1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/Bitcode/ReaderWriter.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/UseListOrder.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Program.h"
34 #include "llvm/Support/SHA1.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cctype>
37 #include <map>
38 using namespace llvm;
39 
40 namespace {
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44   // VALUE_SYMTAB_BLOCK abbrev id's.
45   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   VST_ENTRY_7_ABBREV,
47   VST_ENTRY_6_ABBREV,
48   VST_BBENTRY_6_ABBREV,
49 
50   // CONSTANTS_BLOCK abbrev id's.
51   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   CONSTANTS_INTEGER_ABBREV,
53   CONSTANTS_CE_CAST_Abbrev,
54   CONSTANTS_NULL_Abbrev,
55 
56   // FUNCTION_BLOCK abbrev id's.
57   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   FUNCTION_INST_BINOP_ABBREV,
59   FUNCTION_INST_BINOP_FLAGS_ABBREV,
60   FUNCTION_INST_CAST_ABBREV,
61   FUNCTION_INST_RET_VOID_ABBREV,
62   FUNCTION_INST_RET_VAL_ABBREV,
63   FUNCTION_INST_UNREACHABLE_ABBREV,
64   FUNCTION_INST_GEP_ABBREV,
65 };
66 
67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
68 /// file type. Owns the BitstreamWriter, and includes the main entry point for
69 /// writing.
70 class BitcodeWriter {
71 protected:
72   /// Pointer to the buffer allocated by caller for bitcode writing.
73   const SmallVectorImpl<char> &Buffer;
74 
75   /// The stream created and owned by the BitodeWriter.
76   BitstreamWriter Stream;
77 
78   /// Saves the offset of the VSTOffset record that must eventually be
79   /// backpatched with the offset of the actual VST.
80   uint64_t VSTOffsetPlaceholder = 0;
81 
82 public:
83   /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord,
84   /// writing to the provided \p Buffer.
85   BitcodeWriter(SmallVectorImpl<char> &Buffer)
86       : Buffer(Buffer), Stream(Buffer) {}
87 
88   virtual ~BitcodeWriter() = default;
89 
90   /// Main entry point to write the bitcode file, which writes the bitcode
91   /// header and will then invoke the virtual writeBlocks() method.
92   void write();
93 
94 private:
95   /// Derived classes must implement this to write the corresponding blocks for
96   /// that bitcode file type.
97   virtual void writeBlocks() = 0;
98 
99 protected:
100   bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
101   void writeValueSymbolTableForwardDecl();
102   void writeBitcodeHeader();
103 };
104 
105 /// Class to manage the bitcode writing for a module.
106 class ModuleBitcodeWriter : public BitcodeWriter {
107   /// The Module to write to bitcode.
108   const Module &M;
109 
110   /// Enumerates ids for all values in the module.
111   ValueEnumerator VE;
112 
113   /// Optional per-module index to write for ThinLTO.
114   const ModuleSummaryIndex *Index;
115 
116   /// True if a module hash record should be written.
117   bool GenerateHash;
118 
119   /// The start bit of the module block, for use in generating a module hash
120   uint64_t BitcodeStartBit = 0;
121 
122 public:
123   /// Constructs a ModuleBitcodeWriter object for the given Module,
124   /// writing to the provided \p Buffer.
125   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
126                       bool ShouldPreserveUseListOrder,
127                       const ModuleSummaryIndex *Index, bool GenerateHash)
128       : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder),
129         Index(Index), GenerateHash(GenerateHash) {
130     // Save the start bit of the actual bitcode, in case there is space
131     // saved at the start for the darwin header above. The reader stream
132     // will start at the bitcode, and we need the offset of the VST
133     // to line up.
134     BitcodeStartBit = Stream.GetCurrentBitNo();
135   }
136 
137 private:
138   /// Main entry point for writing a module to bitcode, invoked by
139   /// BitcodeWriter::write() after it writes the header.
140   void writeBlocks() override;
141 
142   /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
143   /// current llvm version, and a record for the epoch number.
144   void writeIdentificationBlock();
145 
146   /// Emit the current module to the bitstream.
147   void writeModule();
148 
149   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
150 
151   void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse);
152   void writeAttributeGroupTable();
153   void writeAttributeTable();
154   void writeTypeTable();
155   void writeComdats();
156   void writeModuleInfo();
157   void writeValueAsMetadata(const ValueAsMetadata *MD,
158                             SmallVectorImpl<uint64_t> &Record);
159   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
160                     unsigned Abbrev);
161   unsigned createDILocationAbbrev();
162   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
163                        unsigned &Abbrev);
164   unsigned createGenericDINodeAbbrev();
165   void writeGenericDINode(const GenericDINode *N,
166                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
167   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
168                        unsigned Abbrev);
169   void writeDIEnumerator(const DIEnumerator *N,
170                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
171   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
172                         unsigned Abbrev);
173   void writeDIDerivedType(const DIDerivedType *N,
174                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
175   void writeDICompositeType(const DICompositeType *N,
176                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
177   void writeDISubroutineType(const DISubroutineType *N,
178                              SmallVectorImpl<uint64_t> &Record,
179                              unsigned Abbrev);
180   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
181                    unsigned Abbrev);
182   void writeDICompileUnit(const DICompileUnit *N,
183                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
184   void writeDISubprogram(const DISubprogram *N,
185                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
186   void writeDILexicalBlock(const DILexicalBlock *N,
187                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
188   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
189                                SmallVectorImpl<uint64_t> &Record,
190                                unsigned Abbrev);
191   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
192                         unsigned Abbrev);
193   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
194                     unsigned Abbrev);
195   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
196                         unsigned Abbrev);
197   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
198                      unsigned Abbrev);
199   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
200                                     SmallVectorImpl<uint64_t> &Record,
201                                     unsigned Abbrev);
202   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
203                                      SmallVectorImpl<uint64_t> &Record,
204                                      unsigned Abbrev);
205   void writeDIGlobalVariable(const DIGlobalVariable *N,
206                              SmallVectorImpl<uint64_t> &Record,
207                              unsigned Abbrev);
208   void writeDILocalVariable(const DILocalVariable *N,
209                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
210   void writeDIExpression(const DIExpression *N,
211                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
212   void writeDIObjCProperty(const DIObjCProperty *N,
213                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
214   void writeDIImportedEntity(const DIImportedEntity *N,
215                              SmallVectorImpl<uint64_t> &Record,
216                              unsigned Abbrev);
217   unsigned createNamedMetadataAbbrev();
218   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
219   unsigned createMetadataStringsAbbrev();
220   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
221                             SmallVectorImpl<uint64_t> &Record);
222   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
223                             SmallVectorImpl<uint64_t> &Record);
224   void writeModuleMetadata();
225   void writeFunctionMetadata(const Function &F);
226   void writeFunctionMetadataAttachment(const Function &F);
227   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
228   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
229                                     const GlobalObject &GO);
230   void writeModuleMetadataStore();
231   void writeOperandBundleTags();
232   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
233   void writeModuleConstants();
234   bool pushValueAndType(const Value *V, unsigned InstID,
235                         SmallVectorImpl<unsigned> &Vals);
236   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
237   void pushValue(const Value *V, unsigned InstID,
238                  SmallVectorImpl<unsigned> &Vals);
239   void pushValueSigned(const Value *V, unsigned InstID,
240                        SmallVectorImpl<uint64_t> &Vals);
241   void writeInstruction(const Instruction &I, unsigned InstID,
242                         SmallVectorImpl<unsigned> &Vals);
243   void writeValueSymbolTable(
244       const ValueSymbolTable &VST, bool IsModuleLevel = false,
245       DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
246   void writeUseList(UseListOrder &&Order);
247   void writeUseListBlock(const Function *F);
248   void
249   writeFunction(const Function &F,
250                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
251   void writeBlockInfo();
252   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
253                                            GlobalValueSummary *Summary,
254                                            unsigned ValueID,
255                                            unsigned FSCallsAbbrev,
256                                            unsigned FSCallsProfileAbbrev,
257                                            const Function &F);
258   void writeModuleLevelReferences(const GlobalVariable &V,
259                                   SmallVector<uint64_t, 64> &NameVals,
260                                   unsigned FSModRefsAbbrev);
261   void writePerModuleGlobalValueSummary();
262   void writeModuleHash(size_t BlockStartPos);
263 };
264 
265 /// Class to manage the bitcode writing for a combined index.
266 class IndexBitcodeWriter : public BitcodeWriter {
267   /// The combined index to write to bitcode.
268   const ModuleSummaryIndex &Index;
269 
270   /// When writing a subset of the index for distributed backends, client
271   /// provides a map of modules to the corresponding GUIDs/summaries to write.
272   std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
273 
274   /// Map that holds the correspondence between the GUID used in the combined
275   /// index and a value id generated by this class to use in references.
276   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
277 
278   /// Tracks the last value id recorded in the GUIDToValueMap.
279   unsigned GlobalValueId = 0;
280 
281 public:
282   /// Constructs a IndexBitcodeWriter object for the given combined index,
283   /// writing to the provided \p Buffer. When writing a subset of the index
284   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
285   IndexBitcodeWriter(SmallVectorImpl<char> &Buffer,
286                      const ModuleSummaryIndex &Index,
287                      std::map<std::string, GVSummaryMapTy>
288                          *ModuleToSummariesForIndex = nullptr)
289       : BitcodeWriter(Buffer), Index(Index),
290         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
291     // Assign unique value ids to all summaries to be written, for use
292     // in writing out the call graph edges. Save the mapping from GUID
293     // to the new global value id to use when writing those edges, which
294     // are currently saved in the index in terms of GUID.
295     for (const auto &I : *this)
296       GUIDToValueIdMap[I.first] = ++GlobalValueId;
297   }
298 
299   /// The below iterator returns the GUID and associated summary.
300   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
301 
302   /// Iterator over the value GUID and summaries to be written to bitcode,
303   /// hides the details of whether they are being pulled from the entire
304   /// index or just those in a provided ModuleToSummariesForIndex map.
305   class iterator
306       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
307                                           GVInfo> {
308     /// Enables access to parent class.
309     const IndexBitcodeWriter &Writer;
310 
311     // Iterators used when writing only those summaries in a provided
312     // ModuleToSummariesForIndex map:
313 
314     /// Points to the last element in outer ModuleToSummariesForIndex map.
315     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack;
316     /// Iterator on outer ModuleToSummariesForIndex map.
317     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter;
318     /// Iterator on an inner global variable summary map.
319     GVSummaryMapTy::iterator ModuleGVSummariesIter;
320 
321     // Iterators used when writing all summaries in the index:
322 
323     /// Points to the last element in the Index outer GlobalValueMap.
324     const_gvsummary_iterator IndexSummariesBack;
325     /// Iterator on outer GlobalValueMap.
326     const_gvsummary_iterator IndexSummariesIter;
327     /// Iterator on an inner GlobalValueSummaryList.
328     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
329 
330   public:
331     /// Construct iterator from parent \p Writer and indicate if we are
332     /// constructing the end iterator.
333     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
334       // Set up the appropriate set of iterators given whether we are writing
335       // the full index or just a subset.
336       // Can't setup the Back or inner iterators if the corresponding map
337       // is empty. This will be handled specially in operator== as well.
338       if (Writer.ModuleToSummariesForIndex &&
339           !Writer.ModuleToSummariesForIndex->empty()) {
340         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
341              std::next(ModuleSummariesBack) !=
342              Writer.ModuleToSummariesForIndex->end();
343              ModuleSummariesBack++)
344           ;
345         ModuleSummariesIter = !IsAtEnd
346                                   ? Writer.ModuleToSummariesForIndex->begin()
347                                   : ModuleSummariesBack;
348         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
349                                          : ModuleSummariesBack->second.end();
350       } else if (!Writer.ModuleToSummariesForIndex &&
351                  Writer.Index.begin() != Writer.Index.end()) {
352         for (IndexSummariesBack = Writer.Index.begin();
353              std::next(IndexSummariesBack) != Writer.Index.end();
354              IndexSummariesBack++)
355           ;
356         IndexSummariesIter =
357             !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
358         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
359                                         : IndexSummariesBack->second.end();
360       }
361     }
362 
363     /// Increment the appropriate set of iterators.
364     iterator &operator++() {
365       // First the inner iterator is incremented, then if it is at the end
366       // and there are more outer iterations to go, the inner is reset to
367       // the start of the next inner list.
368       if (Writer.ModuleToSummariesForIndex) {
369         ++ModuleGVSummariesIter;
370         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
371             ModuleSummariesIter != ModuleSummariesBack) {
372           ++ModuleSummariesIter;
373           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
374         }
375       } else {
376         ++IndexGVSummariesIter;
377         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
378             IndexSummariesIter != IndexSummariesBack) {
379           ++IndexSummariesIter;
380           IndexGVSummariesIter = IndexSummariesIter->second.begin();
381         }
382       }
383       return *this;
384     }
385 
386     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
387     /// outer and inner iterator positions.
388     GVInfo operator*() {
389       if (Writer.ModuleToSummariesForIndex)
390         return std::make_pair(ModuleGVSummariesIter->first,
391                               ModuleGVSummariesIter->second);
392       return std::make_pair(IndexSummariesIter->first,
393                             IndexGVSummariesIter->get());
394     }
395 
396     /// Checks if the iterators are equal, with special handling for empty
397     /// indexes.
398     bool operator==(const iterator &RHS) const {
399       if (Writer.ModuleToSummariesForIndex) {
400         // First ensure that both are writing the same subset.
401         if (Writer.ModuleToSummariesForIndex !=
402             RHS.Writer.ModuleToSummariesForIndex)
403           return false;
404         // Already determined above that maps are the same, so if one is
405         // empty, they both are.
406         if (Writer.ModuleToSummariesForIndex->empty())
407           return true;
408         // Ensure the ModuleGVSummariesIter are iterating over the same
409         // container before checking them below.
410         if (ModuleSummariesIter != RHS.ModuleSummariesIter)
411           return false;
412         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
413       }
414       // First ensure RHS also writing the full index, and that both are
415       // writing the same full index.
416       if (RHS.Writer.ModuleToSummariesForIndex ||
417           &Writer.Index != &RHS.Writer.Index)
418         return false;
419       // Already determined above that maps are the same, so if one is
420       // empty, they both are.
421       if (Writer.Index.begin() == Writer.Index.end())
422         return true;
423       // Ensure the IndexGVSummariesIter are iterating over the same
424       // container before checking them below.
425       if (IndexSummariesIter != RHS.IndexSummariesIter)
426         return false;
427       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
428     }
429   };
430 
431   /// Obtain the start iterator over the summaries to be written.
432   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
433   /// Obtain the end iterator over the summaries to be written.
434   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
435 
436 private:
437   /// Main entry point for writing a combined index to bitcode, invoked by
438   /// BitcodeWriter::write() after it writes the header.
439   void writeBlocks() override;
440 
441   void writeIndex();
442   void writeModStrings();
443   void writeCombinedValueSymbolTable();
444   void writeCombinedGlobalValueSummary();
445 
446   /// Indicates whether the provided \p ModulePath should be written into
447   /// the module string table, e.g. if full index written or if it is in
448   /// the provided subset.
449   bool doIncludeModule(StringRef ModulePath) {
450     return !ModuleToSummariesForIndex ||
451            ModuleToSummariesForIndex->count(ModulePath);
452   }
453 
454   bool hasValueId(GlobalValue::GUID ValGUID) {
455     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
456     return VMI != GUIDToValueIdMap.end();
457   }
458   unsigned getValueId(GlobalValue::GUID ValGUID) {
459     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
460     // If this GUID doesn't have an entry, assign one.
461     if (VMI == GUIDToValueIdMap.end()) {
462       GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
463       return GlobalValueId;
464     } else {
465       return VMI->second;
466     }
467   }
468   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
469 };
470 } // end anonymous namespace
471 
472 static unsigned getEncodedCastOpcode(unsigned Opcode) {
473   switch (Opcode) {
474   default: llvm_unreachable("Unknown cast instruction!");
475   case Instruction::Trunc   : return bitc::CAST_TRUNC;
476   case Instruction::ZExt    : return bitc::CAST_ZEXT;
477   case Instruction::SExt    : return bitc::CAST_SEXT;
478   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
479   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
480   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
481   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
482   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
483   case Instruction::FPExt   : return bitc::CAST_FPEXT;
484   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
485   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
486   case Instruction::BitCast : return bitc::CAST_BITCAST;
487   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
488   }
489 }
490 
491 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
492   switch (Opcode) {
493   default: llvm_unreachable("Unknown binary instruction!");
494   case Instruction::Add:
495   case Instruction::FAdd: return bitc::BINOP_ADD;
496   case Instruction::Sub:
497   case Instruction::FSub: return bitc::BINOP_SUB;
498   case Instruction::Mul:
499   case Instruction::FMul: return bitc::BINOP_MUL;
500   case Instruction::UDiv: return bitc::BINOP_UDIV;
501   case Instruction::FDiv:
502   case Instruction::SDiv: return bitc::BINOP_SDIV;
503   case Instruction::URem: return bitc::BINOP_UREM;
504   case Instruction::FRem:
505   case Instruction::SRem: return bitc::BINOP_SREM;
506   case Instruction::Shl:  return bitc::BINOP_SHL;
507   case Instruction::LShr: return bitc::BINOP_LSHR;
508   case Instruction::AShr: return bitc::BINOP_ASHR;
509   case Instruction::And:  return bitc::BINOP_AND;
510   case Instruction::Or:   return bitc::BINOP_OR;
511   case Instruction::Xor:  return bitc::BINOP_XOR;
512   }
513 }
514 
515 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
516   switch (Op) {
517   default: llvm_unreachable("Unknown RMW operation!");
518   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
519   case AtomicRMWInst::Add: return bitc::RMW_ADD;
520   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
521   case AtomicRMWInst::And: return bitc::RMW_AND;
522   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
523   case AtomicRMWInst::Or: return bitc::RMW_OR;
524   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
525   case AtomicRMWInst::Max: return bitc::RMW_MAX;
526   case AtomicRMWInst::Min: return bitc::RMW_MIN;
527   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
528   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
529   }
530 }
531 
532 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
533   switch (Ordering) {
534   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
535   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
536   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
537   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
538   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
539   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
540   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
541   }
542   llvm_unreachable("Invalid ordering");
543 }
544 
545 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
546   switch (SynchScope) {
547   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
548   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
549   }
550   llvm_unreachable("Invalid synch scope");
551 }
552 
553 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str,
554                                             unsigned AbbrevToUse) {
555   SmallVector<unsigned, 64> Vals;
556 
557   // Code: [strchar x N]
558   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
559     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
560       AbbrevToUse = 0;
561     Vals.push_back(Str[i]);
562   }
563 
564   // Emit the finished record.
565   Stream.EmitRecord(Code, Vals, AbbrevToUse);
566 }
567 
568 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
569   switch (Kind) {
570   case Attribute::Alignment:
571     return bitc::ATTR_KIND_ALIGNMENT;
572   case Attribute::AllocSize:
573     return bitc::ATTR_KIND_ALLOC_SIZE;
574   case Attribute::AlwaysInline:
575     return bitc::ATTR_KIND_ALWAYS_INLINE;
576   case Attribute::ArgMemOnly:
577     return bitc::ATTR_KIND_ARGMEMONLY;
578   case Attribute::Builtin:
579     return bitc::ATTR_KIND_BUILTIN;
580   case Attribute::ByVal:
581     return bitc::ATTR_KIND_BY_VAL;
582   case Attribute::Convergent:
583     return bitc::ATTR_KIND_CONVERGENT;
584   case Attribute::InAlloca:
585     return bitc::ATTR_KIND_IN_ALLOCA;
586   case Attribute::Cold:
587     return bitc::ATTR_KIND_COLD;
588   case Attribute::InaccessibleMemOnly:
589     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
590   case Attribute::InaccessibleMemOrArgMemOnly:
591     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
592   case Attribute::InlineHint:
593     return bitc::ATTR_KIND_INLINE_HINT;
594   case Attribute::InReg:
595     return bitc::ATTR_KIND_IN_REG;
596   case Attribute::JumpTable:
597     return bitc::ATTR_KIND_JUMP_TABLE;
598   case Attribute::MinSize:
599     return bitc::ATTR_KIND_MIN_SIZE;
600   case Attribute::Naked:
601     return bitc::ATTR_KIND_NAKED;
602   case Attribute::Nest:
603     return bitc::ATTR_KIND_NEST;
604   case Attribute::NoAlias:
605     return bitc::ATTR_KIND_NO_ALIAS;
606   case Attribute::NoBuiltin:
607     return bitc::ATTR_KIND_NO_BUILTIN;
608   case Attribute::NoCapture:
609     return bitc::ATTR_KIND_NO_CAPTURE;
610   case Attribute::NoDuplicate:
611     return bitc::ATTR_KIND_NO_DUPLICATE;
612   case Attribute::NoImplicitFloat:
613     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
614   case Attribute::NoInline:
615     return bitc::ATTR_KIND_NO_INLINE;
616   case Attribute::NoRecurse:
617     return bitc::ATTR_KIND_NO_RECURSE;
618   case Attribute::NonLazyBind:
619     return bitc::ATTR_KIND_NON_LAZY_BIND;
620   case Attribute::NonNull:
621     return bitc::ATTR_KIND_NON_NULL;
622   case Attribute::Dereferenceable:
623     return bitc::ATTR_KIND_DEREFERENCEABLE;
624   case Attribute::DereferenceableOrNull:
625     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
626   case Attribute::NoRedZone:
627     return bitc::ATTR_KIND_NO_RED_ZONE;
628   case Attribute::NoReturn:
629     return bitc::ATTR_KIND_NO_RETURN;
630   case Attribute::NoUnwind:
631     return bitc::ATTR_KIND_NO_UNWIND;
632   case Attribute::OptimizeForSize:
633     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
634   case Attribute::OptimizeNone:
635     return bitc::ATTR_KIND_OPTIMIZE_NONE;
636   case Attribute::ReadNone:
637     return bitc::ATTR_KIND_READ_NONE;
638   case Attribute::ReadOnly:
639     return bitc::ATTR_KIND_READ_ONLY;
640   case Attribute::Returned:
641     return bitc::ATTR_KIND_RETURNED;
642   case Attribute::ReturnsTwice:
643     return bitc::ATTR_KIND_RETURNS_TWICE;
644   case Attribute::SExt:
645     return bitc::ATTR_KIND_S_EXT;
646   case Attribute::StackAlignment:
647     return bitc::ATTR_KIND_STACK_ALIGNMENT;
648   case Attribute::StackProtect:
649     return bitc::ATTR_KIND_STACK_PROTECT;
650   case Attribute::StackProtectReq:
651     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
652   case Attribute::StackProtectStrong:
653     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
654   case Attribute::SafeStack:
655     return bitc::ATTR_KIND_SAFESTACK;
656   case Attribute::StructRet:
657     return bitc::ATTR_KIND_STRUCT_RET;
658   case Attribute::SanitizeAddress:
659     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
660   case Attribute::SanitizeThread:
661     return bitc::ATTR_KIND_SANITIZE_THREAD;
662   case Attribute::SanitizeMemory:
663     return bitc::ATTR_KIND_SANITIZE_MEMORY;
664   case Attribute::SwiftError:
665     return bitc::ATTR_KIND_SWIFT_ERROR;
666   case Attribute::SwiftSelf:
667     return bitc::ATTR_KIND_SWIFT_SELF;
668   case Attribute::UWTable:
669     return bitc::ATTR_KIND_UW_TABLE;
670   case Attribute::ZExt:
671     return bitc::ATTR_KIND_Z_EXT;
672   case Attribute::EndAttrKinds:
673     llvm_unreachable("Can not encode end-attribute kinds marker.");
674   case Attribute::None:
675     llvm_unreachable("Can not encode none-attribute.");
676   }
677 
678   llvm_unreachable("Trying to encode unknown attribute");
679 }
680 
681 void ModuleBitcodeWriter::writeAttributeGroupTable() {
682   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
683   if (AttrGrps.empty()) return;
684 
685   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
686 
687   SmallVector<uint64_t, 64> Record;
688   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
689     AttributeSet AS = AttrGrps[i];
690     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
691       AttributeSet A = AS.getSlotAttributes(i);
692 
693       Record.push_back(VE.getAttributeGroupID(A));
694       Record.push_back(AS.getSlotIndex(i));
695 
696       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
697            I != E; ++I) {
698         Attribute Attr = *I;
699         if (Attr.isEnumAttribute()) {
700           Record.push_back(0);
701           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
702         } else if (Attr.isIntAttribute()) {
703           Record.push_back(1);
704           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
705           Record.push_back(Attr.getValueAsInt());
706         } else {
707           StringRef Kind = Attr.getKindAsString();
708           StringRef Val = Attr.getValueAsString();
709 
710           Record.push_back(Val.empty() ? 3 : 4);
711           Record.append(Kind.begin(), Kind.end());
712           Record.push_back(0);
713           if (!Val.empty()) {
714             Record.append(Val.begin(), Val.end());
715             Record.push_back(0);
716           }
717         }
718       }
719 
720       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
721       Record.clear();
722     }
723   }
724 
725   Stream.ExitBlock();
726 }
727 
728 void ModuleBitcodeWriter::writeAttributeTable() {
729   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
730   if (Attrs.empty()) return;
731 
732   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
733 
734   SmallVector<uint64_t, 64> Record;
735   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
736     const AttributeSet &A = Attrs[i];
737     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
738       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
739 
740     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
741     Record.clear();
742   }
743 
744   Stream.ExitBlock();
745 }
746 
747 /// WriteTypeTable - Write out the type table for a module.
748 void ModuleBitcodeWriter::writeTypeTable() {
749   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
750 
751   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
752   SmallVector<uint64_t, 64> TypeVals;
753 
754   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
755 
756   // Abbrev for TYPE_CODE_POINTER.
757   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
758   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
759   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
760   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
761   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
762 
763   // Abbrev for TYPE_CODE_FUNCTION.
764   Abbv = new BitCodeAbbrev();
765   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
766   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
767   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
768   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
769 
770   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
771 
772   // Abbrev for TYPE_CODE_STRUCT_ANON.
773   Abbv = new BitCodeAbbrev();
774   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
776   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
778 
779   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
780 
781   // Abbrev for TYPE_CODE_STRUCT_NAME.
782   Abbv = new BitCodeAbbrev();
783   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
784   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
785   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
786   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
787 
788   // Abbrev for TYPE_CODE_STRUCT_NAMED.
789   Abbv = new BitCodeAbbrev();
790   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
791   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
792   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
793   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
794 
795   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
796 
797   // Abbrev for TYPE_CODE_ARRAY.
798   Abbv = new BitCodeAbbrev();
799   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
801   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
802 
803   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
804 
805   // Emit an entry count so the reader can reserve space.
806   TypeVals.push_back(TypeList.size());
807   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
808   TypeVals.clear();
809 
810   // Loop over all of the types, emitting each in turn.
811   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
812     Type *T = TypeList[i];
813     int AbbrevToUse = 0;
814     unsigned Code = 0;
815 
816     switch (T->getTypeID()) {
817     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
818     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
819     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
820     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
821     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
822     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
823     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
824     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
825     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
826     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
827     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
828     case Type::IntegerTyID:
829       // INTEGER: [width]
830       Code = bitc::TYPE_CODE_INTEGER;
831       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
832       break;
833     case Type::PointerTyID: {
834       PointerType *PTy = cast<PointerType>(T);
835       // POINTER: [pointee type, address space]
836       Code = bitc::TYPE_CODE_POINTER;
837       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
838       unsigned AddressSpace = PTy->getAddressSpace();
839       TypeVals.push_back(AddressSpace);
840       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
841       break;
842     }
843     case Type::FunctionTyID: {
844       FunctionType *FT = cast<FunctionType>(T);
845       // FUNCTION: [isvararg, retty, paramty x N]
846       Code = bitc::TYPE_CODE_FUNCTION;
847       TypeVals.push_back(FT->isVarArg());
848       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
849       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
850         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
851       AbbrevToUse = FunctionAbbrev;
852       break;
853     }
854     case Type::StructTyID: {
855       StructType *ST = cast<StructType>(T);
856       // STRUCT: [ispacked, eltty x N]
857       TypeVals.push_back(ST->isPacked());
858       // Output all of the element types.
859       for (StructType::element_iterator I = ST->element_begin(),
860            E = ST->element_end(); I != E; ++I)
861         TypeVals.push_back(VE.getTypeID(*I));
862 
863       if (ST->isLiteral()) {
864         Code = bitc::TYPE_CODE_STRUCT_ANON;
865         AbbrevToUse = StructAnonAbbrev;
866       } else {
867         if (ST->isOpaque()) {
868           Code = bitc::TYPE_CODE_OPAQUE;
869         } else {
870           Code = bitc::TYPE_CODE_STRUCT_NAMED;
871           AbbrevToUse = StructNamedAbbrev;
872         }
873 
874         // Emit the name if it is present.
875         if (!ST->getName().empty())
876           writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
877                             StructNameAbbrev);
878       }
879       break;
880     }
881     case Type::ArrayTyID: {
882       ArrayType *AT = cast<ArrayType>(T);
883       // ARRAY: [numelts, eltty]
884       Code = bitc::TYPE_CODE_ARRAY;
885       TypeVals.push_back(AT->getNumElements());
886       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
887       AbbrevToUse = ArrayAbbrev;
888       break;
889     }
890     case Type::VectorTyID: {
891       VectorType *VT = cast<VectorType>(T);
892       // VECTOR [numelts, eltty]
893       Code = bitc::TYPE_CODE_VECTOR;
894       TypeVals.push_back(VT->getNumElements());
895       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
896       break;
897     }
898     }
899 
900     // Emit the finished record.
901     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
902     TypeVals.clear();
903   }
904 
905   Stream.ExitBlock();
906 }
907 
908 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
909   switch (Linkage) {
910   case GlobalValue::ExternalLinkage:
911     return 0;
912   case GlobalValue::WeakAnyLinkage:
913     return 16;
914   case GlobalValue::AppendingLinkage:
915     return 2;
916   case GlobalValue::InternalLinkage:
917     return 3;
918   case GlobalValue::LinkOnceAnyLinkage:
919     return 18;
920   case GlobalValue::ExternalWeakLinkage:
921     return 7;
922   case GlobalValue::CommonLinkage:
923     return 8;
924   case GlobalValue::PrivateLinkage:
925     return 9;
926   case GlobalValue::WeakODRLinkage:
927     return 17;
928   case GlobalValue::LinkOnceODRLinkage:
929     return 19;
930   case GlobalValue::AvailableExternallyLinkage:
931     return 12;
932   }
933   llvm_unreachable("Invalid linkage");
934 }
935 
936 static unsigned getEncodedLinkage(const GlobalValue &GV) {
937   return getEncodedLinkage(GV.getLinkage());
938 }
939 
940 // Decode the flags for GlobalValue in the summary
941 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
942   uint64_t RawFlags = 0;
943 
944   RawFlags |= Flags.HasSection; // bool
945 
946   // Linkage don't need to be remapped at that time for the summary. Any future
947   // change to the getEncodedLinkage() function will need to be taken into
948   // account here as well.
949   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
950 
951   return RawFlags;
952 }
953 
954 static unsigned getEncodedVisibility(const GlobalValue &GV) {
955   switch (GV.getVisibility()) {
956   case GlobalValue::DefaultVisibility:   return 0;
957   case GlobalValue::HiddenVisibility:    return 1;
958   case GlobalValue::ProtectedVisibility: return 2;
959   }
960   llvm_unreachable("Invalid visibility");
961 }
962 
963 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
964   switch (GV.getDLLStorageClass()) {
965   case GlobalValue::DefaultStorageClass:   return 0;
966   case GlobalValue::DLLImportStorageClass: return 1;
967   case GlobalValue::DLLExportStorageClass: return 2;
968   }
969   llvm_unreachable("Invalid DLL storage class");
970 }
971 
972 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
973   switch (GV.getThreadLocalMode()) {
974     case GlobalVariable::NotThreadLocal:         return 0;
975     case GlobalVariable::GeneralDynamicTLSModel: return 1;
976     case GlobalVariable::LocalDynamicTLSModel:   return 2;
977     case GlobalVariable::InitialExecTLSModel:    return 3;
978     case GlobalVariable::LocalExecTLSModel:      return 4;
979   }
980   llvm_unreachable("Invalid TLS model");
981 }
982 
983 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
984   switch (C.getSelectionKind()) {
985   case Comdat::Any:
986     return bitc::COMDAT_SELECTION_KIND_ANY;
987   case Comdat::ExactMatch:
988     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
989   case Comdat::Largest:
990     return bitc::COMDAT_SELECTION_KIND_LARGEST;
991   case Comdat::NoDuplicates:
992     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
993   case Comdat::SameSize:
994     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
995   }
996   llvm_unreachable("Invalid selection kind");
997 }
998 
999 void ModuleBitcodeWriter::writeComdats() {
1000   SmallVector<unsigned, 64> Vals;
1001   for (const Comdat *C : VE.getComdats()) {
1002     // COMDAT: [selection_kind, name]
1003     Vals.push_back(getEncodedComdatSelectionKind(*C));
1004     size_t Size = C->getName().size();
1005     assert(isUInt<32>(Size));
1006     Vals.push_back(Size);
1007     for (char Chr : C->getName())
1008       Vals.push_back((unsigned char)Chr);
1009     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1010     Vals.clear();
1011   }
1012 }
1013 
1014 /// Write a record that will eventually hold the word offset of the
1015 /// module-level VST. For now the offset is 0, which will be backpatched
1016 /// after the real VST is written. Saves the bit offset to backpatch.
1017 void BitcodeWriter::writeValueSymbolTableForwardDecl() {
1018   // Write a placeholder value in for the offset of the real VST,
1019   // which is written after the function blocks so that it can include
1020   // the offset of each function. The placeholder offset will be
1021   // updated when the real VST is written.
1022   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1023   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1024   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1025   // hold the real VST offset. Must use fixed instead of VBR as we don't
1026   // know how many VBR chunks to reserve ahead of time.
1027   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1028   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
1029 
1030   // Emit the placeholder
1031   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1032   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1033 
1034   // Compute and save the bit offset to the placeholder, which will be
1035   // patched when the real VST is written. We can simply subtract the 32-bit
1036   // fixed size from the current bit number to get the location to backpatch.
1037   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1038 }
1039 
1040 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1041 
1042 /// Determine the encoding to use for the given string name and length.
1043 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1044   bool isChar6 = true;
1045   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1046     if (isChar6)
1047       isChar6 = BitCodeAbbrevOp::isChar6(*C);
1048     if ((unsigned char)*C & 128)
1049       // don't bother scanning the rest.
1050       return SE_Fixed8;
1051   }
1052   if (isChar6)
1053     return SE_Char6;
1054   else
1055     return SE_Fixed7;
1056 }
1057 
1058 /// Emit top-level description of module, including target triple, inline asm,
1059 /// descriptors for global variables, and function prototype info.
1060 /// Returns the bit offset to backpatch with the location of the real VST.
1061 void ModuleBitcodeWriter::writeModuleInfo() {
1062   // Emit various pieces of data attached to a module.
1063   if (!M.getTargetTriple().empty())
1064     writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1065                       0 /*TODO*/);
1066   const std::string &DL = M.getDataLayoutStr();
1067   if (!DL.empty())
1068     writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1069   if (!M.getModuleInlineAsm().empty())
1070     writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1071                       0 /*TODO*/);
1072 
1073   // Emit information about sections and GC, computing how many there are. Also
1074   // compute the maximum alignment value.
1075   std::map<std::string, unsigned> SectionMap;
1076   std::map<std::string, unsigned> GCMap;
1077   unsigned MaxAlignment = 0;
1078   unsigned MaxGlobalType = 0;
1079   for (const GlobalValue &GV : M.globals()) {
1080     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1081     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1082     if (GV.hasSection()) {
1083       // Give section names unique ID's.
1084       unsigned &Entry = SectionMap[GV.getSection()];
1085       if (!Entry) {
1086         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1087                           0 /*TODO*/);
1088         Entry = SectionMap.size();
1089       }
1090     }
1091   }
1092   for (const Function &F : M) {
1093     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1094     if (F.hasSection()) {
1095       // Give section names unique ID's.
1096       unsigned &Entry = SectionMap[F.getSection()];
1097       if (!Entry) {
1098         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1099                           0 /*TODO*/);
1100         Entry = SectionMap.size();
1101       }
1102     }
1103     if (F.hasGC()) {
1104       // Same for GC names.
1105       unsigned &Entry = GCMap[F.getGC()];
1106       if (!Entry) {
1107         writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/);
1108         Entry = GCMap.size();
1109       }
1110     }
1111   }
1112 
1113   // Emit abbrev for globals, now that we know # sections and max alignment.
1114   unsigned SimpleGVarAbbrev = 0;
1115   if (!M.global_empty()) {
1116     // Add an abbrev for common globals with no visibility or thread localness.
1117     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1118     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1119     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1120                               Log2_32_Ceil(MaxGlobalType+1)));
1121     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1122                                                            //| explicitType << 1
1123                                                            //| constant
1124     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1125     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1126     if (MaxAlignment == 0)                                 // Alignment.
1127       Abbv->Add(BitCodeAbbrevOp(0));
1128     else {
1129       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1130       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1131                                Log2_32_Ceil(MaxEncAlignment+1)));
1132     }
1133     if (SectionMap.empty())                                    // Section.
1134       Abbv->Add(BitCodeAbbrevOp(0));
1135     else
1136       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1137                                Log2_32_Ceil(SectionMap.size()+1)));
1138     // Don't bother emitting vis + thread local.
1139     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
1140   }
1141 
1142   // Emit the global variable information.
1143   SmallVector<unsigned, 64> Vals;
1144   for (const GlobalVariable &GV : M.globals()) {
1145     unsigned AbbrevToUse = 0;
1146 
1147     // GLOBALVAR: [type, isconst, initid,
1148     //             linkage, alignment, section, visibility, threadlocal,
1149     //             unnamed_addr, externally_initialized, dllstorageclass,
1150     //             comdat]
1151     Vals.push_back(VE.getTypeID(GV.getValueType()));
1152     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1153     Vals.push_back(GV.isDeclaration() ? 0 :
1154                    (VE.getValueID(GV.getInitializer()) + 1));
1155     Vals.push_back(getEncodedLinkage(GV));
1156     Vals.push_back(Log2_32(GV.getAlignment())+1);
1157     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1158     if (GV.isThreadLocal() ||
1159         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1160         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
1161         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1162         GV.hasComdat()) {
1163       Vals.push_back(getEncodedVisibility(GV));
1164       Vals.push_back(getEncodedThreadLocalMode(GV));
1165       Vals.push_back(GV.hasUnnamedAddr());
1166       Vals.push_back(GV.isExternallyInitialized());
1167       Vals.push_back(getEncodedDLLStorageClass(GV));
1168       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1169     } else {
1170       AbbrevToUse = SimpleGVarAbbrev;
1171     }
1172 
1173     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1174     Vals.clear();
1175   }
1176 
1177   // Emit the function proto information.
1178   for (const Function &F : M) {
1179     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1180     //             section, visibility, gc, unnamed_addr, prologuedata,
1181     //             dllstorageclass, comdat, prefixdata, personalityfn]
1182     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1183     Vals.push_back(F.getCallingConv());
1184     Vals.push_back(F.isDeclaration());
1185     Vals.push_back(getEncodedLinkage(F));
1186     Vals.push_back(VE.getAttributeID(F.getAttributes()));
1187     Vals.push_back(Log2_32(F.getAlignment())+1);
1188     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1189     Vals.push_back(getEncodedVisibility(F));
1190     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1191     Vals.push_back(F.hasUnnamedAddr());
1192     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1193                                        : 0);
1194     Vals.push_back(getEncodedDLLStorageClass(F));
1195     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1196     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1197                                      : 0);
1198     Vals.push_back(
1199         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1200 
1201     unsigned AbbrevToUse = 0;
1202     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1203     Vals.clear();
1204   }
1205 
1206   // Emit the alias information.
1207   for (const GlobalAlias &A : M.aliases()) {
1208     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1209     Vals.push_back(VE.getTypeID(A.getValueType()));
1210     Vals.push_back(A.getType()->getAddressSpace());
1211     Vals.push_back(VE.getValueID(A.getAliasee()));
1212     Vals.push_back(getEncodedLinkage(A));
1213     Vals.push_back(getEncodedVisibility(A));
1214     Vals.push_back(getEncodedDLLStorageClass(A));
1215     Vals.push_back(getEncodedThreadLocalMode(A));
1216     Vals.push_back(A.hasUnnamedAddr());
1217     unsigned AbbrevToUse = 0;
1218     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1219     Vals.clear();
1220   }
1221 
1222   // Emit the ifunc information.
1223   for (const GlobalIFunc &I : M.ifuncs()) {
1224     // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
1225     Vals.push_back(VE.getTypeID(I.getValueType()));
1226     Vals.push_back(I.getType()->getAddressSpace());
1227     Vals.push_back(VE.getValueID(I.getResolver()));
1228     Vals.push_back(getEncodedLinkage(I));
1229     Vals.push_back(getEncodedVisibility(I));
1230     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1231     Vals.clear();
1232   }
1233 
1234   // Emit the module's source file name.
1235   {
1236     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1237                                             M.getSourceFileName().size());
1238     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1239     if (Bits == SE_Char6)
1240       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1241     else if (Bits == SE_Fixed7)
1242       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1243 
1244     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1245     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1246     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1247     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1248     Abbv->Add(AbbrevOpToUse);
1249     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
1250 
1251     for (const auto P : M.getSourceFileName())
1252       Vals.push_back((unsigned char)P);
1253 
1254     // Emit the finished record.
1255     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1256     Vals.clear();
1257   }
1258 
1259   // If we have a VST, write the VSTOFFSET record placeholder.
1260   if (M.getValueSymbolTable().empty())
1261     return;
1262   writeValueSymbolTableForwardDecl();
1263 }
1264 
1265 static uint64_t getOptimizationFlags(const Value *V) {
1266   uint64_t Flags = 0;
1267 
1268   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1269     if (OBO->hasNoSignedWrap())
1270       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1271     if (OBO->hasNoUnsignedWrap())
1272       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1273   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1274     if (PEO->isExact())
1275       Flags |= 1 << bitc::PEO_EXACT;
1276   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1277     if (FPMO->hasUnsafeAlgebra())
1278       Flags |= FastMathFlags::UnsafeAlgebra;
1279     if (FPMO->hasNoNaNs())
1280       Flags |= FastMathFlags::NoNaNs;
1281     if (FPMO->hasNoInfs())
1282       Flags |= FastMathFlags::NoInfs;
1283     if (FPMO->hasNoSignedZeros())
1284       Flags |= FastMathFlags::NoSignedZeros;
1285     if (FPMO->hasAllowReciprocal())
1286       Flags |= FastMathFlags::AllowReciprocal;
1287   }
1288 
1289   return Flags;
1290 }
1291 
1292 void ModuleBitcodeWriter::writeValueAsMetadata(
1293     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1294   // Mimic an MDNode with a value as one operand.
1295   Value *V = MD->getValue();
1296   Record.push_back(VE.getTypeID(V->getType()));
1297   Record.push_back(VE.getValueID(V));
1298   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1299   Record.clear();
1300 }
1301 
1302 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1303                                        SmallVectorImpl<uint64_t> &Record,
1304                                        unsigned Abbrev) {
1305   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1306     Metadata *MD = N->getOperand(i);
1307     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1308            "Unexpected function-local metadata");
1309     Record.push_back(VE.getMetadataOrNullID(MD));
1310   }
1311   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1312                                     : bitc::METADATA_NODE,
1313                     Record, Abbrev);
1314   Record.clear();
1315 }
1316 
1317 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1318   // Assume the column is usually under 128, and always output the inlined-at
1319   // location (it's never more expensive than building an array size 1).
1320   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1321   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1322   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1323   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1324   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1325   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1326   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1327   return Stream.EmitAbbrev(Abbv);
1328 }
1329 
1330 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1331                                           SmallVectorImpl<uint64_t> &Record,
1332                                           unsigned &Abbrev) {
1333   if (!Abbrev)
1334     Abbrev = createDILocationAbbrev();
1335 
1336   Record.push_back(N->isDistinct());
1337   Record.push_back(N->getLine());
1338   Record.push_back(N->getColumn());
1339   Record.push_back(VE.getMetadataID(N->getScope()));
1340   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1341 
1342   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1343   Record.clear();
1344 }
1345 
1346 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1347   // Assume the column is usually under 128, and always output the inlined-at
1348   // location (it's never more expensive than building an array size 1).
1349   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1350   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1351   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1352   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1353   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1354   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1357   return Stream.EmitAbbrev(Abbv);
1358 }
1359 
1360 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1361                                              SmallVectorImpl<uint64_t> &Record,
1362                                              unsigned &Abbrev) {
1363   if (!Abbrev)
1364     Abbrev = createGenericDINodeAbbrev();
1365 
1366   Record.push_back(N->isDistinct());
1367   Record.push_back(N->getTag());
1368   Record.push_back(0); // Per-tag version field; unused for now.
1369 
1370   for (auto &I : N->operands())
1371     Record.push_back(VE.getMetadataOrNullID(I));
1372 
1373   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1374   Record.clear();
1375 }
1376 
1377 static uint64_t rotateSign(int64_t I) {
1378   uint64_t U = I;
1379   return I < 0 ? ~(U << 1) : U << 1;
1380 }
1381 
1382 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1383                                           SmallVectorImpl<uint64_t> &Record,
1384                                           unsigned Abbrev) {
1385   Record.push_back(N->isDistinct());
1386   Record.push_back(N->getCount());
1387   Record.push_back(rotateSign(N->getLowerBound()));
1388 
1389   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1390   Record.clear();
1391 }
1392 
1393 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1394                                             SmallVectorImpl<uint64_t> &Record,
1395                                             unsigned Abbrev) {
1396   Record.push_back(N->isDistinct());
1397   Record.push_back(rotateSign(N->getValue()));
1398   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1399 
1400   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1401   Record.clear();
1402 }
1403 
1404 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1405                                            SmallVectorImpl<uint64_t> &Record,
1406                                            unsigned Abbrev) {
1407   Record.push_back(N->isDistinct());
1408   Record.push_back(N->getTag());
1409   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1410   Record.push_back(N->getSizeInBits());
1411   Record.push_back(N->getAlignInBits());
1412   Record.push_back(N->getEncoding());
1413 
1414   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1415   Record.clear();
1416 }
1417 
1418 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1419                                              SmallVectorImpl<uint64_t> &Record,
1420                                              unsigned Abbrev) {
1421   Record.push_back(N->isDistinct());
1422   Record.push_back(N->getTag());
1423   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1424   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1425   Record.push_back(N->getLine());
1426   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1427   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1428   Record.push_back(N->getSizeInBits());
1429   Record.push_back(N->getAlignInBits());
1430   Record.push_back(N->getOffsetInBits());
1431   Record.push_back(N->getFlags());
1432   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1433 
1434   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1435   Record.clear();
1436 }
1437 
1438 void ModuleBitcodeWriter::writeDICompositeType(
1439     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1440     unsigned Abbrev) {
1441   const unsigned IsNotUsedInOldTypeRef = 0x2;
1442   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1443   Record.push_back(N->getTag());
1444   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1445   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1446   Record.push_back(N->getLine());
1447   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1448   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1449   Record.push_back(N->getSizeInBits());
1450   Record.push_back(N->getAlignInBits());
1451   Record.push_back(N->getOffsetInBits());
1452   Record.push_back(N->getFlags());
1453   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1454   Record.push_back(N->getRuntimeLang());
1455   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1456   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1457   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1458 
1459   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1460   Record.clear();
1461 }
1462 
1463 void ModuleBitcodeWriter::writeDISubroutineType(
1464     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1465     unsigned Abbrev) {
1466   const unsigned HasNoOldTypeRefs = 0x2;
1467   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1468   Record.push_back(N->getFlags());
1469   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1470   Record.push_back(N->getCC());
1471 
1472   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1473   Record.clear();
1474 }
1475 
1476 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1477                                       SmallVectorImpl<uint64_t> &Record,
1478                                       unsigned Abbrev) {
1479   Record.push_back(N->isDistinct());
1480   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1481   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1482 
1483   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1484   Record.clear();
1485 }
1486 
1487 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1488                                              SmallVectorImpl<uint64_t> &Record,
1489                                              unsigned Abbrev) {
1490   assert(N->isDistinct() && "Expected distinct compile units");
1491   Record.push_back(/* IsDistinct */ true);
1492   Record.push_back(N->getSourceLanguage());
1493   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1494   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1495   Record.push_back(N->isOptimized());
1496   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1497   Record.push_back(N->getRuntimeVersion());
1498   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1499   Record.push_back(N->getEmissionKind());
1500   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1501   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1502   Record.push_back(/* subprograms */ 0);
1503   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1504   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1505   Record.push_back(N->getDWOId());
1506   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1507 
1508   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1509   Record.clear();
1510 }
1511 
1512 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1513                                             SmallVectorImpl<uint64_t> &Record,
1514                                             unsigned Abbrev) {
1515   uint64_t HasUnitFlag = 1 << 1;
1516   Record.push_back(N->isDistinct() | HasUnitFlag);
1517   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1518   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1519   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1520   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1521   Record.push_back(N->getLine());
1522   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1523   Record.push_back(N->isLocalToUnit());
1524   Record.push_back(N->isDefinition());
1525   Record.push_back(N->getScopeLine());
1526   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1527   Record.push_back(N->getVirtuality());
1528   Record.push_back(N->getVirtualIndex());
1529   Record.push_back(N->getFlags());
1530   Record.push_back(N->isOptimized());
1531   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1532   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1533   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1534   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1535 
1536   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1537   Record.clear();
1538 }
1539 
1540 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1541                                               SmallVectorImpl<uint64_t> &Record,
1542                                               unsigned Abbrev) {
1543   Record.push_back(N->isDistinct());
1544   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1545   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1546   Record.push_back(N->getLine());
1547   Record.push_back(N->getColumn());
1548 
1549   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1550   Record.clear();
1551 }
1552 
1553 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1554     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1555     unsigned Abbrev) {
1556   Record.push_back(N->isDistinct());
1557   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1558   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1559   Record.push_back(N->getDiscriminator());
1560 
1561   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1562   Record.clear();
1563 }
1564 
1565 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1566                                            SmallVectorImpl<uint64_t> &Record,
1567                                            unsigned Abbrev) {
1568   Record.push_back(N->isDistinct());
1569   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1570   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1571   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1572   Record.push_back(N->getLine());
1573 
1574   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1575   Record.clear();
1576 }
1577 
1578 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1579                                        SmallVectorImpl<uint64_t> &Record,
1580                                        unsigned Abbrev) {
1581   Record.push_back(N->isDistinct());
1582   Record.push_back(N->getMacinfoType());
1583   Record.push_back(N->getLine());
1584   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1585   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1586 
1587   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1588   Record.clear();
1589 }
1590 
1591 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1592                                            SmallVectorImpl<uint64_t> &Record,
1593                                            unsigned Abbrev) {
1594   Record.push_back(N->isDistinct());
1595   Record.push_back(N->getMacinfoType());
1596   Record.push_back(N->getLine());
1597   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1598   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1599 
1600   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1601   Record.clear();
1602 }
1603 
1604 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1605                                         SmallVectorImpl<uint64_t> &Record,
1606                                         unsigned Abbrev) {
1607   Record.push_back(N->isDistinct());
1608   for (auto &I : N->operands())
1609     Record.push_back(VE.getMetadataOrNullID(I));
1610 
1611   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1612   Record.clear();
1613 }
1614 
1615 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1616     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1617     unsigned Abbrev) {
1618   Record.push_back(N->isDistinct());
1619   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1620   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1621 
1622   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1623   Record.clear();
1624 }
1625 
1626 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1627     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1628     unsigned Abbrev) {
1629   Record.push_back(N->isDistinct());
1630   Record.push_back(N->getTag());
1631   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1632   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1633   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1634 
1635   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1636   Record.clear();
1637 }
1638 
1639 void ModuleBitcodeWriter::writeDIGlobalVariable(
1640     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1641     unsigned Abbrev) {
1642   Record.push_back(N->isDistinct());
1643   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1644   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1645   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1646   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1647   Record.push_back(N->getLine());
1648   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1649   Record.push_back(N->isLocalToUnit());
1650   Record.push_back(N->isDefinition());
1651   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1652   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1653 
1654   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1655   Record.clear();
1656 }
1657 
1658 void ModuleBitcodeWriter::writeDILocalVariable(
1659     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1660     unsigned Abbrev) {
1661   Record.push_back(N->isDistinct());
1662   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1663   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1664   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1665   Record.push_back(N->getLine());
1666   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1667   Record.push_back(N->getArg());
1668   Record.push_back(N->getFlags());
1669 
1670   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1671   Record.clear();
1672 }
1673 
1674 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1675                                             SmallVectorImpl<uint64_t> &Record,
1676                                             unsigned Abbrev) {
1677   Record.reserve(N->getElements().size() + 1);
1678 
1679   Record.push_back(N->isDistinct());
1680   Record.append(N->elements_begin(), N->elements_end());
1681 
1682   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1683   Record.clear();
1684 }
1685 
1686 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1687                                               SmallVectorImpl<uint64_t> &Record,
1688                                               unsigned Abbrev) {
1689   Record.push_back(N->isDistinct());
1690   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1691   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1692   Record.push_back(N->getLine());
1693   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1694   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1695   Record.push_back(N->getAttributes());
1696   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1697 
1698   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1699   Record.clear();
1700 }
1701 
1702 void ModuleBitcodeWriter::writeDIImportedEntity(
1703     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1704     unsigned Abbrev) {
1705   Record.push_back(N->isDistinct());
1706   Record.push_back(N->getTag());
1707   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1708   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1709   Record.push_back(N->getLine());
1710   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1711 
1712   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1713   Record.clear();
1714 }
1715 
1716 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1717   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1718   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1719   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1720   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1721   return Stream.EmitAbbrev(Abbv);
1722 }
1723 
1724 void ModuleBitcodeWriter::writeNamedMetadata(
1725     SmallVectorImpl<uint64_t> &Record) {
1726   if (M.named_metadata_empty())
1727     return;
1728 
1729   unsigned Abbrev = createNamedMetadataAbbrev();
1730   for (const NamedMDNode &NMD : M.named_metadata()) {
1731     // Write name.
1732     StringRef Str = NMD.getName();
1733     Record.append(Str.bytes_begin(), Str.bytes_end());
1734     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1735     Record.clear();
1736 
1737     // Write named metadata operands.
1738     for (const MDNode *N : NMD.operands())
1739       Record.push_back(VE.getMetadataID(N));
1740     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1741     Record.clear();
1742   }
1743 }
1744 
1745 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1746   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1747   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1748   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1749   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1750   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1751   return Stream.EmitAbbrev(Abbv);
1752 }
1753 
1754 /// Write out a record for MDString.
1755 ///
1756 /// All the metadata strings in a metadata block are emitted in a single
1757 /// record.  The sizes and strings themselves are shoved into a blob.
1758 void ModuleBitcodeWriter::writeMetadataStrings(
1759     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1760   if (Strings.empty())
1761     return;
1762 
1763   // Start the record with the number of strings.
1764   Record.push_back(bitc::METADATA_STRINGS);
1765   Record.push_back(Strings.size());
1766 
1767   // Emit the sizes of the strings in the blob.
1768   SmallString<256> Blob;
1769   {
1770     BitstreamWriter W(Blob);
1771     for (const Metadata *MD : Strings)
1772       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1773     W.FlushToWord();
1774   }
1775 
1776   // Add the offset to the strings to the record.
1777   Record.push_back(Blob.size());
1778 
1779   // Add the strings to the blob.
1780   for (const Metadata *MD : Strings)
1781     Blob.append(cast<MDString>(MD)->getString());
1782 
1783   // Emit the final record.
1784   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1785   Record.clear();
1786 }
1787 
1788 void ModuleBitcodeWriter::writeMetadataRecords(
1789     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
1790   if (MDs.empty())
1791     return;
1792 
1793   // Initialize MDNode abbreviations.
1794 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1795 #include "llvm/IR/Metadata.def"
1796 
1797   for (const Metadata *MD : MDs) {
1798     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1799       assert(N->isResolved() && "Expected forward references to be resolved");
1800 
1801       switch (N->getMetadataID()) {
1802       default:
1803         llvm_unreachable("Invalid MDNode subclass");
1804 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1805   case Metadata::CLASS##Kind:                                                  \
1806     write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                       \
1807     continue;
1808 #include "llvm/IR/Metadata.def"
1809       }
1810     }
1811     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1812   }
1813 }
1814 
1815 void ModuleBitcodeWriter::writeModuleMetadata() {
1816   if (!VE.hasMDs() && M.named_metadata_empty())
1817     return;
1818 
1819   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1820   SmallVector<uint64_t, 64> Record;
1821   writeMetadataStrings(VE.getMDStrings(), Record);
1822   writeMetadataRecords(VE.getNonMDStrings(), Record);
1823   writeNamedMetadata(Record);
1824   Stream.ExitBlock();
1825 }
1826 
1827 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
1828   if (!VE.hasMDs())
1829     return;
1830 
1831   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1832   SmallVector<uint64_t, 64> Record;
1833   writeMetadataStrings(VE.getMDStrings(), Record);
1834   writeMetadataRecords(VE.getNonMDStrings(), Record);
1835   Stream.ExitBlock();
1836 }
1837 
1838 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
1839     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
1840   // [n x [id, mdnode]]
1841   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1842   GO.getAllMetadata(MDs);
1843   for (const auto &I : MDs) {
1844     Record.push_back(I.first);
1845     Record.push_back(VE.getMetadataID(I.second));
1846   }
1847 }
1848 
1849 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1850   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1851 
1852   SmallVector<uint64_t, 64> Record;
1853 
1854   if (F.hasMetadata()) {
1855     pushGlobalMetadataAttachment(Record, F);
1856     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1857     Record.clear();
1858   }
1859 
1860   // Write metadata attachments
1861   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1862   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1863   for (const BasicBlock &BB : F)
1864     for (const Instruction &I : BB) {
1865       MDs.clear();
1866       I.getAllMetadataOtherThanDebugLoc(MDs);
1867 
1868       // If no metadata, ignore instruction.
1869       if (MDs.empty()) continue;
1870 
1871       Record.push_back(VE.getInstructionID(&I));
1872 
1873       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1874         Record.push_back(MDs[i].first);
1875         Record.push_back(VE.getMetadataID(MDs[i].second));
1876       }
1877       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1878       Record.clear();
1879     }
1880 
1881   Stream.ExitBlock();
1882 }
1883 
1884 void ModuleBitcodeWriter::writeModuleMetadataStore() {
1885   SmallVector<uint64_t, 64> Record;
1886 
1887   // Write metadata kinds
1888   // METADATA_KIND - [n x [id, name]]
1889   SmallVector<StringRef, 8> Names;
1890   M.getMDKindNames(Names);
1891 
1892   if (Names.empty()) return;
1893 
1894   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1895 
1896   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1897     Record.push_back(MDKindID);
1898     StringRef KName = Names[MDKindID];
1899     Record.append(KName.begin(), KName.end());
1900 
1901     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1902     Record.clear();
1903   }
1904 
1905   Stream.ExitBlock();
1906 }
1907 
1908 void ModuleBitcodeWriter::writeOperandBundleTags() {
1909   // Write metadata kinds
1910   //
1911   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1912   //
1913   // OPERAND_BUNDLE_TAG - [strchr x N]
1914 
1915   SmallVector<StringRef, 8> Tags;
1916   M.getOperandBundleTags(Tags);
1917 
1918   if (Tags.empty())
1919     return;
1920 
1921   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1922 
1923   SmallVector<uint64_t, 64> Record;
1924 
1925   for (auto Tag : Tags) {
1926     Record.append(Tag.begin(), Tag.end());
1927 
1928     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1929     Record.clear();
1930   }
1931 
1932   Stream.ExitBlock();
1933 }
1934 
1935 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1936   if ((int64_t)V >= 0)
1937     Vals.push_back(V << 1);
1938   else
1939     Vals.push_back((-V << 1) | 1);
1940 }
1941 
1942 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1943                                          bool isGlobal) {
1944   if (FirstVal == LastVal) return;
1945 
1946   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1947 
1948   unsigned AggregateAbbrev = 0;
1949   unsigned String8Abbrev = 0;
1950   unsigned CString7Abbrev = 0;
1951   unsigned CString6Abbrev = 0;
1952   // If this is a constant pool for the module, emit module-specific abbrevs.
1953   if (isGlobal) {
1954     // Abbrev for CST_CODE_AGGREGATE.
1955     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1956     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1957     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1958     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1959     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1960 
1961     // Abbrev for CST_CODE_STRING.
1962     Abbv = new BitCodeAbbrev();
1963     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1964     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1965     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1966     String8Abbrev = Stream.EmitAbbrev(Abbv);
1967     // Abbrev for CST_CODE_CSTRING.
1968     Abbv = new BitCodeAbbrev();
1969     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1970     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1971     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1972     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1973     // Abbrev for CST_CODE_CSTRING.
1974     Abbv = new BitCodeAbbrev();
1975     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1976     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1977     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1978     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1979   }
1980 
1981   SmallVector<uint64_t, 64> Record;
1982 
1983   const ValueEnumerator::ValueList &Vals = VE.getValues();
1984   Type *LastTy = nullptr;
1985   for (unsigned i = FirstVal; i != LastVal; ++i) {
1986     const Value *V = Vals[i].first;
1987     // If we need to switch types, do so now.
1988     if (V->getType() != LastTy) {
1989       LastTy = V->getType();
1990       Record.push_back(VE.getTypeID(LastTy));
1991       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1992                         CONSTANTS_SETTYPE_ABBREV);
1993       Record.clear();
1994     }
1995 
1996     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1997       Record.push_back(unsigned(IA->hasSideEffects()) |
1998                        unsigned(IA->isAlignStack()) << 1 |
1999                        unsigned(IA->getDialect()&1) << 2);
2000 
2001       // Add the asm string.
2002       const std::string &AsmStr = IA->getAsmString();
2003       Record.push_back(AsmStr.size());
2004       Record.append(AsmStr.begin(), AsmStr.end());
2005 
2006       // Add the constraint string.
2007       const std::string &ConstraintStr = IA->getConstraintString();
2008       Record.push_back(ConstraintStr.size());
2009       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2010       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2011       Record.clear();
2012       continue;
2013     }
2014     const Constant *C = cast<Constant>(V);
2015     unsigned Code = -1U;
2016     unsigned AbbrevToUse = 0;
2017     if (C->isNullValue()) {
2018       Code = bitc::CST_CODE_NULL;
2019     } else if (isa<UndefValue>(C)) {
2020       Code = bitc::CST_CODE_UNDEF;
2021     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2022       if (IV->getBitWidth() <= 64) {
2023         uint64_t V = IV->getSExtValue();
2024         emitSignedInt64(Record, V);
2025         Code = bitc::CST_CODE_INTEGER;
2026         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2027       } else {                             // Wide integers, > 64 bits in size.
2028         // We have an arbitrary precision integer value to write whose
2029         // bit width is > 64. However, in canonical unsigned integer
2030         // format it is likely that the high bits are going to be zero.
2031         // So, we only write the number of active words.
2032         unsigned NWords = IV->getValue().getActiveWords();
2033         const uint64_t *RawWords = IV->getValue().getRawData();
2034         for (unsigned i = 0; i != NWords; ++i) {
2035           emitSignedInt64(Record, RawWords[i]);
2036         }
2037         Code = bitc::CST_CODE_WIDE_INTEGER;
2038       }
2039     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2040       Code = bitc::CST_CODE_FLOAT;
2041       Type *Ty = CFP->getType();
2042       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2043         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2044       } else if (Ty->isX86_FP80Ty()) {
2045         // api needed to prevent premature destruction
2046         // bits are not in the same order as a normal i80 APInt, compensate.
2047         APInt api = CFP->getValueAPF().bitcastToAPInt();
2048         const uint64_t *p = api.getRawData();
2049         Record.push_back((p[1] << 48) | (p[0] >> 16));
2050         Record.push_back(p[0] & 0xffffLL);
2051       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2052         APInt api = CFP->getValueAPF().bitcastToAPInt();
2053         const uint64_t *p = api.getRawData();
2054         Record.push_back(p[0]);
2055         Record.push_back(p[1]);
2056       } else {
2057         assert (0 && "Unknown FP type!");
2058       }
2059     } else if (isa<ConstantDataSequential>(C) &&
2060                cast<ConstantDataSequential>(C)->isString()) {
2061       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2062       // Emit constant strings specially.
2063       unsigned NumElts = Str->getNumElements();
2064       // If this is a null-terminated string, use the denser CSTRING encoding.
2065       if (Str->isCString()) {
2066         Code = bitc::CST_CODE_CSTRING;
2067         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2068       } else {
2069         Code = bitc::CST_CODE_STRING;
2070         AbbrevToUse = String8Abbrev;
2071       }
2072       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2073       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2074       for (unsigned i = 0; i != NumElts; ++i) {
2075         unsigned char V = Str->getElementAsInteger(i);
2076         Record.push_back(V);
2077         isCStr7 &= (V & 128) == 0;
2078         if (isCStrChar6)
2079           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2080       }
2081 
2082       if (isCStrChar6)
2083         AbbrevToUse = CString6Abbrev;
2084       else if (isCStr7)
2085         AbbrevToUse = CString7Abbrev;
2086     } else if (const ConstantDataSequential *CDS =
2087                   dyn_cast<ConstantDataSequential>(C)) {
2088       Code = bitc::CST_CODE_DATA;
2089       Type *EltTy = CDS->getType()->getElementType();
2090       if (isa<IntegerType>(EltTy)) {
2091         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2092           Record.push_back(CDS->getElementAsInteger(i));
2093       } else {
2094         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2095           Record.push_back(
2096               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2097       }
2098     } else if (isa<ConstantAggregate>(C)) {
2099       Code = bitc::CST_CODE_AGGREGATE;
2100       for (const Value *Op : C->operands())
2101         Record.push_back(VE.getValueID(Op));
2102       AbbrevToUse = AggregateAbbrev;
2103     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2104       switch (CE->getOpcode()) {
2105       default:
2106         if (Instruction::isCast(CE->getOpcode())) {
2107           Code = bitc::CST_CODE_CE_CAST;
2108           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2109           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2110           Record.push_back(VE.getValueID(C->getOperand(0)));
2111           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2112         } else {
2113           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2114           Code = bitc::CST_CODE_CE_BINOP;
2115           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2116           Record.push_back(VE.getValueID(C->getOperand(0)));
2117           Record.push_back(VE.getValueID(C->getOperand(1)));
2118           uint64_t Flags = getOptimizationFlags(CE);
2119           if (Flags != 0)
2120             Record.push_back(Flags);
2121         }
2122         break;
2123       case Instruction::GetElementPtr: {
2124         Code = bitc::CST_CODE_CE_GEP;
2125         const auto *GO = cast<GEPOperator>(C);
2126         if (GO->isInBounds())
2127           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2128         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2129         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2130           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2131           Record.push_back(VE.getValueID(C->getOperand(i)));
2132         }
2133         break;
2134       }
2135       case Instruction::Select:
2136         Code = bitc::CST_CODE_CE_SELECT;
2137         Record.push_back(VE.getValueID(C->getOperand(0)));
2138         Record.push_back(VE.getValueID(C->getOperand(1)));
2139         Record.push_back(VE.getValueID(C->getOperand(2)));
2140         break;
2141       case Instruction::ExtractElement:
2142         Code = bitc::CST_CODE_CE_EXTRACTELT;
2143         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2144         Record.push_back(VE.getValueID(C->getOperand(0)));
2145         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2146         Record.push_back(VE.getValueID(C->getOperand(1)));
2147         break;
2148       case Instruction::InsertElement:
2149         Code = bitc::CST_CODE_CE_INSERTELT;
2150         Record.push_back(VE.getValueID(C->getOperand(0)));
2151         Record.push_back(VE.getValueID(C->getOperand(1)));
2152         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2153         Record.push_back(VE.getValueID(C->getOperand(2)));
2154         break;
2155       case Instruction::ShuffleVector:
2156         // If the return type and argument types are the same, this is a
2157         // standard shufflevector instruction.  If the types are different,
2158         // then the shuffle is widening or truncating the input vectors, and
2159         // the argument type must also be encoded.
2160         if (C->getType() == C->getOperand(0)->getType()) {
2161           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2162         } else {
2163           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2164           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2165         }
2166         Record.push_back(VE.getValueID(C->getOperand(0)));
2167         Record.push_back(VE.getValueID(C->getOperand(1)));
2168         Record.push_back(VE.getValueID(C->getOperand(2)));
2169         break;
2170       case Instruction::ICmp:
2171       case Instruction::FCmp:
2172         Code = bitc::CST_CODE_CE_CMP;
2173         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2174         Record.push_back(VE.getValueID(C->getOperand(0)));
2175         Record.push_back(VE.getValueID(C->getOperand(1)));
2176         Record.push_back(CE->getPredicate());
2177         break;
2178       }
2179     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2180       Code = bitc::CST_CODE_BLOCKADDRESS;
2181       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2182       Record.push_back(VE.getValueID(BA->getFunction()));
2183       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2184     } else {
2185 #ifndef NDEBUG
2186       C->dump();
2187 #endif
2188       llvm_unreachable("Unknown constant!");
2189     }
2190     Stream.EmitRecord(Code, Record, AbbrevToUse);
2191     Record.clear();
2192   }
2193 
2194   Stream.ExitBlock();
2195 }
2196 
2197 void ModuleBitcodeWriter::writeModuleConstants() {
2198   const ValueEnumerator::ValueList &Vals = VE.getValues();
2199 
2200   // Find the first constant to emit, which is the first non-globalvalue value.
2201   // We know globalvalues have been emitted by WriteModuleInfo.
2202   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2203     if (!isa<GlobalValue>(Vals[i].first)) {
2204       writeConstants(i, Vals.size(), true);
2205       return;
2206     }
2207   }
2208 }
2209 
2210 /// pushValueAndType - The file has to encode both the value and type id for
2211 /// many values, because we need to know what type to create for forward
2212 /// references.  However, most operands are not forward references, so this type
2213 /// field is not needed.
2214 ///
2215 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2216 /// instruction ID, then it is a forward reference, and it also includes the
2217 /// type ID.  The value ID that is written is encoded relative to the InstID.
2218 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2219                                            SmallVectorImpl<unsigned> &Vals) {
2220   unsigned ValID = VE.getValueID(V);
2221   // Make encoding relative to the InstID.
2222   Vals.push_back(InstID - ValID);
2223   if (ValID >= InstID) {
2224     Vals.push_back(VE.getTypeID(V->getType()));
2225     return true;
2226   }
2227   return false;
2228 }
2229 
2230 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2231                                               unsigned InstID) {
2232   SmallVector<unsigned, 64> Record;
2233   LLVMContext &C = CS.getInstruction()->getContext();
2234 
2235   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2236     const auto &Bundle = CS.getOperandBundleAt(i);
2237     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2238 
2239     for (auto &Input : Bundle.Inputs)
2240       pushValueAndType(Input, InstID, Record);
2241 
2242     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2243     Record.clear();
2244   }
2245 }
2246 
2247 /// pushValue - Like pushValueAndType, but where the type of the value is
2248 /// omitted (perhaps it was already encoded in an earlier operand).
2249 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2250                                     SmallVectorImpl<unsigned> &Vals) {
2251   unsigned ValID = VE.getValueID(V);
2252   Vals.push_back(InstID - ValID);
2253 }
2254 
2255 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2256                                           SmallVectorImpl<uint64_t> &Vals) {
2257   unsigned ValID = VE.getValueID(V);
2258   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2259   emitSignedInt64(Vals, diff);
2260 }
2261 
2262 /// WriteInstruction - Emit an instruction to the specified stream.
2263 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2264                                            unsigned InstID,
2265                                            SmallVectorImpl<unsigned> &Vals) {
2266   unsigned Code = 0;
2267   unsigned AbbrevToUse = 0;
2268   VE.setInstructionID(&I);
2269   switch (I.getOpcode()) {
2270   default:
2271     if (Instruction::isCast(I.getOpcode())) {
2272       Code = bitc::FUNC_CODE_INST_CAST;
2273       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2274         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2275       Vals.push_back(VE.getTypeID(I.getType()));
2276       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2277     } else {
2278       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2279       Code = bitc::FUNC_CODE_INST_BINOP;
2280       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2281         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2282       pushValue(I.getOperand(1), InstID, Vals);
2283       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2284       uint64_t Flags = getOptimizationFlags(&I);
2285       if (Flags != 0) {
2286         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2287           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2288         Vals.push_back(Flags);
2289       }
2290     }
2291     break;
2292 
2293   case Instruction::GetElementPtr: {
2294     Code = bitc::FUNC_CODE_INST_GEP;
2295     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2296     auto &GEPInst = cast<GetElementPtrInst>(I);
2297     Vals.push_back(GEPInst.isInBounds());
2298     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2299     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2300       pushValueAndType(I.getOperand(i), InstID, Vals);
2301     break;
2302   }
2303   case Instruction::ExtractValue: {
2304     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2305     pushValueAndType(I.getOperand(0), InstID, Vals);
2306     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2307     Vals.append(EVI->idx_begin(), EVI->idx_end());
2308     break;
2309   }
2310   case Instruction::InsertValue: {
2311     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2312     pushValueAndType(I.getOperand(0), InstID, Vals);
2313     pushValueAndType(I.getOperand(1), InstID, Vals);
2314     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2315     Vals.append(IVI->idx_begin(), IVI->idx_end());
2316     break;
2317   }
2318   case Instruction::Select:
2319     Code = bitc::FUNC_CODE_INST_VSELECT;
2320     pushValueAndType(I.getOperand(1), InstID, Vals);
2321     pushValue(I.getOperand(2), InstID, Vals);
2322     pushValueAndType(I.getOperand(0), InstID, Vals);
2323     break;
2324   case Instruction::ExtractElement:
2325     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2326     pushValueAndType(I.getOperand(0), InstID, Vals);
2327     pushValueAndType(I.getOperand(1), InstID, Vals);
2328     break;
2329   case Instruction::InsertElement:
2330     Code = bitc::FUNC_CODE_INST_INSERTELT;
2331     pushValueAndType(I.getOperand(0), InstID, Vals);
2332     pushValue(I.getOperand(1), InstID, Vals);
2333     pushValueAndType(I.getOperand(2), InstID, Vals);
2334     break;
2335   case Instruction::ShuffleVector:
2336     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2337     pushValueAndType(I.getOperand(0), InstID, Vals);
2338     pushValue(I.getOperand(1), InstID, Vals);
2339     pushValue(I.getOperand(2), InstID, Vals);
2340     break;
2341   case Instruction::ICmp:
2342   case Instruction::FCmp: {
2343     // compare returning Int1Ty or vector of Int1Ty
2344     Code = bitc::FUNC_CODE_INST_CMP2;
2345     pushValueAndType(I.getOperand(0), InstID, Vals);
2346     pushValue(I.getOperand(1), InstID, Vals);
2347     Vals.push_back(cast<CmpInst>(I).getPredicate());
2348     uint64_t Flags = getOptimizationFlags(&I);
2349     if (Flags != 0)
2350       Vals.push_back(Flags);
2351     break;
2352   }
2353 
2354   case Instruction::Ret:
2355     {
2356       Code = bitc::FUNC_CODE_INST_RET;
2357       unsigned NumOperands = I.getNumOperands();
2358       if (NumOperands == 0)
2359         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2360       else if (NumOperands == 1) {
2361         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2362           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2363       } else {
2364         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2365           pushValueAndType(I.getOperand(i), InstID, Vals);
2366       }
2367     }
2368     break;
2369   case Instruction::Br:
2370     {
2371       Code = bitc::FUNC_CODE_INST_BR;
2372       const BranchInst &II = cast<BranchInst>(I);
2373       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2374       if (II.isConditional()) {
2375         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2376         pushValue(II.getCondition(), InstID, Vals);
2377       }
2378     }
2379     break;
2380   case Instruction::Switch:
2381     {
2382       Code = bitc::FUNC_CODE_INST_SWITCH;
2383       const SwitchInst &SI = cast<SwitchInst>(I);
2384       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2385       pushValue(SI.getCondition(), InstID, Vals);
2386       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2387       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
2388         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2389         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2390       }
2391     }
2392     break;
2393   case Instruction::IndirectBr:
2394     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2395     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2396     // Encode the address operand as relative, but not the basic blocks.
2397     pushValue(I.getOperand(0), InstID, Vals);
2398     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2399       Vals.push_back(VE.getValueID(I.getOperand(i)));
2400     break;
2401 
2402   case Instruction::Invoke: {
2403     const InvokeInst *II = cast<InvokeInst>(&I);
2404     const Value *Callee = II->getCalledValue();
2405     FunctionType *FTy = II->getFunctionType();
2406 
2407     if (II->hasOperandBundles())
2408       writeOperandBundles(II, InstID);
2409 
2410     Code = bitc::FUNC_CODE_INST_INVOKE;
2411 
2412     Vals.push_back(VE.getAttributeID(II->getAttributes()));
2413     Vals.push_back(II->getCallingConv() | 1 << 13);
2414     Vals.push_back(VE.getValueID(II->getNormalDest()));
2415     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2416     Vals.push_back(VE.getTypeID(FTy));
2417     pushValueAndType(Callee, InstID, Vals);
2418 
2419     // Emit value #'s for the fixed parameters.
2420     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2421       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2422 
2423     // Emit type/value pairs for varargs params.
2424     if (FTy->isVarArg()) {
2425       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
2426            i != e; ++i)
2427         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2428     }
2429     break;
2430   }
2431   case Instruction::Resume:
2432     Code = bitc::FUNC_CODE_INST_RESUME;
2433     pushValueAndType(I.getOperand(0), InstID, Vals);
2434     break;
2435   case Instruction::CleanupRet: {
2436     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2437     const auto &CRI = cast<CleanupReturnInst>(I);
2438     pushValue(CRI.getCleanupPad(), InstID, Vals);
2439     if (CRI.hasUnwindDest())
2440       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2441     break;
2442   }
2443   case Instruction::CatchRet: {
2444     Code = bitc::FUNC_CODE_INST_CATCHRET;
2445     const auto &CRI = cast<CatchReturnInst>(I);
2446     pushValue(CRI.getCatchPad(), InstID, Vals);
2447     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2448     break;
2449   }
2450   case Instruction::CleanupPad:
2451   case Instruction::CatchPad: {
2452     const auto &FuncletPad = cast<FuncletPadInst>(I);
2453     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2454                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2455     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2456 
2457     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2458     Vals.push_back(NumArgOperands);
2459     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2460       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2461     break;
2462   }
2463   case Instruction::CatchSwitch: {
2464     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2465     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2466 
2467     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2468 
2469     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2470     Vals.push_back(NumHandlers);
2471     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2472       Vals.push_back(VE.getValueID(CatchPadBB));
2473 
2474     if (CatchSwitch.hasUnwindDest())
2475       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2476     break;
2477   }
2478   case Instruction::Unreachable:
2479     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2480     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2481     break;
2482 
2483   case Instruction::PHI: {
2484     const PHINode &PN = cast<PHINode>(I);
2485     Code = bitc::FUNC_CODE_INST_PHI;
2486     // With the newer instruction encoding, forward references could give
2487     // negative valued IDs.  This is most common for PHIs, so we use
2488     // signed VBRs.
2489     SmallVector<uint64_t, 128> Vals64;
2490     Vals64.push_back(VE.getTypeID(PN.getType()));
2491     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2492       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2493       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2494     }
2495     // Emit a Vals64 vector and exit.
2496     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2497     Vals64.clear();
2498     return;
2499   }
2500 
2501   case Instruction::LandingPad: {
2502     const LandingPadInst &LP = cast<LandingPadInst>(I);
2503     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2504     Vals.push_back(VE.getTypeID(LP.getType()));
2505     Vals.push_back(LP.isCleanup());
2506     Vals.push_back(LP.getNumClauses());
2507     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2508       if (LP.isCatch(I))
2509         Vals.push_back(LandingPadInst::Catch);
2510       else
2511         Vals.push_back(LandingPadInst::Filter);
2512       pushValueAndType(LP.getClause(I), InstID, Vals);
2513     }
2514     break;
2515   }
2516 
2517   case Instruction::Alloca: {
2518     Code = bitc::FUNC_CODE_INST_ALLOCA;
2519     const AllocaInst &AI = cast<AllocaInst>(I);
2520     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2521     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2522     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2523     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2524     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2525            "not enough bits for maximum alignment");
2526     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2527     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2528     AlignRecord |= 1 << 6;
2529     AlignRecord |= AI.isSwiftError() << 7;
2530     Vals.push_back(AlignRecord);
2531     break;
2532   }
2533 
2534   case Instruction::Load:
2535     if (cast<LoadInst>(I).isAtomic()) {
2536       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2537       pushValueAndType(I.getOperand(0), InstID, Vals);
2538     } else {
2539       Code = bitc::FUNC_CODE_INST_LOAD;
2540       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2541         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2542     }
2543     Vals.push_back(VE.getTypeID(I.getType()));
2544     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2545     Vals.push_back(cast<LoadInst>(I).isVolatile());
2546     if (cast<LoadInst>(I).isAtomic()) {
2547       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2548       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2549     }
2550     break;
2551   case Instruction::Store:
2552     if (cast<StoreInst>(I).isAtomic())
2553       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2554     else
2555       Code = bitc::FUNC_CODE_INST_STORE;
2556     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2557     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2558     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2559     Vals.push_back(cast<StoreInst>(I).isVolatile());
2560     if (cast<StoreInst>(I).isAtomic()) {
2561       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2562       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2563     }
2564     break;
2565   case Instruction::AtomicCmpXchg:
2566     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2567     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2568     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2569     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2570     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2571     Vals.push_back(
2572         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2573     Vals.push_back(
2574         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2575     Vals.push_back(
2576         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2577     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2578     break;
2579   case Instruction::AtomicRMW:
2580     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2581     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2582     pushValue(I.getOperand(1), InstID, Vals);        // val.
2583     Vals.push_back(
2584         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2585     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2586     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2587     Vals.push_back(
2588         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2589     break;
2590   case Instruction::Fence:
2591     Code = bitc::FUNC_CODE_INST_FENCE;
2592     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2593     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2594     break;
2595   case Instruction::Call: {
2596     const CallInst &CI = cast<CallInst>(I);
2597     FunctionType *FTy = CI.getFunctionType();
2598 
2599     if (CI.hasOperandBundles())
2600       writeOperandBundles(&CI, InstID);
2601 
2602     Code = bitc::FUNC_CODE_INST_CALL;
2603 
2604     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2605 
2606     unsigned Flags = getOptimizationFlags(&I);
2607     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2608                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2609                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2610                    1 << bitc::CALL_EXPLICIT_TYPE |
2611                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2612                    unsigned(Flags != 0) << bitc::CALL_FMF);
2613     if (Flags != 0)
2614       Vals.push_back(Flags);
2615 
2616     Vals.push_back(VE.getTypeID(FTy));
2617     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2618 
2619     // Emit value #'s for the fixed parameters.
2620     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2621       // Check for labels (can happen with asm labels).
2622       if (FTy->getParamType(i)->isLabelTy())
2623         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2624       else
2625         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2626     }
2627 
2628     // Emit type/value pairs for varargs params.
2629     if (FTy->isVarArg()) {
2630       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2631            i != e; ++i)
2632         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2633     }
2634     break;
2635   }
2636   case Instruction::VAArg:
2637     Code = bitc::FUNC_CODE_INST_VAARG;
2638     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2639     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2640     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2641     break;
2642   }
2643 
2644   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2645   Vals.clear();
2646 }
2647 
2648 /// Emit names for globals/functions etc. \p IsModuleLevel is true when
2649 /// we are writing the module-level VST, where we are including a function
2650 /// bitcode index and need to backpatch the VST forward declaration record.
2651 void ModuleBitcodeWriter::writeValueSymbolTable(
2652     const ValueSymbolTable &VST, bool IsModuleLevel,
2653     DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
2654   if (VST.empty()) {
2655     // writeValueSymbolTableForwardDecl should have returned early as
2656     // well. Ensure this handling remains in sync by asserting that
2657     // the placeholder offset is not set.
2658     assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
2659     return;
2660   }
2661 
2662   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2663     // Get the offset of the VST we are writing, and backpatch it into
2664     // the VST forward declaration record.
2665     uint64_t VSTOffset = Stream.GetCurrentBitNo();
2666     // The BitcodeStartBit was the stream offset of the actual bitcode
2667     // (e.g. excluding any initial darwin header).
2668     VSTOffset -= bitcodeStartBit();
2669     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2670     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2671   }
2672 
2673   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2674 
2675   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2676   // records, which are not used in the per-function VSTs.
2677   unsigned FnEntry8BitAbbrev;
2678   unsigned FnEntry7BitAbbrev;
2679   unsigned FnEntry6BitAbbrev;
2680   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2681     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2682     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2683     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2684     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2685     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2686     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2687     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2688     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2689 
2690     // 7-bit fixed width VST_CODE_FNENTRY function strings.
2691     Abbv = new BitCodeAbbrev();
2692     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2693     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2694     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2695     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2696     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2697     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2698 
2699     // 6-bit char6 VST_CODE_FNENTRY function strings.
2700     Abbv = new BitCodeAbbrev();
2701     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2702     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2703     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2704     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2705     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2706     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2707   }
2708 
2709   // FIXME: Set up the abbrev, we know how many values there are!
2710   // FIXME: We know if the type names can use 7-bit ascii.
2711   SmallVector<unsigned, 64> NameVals;
2712 
2713   for (const ValueName &Name : VST) {
2714     // Figure out the encoding to use for the name.
2715     StringEncoding Bits =
2716         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2717 
2718     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2719     NameVals.push_back(VE.getValueID(Name.getValue()));
2720 
2721     Function *F = dyn_cast<Function>(Name.getValue());
2722     if (!F) {
2723       // If value is an alias, need to get the aliased base object to
2724       // see if it is a function.
2725       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2726       if (GA && GA->getBaseObject())
2727         F = dyn_cast<Function>(GA->getBaseObject());
2728     }
2729 
2730     // VST_CODE_ENTRY:   [valueid, namechar x N]
2731     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2732     // VST_CODE_BBENTRY: [bbid, namechar x N]
2733     unsigned Code;
2734     if (isa<BasicBlock>(Name.getValue())) {
2735       Code = bitc::VST_CODE_BBENTRY;
2736       if (Bits == SE_Char6)
2737         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2738     } else if (F && !F->isDeclaration()) {
2739       // Must be the module-level VST, where we pass in the Index and
2740       // have a VSTOffsetPlaceholder. The function-level VST should not
2741       // contain any Function symbols.
2742       assert(FunctionToBitcodeIndex);
2743       assert(hasVSTOffsetPlaceholder());
2744 
2745       // Save the word offset of the function (from the start of the
2746       // actual bitcode written to the stream).
2747       uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
2748       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2749       NameVals.push_back(BitcodeIndex / 32);
2750 
2751       Code = bitc::VST_CODE_FNENTRY;
2752       AbbrevToUse = FnEntry8BitAbbrev;
2753       if (Bits == SE_Char6)
2754         AbbrevToUse = FnEntry6BitAbbrev;
2755       else if (Bits == SE_Fixed7)
2756         AbbrevToUse = FnEntry7BitAbbrev;
2757     } else {
2758       Code = bitc::VST_CODE_ENTRY;
2759       if (Bits == SE_Char6)
2760         AbbrevToUse = VST_ENTRY_6_ABBREV;
2761       else if (Bits == SE_Fixed7)
2762         AbbrevToUse = VST_ENTRY_7_ABBREV;
2763     }
2764 
2765     for (const auto P : Name.getKey())
2766       NameVals.push_back((unsigned char)P);
2767 
2768     // Emit the finished record.
2769     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2770     NameVals.clear();
2771   }
2772   Stream.ExitBlock();
2773 }
2774 
2775 /// Emit function names and summary offsets for the combined index
2776 /// used by ThinLTO.
2777 void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
2778   assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
2779   // Get the offset of the VST we are writing, and backpatch it into
2780   // the VST forward declaration record.
2781   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2782   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2783   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2784 
2785   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2786 
2787   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2788   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2789   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2790   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2791   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
2792 
2793   SmallVector<uint64_t, 64> NameVals;
2794   for (const auto &GVI : valueIds()) {
2795     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
2796     NameVals.push_back(GVI.second);
2797     NameVals.push_back(GVI.first);
2798 
2799     // Emit the finished record.
2800     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
2801     NameVals.clear();
2802   }
2803   Stream.ExitBlock();
2804 }
2805 
2806 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2807   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2808   unsigned Code;
2809   if (isa<BasicBlock>(Order.V))
2810     Code = bitc::USELIST_CODE_BB;
2811   else
2812     Code = bitc::USELIST_CODE_DEFAULT;
2813 
2814   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2815   Record.push_back(VE.getValueID(Order.V));
2816   Stream.EmitRecord(Code, Record);
2817 }
2818 
2819 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2820   assert(VE.shouldPreserveUseListOrder() &&
2821          "Expected to be preserving use-list order");
2822 
2823   auto hasMore = [&]() {
2824     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2825   };
2826   if (!hasMore())
2827     // Nothing to do.
2828     return;
2829 
2830   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2831   while (hasMore()) {
2832     writeUseList(std::move(VE.UseListOrders.back()));
2833     VE.UseListOrders.pop_back();
2834   }
2835   Stream.ExitBlock();
2836 }
2837 
2838 /// Emit a function body to the module stream.
2839 void ModuleBitcodeWriter::writeFunction(
2840     const Function &F,
2841     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2842   // Save the bitcode index of the start of this function block for recording
2843   // in the VST.
2844   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2845 
2846   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2847   VE.incorporateFunction(F);
2848 
2849   SmallVector<unsigned, 64> Vals;
2850 
2851   // Emit the number of basic blocks, so the reader can create them ahead of
2852   // time.
2853   Vals.push_back(VE.getBasicBlocks().size());
2854   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2855   Vals.clear();
2856 
2857   // If there are function-local constants, emit them now.
2858   unsigned CstStart, CstEnd;
2859   VE.getFunctionConstantRange(CstStart, CstEnd);
2860   writeConstants(CstStart, CstEnd, false);
2861 
2862   // If there is function-local metadata, emit it now.
2863   writeFunctionMetadata(F);
2864 
2865   // Keep a running idea of what the instruction ID is.
2866   unsigned InstID = CstEnd;
2867 
2868   bool NeedsMetadataAttachment = F.hasMetadata();
2869 
2870   DILocation *LastDL = nullptr;
2871   // Finally, emit all the instructions, in order.
2872   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2873     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2874          I != E; ++I) {
2875       writeInstruction(*I, InstID, Vals);
2876 
2877       if (!I->getType()->isVoidTy())
2878         ++InstID;
2879 
2880       // If the instruction has metadata, write a metadata attachment later.
2881       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2882 
2883       // If the instruction has a debug location, emit it.
2884       DILocation *DL = I->getDebugLoc();
2885       if (!DL)
2886         continue;
2887 
2888       if (DL == LastDL) {
2889         // Just repeat the same debug loc as last time.
2890         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2891         continue;
2892       }
2893 
2894       Vals.push_back(DL->getLine());
2895       Vals.push_back(DL->getColumn());
2896       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2897       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2898       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2899       Vals.clear();
2900 
2901       LastDL = DL;
2902     }
2903 
2904   // Emit names for all the instructions etc.
2905   writeValueSymbolTable(F.getValueSymbolTable());
2906 
2907   if (NeedsMetadataAttachment)
2908     writeFunctionMetadataAttachment(F);
2909   if (VE.shouldPreserveUseListOrder())
2910     writeUseListBlock(&F);
2911   VE.purgeFunction();
2912   Stream.ExitBlock();
2913 }
2914 
2915 // Emit blockinfo, which defines the standard abbreviations etc.
2916 void ModuleBitcodeWriter::writeBlockInfo() {
2917   // We only want to emit block info records for blocks that have multiple
2918   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2919   // Other blocks can define their abbrevs inline.
2920   Stream.EnterBlockInfoBlock(2);
2921 
2922   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
2923     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2924     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2925     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2926     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2927     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2928     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2929         VST_ENTRY_8_ABBREV)
2930       llvm_unreachable("Unexpected abbrev ordering!");
2931   }
2932 
2933   { // 7-bit fixed width VST_CODE_ENTRY strings.
2934     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2935     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2936     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2937     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2938     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2939     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2940         VST_ENTRY_7_ABBREV)
2941       llvm_unreachable("Unexpected abbrev ordering!");
2942   }
2943   { // 6-bit char6 VST_CODE_ENTRY strings.
2944     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2945     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2946     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2947     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2948     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2949     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2950         VST_ENTRY_6_ABBREV)
2951       llvm_unreachable("Unexpected abbrev ordering!");
2952   }
2953   { // 6-bit char6 VST_CODE_BBENTRY strings.
2954     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2955     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2956     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2957     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2958     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2959     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2960         VST_BBENTRY_6_ABBREV)
2961       llvm_unreachable("Unexpected abbrev ordering!");
2962   }
2963 
2964 
2965 
2966   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2967     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2968     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2969     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2970                               VE.computeBitsRequiredForTypeIndicies()));
2971     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2972         CONSTANTS_SETTYPE_ABBREV)
2973       llvm_unreachable("Unexpected abbrev ordering!");
2974   }
2975 
2976   { // INTEGER abbrev for CONSTANTS_BLOCK.
2977     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2978     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2979     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2980     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2981         CONSTANTS_INTEGER_ABBREV)
2982       llvm_unreachable("Unexpected abbrev ordering!");
2983   }
2984 
2985   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2986     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2987     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2988     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2989     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2990                               VE.computeBitsRequiredForTypeIndicies()));
2991     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2992 
2993     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2994         CONSTANTS_CE_CAST_Abbrev)
2995       llvm_unreachable("Unexpected abbrev ordering!");
2996   }
2997   { // NULL abbrev for CONSTANTS_BLOCK.
2998     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2999     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3000     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3001         CONSTANTS_NULL_Abbrev)
3002       llvm_unreachable("Unexpected abbrev ordering!");
3003   }
3004 
3005   // FIXME: This should only use space for first class types!
3006 
3007   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3008     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3009     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3010     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3011     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3012                               VE.computeBitsRequiredForTypeIndicies()));
3013     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3014     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3015     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3016         FUNCTION_INST_LOAD_ABBREV)
3017       llvm_unreachable("Unexpected abbrev ordering!");
3018   }
3019   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3020     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3021     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3022     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3023     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3024     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3025     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3026         FUNCTION_INST_BINOP_ABBREV)
3027       llvm_unreachable("Unexpected abbrev ordering!");
3028   }
3029   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3030     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3031     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3032     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3033     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3034     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3035     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3036     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3037         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3038       llvm_unreachable("Unexpected abbrev ordering!");
3039   }
3040   { // INST_CAST abbrev for FUNCTION_BLOCK.
3041     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3042     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3043     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3044     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3045                               VE.computeBitsRequiredForTypeIndicies()));
3046     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3047     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3048         FUNCTION_INST_CAST_ABBREV)
3049       llvm_unreachable("Unexpected abbrev ordering!");
3050   }
3051 
3052   { // INST_RET abbrev for FUNCTION_BLOCK.
3053     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3054     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3055     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3056         FUNCTION_INST_RET_VOID_ABBREV)
3057       llvm_unreachable("Unexpected abbrev ordering!");
3058   }
3059   { // INST_RET abbrev for FUNCTION_BLOCK.
3060     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3061     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3062     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3063     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3064         FUNCTION_INST_RET_VAL_ABBREV)
3065       llvm_unreachable("Unexpected abbrev ordering!");
3066   }
3067   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3068     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3069     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3070     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3071         FUNCTION_INST_UNREACHABLE_ABBREV)
3072       llvm_unreachable("Unexpected abbrev ordering!");
3073   }
3074   {
3075     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3076     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3077     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3078     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3079                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3080     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3081     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3082     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3083         FUNCTION_INST_GEP_ABBREV)
3084       llvm_unreachable("Unexpected abbrev ordering!");
3085   }
3086 
3087   Stream.ExitBlock();
3088 }
3089 
3090 /// Write the module path strings, currently only used when generating
3091 /// a combined index file.
3092 void IndexBitcodeWriter::writeModStrings() {
3093   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3094 
3095   // TODO: See which abbrev sizes we actually need to emit
3096 
3097   // 8-bit fixed-width MST_ENTRY strings.
3098   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3099   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3100   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3101   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3102   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3103   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
3104 
3105   // 7-bit fixed width MST_ENTRY strings.
3106   Abbv = new BitCodeAbbrev();
3107   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3108   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3109   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3110   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3111   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
3112 
3113   // 6-bit char6 MST_ENTRY strings.
3114   Abbv = new BitCodeAbbrev();
3115   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3116   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3117   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3118   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3119   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
3120 
3121   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3122   Abbv = new BitCodeAbbrev();
3123   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3124   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3125   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3126   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3127   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3128   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3129   unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
3130 
3131   SmallVector<unsigned, 64> Vals;
3132   for (const auto &MPSE : Index.modulePaths()) {
3133     if (!doIncludeModule(MPSE.getKey()))
3134       continue;
3135     StringEncoding Bits =
3136         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3137     unsigned AbbrevToUse = Abbrev8Bit;
3138     if (Bits == SE_Char6)
3139       AbbrevToUse = Abbrev6Bit;
3140     else if (Bits == SE_Fixed7)
3141       AbbrevToUse = Abbrev7Bit;
3142 
3143     Vals.push_back(MPSE.getValue().first);
3144 
3145     for (const auto P : MPSE.getKey())
3146       Vals.push_back((unsigned char)P);
3147 
3148     // Emit the finished record.
3149     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3150 
3151     Vals.clear();
3152     // Emit an optional hash for the module now
3153     auto &Hash = MPSE.getValue().second;
3154     bool AllZero = true; // Detect if the hash is empty, and do not generate it
3155     for (auto Val : Hash) {
3156       if (Val)
3157         AllZero = false;
3158       Vals.push_back(Val);
3159     }
3160     if (!AllZero) {
3161       // Emit the hash record.
3162       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3163     }
3164 
3165     Vals.clear();
3166   }
3167   Stream.ExitBlock();
3168 }
3169 
3170 // Helper to emit a single function summary record.
3171 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3172     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3173     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3174     const Function &F) {
3175   NameVals.push_back(ValueID);
3176 
3177   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3178   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3179   NameVals.push_back(FS->instCount());
3180   NameVals.push_back(FS->refs().size());
3181 
3182   unsigned SizeBeforeRefs = NameVals.size();
3183   for (auto &RI : FS->refs())
3184     NameVals.push_back(VE.getValueID(RI.getValue()));
3185   // Sort the refs for determinism output, the vector returned by FS->refs() has
3186   // been initialized from a DenseSet.
3187   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3188 
3189   std::vector<FunctionSummary::EdgeTy> Calls = FS->calls();
3190   std::sort(Calls.begin(), Calls.end(),
3191             [this](const FunctionSummary::EdgeTy &L,
3192                    const FunctionSummary::EdgeTy &R) {
3193               return VE.getValueID(L.first.getValue()) <
3194                      VE.getValueID(R.first.getValue());
3195             });
3196   bool HasProfileData = F.getEntryCount().hasValue();
3197   for (auto &ECI : Calls) {
3198     NameVals.push_back(VE.getValueID(ECI.first.getValue()));
3199     assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
3200     NameVals.push_back(ECI.second.CallsiteCount);
3201     if (HasProfileData)
3202       NameVals.push_back(ECI.second.ProfileCount);
3203   }
3204 
3205   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3206   unsigned Code =
3207       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3208 
3209   // Emit the finished record.
3210   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3211   NameVals.clear();
3212 }
3213 
3214 // Collect the global value references in the given variable's initializer,
3215 // and emit them in a summary record.
3216 void ModuleBitcodeWriter::writeModuleLevelReferences(
3217     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3218     unsigned FSModRefsAbbrev) {
3219   // Only interested in recording variable defs in the summary.
3220   if (V.isDeclaration())
3221     return;
3222   NameVals.push_back(VE.getValueID(&V));
3223   NameVals.push_back(getEncodedGVSummaryFlags(V));
3224   auto *Summary = Index->getGlobalValueSummary(V);
3225   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3226 
3227   unsigned SizeBeforeRefs = NameVals.size();
3228   for (auto &RI : VS->refs())
3229     NameVals.push_back(VE.getValueID(RI.getValue()));
3230   // Sort the refs for determinism output, the vector returned by FS->refs() has
3231   // been initialized from a DenseSet.
3232   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3233 
3234   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3235                     FSModRefsAbbrev);
3236   NameVals.clear();
3237 }
3238 
3239 // Current version for the summary.
3240 // This is bumped whenever we introduce changes in the way some record are
3241 // interpreted, like flags for instance.
3242 static const uint64_t INDEX_VERSION = 1;
3243 
3244 /// Emit the per-module summary section alongside the rest of
3245 /// the module's bitcode.
3246 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3247   if (M.empty())
3248     return;
3249 
3250   if (Index->begin() == Index->end())
3251     return;
3252 
3253   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3254 
3255   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3256 
3257   // Abbrev for FS_PERMODULE.
3258   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3259   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3260   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3261   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3262   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3263   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3264   // numrefs x valueid, n x (valueid, callsitecount)
3265   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3266   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3267   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3268 
3269   // Abbrev for FS_PERMODULE_PROFILE.
3270   Abbv = new BitCodeAbbrev();
3271   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3272   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3273   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3274   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3275   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3276   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3277   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3278   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3279   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3280 
3281   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3282   Abbv = new BitCodeAbbrev();
3283   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3284   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3285   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3286   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3287   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3288   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3289 
3290   // Abbrev for FS_ALIAS.
3291   Abbv = new BitCodeAbbrev();
3292   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3293   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3294   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3295   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3296   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3297 
3298   SmallVector<uint64_t, 64> NameVals;
3299   // Iterate over the list of functions instead of the Index to
3300   // ensure the ordering is stable.
3301   for (const Function &F : M) {
3302     if (F.isDeclaration())
3303       continue;
3304     // Summary emission does not support anonymous functions, they have to
3305     // renamed using the anonymous function renaming pass.
3306     if (!F.hasName())
3307       report_fatal_error("Unexpected anonymous function when writing summary");
3308 
3309     auto *Summary = Index->getGlobalValueSummary(F);
3310     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3311                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3312   }
3313 
3314   // Capture references from GlobalVariable initializers, which are outside
3315   // of a function scope.
3316   for (const GlobalVariable &G : M.globals())
3317     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3318 
3319   for (const GlobalAlias &A : M.aliases()) {
3320     auto *Aliasee = A.getBaseObject();
3321     if (!Aliasee->hasName())
3322       // Nameless function don't have an entry in the summary, skip it.
3323       continue;
3324     auto AliasId = VE.getValueID(&A);
3325     auto AliaseeId = VE.getValueID(Aliasee);
3326     NameVals.push_back(AliasId);
3327     NameVals.push_back(getEncodedGVSummaryFlags(A));
3328     NameVals.push_back(AliaseeId);
3329     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3330     NameVals.clear();
3331   }
3332 
3333   Stream.ExitBlock();
3334 }
3335 
3336 /// Emit the combined summary section into the combined index file.
3337 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3338   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3339   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3340 
3341   // Abbrev for FS_COMBINED.
3342   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3343   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3344   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3345   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3349   // numrefs x valueid, n x (valueid, callsitecount)
3350   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3351   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3352   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3353 
3354   // Abbrev for FS_COMBINED_PROFILE.
3355   Abbv = new BitCodeAbbrev();
3356   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3358   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3360   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3361   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3362   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3365   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3366 
3367   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3368   Abbv = new BitCodeAbbrev();
3369   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3370   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3375   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3376 
3377   // Abbrev for FS_COMBINED_ALIAS.
3378   Abbv = new BitCodeAbbrev();
3379   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3380   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3383   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3384   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3385 
3386   // The aliases are emitted as a post-pass, and will point to the value
3387   // id of the aliasee. Save them in a vector for post-processing.
3388   SmallVector<AliasSummary *, 64> Aliases;
3389 
3390   // Save the value id for each summary for alias emission.
3391   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3392 
3393   SmallVector<uint64_t, 64> NameVals;
3394 
3395   // For local linkage, we also emit the original name separately
3396   // immediately after the record.
3397   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3398     if (!GlobalValue::isLocalLinkage(S.linkage()))
3399       return;
3400     NameVals.push_back(S.getOriginalName());
3401     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3402     NameVals.clear();
3403   };
3404 
3405   for (const auto &I : *this) {
3406     GlobalValueSummary *S = I.second;
3407     assert(S);
3408 
3409     assert(hasValueId(I.first));
3410     unsigned ValueId = getValueId(I.first);
3411     SummaryToValueIdMap[S] = ValueId;
3412 
3413     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3414       // Will process aliases as a post-pass because the reader wants all
3415       // global to be loaded first.
3416       Aliases.push_back(AS);
3417       continue;
3418     }
3419 
3420     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3421       NameVals.push_back(ValueId);
3422       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3423       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3424       for (auto &RI : VS->refs()) {
3425         NameVals.push_back(getValueId(RI.getGUID()));
3426       }
3427 
3428       // Emit the finished record.
3429       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3430                         FSModRefsAbbrev);
3431       NameVals.clear();
3432       MaybeEmitOriginalName(*S);
3433       continue;
3434     }
3435 
3436     auto *FS = cast<FunctionSummary>(S);
3437     NameVals.push_back(ValueId);
3438     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3439     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3440     NameVals.push_back(FS->instCount());
3441     NameVals.push_back(FS->refs().size());
3442 
3443     for (auto &RI : FS->refs()) {
3444       NameVals.push_back(getValueId(RI.getGUID()));
3445     }
3446 
3447     bool HasProfileData = false;
3448     for (auto &EI : FS->calls()) {
3449       HasProfileData |= EI.second.ProfileCount != 0;
3450       if (HasProfileData)
3451         break;
3452     }
3453 
3454     for (auto &EI : FS->calls()) {
3455       // If this GUID doesn't have a value id, it doesn't have a function
3456       // summary and we don't need to record any calls to it.
3457       if (!hasValueId(EI.first.getGUID()))
3458         continue;
3459       NameVals.push_back(getValueId(EI.first.getGUID()));
3460       assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
3461       NameVals.push_back(EI.second.CallsiteCount);
3462       if (HasProfileData)
3463         NameVals.push_back(EI.second.ProfileCount);
3464     }
3465 
3466     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3467     unsigned Code =
3468         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3469 
3470     // Emit the finished record.
3471     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3472     NameVals.clear();
3473     MaybeEmitOriginalName(*S);
3474   }
3475 
3476   for (auto *AS : Aliases) {
3477     auto AliasValueId = SummaryToValueIdMap[AS];
3478     assert(AliasValueId);
3479     NameVals.push_back(AliasValueId);
3480     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3481     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3482     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3483     assert(AliaseeValueId);
3484     NameVals.push_back(AliaseeValueId);
3485 
3486     // Emit the finished record.
3487     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3488     NameVals.clear();
3489     MaybeEmitOriginalName(*AS);
3490   }
3491 
3492   Stream.ExitBlock();
3493 }
3494 
3495 void ModuleBitcodeWriter::writeIdentificationBlock() {
3496   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3497 
3498   // Write the "user readable" string identifying the bitcode producer
3499   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3500   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3501   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3502   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3503   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
3504   writeStringRecord(bitc::IDENTIFICATION_CODE_STRING,
3505                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3506 
3507   // Write the epoch version
3508   Abbv = new BitCodeAbbrev();
3509   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3510   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3511   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
3512   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3513   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3514   Stream.ExitBlock();
3515 }
3516 
3517 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3518   // Emit the module's hash.
3519   // MODULE_CODE_HASH: [5*i32]
3520   SHA1 Hasher;
3521   Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3522                                   Buffer.size() - BlockStartPos));
3523   auto Hash = Hasher.result();
3524   SmallVector<uint64_t, 20> Vals;
3525   auto LShift = [&](unsigned char Val, unsigned Amount)
3526                     -> uint64_t { return ((uint64_t)Val) << Amount; };
3527   for (int Pos = 0; Pos < 20; Pos += 4) {
3528     uint32_t SubHash = LShift(Hash[Pos + 0], 24);
3529     SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) |
3530                (unsigned)(unsigned char)Hash[Pos + 3];
3531     Vals.push_back(SubHash);
3532   }
3533 
3534   // Emit the finished record.
3535   Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3536 }
3537 
3538 void BitcodeWriter::write() {
3539   // Emit the file header first.
3540   writeBitcodeHeader();
3541 
3542   writeBlocks();
3543 }
3544 
3545 void ModuleBitcodeWriter::writeBlocks() {
3546   writeIdentificationBlock();
3547   writeModule();
3548 }
3549 
3550 void IndexBitcodeWriter::writeBlocks() {
3551   // Index contains only a single outer (module) block.
3552   writeIndex();
3553 }
3554 
3555 void ModuleBitcodeWriter::writeModule() {
3556   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3557   size_t BlockStartPos = Buffer.size();
3558 
3559   SmallVector<unsigned, 1> Vals;
3560   unsigned CurVersion = 1;
3561   Vals.push_back(CurVersion);
3562   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3563 
3564   // Emit blockinfo, which defines the standard abbreviations etc.
3565   writeBlockInfo();
3566 
3567   // Emit information about attribute groups.
3568   writeAttributeGroupTable();
3569 
3570   // Emit information about parameter attributes.
3571   writeAttributeTable();
3572 
3573   // Emit information describing all of the types in the module.
3574   writeTypeTable();
3575 
3576   writeComdats();
3577 
3578   // Emit top-level description of module, including target triple, inline asm,
3579   // descriptors for global variables, and function prototype info.
3580   writeModuleInfo();
3581 
3582   // Emit constants.
3583   writeModuleConstants();
3584 
3585   // Emit metadata.
3586   writeModuleMetadata();
3587 
3588   // Emit metadata.
3589   writeModuleMetadataStore();
3590 
3591   // Emit module-level use-lists.
3592   if (VE.shouldPreserveUseListOrder())
3593     writeUseListBlock(nullptr);
3594 
3595   writeOperandBundleTags();
3596 
3597   // Emit function bodies.
3598   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3599   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3600     if (!F->isDeclaration())
3601       writeFunction(*F, FunctionToBitcodeIndex);
3602 
3603   // Need to write after the above call to WriteFunction which populates
3604   // the summary information in the index.
3605   if (Index)
3606     writePerModuleGlobalValueSummary();
3607 
3608   writeValueSymbolTable(M.getValueSymbolTable(),
3609                         /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
3610 
3611   for (const GlobalVariable &GV : M.globals())
3612     if (GV.hasMetadata()) {
3613       SmallVector<uint64_t, 4> Record;
3614       Record.push_back(VE.getValueID(&GV));
3615       pushGlobalMetadataAttachment(Record, GV);
3616       Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR_ATTACHMENT, Record);
3617     }
3618 
3619   if (GenerateHash) {
3620     writeModuleHash(BlockStartPos);
3621   }
3622 
3623   Stream.ExitBlock();
3624 }
3625 
3626 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3627                                uint32_t &Position) {
3628   support::endian::write32le(&Buffer[Position], Value);
3629   Position += 4;
3630 }
3631 
3632 /// If generating a bc file on darwin, we have to emit a
3633 /// header and trailer to make it compatible with the system archiver.  To do
3634 /// this we emit the following header, and then emit a trailer that pads the
3635 /// file out to be a multiple of 16 bytes.
3636 ///
3637 /// struct bc_header {
3638 ///   uint32_t Magic;         // 0x0B17C0DE
3639 ///   uint32_t Version;       // Version, currently always 0.
3640 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3641 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3642 ///   uint32_t CPUType;       // CPU specifier.
3643 ///   ... potentially more later ...
3644 /// };
3645 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3646                                          const Triple &TT) {
3647   unsigned CPUType = ~0U;
3648 
3649   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3650   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3651   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3652   // specific constants here because they are implicitly part of the Darwin ABI.
3653   enum {
3654     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3655     DARWIN_CPU_TYPE_X86        = 7,
3656     DARWIN_CPU_TYPE_ARM        = 12,
3657     DARWIN_CPU_TYPE_POWERPC    = 18
3658   };
3659 
3660   Triple::ArchType Arch = TT.getArch();
3661   if (Arch == Triple::x86_64)
3662     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3663   else if (Arch == Triple::x86)
3664     CPUType = DARWIN_CPU_TYPE_X86;
3665   else if (Arch == Triple::ppc)
3666     CPUType = DARWIN_CPU_TYPE_POWERPC;
3667   else if (Arch == Triple::ppc64)
3668     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3669   else if (Arch == Triple::arm || Arch == Triple::thumb)
3670     CPUType = DARWIN_CPU_TYPE_ARM;
3671 
3672   // Traditional Bitcode starts after header.
3673   assert(Buffer.size() >= BWH_HeaderSize &&
3674          "Expected header size to be reserved");
3675   unsigned BCOffset = BWH_HeaderSize;
3676   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3677 
3678   // Write the magic and version.
3679   unsigned Position = 0;
3680   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3681   writeInt32ToBuffer(0, Buffer, Position); // Version.
3682   writeInt32ToBuffer(BCOffset, Buffer, Position);
3683   writeInt32ToBuffer(BCSize, Buffer, Position);
3684   writeInt32ToBuffer(CPUType, Buffer, Position);
3685 
3686   // If the file is not a multiple of 16 bytes, insert dummy padding.
3687   while (Buffer.size() & 15)
3688     Buffer.push_back(0);
3689 }
3690 
3691 /// Helper to write the header common to all bitcode files.
3692 void BitcodeWriter::writeBitcodeHeader() {
3693   // Emit the file header.
3694   Stream.Emit((unsigned)'B', 8);
3695   Stream.Emit((unsigned)'C', 8);
3696   Stream.Emit(0x0, 4);
3697   Stream.Emit(0xC, 4);
3698   Stream.Emit(0xE, 4);
3699   Stream.Emit(0xD, 4);
3700 }
3701 
3702 /// WriteBitcodeToFile - Write the specified module to the specified output
3703 /// stream.
3704 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3705                               bool ShouldPreserveUseListOrder,
3706                               const ModuleSummaryIndex *Index,
3707                               bool GenerateHash) {
3708   SmallVector<char, 0> Buffer;
3709   Buffer.reserve(256*1024);
3710 
3711   // If this is darwin or another generic macho target, reserve space for the
3712   // header.
3713   Triple TT(M->getTargetTriple());
3714   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3715     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3716 
3717   // Emit the module into the buffer.
3718   ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index,
3719                                    GenerateHash);
3720   ModuleWriter.write();
3721 
3722   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3723     emitDarwinBCHeaderAndTrailer(Buffer, TT);
3724 
3725   // Write the generated bitstream to "Out".
3726   Out.write((char*)&Buffer.front(), Buffer.size());
3727 }
3728 
3729 void IndexBitcodeWriter::writeIndex() {
3730   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3731 
3732   SmallVector<unsigned, 1> Vals;
3733   unsigned CurVersion = 1;
3734   Vals.push_back(CurVersion);
3735   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3736 
3737   // If we have a VST, write the VSTOFFSET record placeholder.
3738   writeValueSymbolTableForwardDecl();
3739 
3740   // Write the module paths in the combined index.
3741   writeModStrings();
3742 
3743   // Write the summary combined index records.
3744   writeCombinedGlobalValueSummary();
3745 
3746   // Need a special VST writer for the combined index (we don't have a
3747   // real VST and real values when this is invoked).
3748   writeCombinedValueSymbolTable();
3749 
3750   Stream.ExitBlock();
3751 }
3752 
3753 // Write the specified module summary index to the given raw output stream,
3754 // where it will be written in a new bitcode block. This is used when
3755 // writing the combined index file for ThinLTO. When writing a subset of the
3756 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
3757 void llvm::WriteIndexToFile(
3758     const ModuleSummaryIndex &Index, raw_ostream &Out,
3759     std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
3760   SmallVector<char, 0> Buffer;
3761   Buffer.reserve(256 * 1024);
3762 
3763   IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex);
3764   IndexWriter.write();
3765 
3766   Out.write((char *)&Buffer.front(), Buffer.size());
3767 }
3768