1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/ParameterAttributes.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 /// These are manifest constants used by the bitcode writer. They do not need to 29 /// be kept in sync with the reader, but need to be consistent within this file. 30 enum { 31 CurVersion = 0, 32 33 // VALUE_SYMTAB_BLOCK abbrev id's. 34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 35 VST_ENTRY_7_ABBREV, 36 VST_ENTRY_6_ABBREV, 37 VST_BBENTRY_6_ABBREV, 38 39 // CONSTANTS_BLOCK abbrev id's. 40 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 CONSTANTS_INTEGER_ABBREV, 42 CONSTANTS_CE_CAST_Abbrev, 43 CONSTANTS_NULL_Abbrev, 44 45 // FUNCTION_BLOCK abbrev id's. 46 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV 47 }; 48 49 50 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 51 switch (Opcode) { 52 default: assert(0 && "Unknown cast instruction!"); 53 case Instruction::Trunc : return bitc::CAST_TRUNC; 54 case Instruction::ZExt : return bitc::CAST_ZEXT; 55 case Instruction::SExt : return bitc::CAST_SEXT; 56 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 57 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 58 case Instruction::UIToFP : return bitc::CAST_UITOFP; 59 case Instruction::SIToFP : return bitc::CAST_SITOFP; 60 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 61 case Instruction::FPExt : return bitc::CAST_FPEXT; 62 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 63 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 64 case Instruction::BitCast : return bitc::CAST_BITCAST; 65 } 66 } 67 68 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 69 switch (Opcode) { 70 default: assert(0 && "Unknown binary instruction!"); 71 case Instruction::Add: return bitc::BINOP_ADD; 72 case Instruction::Sub: return bitc::BINOP_SUB; 73 case Instruction::Mul: return bitc::BINOP_MUL; 74 case Instruction::UDiv: return bitc::BINOP_UDIV; 75 case Instruction::FDiv: 76 case Instruction::SDiv: return bitc::BINOP_SDIV; 77 case Instruction::URem: return bitc::BINOP_UREM; 78 case Instruction::FRem: 79 case Instruction::SRem: return bitc::BINOP_SREM; 80 case Instruction::Shl: return bitc::BINOP_SHL; 81 case Instruction::LShr: return bitc::BINOP_LSHR; 82 case Instruction::AShr: return bitc::BINOP_ASHR; 83 case Instruction::And: return bitc::BINOP_AND; 84 case Instruction::Or: return bitc::BINOP_OR; 85 case Instruction::Xor: return bitc::BINOP_XOR; 86 } 87 } 88 89 90 91 static void WriteStringRecord(unsigned Code, const std::string &Str, 92 unsigned AbbrevToUse, BitstreamWriter &Stream) { 93 SmallVector<unsigned, 64> Vals; 94 95 // Code: [strchar x N] 96 for (unsigned i = 0, e = Str.size(); i != e; ++i) 97 Vals.push_back(Str[i]); 98 99 // Emit the finished record. 100 Stream.EmitRecord(Code, Vals, AbbrevToUse); 101 } 102 103 // Emit information about parameter attributes. 104 static void WriteParamAttrTable(const ValueEnumerator &VE, 105 BitstreamWriter &Stream) { 106 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 107 if (Attrs.empty()) return; 108 109 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 110 111 SmallVector<uint64_t, 64> Record; 112 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 113 const ParamAttrsList *A = Attrs[i]; 114 for (unsigned op = 0, e = A->size(); op != e; ++op) { 115 Record.push_back(A->getParamIndex(op)); 116 Record.push_back(A->getParamAttrsAtIndex(op)); 117 } 118 119 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 120 Record.clear(); 121 } 122 123 Stream.ExitBlock(); 124 } 125 126 /// WriteTypeTable - Write out the type table for a module. 127 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 128 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 129 130 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 131 SmallVector<uint64_t, 64> TypeVals; 132 133 // Abbrev for TYPE_CODE_POINTER. 134 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 135 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 137 Log2_32_Ceil(VE.getTypes().size()+1))); 138 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 139 140 // Abbrev for TYPE_CODE_FUNCTION. 141 Abbv = new BitCodeAbbrev(); 142 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 145 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 148 Log2_32_Ceil(VE.getTypes().size()+1))); 149 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 150 151 // Abbrev for TYPE_CODE_STRUCT. 152 Abbv = new BitCodeAbbrev(); 153 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 157 Log2_32_Ceil(VE.getTypes().size()+1))); 158 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 159 160 // Abbrev for TYPE_CODE_ARRAY. 161 Abbv = new BitCodeAbbrev(); 162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 165 Log2_32_Ceil(VE.getTypes().size()+1))); 166 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 167 168 // Emit an entry count so the reader can reserve space. 169 TypeVals.push_back(TypeList.size()); 170 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 171 TypeVals.clear(); 172 173 // Loop over all of the types, emitting each in turn. 174 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 175 const Type *T = TypeList[i].first; 176 int AbbrevToUse = 0; 177 unsigned Code = 0; 178 179 switch (T->getTypeID()) { 180 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 181 default: assert(0 && "Unknown type!"); 182 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 183 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 184 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 185 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 186 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 187 case Type::IntegerTyID: 188 // INTEGER: [width] 189 Code = bitc::TYPE_CODE_INTEGER; 190 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 191 break; 192 case Type::PointerTyID: 193 // POINTER: [pointee type] 194 Code = bitc::TYPE_CODE_POINTER; 195 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 196 AbbrevToUse = PtrAbbrev; 197 break; 198 199 case Type::FunctionTyID: { 200 const FunctionType *FT = cast<FunctionType>(T); 201 // FUNCTION: [isvararg, attrid, retty, paramty x N] 202 Code = bitc::TYPE_CODE_FUNCTION; 203 TypeVals.push_back(FT->isVarArg()); 204 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 205 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 206 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 207 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 208 AbbrevToUse = FunctionAbbrev; 209 break; 210 } 211 case Type::StructTyID: { 212 const StructType *ST = cast<StructType>(T); 213 // STRUCT: [ispacked, eltty x N] 214 Code = bitc::TYPE_CODE_STRUCT; 215 TypeVals.push_back(ST->isPacked()); 216 // Output all of the element types. 217 for (StructType::element_iterator I = ST->element_begin(), 218 E = ST->element_end(); I != E; ++I) 219 TypeVals.push_back(VE.getTypeID(*I)); 220 AbbrevToUse = StructAbbrev; 221 break; 222 } 223 case Type::ArrayTyID: { 224 const ArrayType *AT = cast<ArrayType>(T); 225 // ARRAY: [numelts, eltty] 226 Code = bitc::TYPE_CODE_ARRAY; 227 TypeVals.push_back(AT->getNumElements()); 228 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 229 AbbrevToUse = ArrayAbbrev; 230 break; 231 } 232 case Type::VectorTyID: { 233 const VectorType *VT = cast<VectorType>(T); 234 // VECTOR [numelts, eltty] 235 Code = bitc::TYPE_CODE_VECTOR; 236 TypeVals.push_back(VT->getNumElements()); 237 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 238 break; 239 } 240 } 241 242 // Emit the finished record. 243 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 244 TypeVals.clear(); 245 } 246 247 Stream.ExitBlock(); 248 } 249 250 static unsigned getEncodedLinkage(const GlobalValue *GV) { 251 switch (GV->getLinkage()) { 252 default: assert(0 && "Invalid linkage!"); 253 case GlobalValue::ExternalLinkage: return 0; 254 case GlobalValue::WeakLinkage: return 1; 255 case GlobalValue::AppendingLinkage: return 2; 256 case GlobalValue::InternalLinkage: return 3; 257 case GlobalValue::LinkOnceLinkage: return 4; 258 case GlobalValue::DLLImportLinkage: return 5; 259 case GlobalValue::DLLExportLinkage: return 6; 260 case GlobalValue::ExternalWeakLinkage: return 7; 261 } 262 } 263 264 static unsigned getEncodedVisibility(const GlobalValue *GV) { 265 switch (GV->getVisibility()) { 266 default: assert(0 && "Invalid visibility!"); 267 case GlobalValue::DefaultVisibility: return 0; 268 case GlobalValue::HiddenVisibility: return 1; 269 case GlobalValue::ProtectedVisibility: return 2; 270 } 271 } 272 273 // Emit top-level description of module, including target triple, inline asm, 274 // descriptors for global variables, and function prototype info. 275 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 276 BitstreamWriter &Stream) { 277 // Emit the list of dependent libraries for the Module. 278 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 279 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 280 281 // Emit various pieces of data attached to a module. 282 if (!M->getTargetTriple().empty()) 283 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 284 0/*TODO*/, Stream); 285 if (!M->getDataLayout().empty()) 286 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 287 0/*TODO*/, Stream); 288 if (!M->getModuleInlineAsm().empty()) 289 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 290 0/*TODO*/, Stream); 291 292 // Emit information about sections, computing how many there are. Also 293 // compute the maximum alignment value. 294 std::map<std::string, unsigned> SectionMap; 295 unsigned MaxAlignment = 0; 296 unsigned MaxGlobalType = 0; 297 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 298 GV != E; ++GV) { 299 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 300 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 301 302 if (!GV->hasSection()) continue; 303 // Give section names unique ID's. 304 unsigned &Entry = SectionMap[GV->getSection()]; 305 if (Entry != 0) continue; 306 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 307 0/*TODO*/, Stream); 308 Entry = SectionMap.size(); 309 } 310 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 311 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 312 if (!F->hasSection()) continue; 313 // Give section names unique ID's. 314 unsigned &Entry = SectionMap[F->getSection()]; 315 if (Entry != 0) continue; 316 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 317 0/*TODO*/, Stream); 318 Entry = SectionMap.size(); 319 } 320 321 // Emit abbrev for globals, now that we know # sections and max alignment. 322 unsigned SimpleGVarAbbrev = 0; 323 if (!M->global_empty()) { 324 // Add an abbrev for common globals with no visibility or thread localness. 325 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 326 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 328 Log2_32_Ceil(MaxGlobalType+1))); 329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 332 if (MaxAlignment == 0) // Alignment. 333 Abbv->Add(BitCodeAbbrevOp(0)); 334 else { 335 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 337 Log2_32_Ceil(MaxEncAlignment+1))); 338 } 339 if (SectionMap.empty()) // Section. 340 Abbv->Add(BitCodeAbbrevOp(0)); 341 else 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 343 Log2_32_Ceil(SectionMap.size()+1))); 344 // Don't bother emitting vis + thread local. 345 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 346 } 347 348 // Emit the global variable information. 349 SmallVector<unsigned, 64> Vals; 350 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 351 GV != E; ++GV) { 352 unsigned AbbrevToUse = 0; 353 354 // GLOBALVAR: [type, isconst, initid, 355 // linkage, alignment, section, visibility, threadlocal] 356 Vals.push_back(VE.getTypeID(GV->getType())); 357 Vals.push_back(GV->isConstant()); 358 Vals.push_back(GV->isDeclaration() ? 0 : 359 (VE.getValueID(GV->getInitializer()) + 1)); 360 Vals.push_back(getEncodedLinkage(GV)); 361 Vals.push_back(Log2_32(GV->getAlignment())+1); 362 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 363 if (GV->isThreadLocal() || 364 GV->getVisibility() != GlobalValue::DefaultVisibility) { 365 Vals.push_back(getEncodedVisibility(GV)); 366 Vals.push_back(GV->isThreadLocal()); 367 } else { 368 AbbrevToUse = SimpleGVarAbbrev; 369 } 370 371 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 372 Vals.clear(); 373 } 374 375 // Emit the function proto information. 376 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 377 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 378 // visibility] 379 Vals.push_back(VE.getTypeID(F->getType())); 380 Vals.push_back(F->getCallingConv()); 381 Vals.push_back(F->isDeclaration()); 382 Vals.push_back(getEncodedLinkage(F)); 383 Vals.push_back(Log2_32(F->getAlignment())+1); 384 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 385 Vals.push_back(getEncodedVisibility(F)); 386 387 unsigned AbbrevToUse = 0; 388 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 389 Vals.clear(); 390 } 391 392 393 // Emit the alias information. 394 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 395 AI != E; ++AI) { 396 Vals.push_back(VE.getTypeID(AI->getType())); 397 Vals.push_back(VE.getValueID(AI->getAliasee())); 398 Vals.push_back(getEncodedLinkage(AI)); 399 unsigned AbbrevToUse = 0; 400 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 401 Vals.clear(); 402 } 403 } 404 405 406 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 407 const ValueEnumerator &VE, 408 BitstreamWriter &Stream, bool isGlobal) { 409 if (FirstVal == LastVal) return; 410 411 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 412 413 unsigned AggregateAbbrev = 0; 414 unsigned String8Abbrev = 0; 415 unsigned CString7Abbrev = 0; 416 unsigned CString6Abbrev = 0; 417 // If this is a constant pool for the module, emit module-specific abbrevs. 418 if (isGlobal) { 419 // Abbrev for CST_CODE_AGGREGATE. 420 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 421 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 424 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 425 426 // Abbrev for CST_CODE_STRING. 427 Abbv = new BitCodeAbbrev(); 428 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 431 String8Abbrev = Stream.EmitAbbrev(Abbv); 432 // Abbrev for CST_CODE_CSTRING. 433 Abbv = new BitCodeAbbrev(); 434 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 437 CString7Abbrev = Stream.EmitAbbrev(Abbv); 438 // Abbrev for CST_CODE_CSTRING. 439 Abbv = new BitCodeAbbrev(); 440 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 443 CString6Abbrev = Stream.EmitAbbrev(Abbv); 444 } 445 446 // FIXME: Install and use abbrevs to reduce size. Install them globally so 447 // they don't need to be reemitted for each function body. 448 449 SmallVector<uint64_t, 64> Record; 450 451 const ValueEnumerator::ValueList &Vals = VE.getValues(); 452 const Type *LastTy = 0; 453 for (unsigned i = FirstVal; i != LastVal; ++i) { 454 const Value *V = Vals[i].first; 455 // If we need to switch types, do so now. 456 if (V->getType() != LastTy) { 457 LastTy = V->getType(); 458 Record.push_back(VE.getTypeID(LastTy)); 459 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 460 CONSTANTS_SETTYPE_ABBREV); 461 Record.clear(); 462 } 463 464 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 465 assert(0 && IA && "FIXME: Inline asm writing unimp!"); 466 continue; 467 } 468 const Constant *C = cast<Constant>(V); 469 unsigned Code = -1U; 470 unsigned AbbrevToUse = 0; 471 if (C->isNullValue()) { 472 Code = bitc::CST_CODE_NULL; 473 } else if (isa<UndefValue>(C)) { 474 Code = bitc::CST_CODE_UNDEF; 475 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 476 if (IV->getBitWidth() <= 64) { 477 int64_t V = IV->getSExtValue(); 478 if (V >= 0) 479 Record.push_back(V << 1); 480 else 481 Record.push_back((-V << 1) | 1); 482 Code = bitc::CST_CODE_INTEGER; 483 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 484 } else { // Wide integers, > 64 bits in size. 485 // We have an arbitrary precision integer value to write whose 486 // bit width is > 64. However, in canonical unsigned integer 487 // format it is likely that the high bits are going to be zero. 488 // So, we only write the number of active words. 489 unsigned NWords = IV->getValue().getActiveWords(); 490 const uint64_t *RawWords = IV->getValue().getRawData(); 491 for (unsigned i = 0; i != NWords; ++i) { 492 int64_t V = RawWords[i]; 493 if (V >= 0) 494 Record.push_back(V << 1); 495 else 496 Record.push_back((-V << 1) | 1); 497 } 498 Code = bitc::CST_CODE_WIDE_INTEGER; 499 } 500 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 501 Code = bitc::CST_CODE_FLOAT; 502 if (CFP->getType() == Type::FloatTy) { 503 Record.push_back(FloatToBits((float)CFP->getValue())); 504 } else { 505 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 506 Record.push_back(DoubleToBits((double)CFP->getValue())); 507 } 508 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 509 // Emit constant strings specially. 510 unsigned NumOps = C->getNumOperands(); 511 // If this is a null-terminated string, use the denser CSTRING encoding. 512 if (C->getOperand(NumOps-1)->isNullValue()) { 513 Code = bitc::CST_CODE_CSTRING; 514 --NumOps; // Don't encode the null, which isn't allowed by char6. 515 } else { 516 Code = bitc::CST_CODE_STRING; 517 AbbrevToUse = String8Abbrev; 518 } 519 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 520 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 521 for (unsigned i = 0; i != NumOps; ++i) { 522 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 523 Record.push_back(V); 524 isCStr7 &= (V & 128) == 0; 525 if (isCStrChar6) 526 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 527 } 528 529 if (isCStrChar6) 530 AbbrevToUse = CString6Abbrev; 531 else if (isCStr7) 532 AbbrevToUse = CString7Abbrev; 533 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 534 isa<ConstantVector>(V)) { 535 Code = bitc::CST_CODE_AGGREGATE; 536 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 537 Record.push_back(VE.getValueID(C->getOperand(i))); 538 AbbrevToUse = AggregateAbbrev; 539 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 540 switch (CE->getOpcode()) { 541 default: 542 if (Instruction::isCast(CE->getOpcode())) { 543 Code = bitc::CST_CODE_CE_CAST; 544 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 545 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 546 Record.push_back(VE.getValueID(C->getOperand(0))); 547 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 548 } else { 549 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 550 Code = bitc::CST_CODE_CE_BINOP; 551 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 552 Record.push_back(VE.getValueID(C->getOperand(0))); 553 Record.push_back(VE.getValueID(C->getOperand(1))); 554 } 555 break; 556 case Instruction::GetElementPtr: 557 Code = bitc::CST_CODE_CE_GEP; 558 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 559 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 560 Record.push_back(VE.getValueID(C->getOperand(i))); 561 } 562 break; 563 case Instruction::Select: 564 Code = bitc::CST_CODE_CE_SELECT; 565 Record.push_back(VE.getValueID(C->getOperand(0))); 566 Record.push_back(VE.getValueID(C->getOperand(1))); 567 Record.push_back(VE.getValueID(C->getOperand(2))); 568 break; 569 case Instruction::ExtractElement: 570 Code = bitc::CST_CODE_CE_EXTRACTELT; 571 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 572 Record.push_back(VE.getValueID(C->getOperand(0))); 573 Record.push_back(VE.getValueID(C->getOperand(1))); 574 break; 575 case Instruction::InsertElement: 576 Code = bitc::CST_CODE_CE_INSERTELT; 577 Record.push_back(VE.getValueID(C->getOperand(0))); 578 Record.push_back(VE.getValueID(C->getOperand(1))); 579 Record.push_back(VE.getValueID(C->getOperand(2))); 580 break; 581 case Instruction::ShuffleVector: 582 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 583 Record.push_back(VE.getValueID(C->getOperand(0))); 584 Record.push_back(VE.getValueID(C->getOperand(1))); 585 Record.push_back(VE.getValueID(C->getOperand(2))); 586 break; 587 case Instruction::ICmp: 588 case Instruction::FCmp: 589 Code = bitc::CST_CODE_CE_CMP; 590 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 591 Record.push_back(VE.getValueID(C->getOperand(0))); 592 Record.push_back(VE.getValueID(C->getOperand(1))); 593 Record.push_back(CE->getPredicate()); 594 break; 595 } 596 } else { 597 assert(0 && "Unknown constant!"); 598 } 599 Stream.EmitRecord(Code, Record, AbbrevToUse); 600 Record.clear(); 601 } 602 603 Stream.ExitBlock(); 604 } 605 606 static void WriteModuleConstants(const ValueEnumerator &VE, 607 BitstreamWriter &Stream) { 608 const ValueEnumerator::ValueList &Vals = VE.getValues(); 609 610 // Find the first constant to emit, which is the first non-globalvalue value. 611 // We know globalvalues have been emitted by WriteModuleInfo. 612 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 613 if (!isa<GlobalValue>(Vals[i].first)) { 614 WriteConstants(i, Vals.size(), VE, Stream, true); 615 return; 616 } 617 } 618 } 619 620 /// PushValueAndType - The file has to encode both the value and type id for 621 /// many values, because we need to know what type to create for forward 622 /// references. However, most operands are not forward references, so this type 623 /// field is not needed. 624 /// 625 /// This function adds V's value ID to Vals. If the value ID is higher than the 626 /// instruction ID, then it is a forward reference, and it also includes the 627 /// type ID. 628 static bool PushValueAndType(Value *V, unsigned InstID, 629 SmallVector<unsigned, 64> &Vals, 630 ValueEnumerator &VE) { 631 unsigned ValID = VE.getValueID(V); 632 Vals.push_back(ValID); 633 if (ValID >= InstID) { 634 Vals.push_back(VE.getTypeID(V->getType())); 635 return true; 636 } 637 return false; 638 } 639 640 /// WriteInstruction - Emit an instruction to the specified stream. 641 static void WriteInstruction(const Instruction &I, unsigned InstID, 642 ValueEnumerator &VE, BitstreamWriter &Stream, 643 SmallVector<unsigned, 64> &Vals) { 644 unsigned Code = 0; 645 unsigned AbbrevToUse = 0; 646 switch (I.getOpcode()) { 647 default: 648 if (Instruction::isCast(I.getOpcode())) { 649 Code = bitc::FUNC_CODE_INST_CAST; 650 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 651 Vals.push_back(VE.getTypeID(I.getType())); 652 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 653 } else { 654 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 655 Code = bitc::FUNC_CODE_INST_BINOP; 656 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 657 Vals.push_back(VE.getValueID(I.getOperand(1))); 658 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 659 } 660 break; 661 662 case Instruction::GetElementPtr: 663 Code = bitc::FUNC_CODE_INST_GEP; 664 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 665 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 666 break; 667 case Instruction::Select: 668 Code = bitc::FUNC_CODE_INST_SELECT; 669 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 670 Vals.push_back(VE.getValueID(I.getOperand(2))); 671 Vals.push_back(VE.getValueID(I.getOperand(0))); 672 break; 673 case Instruction::ExtractElement: 674 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 675 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 676 Vals.push_back(VE.getValueID(I.getOperand(1))); 677 break; 678 case Instruction::InsertElement: 679 Code = bitc::FUNC_CODE_INST_INSERTELT; 680 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 681 Vals.push_back(VE.getValueID(I.getOperand(1))); 682 Vals.push_back(VE.getValueID(I.getOperand(2))); 683 break; 684 case Instruction::ShuffleVector: 685 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 686 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 687 Vals.push_back(VE.getValueID(I.getOperand(1))); 688 Vals.push_back(VE.getValueID(I.getOperand(2))); 689 break; 690 case Instruction::ICmp: 691 case Instruction::FCmp: 692 Code = bitc::FUNC_CODE_INST_CMP; 693 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 694 Vals.push_back(VE.getValueID(I.getOperand(1))); 695 Vals.push_back(cast<CmpInst>(I).getPredicate()); 696 break; 697 698 case Instruction::Ret: 699 Code = bitc::FUNC_CODE_INST_RET; 700 if (I.getNumOperands()) 701 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 702 break; 703 case Instruction::Br: 704 Code = bitc::FUNC_CODE_INST_BR; 705 Vals.push_back(VE.getValueID(I.getOperand(0))); 706 if (cast<BranchInst>(I).isConditional()) { 707 Vals.push_back(VE.getValueID(I.getOperand(1))); 708 Vals.push_back(VE.getValueID(I.getOperand(2))); 709 } 710 break; 711 case Instruction::Switch: 712 Code = bitc::FUNC_CODE_INST_SWITCH; 713 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 714 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 715 Vals.push_back(VE.getValueID(I.getOperand(i))); 716 break; 717 case Instruction::Invoke: { 718 Code = bitc::FUNC_CODE_INST_INVOKE; 719 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 720 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal dest 721 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind dest 722 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee 723 724 // Emit value #'s for the fixed parameters. 725 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 726 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 727 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 728 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 729 730 // Emit type/value pairs for varargs params. 731 if (FTy->isVarArg()) { 732 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 733 i != e; ++i) 734 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 735 } 736 break; 737 } 738 case Instruction::Unwind: 739 Code = bitc::FUNC_CODE_INST_UNWIND; 740 break; 741 case Instruction::Unreachable: 742 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 743 break; 744 745 case Instruction::PHI: 746 Code = bitc::FUNC_CODE_INST_PHI; 747 Vals.push_back(VE.getTypeID(I.getType())); 748 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 749 Vals.push_back(VE.getValueID(I.getOperand(i))); 750 break; 751 752 case Instruction::Malloc: 753 Code = bitc::FUNC_CODE_INST_MALLOC; 754 Vals.push_back(VE.getTypeID(I.getType())); 755 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 756 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 757 break; 758 759 case Instruction::Free: 760 Code = bitc::FUNC_CODE_INST_FREE; 761 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 762 break; 763 764 case Instruction::Alloca: 765 Code = bitc::FUNC_CODE_INST_ALLOCA; 766 Vals.push_back(VE.getTypeID(I.getType())); 767 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 768 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 769 break; 770 771 case Instruction::Load: 772 Code = bitc::FUNC_CODE_INST_LOAD; 773 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 774 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 775 776 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 777 Vals.push_back(cast<LoadInst>(I).isVolatile()); 778 break; 779 case Instruction::Store: 780 Code = bitc::FUNC_CODE_INST_STORE; 781 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // val. 782 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 783 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 784 Vals.push_back(cast<StoreInst>(I).isVolatile()); 785 break; 786 case Instruction::Call: { 787 Code = bitc::FUNC_CODE_INST_CALL; 788 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 789 cast<CallInst>(I).isTailCall()); 790 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // Callee 791 792 // Emit value #'s for the fixed parameters. 793 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 794 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 795 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 796 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 797 798 // Emit type/value pairs for varargs params. 799 if (FTy->isVarArg()) { 800 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 801 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 802 i != e; ++i) 803 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 804 } 805 break; 806 } 807 case Instruction::VAArg: 808 Code = bitc::FUNC_CODE_INST_VAARG; 809 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 810 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 811 Vals.push_back(VE.getTypeID(I.getType())); // restype. 812 break; 813 } 814 815 Stream.EmitRecord(Code, Vals, AbbrevToUse); 816 Vals.clear(); 817 } 818 819 // Emit names for globals/functions etc. 820 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 821 const ValueEnumerator &VE, 822 BitstreamWriter &Stream) { 823 if (VST.empty()) return; 824 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 825 826 // FIXME: Set up the abbrev, we know how many values there are! 827 // FIXME: We know if the type names can use 7-bit ascii. 828 SmallVector<unsigned, 64> NameVals; 829 830 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 831 SI != SE; ++SI) { 832 833 const ValueName &Name = *SI; 834 835 // Figure out the encoding to use for the name. 836 bool is7Bit = true; 837 bool isChar6 = true; 838 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 839 C != E; ++C) { 840 if (isChar6) 841 isChar6 = BitCodeAbbrevOp::isChar6(*C); 842 if ((unsigned char)*C & 128) { 843 is7Bit = false; 844 break; // don't bother scanning the rest. 845 } 846 } 847 848 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 849 850 // VST_ENTRY: [valueid, namechar x N] 851 // VST_BBENTRY: [bbid, namechar x N] 852 unsigned Code; 853 if (isa<BasicBlock>(SI->getValue())) { 854 Code = bitc::VST_CODE_BBENTRY; 855 if (isChar6) 856 AbbrevToUse = VST_BBENTRY_6_ABBREV; 857 } else { 858 Code = bitc::VST_CODE_ENTRY; 859 if (isChar6) 860 AbbrevToUse = VST_ENTRY_6_ABBREV; 861 else if (is7Bit) 862 AbbrevToUse = VST_ENTRY_7_ABBREV; 863 } 864 865 NameVals.push_back(VE.getValueID(SI->getValue())); 866 for (const char *P = Name.getKeyData(), 867 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 868 NameVals.push_back((unsigned char)*P); 869 870 // Emit the finished record. 871 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 872 NameVals.clear(); 873 } 874 Stream.ExitBlock(); 875 } 876 877 /// WriteFunction - Emit a function body to the module stream. 878 static void WriteFunction(const Function &F, ValueEnumerator &VE, 879 BitstreamWriter &Stream) { 880 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3); 881 VE.incorporateFunction(F); 882 883 SmallVector<unsigned, 64> Vals; 884 885 // Emit the number of basic blocks, so the reader can create them ahead of 886 // time. 887 Vals.push_back(VE.getBasicBlocks().size()); 888 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 889 Vals.clear(); 890 891 // FIXME: Function attributes? 892 893 // If there are function-local constants, emit them now. 894 unsigned CstStart, CstEnd; 895 VE.getFunctionConstantRange(CstStart, CstEnd); 896 WriteConstants(CstStart, CstEnd, VE, Stream, false); 897 898 // Keep a running idea of what the instruction ID is. 899 unsigned InstID = CstEnd; 900 901 // Finally, emit all the instructions, in order. 902 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 903 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 904 I != E; ++I) { 905 WriteInstruction(*I, InstID, VE, Stream, Vals); 906 if (I->getType() != Type::VoidTy) 907 ++InstID; 908 } 909 910 // Emit names for all the instructions etc. 911 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 912 913 VE.purgeFunction(); 914 Stream.ExitBlock(); 915 } 916 917 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 918 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 919 const ValueEnumerator &VE, 920 BitstreamWriter &Stream) { 921 if (TST.empty()) return; 922 923 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 924 925 // 7-bit fixed width VST_CODE_ENTRY strings. 926 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 927 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 929 Log2_32_Ceil(VE.getTypes().size()+1))); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 932 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 933 934 SmallVector<unsigned, 64> NameVals; 935 936 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 937 TI != TE; ++TI) { 938 // TST_ENTRY: [typeid, namechar x N] 939 NameVals.push_back(VE.getTypeID(TI->second)); 940 941 const std::string &Str = TI->first; 942 bool is7Bit = true; 943 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 944 NameVals.push_back((unsigned char)Str[i]); 945 if (Str[i] & 128) 946 is7Bit = false; 947 } 948 949 // Emit the finished record. 950 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 951 NameVals.clear(); 952 } 953 954 Stream.ExitBlock(); 955 } 956 957 // Emit blockinfo, which defines the standard abbreviations etc. 958 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 959 // We only want to emit block info records for blocks that have multiple 960 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 961 // blocks can defined their abbrevs inline. 962 Stream.EnterBlockInfoBlock(2); 963 964 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 965 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 970 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 971 Abbv) != VST_ENTRY_8_ABBREV) 972 assert(0 && "Unexpected abbrev ordering!"); 973 } 974 975 { // 7-bit fixed width VST_ENTRY strings. 976 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 977 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 981 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 982 Abbv) != VST_ENTRY_7_ABBREV) 983 assert(0 && "Unexpected abbrev ordering!"); 984 } 985 { // 6-bit char6 VST_ENTRY strings. 986 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 987 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 991 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 992 Abbv) != VST_ENTRY_6_ABBREV) 993 assert(0 && "Unexpected abbrev ordering!"); 994 } 995 { // 6-bit char6 VST_BBENTRY strings. 996 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 997 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1001 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1002 Abbv) != VST_BBENTRY_6_ABBREV) 1003 assert(0 && "Unexpected abbrev ordering!"); 1004 } 1005 1006 1007 1008 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1009 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1010 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1012 Log2_32_Ceil(VE.getTypes().size()+1))); 1013 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1014 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1015 assert(0 && "Unexpected abbrev ordering!"); 1016 } 1017 1018 { // INTEGER abbrev for CONSTANTS_BLOCK. 1019 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1020 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1022 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1023 Abbv) != CONSTANTS_INTEGER_ABBREV) 1024 assert(0 && "Unexpected abbrev ordering!"); 1025 } 1026 1027 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1028 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1029 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1032 Log2_32_Ceil(VE.getTypes().size()+1))); 1033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1034 1035 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1036 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1037 assert(0 && "Unexpected abbrev ordering!"); 1038 } 1039 { // NULL abbrev for CONSTANTS_BLOCK. 1040 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1041 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1042 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1043 Abbv) != CONSTANTS_NULL_Abbrev) 1044 assert(0 && "Unexpected abbrev ordering!"); 1045 } 1046 1047 // FIXME: This should only use space for first class types! 1048 1049 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1050 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1051 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1055 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1056 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1057 assert(0 && "Unexpected abbrev ordering!"); 1058 } 1059 1060 Stream.ExitBlock(); 1061 } 1062 1063 1064 /// WriteModule - Emit the specified module to the bitstream. 1065 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1066 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1067 1068 // Emit the version number if it is non-zero. 1069 if (CurVersion) { 1070 SmallVector<unsigned, 1> Vals; 1071 Vals.push_back(CurVersion); 1072 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1073 } 1074 1075 // Analyze the module, enumerating globals, functions, etc. 1076 ValueEnumerator VE(M); 1077 1078 // Emit blockinfo, which defines the standard abbreviations etc. 1079 WriteBlockInfo(VE, Stream); 1080 1081 // Emit information about parameter attributes. 1082 WriteParamAttrTable(VE, Stream); 1083 1084 // Emit information describing all of the types in the module. 1085 WriteTypeTable(VE, Stream); 1086 1087 // Emit top-level description of module, including target triple, inline asm, 1088 // descriptors for global variables, and function prototype info. 1089 WriteModuleInfo(M, VE, Stream); 1090 1091 // Emit constants. 1092 WriteModuleConstants(VE, Stream); 1093 1094 // If we have any aggregate values in the value table, purge them - these can 1095 // only be used to initialize global variables. Doing so makes the value 1096 // namespace smaller for code in functions. 1097 int NumNonAggregates = VE.PurgeAggregateValues(); 1098 if (NumNonAggregates != -1) { 1099 SmallVector<unsigned, 1> Vals; 1100 Vals.push_back(NumNonAggregates); 1101 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1102 } 1103 1104 // Emit function bodies. 1105 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1106 if (!I->isDeclaration()) 1107 WriteFunction(*I, VE, Stream); 1108 1109 // Emit the type symbol table information. 1110 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1111 1112 // Emit names for globals/functions etc. 1113 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1114 1115 Stream.ExitBlock(); 1116 } 1117 1118 1119 /// WriteBitcodeToFile - Write the specified module to the specified output 1120 /// stream. 1121 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1122 std::vector<unsigned char> Buffer; 1123 BitstreamWriter Stream(Buffer); 1124 1125 Buffer.reserve(256*1024); 1126 1127 // Emit the file header. 1128 Stream.Emit((unsigned)'B', 8); 1129 Stream.Emit((unsigned)'C', 8); 1130 Stream.Emit(0x0, 4); 1131 Stream.Emit(0xC, 4); 1132 Stream.Emit(0xE, 4); 1133 Stream.Emit(0xD, 4); 1134 1135 // Emit the module. 1136 WriteModule(M, Stream); 1137 1138 // Write the generated bitstream to "Out". 1139 Out.write((char*)&Buffer.front(), Buffer.size()); 1140 } 1141