1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static uint64_t rotateSign(int64_t I) { 813 uint64_t U = I; 814 return I < 0 ? ~(U << 1) : U << 1; 815 } 816 817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 818 BitstreamWriter &Stream, 819 SmallVectorImpl<uint64_t> &Record, 820 unsigned Abbrev) { 821 Record.push_back(N->isDistinct()); 822 Record.push_back(N->getCount()); 823 Record.push_back(rotateSign(N->getLo())); 824 825 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 826 Record.clear(); 827 } 828 829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 830 BitstreamWriter &Stream, 831 SmallVectorImpl<uint64_t> &Record, 832 unsigned Abbrev) { 833 Record.push_back(N->isDistinct()); 834 Record.push_back(rotateSign(N->getValue())); 835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 836 837 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 838 Record.clear(); 839 } 840 841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 842 BitstreamWriter &Stream, 843 SmallVectorImpl<uint64_t> &Record, 844 unsigned Abbrev) { 845 Record.push_back(N->isDistinct()); 846 Record.push_back(N->getTag()); 847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 848 Record.push_back(N->getSizeInBits()); 849 Record.push_back(N->getAlignInBits()); 850 Record.push_back(N->getEncoding()); 851 852 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 853 Record.clear(); 854 } 855 856 static void WriteMDDerivedType(const MDDerivedType *N, 857 const ValueEnumerator &VE, 858 BitstreamWriter &Stream, 859 SmallVectorImpl<uint64_t> &Record, 860 unsigned Abbrev) { 861 Record.push_back(N->isDistinct()); 862 Record.push_back(N->getTag()); 863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 864 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 865 Record.push_back(N->getLine()); 866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 867 Record.push_back(VE.getMetadataID(N->getBaseType())); 868 Record.push_back(N->getSizeInBits()); 869 Record.push_back(N->getAlignInBits()); 870 Record.push_back(N->getOffsetInBits()); 871 Record.push_back(N->getFlags()); 872 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 873 874 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 875 Record.clear(); 876 } 877 878 static void WriteMDCompositeType(const MDCompositeType *N, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, 881 SmallVectorImpl<uint64_t> &Record, 882 unsigned Abbrev) { 883 Record.push_back(N->isDistinct()); 884 Record.push_back(N->getTag()); 885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 887 Record.push_back(N->getLine()); 888 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 889 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 890 Record.push_back(N->getSizeInBits()); 891 Record.push_back(N->getAlignInBits()); 892 Record.push_back(N->getOffsetInBits()); 893 Record.push_back(N->getFlags()); 894 Record.push_back(VE.getMetadataOrNullID(N->getElements())); 895 Record.push_back(N->getRuntimeLang()); 896 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 897 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 898 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 899 900 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 901 Record.clear(); 902 } 903 904 static void WriteMDSubroutineType(const MDSubroutineType *N, 905 const ValueEnumerator &VE, 906 BitstreamWriter &Stream, 907 SmallVectorImpl<uint64_t> &Record, 908 unsigned Abbrev) { 909 Record.push_back(N->isDistinct()); 910 Record.push_back(N->getFlags()); 911 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray())); 912 913 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 914 Record.clear(); 915 } 916 917 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 918 BitstreamWriter &Stream, 919 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 920 Record.push_back(N->isDistinct()); 921 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 922 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 923 924 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 925 Record.clear(); 926 } 927 928 static void WriteMDCompileUnit(const MDCompileUnit *N, 929 const ValueEnumerator &VE, 930 BitstreamWriter &Stream, 931 SmallVectorImpl<uint64_t> &Record, 932 unsigned Abbrev) { 933 Record.push_back(N->isDistinct()); 934 Record.push_back(N->getSourceLanguage()); 935 Record.push_back(VE.getMetadataID(N->getFile())); 936 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 937 Record.push_back(N->isOptimized()); 938 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 939 Record.push_back(N->getRuntimeVersion()); 940 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 941 Record.push_back(N->getEmissionKind()); 942 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes())); 943 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes())); 944 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms())); 945 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables())); 946 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities())); 947 948 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 949 Record.clear(); 950 } 951 952 static void WriteMDSubprogram(const MDSubprogram *N, 953 const ValueEnumerator &VE, 954 BitstreamWriter &Stream, 955 SmallVectorImpl<uint64_t> &Record, 956 unsigned Abbrev) { 957 Record.push_back(N->isDistinct()); 958 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 959 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 960 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 961 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 962 Record.push_back(N->getLine()); 963 Record.push_back(VE.getMetadataOrNullID(N->getType())); 964 Record.push_back(N->isLocalToUnit()); 965 Record.push_back(N->isDefinition()); 966 Record.push_back(N->getScopeLine()); 967 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 968 Record.push_back(N->getVirtuality()); 969 Record.push_back(N->getVirtualIndex()); 970 Record.push_back(N->getFlags()); 971 Record.push_back(N->isOptimized()); 972 Record.push_back(VE.getMetadataOrNullID(N->getFunction())); 973 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 974 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 975 Record.push_back(VE.getMetadataOrNullID(N->getVariables())); 976 977 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 978 Record.clear(); 979 } 980 981 static void WriteMDLexicalBlock(const MDLexicalBlock *N, 982 const ValueEnumerator &VE, 983 BitstreamWriter &Stream, 984 SmallVectorImpl<uint64_t> &Record, 985 unsigned Abbrev) { 986 Record.push_back(N->isDistinct()); 987 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 988 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 989 Record.push_back(N->getLine()); 990 Record.push_back(N->getColumn()); 991 992 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 993 Record.clear(); 994 } 995 996 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N, 997 const ValueEnumerator &VE, 998 BitstreamWriter &Stream, 999 SmallVectorImpl<uint64_t> &Record, 1000 unsigned Abbrev) { 1001 Record.push_back(N->isDistinct()); 1002 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1003 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1004 Record.push_back(N->getDiscriminator()); 1005 1006 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1007 Record.clear(); 1008 } 1009 1010 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE, 1011 BitstreamWriter &Stream, 1012 SmallVectorImpl<uint64_t> &Record, 1013 unsigned Abbrev) { 1014 Record.push_back(N->isDistinct()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1016 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1017 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1018 Record.push_back(N->getLine()); 1019 1020 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1021 Record.clear(); 1022 } 1023 1024 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N, 1025 const ValueEnumerator &VE, 1026 BitstreamWriter &Stream, 1027 SmallVectorImpl<uint64_t> &Record, 1028 unsigned Abbrev) { 1029 Record.push_back(N->isDistinct()); 1030 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1031 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1033 1034 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1035 Record.clear(); 1036 } 1037 1038 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N, 1039 const ValueEnumerator &VE, 1040 BitstreamWriter &Stream, 1041 SmallVectorImpl<uint64_t> &Record, 1042 unsigned Abbrev) { 1043 Record.push_back(N->isDistinct()); 1044 Record.push_back(N->getTag()); 1045 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1046 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1047 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1048 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1049 1050 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1051 Record.clear(); 1052 } 1053 1054 static void WriteMDGlobalVariable(const MDGlobalVariable *N, 1055 const ValueEnumerator &VE, 1056 BitstreamWriter &Stream, 1057 SmallVectorImpl<uint64_t> &Record, 1058 unsigned Abbrev) { 1059 Record.push_back(N->isDistinct()); 1060 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1061 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1062 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1063 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1064 Record.push_back(N->getLine()); 1065 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1066 Record.push_back(N->isLocalToUnit()); 1067 Record.push_back(N->isDefinition()); 1068 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1069 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1070 1071 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1072 Record.clear(); 1073 } 1074 1075 static void WriteMDLocalVariable(const MDLocalVariable *N, 1076 const ValueEnumerator &VE, 1077 BitstreamWriter &Stream, 1078 SmallVectorImpl<uint64_t> &Record, 1079 unsigned Abbrev) { 1080 Record.push_back(N->isDistinct()); 1081 Record.push_back(N->getTag()); 1082 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1083 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1084 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1085 Record.push_back(N->getLine()); 1086 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1087 Record.push_back(N->getArg()); 1088 Record.push_back(N->getFlags()); 1089 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1090 1091 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1092 Record.clear(); 1093 } 1094 1095 static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &, 1096 BitstreamWriter &Stream, 1097 SmallVectorImpl<uint64_t> &Record, 1098 unsigned Abbrev) { 1099 Record.reserve(N->getElements().size() + 1); 1100 1101 Record.push_back(N->isDistinct()); 1102 for (uint64_t I : N->getElements()) 1103 Record.push_back(I); 1104 1105 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1106 Record.clear(); 1107 } 1108 1109 static void WriteMDObjCProperty(const MDObjCProperty *N, 1110 const ValueEnumerator &VE, 1111 BitstreamWriter &Stream, 1112 SmallVectorImpl<uint64_t> &Record, 1113 unsigned Abbrev) { 1114 Record.push_back(N->isDistinct()); 1115 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1117 Record.push_back(N->getLine()); 1118 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1120 Record.push_back(N->getAttributes()); 1121 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1122 1123 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1124 Record.clear(); 1125 } 1126 1127 static void WriteMDImportedEntity(const MDImportedEntity *, 1128 const ValueEnumerator &, BitstreamWriter &, 1129 SmallVectorImpl<uint64_t> &, unsigned) { 1130 llvm_unreachable("write not implemented"); 1131 } 1132 1133 static void WriteModuleMetadata(const Module *M, 1134 const ValueEnumerator &VE, 1135 BitstreamWriter &Stream) { 1136 const auto &MDs = VE.getMDs(); 1137 if (MDs.empty() && M->named_metadata_empty()) 1138 return; 1139 1140 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1141 1142 unsigned MDSAbbrev = 0; 1143 if (VE.hasMDString()) { 1144 // Abbrev for METADATA_STRING. 1145 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1146 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1149 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1150 } 1151 1152 // Initialize MDNode abbreviations. 1153 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1154 #include "llvm/IR/Metadata.def" 1155 1156 if (VE.hasMDLocation()) { 1157 // Abbrev for METADATA_LOCATION. 1158 // 1159 // Assume the column is usually under 128, and always output the inlined-at 1160 // location (it's never more expensive than building an array size 1). 1161 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1162 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1168 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1169 } 1170 1171 if (VE.hasGenericDebugNode()) { 1172 // Abbrev for METADATA_GENERIC_DEBUG. 1173 // 1174 // Assume the column is usually under 128, and always output the inlined-at 1175 // location (it's never more expensive than building an array size 1). 1176 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1177 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1184 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1185 } 1186 1187 unsigned NameAbbrev = 0; 1188 if (!M->named_metadata_empty()) { 1189 // Abbrev for METADATA_NAME. 1190 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1191 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1194 NameAbbrev = Stream.EmitAbbrev(Abbv); 1195 } 1196 1197 SmallVector<uint64_t, 64> Record; 1198 for (const Metadata *MD : MDs) { 1199 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1200 switch (N->getMetadataID()) { 1201 default: 1202 llvm_unreachable("Invalid MDNode subclass"); 1203 #define HANDLE_MDNODE_LEAF(CLASS) \ 1204 case Metadata::CLASS##Kind: \ 1205 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1206 continue; 1207 #include "llvm/IR/Metadata.def" 1208 } 1209 } 1210 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1211 WriteValueAsMetadata(MDC, VE, Stream, Record); 1212 continue; 1213 } 1214 const MDString *MDS = cast<MDString>(MD); 1215 // Code: [strchar x N] 1216 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1217 1218 // Emit the finished record. 1219 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1220 Record.clear(); 1221 } 1222 1223 // Write named metadata. 1224 for (const NamedMDNode &NMD : M->named_metadata()) { 1225 // Write name. 1226 StringRef Str = NMD.getName(); 1227 Record.append(Str.bytes_begin(), Str.bytes_end()); 1228 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1229 Record.clear(); 1230 1231 // Write named metadata operands. 1232 for (const MDNode *N : NMD.operands()) 1233 Record.push_back(VE.getMetadataID(N)); 1234 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1235 Record.clear(); 1236 } 1237 1238 Stream.ExitBlock(); 1239 } 1240 1241 static void WriteFunctionLocalMetadata(const Function &F, 1242 const ValueEnumerator &VE, 1243 BitstreamWriter &Stream) { 1244 bool StartedMetadataBlock = false; 1245 SmallVector<uint64_t, 64> Record; 1246 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1247 VE.getFunctionLocalMDs(); 1248 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1249 assert(MDs[i] && "Expected valid function-local metadata"); 1250 if (!StartedMetadataBlock) { 1251 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1252 StartedMetadataBlock = true; 1253 } 1254 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1255 } 1256 1257 if (StartedMetadataBlock) 1258 Stream.ExitBlock(); 1259 } 1260 1261 static void WriteMetadataAttachment(const Function &F, 1262 const ValueEnumerator &VE, 1263 BitstreamWriter &Stream) { 1264 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1265 1266 SmallVector<uint64_t, 64> Record; 1267 1268 // Write metadata attachments 1269 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1270 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1271 1272 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1273 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1274 I != E; ++I) { 1275 MDs.clear(); 1276 I->getAllMetadataOtherThanDebugLoc(MDs); 1277 1278 // If no metadata, ignore instruction. 1279 if (MDs.empty()) continue; 1280 1281 Record.push_back(VE.getInstructionID(I)); 1282 1283 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1284 Record.push_back(MDs[i].first); 1285 Record.push_back(VE.getMetadataID(MDs[i].second)); 1286 } 1287 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1288 Record.clear(); 1289 } 1290 1291 Stream.ExitBlock(); 1292 } 1293 1294 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1295 SmallVector<uint64_t, 64> Record; 1296 1297 // Write metadata kinds 1298 // METADATA_KIND - [n x [id, name]] 1299 SmallVector<StringRef, 8> Names; 1300 M->getMDKindNames(Names); 1301 1302 if (Names.empty()) return; 1303 1304 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1305 1306 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1307 Record.push_back(MDKindID); 1308 StringRef KName = Names[MDKindID]; 1309 Record.append(KName.begin(), KName.end()); 1310 1311 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1312 Record.clear(); 1313 } 1314 1315 Stream.ExitBlock(); 1316 } 1317 1318 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1319 if ((int64_t)V >= 0) 1320 Vals.push_back(V << 1); 1321 else 1322 Vals.push_back((-V << 1) | 1); 1323 } 1324 1325 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1326 const ValueEnumerator &VE, 1327 BitstreamWriter &Stream, bool isGlobal) { 1328 if (FirstVal == LastVal) return; 1329 1330 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1331 1332 unsigned AggregateAbbrev = 0; 1333 unsigned String8Abbrev = 0; 1334 unsigned CString7Abbrev = 0; 1335 unsigned CString6Abbrev = 0; 1336 // If this is a constant pool for the module, emit module-specific abbrevs. 1337 if (isGlobal) { 1338 // Abbrev for CST_CODE_AGGREGATE. 1339 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1340 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1343 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1344 1345 // Abbrev for CST_CODE_STRING. 1346 Abbv = new BitCodeAbbrev(); 1347 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1350 String8Abbrev = Stream.EmitAbbrev(Abbv); 1351 // Abbrev for CST_CODE_CSTRING. 1352 Abbv = new BitCodeAbbrev(); 1353 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1356 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1357 // Abbrev for CST_CODE_CSTRING. 1358 Abbv = new BitCodeAbbrev(); 1359 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1362 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1363 } 1364 1365 SmallVector<uint64_t, 64> Record; 1366 1367 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1368 Type *LastTy = nullptr; 1369 for (unsigned i = FirstVal; i != LastVal; ++i) { 1370 const Value *V = Vals[i].first; 1371 // If we need to switch types, do so now. 1372 if (V->getType() != LastTy) { 1373 LastTy = V->getType(); 1374 Record.push_back(VE.getTypeID(LastTy)); 1375 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1376 CONSTANTS_SETTYPE_ABBREV); 1377 Record.clear(); 1378 } 1379 1380 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1381 Record.push_back(unsigned(IA->hasSideEffects()) | 1382 unsigned(IA->isAlignStack()) << 1 | 1383 unsigned(IA->getDialect()&1) << 2); 1384 1385 // Add the asm string. 1386 const std::string &AsmStr = IA->getAsmString(); 1387 Record.push_back(AsmStr.size()); 1388 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1389 Record.push_back(AsmStr[i]); 1390 1391 // Add the constraint string. 1392 const std::string &ConstraintStr = IA->getConstraintString(); 1393 Record.push_back(ConstraintStr.size()); 1394 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1395 Record.push_back(ConstraintStr[i]); 1396 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1397 Record.clear(); 1398 continue; 1399 } 1400 const Constant *C = cast<Constant>(V); 1401 unsigned Code = -1U; 1402 unsigned AbbrevToUse = 0; 1403 if (C->isNullValue()) { 1404 Code = bitc::CST_CODE_NULL; 1405 } else if (isa<UndefValue>(C)) { 1406 Code = bitc::CST_CODE_UNDEF; 1407 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1408 if (IV->getBitWidth() <= 64) { 1409 uint64_t V = IV->getSExtValue(); 1410 emitSignedInt64(Record, V); 1411 Code = bitc::CST_CODE_INTEGER; 1412 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1413 } else { // Wide integers, > 64 bits in size. 1414 // We have an arbitrary precision integer value to write whose 1415 // bit width is > 64. However, in canonical unsigned integer 1416 // format it is likely that the high bits are going to be zero. 1417 // So, we only write the number of active words. 1418 unsigned NWords = IV->getValue().getActiveWords(); 1419 const uint64_t *RawWords = IV->getValue().getRawData(); 1420 for (unsigned i = 0; i != NWords; ++i) { 1421 emitSignedInt64(Record, RawWords[i]); 1422 } 1423 Code = bitc::CST_CODE_WIDE_INTEGER; 1424 } 1425 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1426 Code = bitc::CST_CODE_FLOAT; 1427 Type *Ty = CFP->getType(); 1428 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1429 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1430 } else if (Ty->isX86_FP80Ty()) { 1431 // api needed to prevent premature destruction 1432 // bits are not in the same order as a normal i80 APInt, compensate. 1433 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1434 const uint64_t *p = api.getRawData(); 1435 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1436 Record.push_back(p[0] & 0xffffLL); 1437 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1438 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1439 const uint64_t *p = api.getRawData(); 1440 Record.push_back(p[0]); 1441 Record.push_back(p[1]); 1442 } else { 1443 assert (0 && "Unknown FP type!"); 1444 } 1445 } else if (isa<ConstantDataSequential>(C) && 1446 cast<ConstantDataSequential>(C)->isString()) { 1447 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1448 // Emit constant strings specially. 1449 unsigned NumElts = Str->getNumElements(); 1450 // If this is a null-terminated string, use the denser CSTRING encoding. 1451 if (Str->isCString()) { 1452 Code = bitc::CST_CODE_CSTRING; 1453 --NumElts; // Don't encode the null, which isn't allowed by char6. 1454 } else { 1455 Code = bitc::CST_CODE_STRING; 1456 AbbrevToUse = String8Abbrev; 1457 } 1458 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1459 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1460 for (unsigned i = 0; i != NumElts; ++i) { 1461 unsigned char V = Str->getElementAsInteger(i); 1462 Record.push_back(V); 1463 isCStr7 &= (V & 128) == 0; 1464 if (isCStrChar6) 1465 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1466 } 1467 1468 if (isCStrChar6) 1469 AbbrevToUse = CString6Abbrev; 1470 else if (isCStr7) 1471 AbbrevToUse = CString7Abbrev; 1472 } else if (const ConstantDataSequential *CDS = 1473 dyn_cast<ConstantDataSequential>(C)) { 1474 Code = bitc::CST_CODE_DATA; 1475 Type *EltTy = CDS->getType()->getElementType(); 1476 if (isa<IntegerType>(EltTy)) { 1477 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1478 Record.push_back(CDS->getElementAsInteger(i)); 1479 } else if (EltTy->isFloatTy()) { 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 union { float F; uint32_t I; }; 1482 F = CDS->getElementAsFloat(i); 1483 Record.push_back(I); 1484 } 1485 } else { 1486 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1487 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1488 union { double F; uint64_t I; }; 1489 F = CDS->getElementAsDouble(i); 1490 Record.push_back(I); 1491 } 1492 } 1493 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1494 isa<ConstantVector>(C)) { 1495 Code = bitc::CST_CODE_AGGREGATE; 1496 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1497 Record.push_back(VE.getValueID(C->getOperand(i))); 1498 AbbrevToUse = AggregateAbbrev; 1499 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1500 switch (CE->getOpcode()) { 1501 default: 1502 if (Instruction::isCast(CE->getOpcode())) { 1503 Code = bitc::CST_CODE_CE_CAST; 1504 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1505 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1506 Record.push_back(VE.getValueID(C->getOperand(0))); 1507 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1508 } else { 1509 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1510 Code = bitc::CST_CODE_CE_BINOP; 1511 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1512 Record.push_back(VE.getValueID(C->getOperand(0))); 1513 Record.push_back(VE.getValueID(C->getOperand(1))); 1514 uint64_t Flags = GetOptimizationFlags(CE); 1515 if (Flags != 0) 1516 Record.push_back(Flags); 1517 } 1518 break; 1519 case Instruction::GetElementPtr: 1520 Code = bitc::CST_CODE_CE_GEP; 1521 if (cast<GEPOperator>(C)->isInBounds()) 1522 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1523 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1524 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1525 Record.push_back(VE.getValueID(C->getOperand(i))); 1526 } 1527 break; 1528 case Instruction::Select: 1529 Code = bitc::CST_CODE_CE_SELECT; 1530 Record.push_back(VE.getValueID(C->getOperand(0))); 1531 Record.push_back(VE.getValueID(C->getOperand(1))); 1532 Record.push_back(VE.getValueID(C->getOperand(2))); 1533 break; 1534 case Instruction::ExtractElement: 1535 Code = bitc::CST_CODE_CE_EXTRACTELT; 1536 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1537 Record.push_back(VE.getValueID(C->getOperand(0))); 1538 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1539 Record.push_back(VE.getValueID(C->getOperand(1))); 1540 break; 1541 case Instruction::InsertElement: 1542 Code = bitc::CST_CODE_CE_INSERTELT; 1543 Record.push_back(VE.getValueID(C->getOperand(0))); 1544 Record.push_back(VE.getValueID(C->getOperand(1))); 1545 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1546 Record.push_back(VE.getValueID(C->getOperand(2))); 1547 break; 1548 case Instruction::ShuffleVector: 1549 // If the return type and argument types are the same, this is a 1550 // standard shufflevector instruction. If the types are different, 1551 // then the shuffle is widening or truncating the input vectors, and 1552 // the argument type must also be encoded. 1553 if (C->getType() == C->getOperand(0)->getType()) { 1554 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1555 } else { 1556 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1557 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1558 } 1559 Record.push_back(VE.getValueID(C->getOperand(0))); 1560 Record.push_back(VE.getValueID(C->getOperand(1))); 1561 Record.push_back(VE.getValueID(C->getOperand(2))); 1562 break; 1563 case Instruction::ICmp: 1564 case Instruction::FCmp: 1565 Code = bitc::CST_CODE_CE_CMP; 1566 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1567 Record.push_back(VE.getValueID(C->getOperand(0))); 1568 Record.push_back(VE.getValueID(C->getOperand(1))); 1569 Record.push_back(CE->getPredicate()); 1570 break; 1571 } 1572 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1573 Code = bitc::CST_CODE_BLOCKADDRESS; 1574 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1575 Record.push_back(VE.getValueID(BA->getFunction())); 1576 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1577 } else { 1578 #ifndef NDEBUG 1579 C->dump(); 1580 #endif 1581 llvm_unreachable("Unknown constant!"); 1582 } 1583 Stream.EmitRecord(Code, Record, AbbrevToUse); 1584 Record.clear(); 1585 } 1586 1587 Stream.ExitBlock(); 1588 } 1589 1590 static void WriteModuleConstants(const ValueEnumerator &VE, 1591 BitstreamWriter &Stream) { 1592 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1593 1594 // Find the first constant to emit, which is the first non-globalvalue value. 1595 // We know globalvalues have been emitted by WriteModuleInfo. 1596 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1597 if (!isa<GlobalValue>(Vals[i].first)) { 1598 WriteConstants(i, Vals.size(), VE, Stream, true); 1599 return; 1600 } 1601 } 1602 } 1603 1604 /// PushValueAndType - The file has to encode both the value and type id for 1605 /// many values, because we need to know what type to create for forward 1606 /// references. However, most operands are not forward references, so this type 1607 /// field is not needed. 1608 /// 1609 /// This function adds V's value ID to Vals. If the value ID is higher than the 1610 /// instruction ID, then it is a forward reference, and it also includes the 1611 /// type ID. The value ID that is written is encoded relative to the InstID. 1612 static bool PushValueAndType(const Value *V, unsigned InstID, 1613 SmallVectorImpl<unsigned> &Vals, 1614 ValueEnumerator &VE) { 1615 unsigned ValID = VE.getValueID(V); 1616 // Make encoding relative to the InstID. 1617 Vals.push_back(InstID - ValID); 1618 if (ValID >= InstID) { 1619 Vals.push_back(VE.getTypeID(V->getType())); 1620 return true; 1621 } 1622 return false; 1623 } 1624 1625 /// pushValue - Like PushValueAndType, but where the type of the value is 1626 /// omitted (perhaps it was already encoded in an earlier operand). 1627 static void pushValue(const Value *V, unsigned InstID, 1628 SmallVectorImpl<unsigned> &Vals, 1629 ValueEnumerator &VE) { 1630 unsigned ValID = VE.getValueID(V); 1631 Vals.push_back(InstID - ValID); 1632 } 1633 1634 static void pushValueSigned(const Value *V, unsigned InstID, 1635 SmallVectorImpl<uint64_t> &Vals, 1636 ValueEnumerator &VE) { 1637 unsigned ValID = VE.getValueID(V); 1638 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1639 emitSignedInt64(Vals, diff); 1640 } 1641 1642 /// WriteInstruction - Emit an instruction to the specified stream. 1643 static void WriteInstruction(const Instruction &I, unsigned InstID, 1644 ValueEnumerator &VE, BitstreamWriter &Stream, 1645 SmallVectorImpl<unsigned> &Vals) { 1646 unsigned Code = 0; 1647 unsigned AbbrevToUse = 0; 1648 VE.setInstructionID(&I); 1649 switch (I.getOpcode()) { 1650 default: 1651 if (Instruction::isCast(I.getOpcode())) { 1652 Code = bitc::FUNC_CODE_INST_CAST; 1653 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1654 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1655 Vals.push_back(VE.getTypeID(I.getType())); 1656 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1657 } else { 1658 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1659 Code = bitc::FUNC_CODE_INST_BINOP; 1660 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1661 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1662 pushValue(I.getOperand(1), InstID, Vals, VE); 1663 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1664 uint64_t Flags = GetOptimizationFlags(&I); 1665 if (Flags != 0) { 1666 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1667 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1668 Vals.push_back(Flags); 1669 } 1670 } 1671 break; 1672 1673 case Instruction::GetElementPtr: 1674 Code = bitc::FUNC_CODE_INST_GEP; 1675 if (cast<GEPOperator>(&I)->isInBounds()) 1676 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1677 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1678 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1679 break; 1680 case Instruction::ExtractValue: { 1681 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1682 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1683 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1684 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1685 Vals.push_back(*i); 1686 break; 1687 } 1688 case Instruction::InsertValue: { 1689 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1690 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1691 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1692 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1693 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1694 Vals.push_back(*i); 1695 break; 1696 } 1697 case Instruction::Select: 1698 Code = bitc::FUNC_CODE_INST_VSELECT; 1699 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1700 pushValue(I.getOperand(2), InstID, Vals, VE); 1701 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1702 break; 1703 case Instruction::ExtractElement: 1704 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1705 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1706 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1707 break; 1708 case Instruction::InsertElement: 1709 Code = bitc::FUNC_CODE_INST_INSERTELT; 1710 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1711 pushValue(I.getOperand(1), InstID, Vals, VE); 1712 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1713 break; 1714 case Instruction::ShuffleVector: 1715 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1716 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1717 pushValue(I.getOperand(1), InstID, Vals, VE); 1718 pushValue(I.getOperand(2), InstID, Vals, VE); 1719 break; 1720 case Instruction::ICmp: 1721 case Instruction::FCmp: 1722 // compare returning Int1Ty or vector of Int1Ty 1723 Code = bitc::FUNC_CODE_INST_CMP2; 1724 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1725 pushValue(I.getOperand(1), InstID, Vals, VE); 1726 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1727 break; 1728 1729 case Instruction::Ret: 1730 { 1731 Code = bitc::FUNC_CODE_INST_RET; 1732 unsigned NumOperands = I.getNumOperands(); 1733 if (NumOperands == 0) 1734 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1735 else if (NumOperands == 1) { 1736 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1737 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1738 } else { 1739 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1740 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1741 } 1742 } 1743 break; 1744 case Instruction::Br: 1745 { 1746 Code = bitc::FUNC_CODE_INST_BR; 1747 const BranchInst &II = cast<BranchInst>(I); 1748 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1749 if (II.isConditional()) { 1750 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1751 pushValue(II.getCondition(), InstID, Vals, VE); 1752 } 1753 } 1754 break; 1755 case Instruction::Switch: 1756 { 1757 Code = bitc::FUNC_CODE_INST_SWITCH; 1758 const SwitchInst &SI = cast<SwitchInst>(I); 1759 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1760 pushValue(SI.getCondition(), InstID, Vals, VE); 1761 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1762 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1763 i != e; ++i) { 1764 Vals.push_back(VE.getValueID(i.getCaseValue())); 1765 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1766 } 1767 } 1768 break; 1769 case Instruction::IndirectBr: 1770 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1771 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1772 // Encode the address operand as relative, but not the basic blocks. 1773 pushValue(I.getOperand(0), InstID, Vals, VE); 1774 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1775 Vals.push_back(VE.getValueID(I.getOperand(i))); 1776 break; 1777 1778 case Instruction::Invoke: { 1779 const InvokeInst *II = cast<InvokeInst>(&I); 1780 const Value *Callee(II->getCalledValue()); 1781 PointerType *PTy = cast<PointerType>(Callee->getType()); 1782 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1783 Code = bitc::FUNC_CODE_INST_INVOKE; 1784 1785 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1786 Vals.push_back(II->getCallingConv()); 1787 Vals.push_back(VE.getValueID(II->getNormalDest())); 1788 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1789 PushValueAndType(Callee, InstID, Vals, VE); 1790 1791 // Emit value #'s for the fixed parameters. 1792 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1793 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1794 1795 // Emit type/value pairs for varargs params. 1796 if (FTy->isVarArg()) { 1797 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1798 i != e; ++i) 1799 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1800 } 1801 break; 1802 } 1803 case Instruction::Resume: 1804 Code = bitc::FUNC_CODE_INST_RESUME; 1805 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1806 break; 1807 case Instruction::Unreachable: 1808 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1809 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1810 break; 1811 1812 case Instruction::PHI: { 1813 const PHINode &PN = cast<PHINode>(I); 1814 Code = bitc::FUNC_CODE_INST_PHI; 1815 // With the newer instruction encoding, forward references could give 1816 // negative valued IDs. This is most common for PHIs, so we use 1817 // signed VBRs. 1818 SmallVector<uint64_t, 128> Vals64; 1819 Vals64.push_back(VE.getTypeID(PN.getType())); 1820 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1821 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1822 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1823 } 1824 // Emit a Vals64 vector and exit. 1825 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1826 Vals64.clear(); 1827 return; 1828 } 1829 1830 case Instruction::LandingPad: { 1831 const LandingPadInst &LP = cast<LandingPadInst>(I); 1832 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1833 Vals.push_back(VE.getTypeID(LP.getType())); 1834 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1835 Vals.push_back(LP.isCleanup()); 1836 Vals.push_back(LP.getNumClauses()); 1837 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1838 if (LP.isCatch(I)) 1839 Vals.push_back(LandingPadInst::Catch); 1840 else 1841 Vals.push_back(LandingPadInst::Filter); 1842 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1843 } 1844 break; 1845 } 1846 1847 case Instruction::Alloca: { 1848 Code = bitc::FUNC_CODE_INST_ALLOCA; 1849 Vals.push_back(VE.getTypeID(I.getType())); 1850 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1851 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1852 const AllocaInst &AI = cast<AllocaInst>(I); 1853 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1854 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1855 "not enough bits for maximum alignment"); 1856 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1857 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1858 Vals.push_back(AlignRecord); 1859 break; 1860 } 1861 1862 case Instruction::Load: 1863 if (cast<LoadInst>(I).isAtomic()) { 1864 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1865 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1866 } else { 1867 Code = bitc::FUNC_CODE_INST_LOAD; 1868 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1869 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1870 } 1871 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1872 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1873 if (cast<LoadInst>(I).isAtomic()) { 1874 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1875 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1876 } 1877 break; 1878 case Instruction::Store: 1879 if (cast<StoreInst>(I).isAtomic()) 1880 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1881 else 1882 Code = bitc::FUNC_CODE_INST_STORE; 1883 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1884 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1885 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1886 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1887 if (cast<StoreInst>(I).isAtomic()) { 1888 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1889 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1890 } 1891 break; 1892 case Instruction::AtomicCmpXchg: 1893 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1894 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1895 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1896 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1897 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1898 Vals.push_back(GetEncodedOrdering( 1899 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1900 Vals.push_back(GetEncodedSynchScope( 1901 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1902 Vals.push_back(GetEncodedOrdering( 1903 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1904 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1905 break; 1906 case Instruction::AtomicRMW: 1907 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1908 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1909 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1910 Vals.push_back(GetEncodedRMWOperation( 1911 cast<AtomicRMWInst>(I).getOperation())); 1912 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1913 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1914 Vals.push_back(GetEncodedSynchScope( 1915 cast<AtomicRMWInst>(I).getSynchScope())); 1916 break; 1917 case Instruction::Fence: 1918 Code = bitc::FUNC_CODE_INST_FENCE; 1919 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1920 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1921 break; 1922 case Instruction::Call: { 1923 const CallInst &CI = cast<CallInst>(I); 1924 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1925 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1926 1927 Code = bitc::FUNC_CODE_INST_CALL; 1928 1929 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1930 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1931 unsigned(CI.isMustTailCall()) << 14); 1932 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1933 1934 // Emit value #'s for the fixed parameters. 1935 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1936 // Check for labels (can happen with asm labels). 1937 if (FTy->getParamType(i)->isLabelTy()) 1938 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1939 else 1940 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1941 } 1942 1943 // Emit type/value pairs for varargs params. 1944 if (FTy->isVarArg()) { 1945 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1946 i != e; ++i) 1947 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1948 } 1949 break; 1950 } 1951 case Instruction::VAArg: 1952 Code = bitc::FUNC_CODE_INST_VAARG; 1953 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1954 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1955 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1956 break; 1957 } 1958 1959 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1960 Vals.clear(); 1961 } 1962 1963 // Emit names for globals/functions etc. 1964 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1965 const ValueEnumerator &VE, 1966 BitstreamWriter &Stream) { 1967 if (VST.empty()) return; 1968 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1969 1970 // FIXME: Set up the abbrev, we know how many values there are! 1971 // FIXME: We know if the type names can use 7-bit ascii. 1972 SmallVector<unsigned, 64> NameVals; 1973 1974 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1975 SI != SE; ++SI) { 1976 1977 const ValueName &Name = *SI; 1978 1979 // Figure out the encoding to use for the name. 1980 bool is7Bit = true; 1981 bool isChar6 = true; 1982 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1983 C != E; ++C) { 1984 if (isChar6) 1985 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1986 if ((unsigned char)*C & 128) { 1987 is7Bit = false; 1988 break; // don't bother scanning the rest. 1989 } 1990 } 1991 1992 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1993 1994 // VST_ENTRY: [valueid, namechar x N] 1995 // VST_BBENTRY: [bbid, namechar x N] 1996 unsigned Code; 1997 if (isa<BasicBlock>(SI->getValue())) { 1998 Code = bitc::VST_CODE_BBENTRY; 1999 if (isChar6) 2000 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2001 } else { 2002 Code = bitc::VST_CODE_ENTRY; 2003 if (isChar6) 2004 AbbrevToUse = VST_ENTRY_6_ABBREV; 2005 else if (is7Bit) 2006 AbbrevToUse = VST_ENTRY_7_ABBREV; 2007 } 2008 2009 NameVals.push_back(VE.getValueID(SI->getValue())); 2010 for (const char *P = Name.getKeyData(), 2011 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2012 NameVals.push_back((unsigned char)*P); 2013 2014 // Emit the finished record. 2015 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2016 NameVals.clear(); 2017 } 2018 Stream.ExitBlock(); 2019 } 2020 2021 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2022 BitstreamWriter &Stream) { 2023 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2024 unsigned Code; 2025 if (isa<BasicBlock>(Order.V)) 2026 Code = bitc::USELIST_CODE_BB; 2027 else 2028 Code = bitc::USELIST_CODE_DEFAULT; 2029 2030 SmallVector<uint64_t, 64> Record; 2031 for (unsigned I : Order.Shuffle) 2032 Record.push_back(I); 2033 Record.push_back(VE.getValueID(Order.V)); 2034 Stream.EmitRecord(Code, Record); 2035 } 2036 2037 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2038 BitstreamWriter &Stream) { 2039 auto hasMore = [&]() { 2040 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2041 }; 2042 if (!hasMore()) 2043 // Nothing to do. 2044 return; 2045 2046 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2047 while (hasMore()) { 2048 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2049 VE.UseListOrders.pop_back(); 2050 } 2051 Stream.ExitBlock(); 2052 } 2053 2054 /// WriteFunction - Emit a function body to the module stream. 2055 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2056 BitstreamWriter &Stream) { 2057 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2058 VE.incorporateFunction(F); 2059 2060 SmallVector<unsigned, 64> Vals; 2061 2062 // Emit the number of basic blocks, so the reader can create them ahead of 2063 // time. 2064 Vals.push_back(VE.getBasicBlocks().size()); 2065 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2066 Vals.clear(); 2067 2068 // If there are function-local constants, emit them now. 2069 unsigned CstStart, CstEnd; 2070 VE.getFunctionConstantRange(CstStart, CstEnd); 2071 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2072 2073 // If there is function-local metadata, emit it now. 2074 WriteFunctionLocalMetadata(F, VE, Stream); 2075 2076 // Keep a running idea of what the instruction ID is. 2077 unsigned InstID = CstEnd; 2078 2079 bool NeedsMetadataAttachment = false; 2080 2081 DebugLoc LastDL; 2082 2083 // Finally, emit all the instructions, in order. 2084 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2085 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2086 I != E; ++I) { 2087 WriteInstruction(*I, InstID, VE, Stream, Vals); 2088 2089 if (!I->getType()->isVoidTy()) 2090 ++InstID; 2091 2092 // If the instruction has metadata, write a metadata attachment later. 2093 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2094 2095 // If the instruction has a debug location, emit it. 2096 DebugLoc DL = I->getDebugLoc(); 2097 if (DL.isUnknown()) { 2098 // nothing todo. 2099 } else if (DL == LastDL) { 2100 // Just repeat the same debug loc as last time. 2101 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2102 } else { 2103 MDNode *Scope, *IA; 2104 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 2105 assert(Scope && "Expected valid scope"); 2106 2107 Vals.push_back(DL.getLine()); 2108 Vals.push_back(DL.getCol()); 2109 Vals.push_back(VE.getMetadataOrNullID(Scope)); 2110 Vals.push_back(VE.getMetadataOrNullID(IA)); 2111 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2112 Vals.clear(); 2113 2114 LastDL = DL; 2115 } 2116 } 2117 2118 // Emit names for all the instructions etc. 2119 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2120 2121 if (NeedsMetadataAttachment) 2122 WriteMetadataAttachment(F, VE, Stream); 2123 if (shouldPreserveBitcodeUseListOrder()) 2124 WriteUseListBlock(&F, VE, Stream); 2125 VE.purgeFunction(); 2126 Stream.ExitBlock(); 2127 } 2128 2129 // Emit blockinfo, which defines the standard abbreviations etc. 2130 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2131 // We only want to emit block info records for blocks that have multiple 2132 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2133 // Other blocks can define their abbrevs inline. 2134 Stream.EnterBlockInfoBlock(2); 2135 2136 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2137 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2142 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2143 Abbv) != VST_ENTRY_8_ABBREV) 2144 llvm_unreachable("Unexpected abbrev ordering!"); 2145 } 2146 2147 { // 7-bit fixed width VST_ENTRY strings. 2148 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2149 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2153 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2154 Abbv) != VST_ENTRY_7_ABBREV) 2155 llvm_unreachable("Unexpected abbrev ordering!"); 2156 } 2157 { // 6-bit char6 VST_ENTRY strings. 2158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2159 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2163 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2164 Abbv) != VST_ENTRY_6_ABBREV) 2165 llvm_unreachable("Unexpected abbrev ordering!"); 2166 } 2167 { // 6-bit char6 VST_BBENTRY strings. 2168 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2169 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2173 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2174 Abbv) != VST_BBENTRY_6_ABBREV) 2175 llvm_unreachable("Unexpected abbrev ordering!"); 2176 } 2177 2178 2179 2180 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2181 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2182 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2184 Log2_32_Ceil(VE.getTypes().size()+1))); 2185 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2186 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2187 llvm_unreachable("Unexpected abbrev ordering!"); 2188 } 2189 2190 { // INTEGER abbrev for CONSTANTS_BLOCK. 2191 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2192 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2194 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2195 Abbv) != CONSTANTS_INTEGER_ABBREV) 2196 llvm_unreachable("Unexpected abbrev ordering!"); 2197 } 2198 2199 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2200 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2201 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2204 Log2_32_Ceil(VE.getTypes().size()+1))); 2205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2206 2207 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2208 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2209 llvm_unreachable("Unexpected abbrev ordering!"); 2210 } 2211 { // NULL abbrev for CONSTANTS_BLOCK. 2212 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2213 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2214 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2215 Abbv) != CONSTANTS_NULL_Abbrev) 2216 llvm_unreachable("Unexpected abbrev ordering!"); 2217 } 2218 2219 // FIXME: This should only use space for first class types! 2220 2221 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2222 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2223 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2227 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2228 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2229 llvm_unreachable("Unexpected abbrev ordering!"); 2230 } 2231 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2232 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2233 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2237 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2238 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2239 llvm_unreachable("Unexpected abbrev ordering!"); 2240 } 2241 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2242 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2243 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2248 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2249 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2250 llvm_unreachable("Unexpected abbrev ordering!"); 2251 } 2252 { // INST_CAST abbrev for FUNCTION_BLOCK. 2253 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2254 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2257 Log2_32_Ceil(VE.getTypes().size()+1))); 2258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2259 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2260 Abbv) != FUNCTION_INST_CAST_ABBREV) 2261 llvm_unreachable("Unexpected abbrev ordering!"); 2262 } 2263 2264 { // INST_RET abbrev for FUNCTION_BLOCK. 2265 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2266 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2267 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2268 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2269 llvm_unreachable("Unexpected abbrev ordering!"); 2270 } 2271 { // INST_RET abbrev for FUNCTION_BLOCK. 2272 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2273 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2275 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2276 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2277 llvm_unreachable("Unexpected abbrev ordering!"); 2278 } 2279 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2280 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2281 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2282 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2283 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2284 llvm_unreachable("Unexpected abbrev ordering!"); 2285 } 2286 2287 Stream.ExitBlock(); 2288 } 2289 2290 /// WriteModule - Emit the specified module to the bitstream. 2291 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2292 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2293 2294 SmallVector<unsigned, 1> Vals; 2295 unsigned CurVersion = 1; 2296 Vals.push_back(CurVersion); 2297 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2298 2299 // Analyze the module, enumerating globals, functions, etc. 2300 ValueEnumerator VE(*M); 2301 2302 // Emit blockinfo, which defines the standard abbreviations etc. 2303 WriteBlockInfo(VE, Stream); 2304 2305 // Emit information about attribute groups. 2306 WriteAttributeGroupTable(VE, Stream); 2307 2308 // Emit information about parameter attributes. 2309 WriteAttributeTable(VE, Stream); 2310 2311 // Emit information describing all of the types in the module. 2312 WriteTypeTable(VE, Stream); 2313 2314 writeComdats(VE, Stream); 2315 2316 // Emit top-level description of module, including target triple, inline asm, 2317 // descriptors for global variables, and function prototype info. 2318 WriteModuleInfo(M, VE, Stream); 2319 2320 // Emit constants. 2321 WriteModuleConstants(VE, Stream); 2322 2323 // Emit metadata. 2324 WriteModuleMetadata(M, VE, Stream); 2325 2326 // Emit metadata. 2327 WriteModuleMetadataStore(M, Stream); 2328 2329 // Emit names for globals/functions etc. 2330 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2331 2332 // Emit module-level use-lists. 2333 if (shouldPreserveBitcodeUseListOrder()) 2334 WriteUseListBlock(nullptr, VE, Stream); 2335 2336 // Emit function bodies. 2337 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2338 if (!F->isDeclaration()) 2339 WriteFunction(*F, VE, Stream); 2340 2341 Stream.ExitBlock(); 2342 } 2343 2344 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2345 /// header and trailer to make it compatible with the system archiver. To do 2346 /// this we emit the following header, and then emit a trailer that pads the 2347 /// file out to be a multiple of 16 bytes. 2348 /// 2349 /// struct bc_header { 2350 /// uint32_t Magic; // 0x0B17C0DE 2351 /// uint32_t Version; // Version, currently always 0. 2352 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2353 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2354 /// uint32_t CPUType; // CPU specifier. 2355 /// ... potentially more later ... 2356 /// }; 2357 enum { 2358 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2359 DarwinBCHeaderSize = 5*4 2360 }; 2361 2362 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2363 uint32_t &Position) { 2364 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2365 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2366 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2367 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2368 Position += 4; 2369 } 2370 2371 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2372 const Triple &TT) { 2373 unsigned CPUType = ~0U; 2374 2375 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2376 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2377 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2378 // specific constants here because they are implicitly part of the Darwin ABI. 2379 enum { 2380 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2381 DARWIN_CPU_TYPE_X86 = 7, 2382 DARWIN_CPU_TYPE_ARM = 12, 2383 DARWIN_CPU_TYPE_POWERPC = 18 2384 }; 2385 2386 Triple::ArchType Arch = TT.getArch(); 2387 if (Arch == Triple::x86_64) 2388 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2389 else if (Arch == Triple::x86) 2390 CPUType = DARWIN_CPU_TYPE_X86; 2391 else if (Arch == Triple::ppc) 2392 CPUType = DARWIN_CPU_TYPE_POWERPC; 2393 else if (Arch == Triple::ppc64) 2394 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2395 else if (Arch == Triple::arm || Arch == Triple::thumb) 2396 CPUType = DARWIN_CPU_TYPE_ARM; 2397 2398 // Traditional Bitcode starts after header. 2399 assert(Buffer.size() >= DarwinBCHeaderSize && 2400 "Expected header size to be reserved"); 2401 unsigned BCOffset = DarwinBCHeaderSize; 2402 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2403 2404 // Write the magic and version. 2405 unsigned Position = 0; 2406 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2407 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2408 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2409 WriteInt32ToBuffer(BCSize , Buffer, Position); 2410 WriteInt32ToBuffer(CPUType , Buffer, Position); 2411 2412 // If the file is not a multiple of 16 bytes, insert dummy padding. 2413 while (Buffer.size() & 15) 2414 Buffer.push_back(0); 2415 } 2416 2417 /// WriteBitcodeToFile - Write the specified module to the specified output 2418 /// stream. 2419 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2420 SmallVector<char, 0> Buffer; 2421 Buffer.reserve(256*1024); 2422 2423 // If this is darwin or another generic macho target, reserve space for the 2424 // header. 2425 Triple TT(M->getTargetTriple()); 2426 if (TT.isOSDarwin()) 2427 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2428 2429 // Emit the module into the buffer. 2430 { 2431 BitstreamWriter Stream(Buffer); 2432 2433 // Emit the file header. 2434 Stream.Emit((unsigned)'B', 8); 2435 Stream.Emit((unsigned)'C', 8); 2436 Stream.Emit(0x0, 4); 2437 Stream.Emit(0xC, 4); 2438 Stream.Emit(0xE, 4); 2439 Stream.Emit(0xD, 4); 2440 2441 // Emit the module. 2442 WriteModule(M, Stream); 2443 } 2444 2445 if (TT.isOSDarwin()) 2446 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2447 2448 // Write the generated bitstream to "Out". 2449 Out.write((char*)&Buffer.front(), Buffer.size()); 2450 } 2451