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1954 bool isGlobal) { 1955 if (FirstVal == LastVal) return; 1956 1957 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1958 1959 unsigned AggregateAbbrev = 0; 1960 unsigned String8Abbrev = 0; 1961 unsigned CString7Abbrev = 0; 1962 unsigned CString6Abbrev = 0; 1963 // If this is a constant pool for the module, emit module-specific abbrevs. 1964 if (isGlobal) { 1965 // Abbrev for CST_CODE_AGGREGATE. 1966 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1967 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1970 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1971 1972 // Abbrev for CST_CODE_STRING. 1973 Abbv = new BitCodeAbbrev(); 1974 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1977 String8Abbrev = Stream.EmitAbbrev(Abbv); 1978 // Abbrev for CST_CODE_CSTRING. 1979 Abbv = new BitCodeAbbrev(); 1980 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1983 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1984 // Abbrev for CST_CODE_CSTRING. 1985 Abbv = new BitCodeAbbrev(); 1986 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1989 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1990 } 1991 1992 SmallVector<uint64_t, 64> Record; 1993 1994 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1995 Type *LastTy = nullptr; 1996 for (unsigned i = FirstVal; i != LastVal; ++i) { 1997 const Value *V = Vals[i].first; 1998 // If we need to switch types, do so now. 1999 if (V->getType() != LastTy) { 2000 LastTy = V->getType(); 2001 Record.push_back(VE.getTypeID(LastTy)); 2002 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2003 CONSTANTS_SETTYPE_ABBREV); 2004 Record.clear(); 2005 } 2006 2007 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2008 Record.push_back(unsigned(IA->hasSideEffects()) | 2009 unsigned(IA->isAlignStack()) << 1 | 2010 unsigned(IA->getDialect()&1) << 2); 2011 2012 // Add the asm string. 2013 const std::string &AsmStr = IA->getAsmString(); 2014 Record.push_back(AsmStr.size()); 2015 Record.append(AsmStr.begin(), AsmStr.end()); 2016 2017 // Add the constraint string. 2018 const std::string &ConstraintStr = IA->getConstraintString(); 2019 Record.push_back(ConstraintStr.size()); 2020 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2021 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2022 Record.clear(); 2023 continue; 2024 } 2025 const Constant *C = cast<Constant>(V); 2026 unsigned Code = -1U; 2027 unsigned AbbrevToUse = 0; 2028 if (C->isNullValue()) { 2029 Code = bitc::CST_CODE_NULL; 2030 } else if (isa<UndefValue>(C)) { 2031 Code = bitc::CST_CODE_UNDEF; 2032 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2033 if (IV->getBitWidth() <= 64) { 2034 uint64_t V = IV->getSExtValue(); 2035 emitSignedInt64(Record, V); 2036 Code = bitc::CST_CODE_INTEGER; 2037 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2038 } else { // Wide integers, > 64 bits in size. 2039 // We have an arbitrary precision integer value to write whose 2040 // bit width is > 64. However, in canonical unsigned integer 2041 // format it is likely that the high bits are going to be zero. 2042 // So, we only write the number of active words. 2043 unsigned NWords = IV->getValue().getActiveWords(); 2044 const uint64_t *RawWords = IV->getValue().getRawData(); 2045 for (unsigned i = 0; i != NWords; ++i) { 2046 emitSignedInt64(Record, RawWords[i]); 2047 } 2048 Code = bitc::CST_CODE_WIDE_INTEGER; 2049 } 2050 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2051 Code = bitc::CST_CODE_FLOAT; 2052 Type *Ty = CFP->getType(); 2053 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2054 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2055 } else if (Ty->isX86_FP80Ty()) { 2056 // api needed to prevent premature destruction 2057 // bits are not in the same order as a normal i80 APInt, compensate. 2058 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2059 const uint64_t *p = api.getRawData(); 2060 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2061 Record.push_back(p[0] & 0xffffLL); 2062 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2063 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2064 const uint64_t *p = api.getRawData(); 2065 Record.push_back(p[0]); 2066 Record.push_back(p[1]); 2067 } else { 2068 assert (0 && "Unknown FP type!"); 2069 } 2070 } else if (isa<ConstantDataSequential>(C) && 2071 cast<ConstantDataSequential>(C)->isString()) { 2072 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2073 // Emit constant strings specially. 2074 unsigned NumElts = Str->getNumElements(); 2075 // If this is a null-terminated string, use the denser CSTRING encoding. 2076 if (Str->isCString()) { 2077 Code = bitc::CST_CODE_CSTRING; 2078 --NumElts; // Don't encode the null, which isn't allowed by char6. 2079 } else { 2080 Code = bitc::CST_CODE_STRING; 2081 AbbrevToUse = String8Abbrev; 2082 } 2083 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2084 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2085 for (unsigned i = 0; i != NumElts; ++i) { 2086 unsigned char V = Str->getElementAsInteger(i); 2087 Record.push_back(V); 2088 isCStr7 &= (V & 128) == 0; 2089 if (isCStrChar6) 2090 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2091 } 2092 2093 if (isCStrChar6) 2094 AbbrevToUse = CString6Abbrev; 2095 else if (isCStr7) 2096 AbbrevToUse = CString7Abbrev; 2097 } else if (const ConstantDataSequential *CDS = 2098 dyn_cast<ConstantDataSequential>(C)) { 2099 Code = bitc::CST_CODE_DATA; 2100 Type *EltTy = CDS->getType()->getElementType(); 2101 if (isa<IntegerType>(EltTy)) { 2102 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2103 Record.push_back(CDS->getElementAsInteger(i)); 2104 } else { 2105 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2106 Record.push_back( 2107 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2108 } 2109 } else if (isa<ConstantAggregate>(C)) { 2110 Code = bitc::CST_CODE_AGGREGATE; 2111 for (const Value *Op : C->operands()) 2112 Record.push_back(VE.getValueID(Op)); 2113 AbbrevToUse = AggregateAbbrev; 2114 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2115 switch (CE->getOpcode()) { 2116 default: 2117 if (Instruction::isCast(CE->getOpcode())) { 2118 Code = bitc::CST_CODE_CE_CAST; 2119 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2120 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2121 Record.push_back(VE.getValueID(C->getOperand(0))); 2122 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2123 } else { 2124 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2125 Code = bitc::CST_CODE_CE_BINOP; 2126 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2127 Record.push_back(VE.getValueID(C->getOperand(0))); 2128 Record.push_back(VE.getValueID(C->getOperand(1))); 2129 uint64_t Flags = getOptimizationFlags(CE); 2130 if (Flags != 0) 2131 Record.push_back(Flags); 2132 } 2133 break; 2134 case Instruction::GetElementPtr: { 2135 Code = bitc::CST_CODE_CE_GEP; 2136 const auto *GO = cast<GEPOperator>(C); 2137 if (GO->isInBounds()) 2138 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2139 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2140 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2141 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2142 Record.push_back(VE.getValueID(C->getOperand(i))); 2143 } 2144 break; 2145 } 2146 case Instruction::Select: 2147 Code = bitc::CST_CODE_CE_SELECT; 2148 Record.push_back(VE.getValueID(C->getOperand(0))); 2149 Record.push_back(VE.getValueID(C->getOperand(1))); 2150 Record.push_back(VE.getValueID(C->getOperand(2))); 2151 break; 2152 case Instruction::ExtractElement: 2153 Code = bitc::CST_CODE_CE_EXTRACTELT; 2154 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2155 Record.push_back(VE.getValueID(C->getOperand(0))); 2156 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2157 Record.push_back(VE.getValueID(C->getOperand(1))); 2158 break; 2159 case Instruction::InsertElement: 2160 Code = bitc::CST_CODE_CE_INSERTELT; 2161 Record.push_back(VE.getValueID(C->getOperand(0))); 2162 Record.push_back(VE.getValueID(C->getOperand(1))); 2163 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2164 Record.push_back(VE.getValueID(C->getOperand(2))); 2165 break; 2166 case Instruction::ShuffleVector: 2167 // If the return type and argument types are the same, this is a 2168 // standard shufflevector instruction. If the types are different, 2169 // then the shuffle is widening or truncating the input vectors, and 2170 // the argument type must also be encoded. 2171 if (C->getType() == C->getOperand(0)->getType()) { 2172 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2173 } else { 2174 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2175 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2176 } 2177 Record.push_back(VE.getValueID(C->getOperand(0))); 2178 Record.push_back(VE.getValueID(C->getOperand(1))); 2179 Record.push_back(VE.getValueID(C->getOperand(2))); 2180 break; 2181 case Instruction::ICmp: 2182 case Instruction::FCmp: 2183 Code = bitc::CST_CODE_CE_CMP; 2184 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2185 Record.push_back(VE.getValueID(C->getOperand(0))); 2186 Record.push_back(VE.getValueID(C->getOperand(1))); 2187 Record.push_back(CE->getPredicate()); 2188 break; 2189 } 2190 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2191 Code = bitc::CST_CODE_BLOCKADDRESS; 2192 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2193 Record.push_back(VE.getValueID(BA->getFunction())); 2194 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2195 } else { 2196 #ifndef NDEBUG 2197 C->dump(); 2198 #endif 2199 llvm_unreachable("Unknown constant!"); 2200 } 2201 Stream.EmitRecord(Code, Record, AbbrevToUse); 2202 Record.clear(); 2203 } 2204 2205 Stream.ExitBlock(); 2206 } 2207 2208 void ModuleBitcodeWriter::writeModuleConstants() { 2209 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2210 2211 // Find the first constant to emit, which is the first non-globalvalue value. 2212 // We know globalvalues have been emitted by WriteModuleInfo. 2213 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2214 if (!isa<GlobalValue>(Vals[i].first)) { 2215 writeConstants(i, Vals.size(), true); 2216 return; 2217 } 2218 } 2219 } 2220 2221 /// pushValueAndType - The file has to encode both the value and type id for 2222 /// many values, because we need to know what type to create for forward 2223 /// references. However, most operands are not forward references, so this type 2224 /// field is not needed. 2225 /// 2226 /// This function adds V's value ID to Vals. If the value ID is higher than the 2227 /// instruction ID, then it is a forward reference, and it also includes the 2228 /// type ID. The value ID that is written is encoded relative to the InstID. 2229 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2230 SmallVectorImpl<unsigned> &Vals) { 2231 unsigned ValID = VE.getValueID(V); 2232 // Make encoding relative to the InstID. 2233 Vals.push_back(InstID - ValID); 2234 if (ValID >= InstID) { 2235 Vals.push_back(VE.getTypeID(V->getType())); 2236 return true; 2237 } 2238 return false; 2239 } 2240 2241 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2242 unsigned InstID) { 2243 SmallVector<unsigned, 64> Record; 2244 LLVMContext &C = CS.getInstruction()->getContext(); 2245 2246 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2247 const auto &Bundle = CS.getOperandBundleAt(i); 2248 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2249 2250 for (auto &Input : Bundle.Inputs) 2251 pushValueAndType(Input, InstID, Record); 2252 2253 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2254 Record.clear(); 2255 } 2256 } 2257 2258 /// pushValue - Like pushValueAndType, but where the type of the value is 2259 /// omitted (perhaps it was already encoded in an earlier operand). 2260 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2261 SmallVectorImpl<unsigned> &Vals) { 2262 unsigned ValID = VE.getValueID(V); 2263 Vals.push_back(InstID - ValID); 2264 } 2265 2266 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2267 SmallVectorImpl<uint64_t> &Vals) { 2268 unsigned ValID = VE.getValueID(V); 2269 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2270 emitSignedInt64(Vals, diff); 2271 } 2272 2273 /// WriteInstruction - Emit an instruction to the specified stream. 2274 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2275 unsigned InstID, 2276 SmallVectorImpl<unsigned> &Vals) { 2277 unsigned Code = 0; 2278 unsigned AbbrevToUse = 0; 2279 VE.setInstructionID(&I); 2280 switch (I.getOpcode()) { 2281 default: 2282 if (Instruction::isCast(I.getOpcode())) { 2283 Code = bitc::FUNC_CODE_INST_CAST; 2284 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2285 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2286 Vals.push_back(VE.getTypeID(I.getType())); 2287 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2288 } else { 2289 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2290 Code = bitc::FUNC_CODE_INST_BINOP; 2291 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2292 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2293 pushValue(I.getOperand(1), InstID, Vals); 2294 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2295 uint64_t Flags = getOptimizationFlags(&I); 2296 if (Flags != 0) { 2297 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2298 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2299 Vals.push_back(Flags); 2300 } 2301 } 2302 break; 2303 2304 case Instruction::GetElementPtr: { 2305 Code = bitc::FUNC_CODE_INST_GEP; 2306 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2307 auto &GEPInst = cast<GetElementPtrInst>(I); 2308 Vals.push_back(GEPInst.isInBounds()); 2309 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2310 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2311 pushValueAndType(I.getOperand(i), InstID, Vals); 2312 break; 2313 } 2314 case Instruction::ExtractValue: { 2315 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2316 pushValueAndType(I.getOperand(0), InstID, Vals); 2317 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2318 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2319 break; 2320 } 2321 case Instruction::InsertValue: { 2322 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2323 pushValueAndType(I.getOperand(0), InstID, Vals); 2324 pushValueAndType(I.getOperand(1), InstID, Vals); 2325 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2326 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2327 break; 2328 } 2329 case Instruction::Select: 2330 Code = bitc::FUNC_CODE_INST_VSELECT; 2331 pushValueAndType(I.getOperand(1), InstID, Vals); 2332 pushValue(I.getOperand(2), InstID, Vals); 2333 pushValueAndType(I.getOperand(0), InstID, Vals); 2334 break; 2335 case Instruction::ExtractElement: 2336 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2337 pushValueAndType(I.getOperand(0), InstID, Vals); 2338 pushValueAndType(I.getOperand(1), InstID, Vals); 2339 break; 2340 case Instruction::InsertElement: 2341 Code = bitc::FUNC_CODE_INST_INSERTELT; 2342 pushValueAndType(I.getOperand(0), InstID, Vals); 2343 pushValue(I.getOperand(1), InstID, Vals); 2344 pushValueAndType(I.getOperand(2), InstID, Vals); 2345 break; 2346 case Instruction::ShuffleVector: 2347 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2348 pushValueAndType(I.getOperand(0), InstID, Vals); 2349 pushValue(I.getOperand(1), InstID, Vals); 2350 pushValue(I.getOperand(2), InstID, Vals); 2351 break; 2352 case Instruction::ICmp: 2353 case Instruction::FCmp: { 2354 // compare returning Int1Ty or vector of Int1Ty 2355 Code = bitc::FUNC_CODE_INST_CMP2; 2356 pushValueAndType(I.getOperand(0), InstID, Vals); 2357 pushValue(I.getOperand(1), InstID, Vals); 2358 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2359 uint64_t Flags = getOptimizationFlags(&I); 2360 if (Flags != 0) 2361 Vals.push_back(Flags); 2362 break; 2363 } 2364 2365 case Instruction::Ret: 2366 { 2367 Code = bitc::FUNC_CODE_INST_RET; 2368 unsigned NumOperands = I.getNumOperands(); 2369 if (NumOperands == 0) 2370 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2371 else if (NumOperands == 1) { 2372 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2373 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2374 } else { 2375 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2376 pushValueAndType(I.getOperand(i), InstID, Vals); 2377 } 2378 } 2379 break; 2380 case Instruction::Br: 2381 { 2382 Code = bitc::FUNC_CODE_INST_BR; 2383 const BranchInst &II = cast<BranchInst>(I); 2384 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2385 if (II.isConditional()) { 2386 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2387 pushValue(II.getCondition(), InstID, Vals); 2388 } 2389 } 2390 break; 2391 case Instruction::Switch: 2392 { 2393 Code = bitc::FUNC_CODE_INST_SWITCH; 2394 const SwitchInst &SI = cast<SwitchInst>(I); 2395 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2396 pushValue(SI.getCondition(), InstID, Vals); 2397 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2398 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2399 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2400 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2401 } 2402 } 2403 break; 2404 case Instruction::IndirectBr: 2405 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2406 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2407 // Encode the address operand as relative, but not the basic blocks. 2408 pushValue(I.getOperand(0), InstID, Vals); 2409 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2410 Vals.push_back(VE.getValueID(I.getOperand(i))); 2411 break; 2412 2413 case Instruction::Invoke: { 2414 const InvokeInst *II = cast<InvokeInst>(&I); 2415 const Value *Callee = II->getCalledValue(); 2416 FunctionType *FTy = II->getFunctionType(); 2417 2418 if (II->hasOperandBundles()) 2419 writeOperandBundles(II, InstID); 2420 2421 Code = bitc::FUNC_CODE_INST_INVOKE; 2422 2423 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2424 Vals.push_back(II->getCallingConv() | 1 << 13); 2425 Vals.push_back(VE.getValueID(II->getNormalDest())); 2426 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2427 Vals.push_back(VE.getTypeID(FTy)); 2428 pushValueAndType(Callee, InstID, Vals); 2429 2430 // Emit value #'s for the fixed parameters. 2431 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2432 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2433 2434 // Emit type/value pairs for varargs params. 2435 if (FTy->isVarArg()) { 2436 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2437 i != e; ++i) 2438 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2439 } 2440 break; 2441 } 2442 case Instruction::Resume: 2443 Code = bitc::FUNC_CODE_INST_RESUME; 2444 pushValueAndType(I.getOperand(0), InstID, Vals); 2445 break; 2446 case Instruction::CleanupRet: { 2447 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2448 const auto &CRI = cast<CleanupReturnInst>(I); 2449 pushValue(CRI.getCleanupPad(), InstID, Vals); 2450 if (CRI.hasUnwindDest()) 2451 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2452 break; 2453 } 2454 case Instruction::CatchRet: { 2455 Code = bitc::FUNC_CODE_INST_CATCHRET; 2456 const auto &CRI = cast<CatchReturnInst>(I); 2457 pushValue(CRI.getCatchPad(), InstID, Vals); 2458 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2459 break; 2460 } 2461 case Instruction::CleanupPad: 2462 case Instruction::CatchPad: { 2463 const auto &FuncletPad = cast<FuncletPadInst>(I); 2464 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2465 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2466 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2467 2468 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2469 Vals.push_back(NumArgOperands); 2470 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2471 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2472 break; 2473 } 2474 case Instruction::CatchSwitch: { 2475 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2476 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2477 2478 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2479 2480 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2481 Vals.push_back(NumHandlers); 2482 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2483 Vals.push_back(VE.getValueID(CatchPadBB)); 2484 2485 if (CatchSwitch.hasUnwindDest()) 2486 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2487 break; 2488 } 2489 case Instruction::Unreachable: 2490 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2491 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2492 break; 2493 2494 case Instruction::PHI: { 2495 const PHINode &PN = cast<PHINode>(I); 2496 Code = bitc::FUNC_CODE_INST_PHI; 2497 // With the newer instruction encoding, forward references could give 2498 // negative valued IDs. This is most common for PHIs, so we use 2499 // signed VBRs. 2500 SmallVector<uint64_t, 128> Vals64; 2501 Vals64.push_back(VE.getTypeID(PN.getType())); 2502 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2503 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2504 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2505 } 2506 // Emit a Vals64 vector and exit. 2507 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2508 Vals64.clear(); 2509 return; 2510 } 2511 2512 case Instruction::LandingPad: { 2513 const LandingPadInst &LP = cast<LandingPadInst>(I); 2514 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2515 Vals.push_back(VE.getTypeID(LP.getType())); 2516 Vals.push_back(LP.isCleanup()); 2517 Vals.push_back(LP.getNumClauses()); 2518 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2519 if (LP.isCatch(I)) 2520 Vals.push_back(LandingPadInst::Catch); 2521 else 2522 Vals.push_back(LandingPadInst::Filter); 2523 pushValueAndType(LP.getClause(I), InstID, Vals); 2524 } 2525 break; 2526 } 2527 2528 case Instruction::Alloca: { 2529 Code = bitc::FUNC_CODE_INST_ALLOCA; 2530 const AllocaInst &AI = cast<AllocaInst>(I); 2531 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2532 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2533 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2534 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2535 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2536 "not enough bits for maximum alignment"); 2537 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2538 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2539 AlignRecord |= 1 << 6; 2540 AlignRecord |= AI.isSwiftError() << 7; 2541 Vals.push_back(AlignRecord); 2542 break; 2543 } 2544 2545 case Instruction::Load: 2546 if (cast<LoadInst>(I).isAtomic()) { 2547 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2548 pushValueAndType(I.getOperand(0), InstID, Vals); 2549 } else { 2550 Code = bitc::FUNC_CODE_INST_LOAD; 2551 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2552 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2553 } 2554 Vals.push_back(VE.getTypeID(I.getType())); 2555 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2556 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2557 if (cast<LoadInst>(I).isAtomic()) { 2558 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2559 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2560 } 2561 break; 2562 case Instruction::Store: 2563 if (cast<StoreInst>(I).isAtomic()) 2564 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2565 else 2566 Code = bitc::FUNC_CODE_INST_STORE; 2567 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2568 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2569 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2570 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2571 if (cast<StoreInst>(I).isAtomic()) { 2572 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2573 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2574 } 2575 break; 2576 case Instruction::AtomicCmpXchg: 2577 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2578 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2579 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2580 pushValue(I.getOperand(2), InstID, Vals); // newval. 2581 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2582 Vals.push_back( 2583 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2584 Vals.push_back( 2585 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2586 Vals.push_back( 2587 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2588 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2589 break; 2590 case Instruction::AtomicRMW: 2591 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2592 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2593 pushValue(I.getOperand(1), InstID, Vals); // val. 2594 Vals.push_back( 2595 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2596 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2597 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2598 Vals.push_back( 2599 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2600 break; 2601 case Instruction::Fence: 2602 Code = bitc::FUNC_CODE_INST_FENCE; 2603 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2604 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2605 break; 2606 case Instruction::Call: { 2607 const CallInst &CI = cast<CallInst>(I); 2608 FunctionType *FTy = CI.getFunctionType(); 2609 2610 if (CI.hasOperandBundles()) 2611 writeOperandBundles(&CI, InstID); 2612 2613 Code = bitc::FUNC_CODE_INST_CALL; 2614 2615 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2616 2617 unsigned Flags = getOptimizationFlags(&I); 2618 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2619 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2620 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2621 1 << bitc::CALL_EXPLICIT_TYPE | 2622 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2623 unsigned(Flags != 0) << bitc::CALL_FMF); 2624 if (Flags != 0) 2625 Vals.push_back(Flags); 2626 2627 Vals.push_back(VE.getTypeID(FTy)); 2628 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2629 2630 // Emit value #'s for the fixed parameters. 2631 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2632 // Check for labels (can happen with asm labels). 2633 if (FTy->getParamType(i)->isLabelTy()) 2634 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2635 else 2636 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2637 } 2638 2639 // Emit type/value pairs for varargs params. 2640 if (FTy->isVarArg()) { 2641 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2642 i != e; ++i) 2643 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2644 } 2645 break; 2646 } 2647 case Instruction::VAArg: 2648 Code = bitc::FUNC_CODE_INST_VAARG; 2649 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2650 pushValue(I.getOperand(0), InstID, Vals); // valist. 2651 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2652 break; 2653 } 2654 2655 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2656 Vals.clear(); 2657 } 2658 2659 /// Emit names for globals/functions etc. \p IsModuleLevel is true when 2660 /// we are writing the module-level VST, where we are including a function 2661 /// bitcode index and need to backpatch the VST forward declaration record. 2662 void ModuleBitcodeWriter::writeValueSymbolTable( 2663 const ValueSymbolTable &VST, bool IsModuleLevel, 2664 DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) { 2665 if (VST.empty()) { 2666 // writeValueSymbolTableForwardDecl should have returned early as 2667 // well. Ensure this handling remains in sync by asserting that 2668 // the placeholder offset is not set. 2669 assert(!IsModuleLevel || !hasVSTOffsetPlaceholder()); 2670 return; 2671 } 2672 2673 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2674 // Get the offset of the VST we are writing, and backpatch it into 2675 // the VST forward declaration record. 2676 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2677 // The BitcodeStartBit was the stream offset of the actual bitcode 2678 // (e.g. excluding any initial darwin header). 2679 VSTOffset -= bitcodeStartBit(); 2680 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2681 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2682 } 2683 2684 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2685 2686 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2687 // records, which are not used in the per-function VSTs. 2688 unsigned FnEntry8BitAbbrev; 2689 unsigned FnEntry7BitAbbrev; 2690 unsigned FnEntry6BitAbbrev; 2691 if (IsModuleLevel && hasVSTOffsetPlaceholder()) { 2692 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2693 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2694 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2699 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2700 2701 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2702 Abbv = new BitCodeAbbrev(); 2703 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2708 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2709 2710 // 6-bit char6 VST_CODE_FNENTRY function strings. 2711 Abbv = new BitCodeAbbrev(); 2712 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2717 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2718 } 2719 2720 // FIXME: Set up the abbrev, we know how many values there are! 2721 // FIXME: We know if the type names can use 7-bit ascii. 2722 SmallVector<unsigned, 64> NameVals; 2723 2724 for (const ValueName &Name : VST) { 2725 // Figure out the encoding to use for the name. 2726 StringEncoding Bits = 2727 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2728 2729 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2730 NameVals.push_back(VE.getValueID(Name.getValue())); 2731 2732 Function *F = dyn_cast<Function>(Name.getValue()); 2733 if (!F) { 2734 // If value is an alias, need to get the aliased base object to 2735 // see if it is a function. 2736 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2737 if (GA && GA->getBaseObject()) 2738 F = dyn_cast<Function>(GA->getBaseObject()); 2739 } 2740 2741 // VST_CODE_ENTRY: [valueid, namechar x N] 2742 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2743 // VST_CODE_BBENTRY: [bbid, namechar x N] 2744 unsigned Code; 2745 if (isa<BasicBlock>(Name.getValue())) { 2746 Code = bitc::VST_CODE_BBENTRY; 2747 if (Bits == SE_Char6) 2748 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2749 } else if (F && !F->isDeclaration()) { 2750 // Must be the module-level VST, where we pass in the Index and 2751 // have a VSTOffsetPlaceholder. The function-level VST should not 2752 // contain any Function symbols. 2753 assert(FunctionToBitcodeIndex); 2754 assert(hasVSTOffsetPlaceholder()); 2755 2756 // Save the word offset of the function (from the start of the 2757 // actual bitcode written to the stream). 2758 uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit(); 2759 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2760 NameVals.push_back(BitcodeIndex / 32); 2761 2762 Code = bitc::VST_CODE_FNENTRY; 2763 AbbrevToUse = FnEntry8BitAbbrev; 2764 if (Bits == SE_Char6) 2765 AbbrevToUse = FnEntry6BitAbbrev; 2766 else if (Bits == SE_Fixed7) 2767 AbbrevToUse = FnEntry7BitAbbrev; 2768 } else { 2769 Code = bitc::VST_CODE_ENTRY; 2770 if (Bits == SE_Char6) 2771 AbbrevToUse = VST_ENTRY_6_ABBREV; 2772 else if (Bits == SE_Fixed7) 2773 AbbrevToUse = VST_ENTRY_7_ABBREV; 2774 } 2775 2776 for (const auto P : Name.getKey()) 2777 NameVals.push_back((unsigned char)P); 2778 2779 // Emit the finished record. 2780 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2781 NameVals.clear(); 2782 } 2783 Stream.ExitBlock(); 2784 } 2785 2786 /// Emit function names and summary offsets for the combined index 2787 /// used by ThinLTO. 2788 void IndexBitcodeWriter::writeCombinedValueSymbolTable() { 2789 assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder"); 2790 // Get the offset of the VST we are writing, and backpatch it into 2791 // the VST forward declaration record. 2792 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2793 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2794 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2795 2796 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2797 2798 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2799 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2802 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2803 2804 SmallVector<uint64_t, 64> NameVals; 2805 for (const auto &GVI : valueIds()) { 2806 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2807 NameVals.push_back(GVI.second); 2808 NameVals.push_back(GVI.first); 2809 2810 // Emit the finished record. 2811 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2812 NameVals.clear(); 2813 } 2814 Stream.ExitBlock(); 2815 } 2816 2817 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2818 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2819 unsigned Code; 2820 if (isa<BasicBlock>(Order.V)) 2821 Code = bitc::USELIST_CODE_BB; 2822 else 2823 Code = bitc::USELIST_CODE_DEFAULT; 2824 2825 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2826 Record.push_back(VE.getValueID(Order.V)); 2827 Stream.EmitRecord(Code, Record); 2828 } 2829 2830 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2831 assert(VE.shouldPreserveUseListOrder() && 2832 "Expected to be preserving use-list order"); 2833 2834 auto hasMore = [&]() { 2835 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2836 }; 2837 if (!hasMore()) 2838 // Nothing to do. 2839 return; 2840 2841 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2842 while (hasMore()) { 2843 writeUseList(std::move(VE.UseListOrders.back())); 2844 VE.UseListOrders.pop_back(); 2845 } 2846 Stream.ExitBlock(); 2847 } 2848 2849 /// Emit a function body to the module stream. 2850 void ModuleBitcodeWriter::writeFunction( 2851 const Function &F, 2852 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2853 // Save the bitcode index of the start of this function block for recording 2854 // in the VST. 2855 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2856 2857 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2858 VE.incorporateFunction(F); 2859 2860 SmallVector<unsigned, 64> Vals; 2861 2862 // Emit the number of basic blocks, so the reader can create them ahead of 2863 // time. 2864 Vals.push_back(VE.getBasicBlocks().size()); 2865 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2866 Vals.clear(); 2867 2868 // If there are function-local constants, emit them now. 2869 unsigned CstStart, CstEnd; 2870 VE.getFunctionConstantRange(CstStart, CstEnd); 2871 writeConstants(CstStart, CstEnd, false); 2872 2873 // If there is function-local metadata, emit it now. 2874 writeFunctionMetadata(F); 2875 2876 // Keep a running idea of what the instruction ID is. 2877 unsigned InstID = CstEnd; 2878 2879 bool NeedsMetadataAttachment = F.hasMetadata(); 2880 2881 DILocation *LastDL = nullptr; 2882 // Finally, emit all the instructions, in order. 2883 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2884 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2885 I != E; ++I) { 2886 writeInstruction(*I, InstID, Vals); 2887 2888 if (!I->getType()->isVoidTy()) 2889 ++InstID; 2890 2891 // If the instruction has metadata, write a metadata attachment later. 2892 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2893 2894 // If the instruction has a debug location, emit it. 2895 DILocation *DL = I->getDebugLoc(); 2896 if (!DL) 2897 continue; 2898 2899 if (DL == LastDL) { 2900 // Just repeat the same debug loc as last time. 2901 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2902 continue; 2903 } 2904 2905 Vals.push_back(DL->getLine()); 2906 Vals.push_back(DL->getColumn()); 2907 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2908 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2909 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2910 Vals.clear(); 2911 2912 LastDL = DL; 2913 } 2914 2915 // Emit names for all the instructions etc. 2916 writeValueSymbolTable(F.getValueSymbolTable()); 2917 2918 if (NeedsMetadataAttachment) 2919 writeFunctionMetadataAttachment(F); 2920 if (VE.shouldPreserveUseListOrder()) 2921 writeUseListBlock(&F); 2922 VE.purgeFunction(); 2923 Stream.ExitBlock(); 2924 } 2925 2926 // Emit blockinfo, which defines the standard abbreviations etc. 2927 void ModuleBitcodeWriter::writeBlockInfo() { 2928 // We only want to emit block info records for blocks that have multiple 2929 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2930 // Other blocks can define their abbrevs inline. 2931 Stream.EnterBlockInfoBlock(2); 2932 2933 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2934 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2939 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2940 VST_ENTRY_8_ABBREV) 2941 llvm_unreachable("Unexpected abbrev ordering!"); 2942 } 2943 2944 { // 7-bit fixed width VST_CODE_ENTRY strings. 2945 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2946 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2950 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2951 VST_ENTRY_7_ABBREV) 2952 llvm_unreachable("Unexpected abbrev ordering!"); 2953 } 2954 { // 6-bit char6 VST_CODE_ENTRY strings. 2955 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2956 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2960 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2961 VST_ENTRY_6_ABBREV) 2962 llvm_unreachable("Unexpected abbrev ordering!"); 2963 } 2964 { // 6-bit char6 VST_CODE_BBENTRY strings. 2965 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2966 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2970 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2971 VST_BBENTRY_6_ABBREV) 2972 llvm_unreachable("Unexpected abbrev ordering!"); 2973 } 2974 2975 2976 2977 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2978 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2979 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2981 VE.computeBitsRequiredForTypeIndicies())); 2982 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2983 CONSTANTS_SETTYPE_ABBREV) 2984 llvm_unreachable("Unexpected abbrev ordering!"); 2985 } 2986 2987 { // INTEGER abbrev for CONSTANTS_BLOCK. 2988 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2989 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2991 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2992 CONSTANTS_INTEGER_ABBREV) 2993 llvm_unreachable("Unexpected abbrev ordering!"); 2994 } 2995 2996 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2997 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2998 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3001 VE.computeBitsRequiredForTypeIndicies())); 3002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3003 3004 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3005 CONSTANTS_CE_CAST_Abbrev) 3006 llvm_unreachable("Unexpected abbrev ordering!"); 3007 } 3008 { // NULL abbrev for CONSTANTS_BLOCK. 3009 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3010 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3011 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3012 CONSTANTS_NULL_Abbrev) 3013 llvm_unreachable("Unexpected abbrev ordering!"); 3014 } 3015 3016 // FIXME: This should only use space for first class types! 3017 3018 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3019 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3020 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3023 VE.computeBitsRequiredForTypeIndicies())); 3024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3026 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3027 FUNCTION_INST_LOAD_ABBREV) 3028 llvm_unreachable("Unexpected abbrev ordering!"); 3029 } 3030 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3031 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3032 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3036 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3037 FUNCTION_INST_BINOP_ABBREV) 3038 llvm_unreachable("Unexpected abbrev ordering!"); 3039 } 3040 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3041 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3042 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3047 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3048 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3049 llvm_unreachable("Unexpected abbrev ordering!"); 3050 } 3051 { // INST_CAST abbrev for FUNCTION_BLOCK. 3052 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3053 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3056 VE.computeBitsRequiredForTypeIndicies())); 3057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3058 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3059 FUNCTION_INST_CAST_ABBREV) 3060 llvm_unreachable("Unexpected abbrev ordering!"); 3061 } 3062 3063 { // INST_RET abbrev for FUNCTION_BLOCK. 3064 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3065 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3066 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3067 FUNCTION_INST_RET_VOID_ABBREV) 3068 llvm_unreachable("Unexpected abbrev ordering!"); 3069 } 3070 { // INST_RET abbrev for FUNCTION_BLOCK. 3071 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3072 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3074 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3075 FUNCTION_INST_RET_VAL_ABBREV) 3076 llvm_unreachable("Unexpected abbrev ordering!"); 3077 } 3078 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3079 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3080 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3081 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3082 FUNCTION_INST_UNREACHABLE_ABBREV) 3083 llvm_unreachable("Unexpected abbrev ordering!"); 3084 } 3085 { 3086 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3087 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3090 Log2_32_Ceil(VE.getTypes().size() + 1))); 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3093 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3094 FUNCTION_INST_GEP_ABBREV) 3095 llvm_unreachable("Unexpected abbrev ordering!"); 3096 } 3097 3098 Stream.ExitBlock(); 3099 } 3100 3101 /// Write the module path strings, currently only used when generating 3102 /// a combined index file. 3103 void IndexBitcodeWriter::writeModStrings() { 3104 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3105 3106 // TODO: See which abbrev sizes we actually need to emit 3107 3108 // 8-bit fixed-width MST_ENTRY strings. 3109 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3110 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3111 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3114 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 3115 3116 // 7-bit fixed width MST_ENTRY strings. 3117 Abbv = new BitCodeAbbrev(); 3118 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3122 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 3123 3124 // 6-bit char6 MST_ENTRY strings. 3125 Abbv = new BitCodeAbbrev(); 3126 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3130 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 3131 3132 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3133 Abbv = new BitCodeAbbrev(); 3134 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3140 unsigned AbbrevHash = Stream.EmitAbbrev(Abbv); 3141 3142 SmallVector<unsigned, 64> Vals; 3143 for (const auto &MPSE : Index.modulePaths()) { 3144 if (!doIncludeModule(MPSE.getKey())) 3145 continue; 3146 StringEncoding Bits = 3147 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3148 unsigned AbbrevToUse = Abbrev8Bit; 3149 if (Bits == SE_Char6) 3150 AbbrevToUse = Abbrev6Bit; 3151 else if (Bits == SE_Fixed7) 3152 AbbrevToUse = Abbrev7Bit; 3153 3154 Vals.push_back(MPSE.getValue().first); 3155 3156 for (const auto P : MPSE.getKey()) 3157 Vals.push_back((unsigned char)P); 3158 3159 // Emit the finished record. 3160 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3161 3162 Vals.clear(); 3163 // Emit an optional hash for the module now 3164 auto &Hash = MPSE.getValue().second; 3165 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3166 for (auto Val : Hash) { 3167 if (Val) 3168 AllZero = false; 3169 Vals.push_back(Val); 3170 } 3171 if (!AllZero) { 3172 // Emit the hash record. 3173 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3174 } 3175 3176 Vals.clear(); 3177 } 3178 Stream.ExitBlock(); 3179 } 3180 3181 // Helper to emit a single function summary record. 3182 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3183 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3184 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3185 const Function &F) { 3186 NameVals.push_back(ValueID); 3187 3188 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3189 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3190 NameVals.push_back(FS->instCount()); 3191 NameVals.push_back(FS->refs().size()); 3192 3193 unsigned SizeBeforeRefs = NameVals.size(); 3194 for (auto &RI : FS->refs()) 3195 NameVals.push_back(VE.getValueID(RI.getValue())); 3196 // Sort the refs for determinism output, the vector returned by FS->refs() has 3197 // been initialized from a DenseSet. 3198 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3199 3200 std::vector<FunctionSummary::EdgeTy> Calls = FS->calls(); 3201 std::sort(Calls.begin(), Calls.end(), 3202 [this](const FunctionSummary::EdgeTy &L, 3203 const FunctionSummary::EdgeTy &R) { 3204 return VE.getValueID(L.first.getValue()) < 3205 VE.getValueID(R.first.getValue()); 3206 }); 3207 bool HasProfileData = F.getEntryCount().hasValue(); 3208 for (auto &ECI : Calls) { 3209 NameVals.push_back(VE.getValueID(ECI.first.getValue())); 3210 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3211 NameVals.push_back(ECI.second.CallsiteCount); 3212 if (HasProfileData) 3213 NameVals.push_back(ECI.second.ProfileCount); 3214 } 3215 3216 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3217 unsigned Code = 3218 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3219 3220 // Emit the finished record. 3221 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3222 NameVals.clear(); 3223 } 3224 3225 // Collect the global value references in the given variable's initializer, 3226 // and emit them in a summary record. 3227 void ModuleBitcodeWriter::writeModuleLevelReferences( 3228 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3229 unsigned FSModRefsAbbrev) { 3230 // Only interested in recording variable defs in the summary. 3231 if (V.isDeclaration()) 3232 return; 3233 NameVals.push_back(VE.getValueID(&V)); 3234 NameVals.push_back(getEncodedGVSummaryFlags(V)); 3235 auto *Summary = Index->getGlobalValueSummary(V); 3236 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3237 3238 unsigned SizeBeforeRefs = NameVals.size(); 3239 for (auto &RI : VS->refs()) 3240 NameVals.push_back(VE.getValueID(RI.getValue())); 3241 // Sort the refs for determinism output, the vector returned by FS->refs() has 3242 // been initialized from a DenseSet. 3243 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3244 3245 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3246 FSModRefsAbbrev); 3247 NameVals.clear(); 3248 } 3249 3250 // Current version for the summary. 3251 // This is bumped whenever we introduce changes in the way some record are 3252 // interpreted, like flags for instance. 3253 static const uint64_t INDEX_VERSION = 1; 3254 3255 /// Emit the per-module summary section alongside the rest of 3256 /// the module's bitcode. 3257 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3258 if (M.empty()) 3259 return; 3260 3261 if (Index->begin() == Index->end()) 3262 return; 3263 3264 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3265 3266 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3267 3268 // Abbrev for FS_PERMODULE. 3269 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3270 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3275 // numrefs x valueid, n x (valueid, callsitecount) 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3278 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3279 3280 // Abbrev for FS_PERMODULE_PROFILE. 3281 Abbv = new BitCodeAbbrev(); 3282 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3287 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3290 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3291 3292 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3293 Abbv = new BitCodeAbbrev(); 3294 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3299 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3300 3301 // Abbrev for FS_ALIAS. 3302 Abbv = new BitCodeAbbrev(); 3303 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3307 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3308 3309 SmallVector<uint64_t, 64> NameVals; 3310 // Iterate over the list of functions instead of the Index to 3311 // ensure the ordering is stable. 3312 for (const Function &F : M) { 3313 if (F.isDeclaration()) 3314 continue; 3315 // Summary emission does not support anonymous functions, they have to 3316 // renamed using the anonymous function renaming pass. 3317 if (!F.hasName()) 3318 report_fatal_error("Unexpected anonymous function when writing summary"); 3319 3320 auto *Summary = Index->getGlobalValueSummary(F); 3321 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3322 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3323 } 3324 3325 // Capture references from GlobalVariable initializers, which are outside 3326 // of a function scope. 3327 for (const GlobalVariable &G : M.globals()) 3328 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3329 3330 for (const GlobalAlias &A : M.aliases()) { 3331 auto *Aliasee = A.getBaseObject(); 3332 if (!Aliasee->hasName()) 3333 // Nameless function don't have an entry in the summary, skip it. 3334 continue; 3335 auto AliasId = VE.getValueID(&A); 3336 auto AliaseeId = VE.getValueID(Aliasee); 3337 NameVals.push_back(AliasId); 3338 NameVals.push_back(getEncodedGVSummaryFlags(A)); 3339 NameVals.push_back(AliaseeId); 3340 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3341 NameVals.clear(); 3342 } 3343 3344 Stream.ExitBlock(); 3345 } 3346 3347 /// Emit the combined summary section into the combined index file. 3348 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3349 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3350 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3351 3352 // Abbrev for FS_COMBINED. 3353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3354 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3360 // numrefs x valueid, n x (valueid, callsitecount) 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3363 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3364 3365 // Abbrev for FS_COMBINED_PROFILE. 3366 Abbv = new BitCodeAbbrev(); 3367 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3373 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3376 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3377 3378 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3379 Abbv = new BitCodeAbbrev(); 3380 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3386 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3387 3388 // Abbrev for FS_COMBINED_ALIAS. 3389 Abbv = new BitCodeAbbrev(); 3390 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3395 unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv); 3396 3397 // The aliases are emitted as a post-pass, and will point to the value 3398 // id of the aliasee. Save them in a vector for post-processing. 3399 SmallVector<AliasSummary *, 64> Aliases; 3400 3401 // Save the value id for each summary for alias emission. 3402 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3403 3404 SmallVector<uint64_t, 64> NameVals; 3405 3406 // For local linkage, we also emit the original name separately 3407 // immediately after the record. 3408 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3409 if (!GlobalValue::isLocalLinkage(S.linkage())) 3410 return; 3411 NameVals.push_back(S.getOriginalName()); 3412 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3413 NameVals.clear(); 3414 }; 3415 3416 for (const auto &I : *this) { 3417 GlobalValueSummary *S = I.second; 3418 assert(S); 3419 3420 assert(hasValueId(I.first)); 3421 unsigned ValueId = getValueId(I.first); 3422 SummaryToValueIdMap[S] = ValueId; 3423 3424 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3425 // Will process aliases as a post-pass because the reader wants all 3426 // global to be loaded first. 3427 Aliases.push_back(AS); 3428 continue; 3429 } 3430 3431 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3432 NameVals.push_back(ValueId); 3433 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3434 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3435 for (auto &RI : VS->refs()) { 3436 NameVals.push_back(getValueId(RI.getGUID())); 3437 } 3438 3439 // Emit the finished record. 3440 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3441 FSModRefsAbbrev); 3442 NameVals.clear(); 3443 MaybeEmitOriginalName(*S); 3444 continue; 3445 } 3446 3447 auto *FS = cast<FunctionSummary>(S); 3448 NameVals.push_back(ValueId); 3449 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3450 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3451 NameVals.push_back(FS->instCount()); 3452 NameVals.push_back(FS->refs().size()); 3453 3454 for (auto &RI : FS->refs()) { 3455 NameVals.push_back(getValueId(RI.getGUID())); 3456 } 3457 3458 bool HasProfileData = false; 3459 for (auto &EI : FS->calls()) { 3460 HasProfileData |= EI.second.ProfileCount != 0; 3461 if (HasProfileData) 3462 break; 3463 } 3464 3465 for (auto &EI : FS->calls()) { 3466 // If this GUID doesn't have a value id, it doesn't have a function 3467 // summary and we don't need to record any calls to it. 3468 if (!hasValueId(EI.first.getGUID())) 3469 continue; 3470 NameVals.push_back(getValueId(EI.first.getGUID())); 3471 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3472 NameVals.push_back(EI.second.CallsiteCount); 3473 if (HasProfileData) 3474 NameVals.push_back(EI.second.ProfileCount); 3475 } 3476 3477 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3478 unsigned Code = 3479 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3480 3481 // Emit the finished record. 3482 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3483 NameVals.clear(); 3484 MaybeEmitOriginalName(*S); 3485 } 3486 3487 for (auto *AS : Aliases) { 3488 auto AliasValueId = SummaryToValueIdMap[AS]; 3489 assert(AliasValueId); 3490 NameVals.push_back(AliasValueId); 3491 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3492 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3493 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3494 assert(AliaseeValueId); 3495 NameVals.push_back(AliaseeValueId); 3496 3497 // Emit the finished record. 3498 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3499 NameVals.clear(); 3500 MaybeEmitOriginalName(*AS); 3501 } 3502 3503 Stream.ExitBlock(); 3504 } 3505 3506 void ModuleBitcodeWriter::writeIdentificationBlock() { 3507 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3508 3509 // Write the "user readable" string identifying the bitcode producer 3510 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3511 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3514 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3515 writeStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3516 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3517 3518 // Write the epoch version 3519 Abbv = new BitCodeAbbrev(); 3520 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3522 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3523 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3524 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3525 Stream.ExitBlock(); 3526 } 3527 3528 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3529 // Emit the module's hash. 3530 // MODULE_CODE_HASH: [5*i32] 3531 SHA1 Hasher; 3532 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3533 Buffer.size() - BlockStartPos)); 3534 auto Hash = Hasher.result(); 3535 SmallVector<uint64_t, 20> Vals; 3536 auto LShift = [&](unsigned char Val, unsigned Amount) 3537 -> uint64_t { return ((uint64_t)Val) << Amount; }; 3538 for (int Pos = 0; Pos < 20; Pos += 4) { 3539 uint32_t SubHash = LShift(Hash[Pos + 0], 24); 3540 SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) | 3541 (unsigned)(unsigned char)Hash[Pos + 3]; 3542 Vals.push_back(SubHash); 3543 } 3544 3545 // Emit the finished record. 3546 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3547 } 3548 3549 void BitcodeWriter::write() { 3550 // Emit the file header first. 3551 writeBitcodeHeader(); 3552 3553 writeBlocks(); 3554 } 3555 3556 void ModuleBitcodeWriter::writeBlocks() { 3557 writeIdentificationBlock(); 3558 writeModule(); 3559 } 3560 3561 void IndexBitcodeWriter::writeBlocks() { 3562 // Index contains only a single outer (module) block. 3563 writeIndex(); 3564 } 3565 3566 void ModuleBitcodeWriter::writeModule() { 3567 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3568 size_t BlockStartPos = Buffer.size(); 3569 3570 SmallVector<unsigned, 1> Vals; 3571 unsigned CurVersion = 1; 3572 Vals.push_back(CurVersion); 3573 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3574 3575 // Emit blockinfo, which defines the standard abbreviations etc. 3576 writeBlockInfo(); 3577 3578 // Emit information about attribute groups. 3579 writeAttributeGroupTable(); 3580 3581 // Emit information about parameter attributes. 3582 writeAttributeTable(); 3583 3584 // Emit information describing all of the types in the module. 3585 writeTypeTable(); 3586 3587 writeComdats(); 3588 3589 // Emit top-level description of module, including target triple, inline asm, 3590 // descriptors for global variables, and function prototype info. 3591 writeModuleInfo(); 3592 3593 // Emit constants. 3594 writeModuleConstants(); 3595 3596 // Emit metadata. 3597 writeModuleMetadata(); 3598 3599 // Emit metadata. 3600 writeModuleMetadataStore(); 3601 3602 // Emit module-level use-lists. 3603 if (VE.shouldPreserveUseListOrder()) 3604 writeUseListBlock(nullptr); 3605 3606 writeOperandBundleTags(); 3607 3608 // Emit function bodies. 3609 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3610 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3611 if (!F->isDeclaration()) 3612 writeFunction(*F, FunctionToBitcodeIndex); 3613 3614 // Need to write after the above call to WriteFunction which populates 3615 // the summary information in the index. 3616 if (Index) 3617 writePerModuleGlobalValueSummary(); 3618 3619 writeValueSymbolTable(M.getValueSymbolTable(), 3620 /* IsModuleLevel */ true, &FunctionToBitcodeIndex); 3621 3622 for (const GlobalVariable &GV : M.globals()) 3623 if (GV.hasMetadata()) { 3624 SmallVector<uint64_t, 4> Record; 3625 Record.push_back(VE.getValueID(&GV)); 3626 pushGlobalMetadataAttachment(Record, GV); 3627 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR_ATTACHMENT, Record); 3628 } 3629 3630 if (GenerateHash) { 3631 writeModuleHash(BlockStartPos); 3632 } 3633 3634 Stream.ExitBlock(); 3635 } 3636 3637 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3638 uint32_t &Position) { 3639 support::endian::write32le(&Buffer[Position], Value); 3640 Position += 4; 3641 } 3642 3643 /// If generating a bc file on darwin, we have to emit a 3644 /// header and trailer to make it compatible with the system archiver. To do 3645 /// this we emit the following header, and then emit a trailer that pads the 3646 /// file out to be a multiple of 16 bytes. 3647 /// 3648 /// struct bc_header { 3649 /// uint32_t Magic; // 0x0B17C0DE 3650 /// uint32_t Version; // Version, currently always 0. 3651 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3652 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3653 /// uint32_t CPUType; // CPU specifier. 3654 /// ... potentially more later ... 3655 /// }; 3656 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3657 const Triple &TT) { 3658 unsigned CPUType = ~0U; 3659 3660 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3661 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3662 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3663 // specific constants here because they are implicitly part of the Darwin ABI. 3664 enum { 3665 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3666 DARWIN_CPU_TYPE_X86 = 7, 3667 DARWIN_CPU_TYPE_ARM = 12, 3668 DARWIN_CPU_TYPE_POWERPC = 18 3669 }; 3670 3671 Triple::ArchType Arch = TT.getArch(); 3672 if (Arch == Triple::x86_64) 3673 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3674 else if (Arch == Triple::x86) 3675 CPUType = DARWIN_CPU_TYPE_X86; 3676 else if (Arch == Triple::ppc) 3677 CPUType = DARWIN_CPU_TYPE_POWERPC; 3678 else if (Arch == Triple::ppc64) 3679 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3680 else if (Arch == Triple::arm || Arch == Triple::thumb) 3681 CPUType = DARWIN_CPU_TYPE_ARM; 3682 3683 // Traditional Bitcode starts after header. 3684 assert(Buffer.size() >= BWH_HeaderSize && 3685 "Expected header size to be reserved"); 3686 unsigned BCOffset = BWH_HeaderSize; 3687 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3688 3689 // Write the magic and version. 3690 unsigned Position = 0; 3691 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3692 writeInt32ToBuffer(0, Buffer, Position); // Version. 3693 writeInt32ToBuffer(BCOffset, Buffer, Position); 3694 writeInt32ToBuffer(BCSize, Buffer, Position); 3695 writeInt32ToBuffer(CPUType, Buffer, Position); 3696 3697 // If the file is not a multiple of 16 bytes, insert dummy padding. 3698 while (Buffer.size() & 15) 3699 Buffer.push_back(0); 3700 } 3701 3702 /// Helper to write the header common to all bitcode files. 3703 void BitcodeWriter::writeBitcodeHeader() { 3704 // Emit the file header. 3705 Stream.Emit((unsigned)'B', 8); 3706 Stream.Emit((unsigned)'C', 8); 3707 Stream.Emit(0x0, 4); 3708 Stream.Emit(0xC, 4); 3709 Stream.Emit(0xE, 4); 3710 Stream.Emit(0xD, 4); 3711 } 3712 3713 /// WriteBitcodeToFile - Write the specified module to the specified output 3714 /// stream. 3715 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3716 bool ShouldPreserveUseListOrder, 3717 const ModuleSummaryIndex *Index, 3718 bool GenerateHash) { 3719 SmallVector<char, 0> Buffer; 3720 Buffer.reserve(256*1024); 3721 3722 // If this is darwin or another generic macho target, reserve space for the 3723 // header. 3724 Triple TT(M->getTargetTriple()); 3725 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3726 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3727 3728 // Emit the module into the buffer. 3729 ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index, 3730 GenerateHash); 3731 ModuleWriter.write(); 3732 3733 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3734 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3735 3736 // Write the generated bitstream to "Out". 3737 Out.write((char*)&Buffer.front(), Buffer.size()); 3738 } 3739 3740 void IndexBitcodeWriter::writeIndex() { 3741 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3742 3743 SmallVector<unsigned, 1> Vals; 3744 unsigned CurVersion = 1; 3745 Vals.push_back(CurVersion); 3746 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3747 3748 // If we have a VST, write the VSTOFFSET record placeholder. 3749 writeValueSymbolTableForwardDecl(); 3750 3751 // Write the module paths in the combined index. 3752 writeModStrings(); 3753 3754 // Write the summary combined index records. 3755 writeCombinedGlobalValueSummary(); 3756 3757 // Need a special VST writer for the combined index (we don't have a 3758 // real VST and real values when this is invoked). 3759 writeCombinedValueSymbolTable(); 3760 3761 Stream.ExitBlock(); 3762 } 3763 3764 // Write the specified module summary index to the given raw output stream, 3765 // where it will be written in a new bitcode block. This is used when 3766 // writing the combined index file for ThinLTO. When writing a subset of the 3767 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3768 void llvm::WriteIndexToFile( 3769 const ModuleSummaryIndex &Index, raw_ostream &Out, 3770 std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3771 SmallVector<char, 0> Buffer; 3772 Buffer.reserve(256 * 1024); 3773 3774 IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex); 3775 IndexWriter.write(); 3776 3777 Out.write((char *)&Buffer.front(), Buffer.size()); 3778 } 3779