1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/ParameterAttributes.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 /// These are manifest constants used by the bitcode writer. They do not need to 29 /// be kept in sync with the reader, but need to be consistent within this file. 30 enum { 31 CurVersion = 0, 32 33 // VALUE_SYMTAB_BLOCK abbrev id's. 34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 35 VST_ENTRY_7_ABBREV, 36 VST_ENTRY_6_ABBREV, 37 VST_BBENTRY_6_ABBREV 38 }; 39 40 41 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 42 switch (Opcode) { 43 default: assert(0 && "Unknown cast instruction!"); 44 case Instruction::Trunc : return bitc::CAST_TRUNC; 45 case Instruction::ZExt : return bitc::CAST_ZEXT; 46 case Instruction::SExt : return bitc::CAST_SEXT; 47 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 48 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 49 case Instruction::UIToFP : return bitc::CAST_UITOFP; 50 case Instruction::SIToFP : return bitc::CAST_SITOFP; 51 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 52 case Instruction::FPExt : return bitc::CAST_FPEXT; 53 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 54 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 55 case Instruction::BitCast : return bitc::CAST_BITCAST; 56 } 57 } 58 59 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 60 switch (Opcode) { 61 default: assert(0 && "Unknown binary instruction!"); 62 case Instruction::Add: return bitc::BINOP_ADD; 63 case Instruction::Sub: return bitc::BINOP_SUB; 64 case Instruction::Mul: return bitc::BINOP_MUL; 65 case Instruction::UDiv: return bitc::BINOP_UDIV; 66 case Instruction::FDiv: 67 case Instruction::SDiv: return bitc::BINOP_SDIV; 68 case Instruction::URem: return bitc::BINOP_UREM; 69 case Instruction::FRem: 70 case Instruction::SRem: return bitc::BINOP_SREM; 71 case Instruction::Shl: return bitc::BINOP_SHL; 72 case Instruction::LShr: return bitc::BINOP_LSHR; 73 case Instruction::AShr: return bitc::BINOP_ASHR; 74 case Instruction::And: return bitc::BINOP_AND; 75 case Instruction::Or: return bitc::BINOP_OR; 76 case Instruction::Xor: return bitc::BINOP_XOR; 77 } 78 } 79 80 81 82 static void WriteStringRecord(unsigned Code, const std::string &Str, 83 unsigned AbbrevToUse, BitstreamWriter &Stream) { 84 SmallVector<unsigned, 64> Vals; 85 86 // Code: [strchar x N] 87 for (unsigned i = 0, e = Str.size(); i != e; ++i) 88 Vals.push_back(Str[i]); 89 90 // Emit the finished record. 91 Stream.EmitRecord(Code, Vals, AbbrevToUse); 92 } 93 94 // Emit information about parameter attributes. 95 static void WriteParamAttrTable(const ValueEnumerator &VE, 96 BitstreamWriter &Stream) { 97 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 98 if (Attrs.empty()) return; 99 100 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 101 102 SmallVector<uint64_t, 64> Record; 103 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 104 const ParamAttrsList *A = Attrs[i]; 105 for (unsigned op = 0, e = A->size(); op != e; ++op) { 106 Record.push_back(A->getParamIndex(op)); 107 Record.push_back(A->getParamAttrsAtIndex(op)); 108 } 109 110 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 111 Record.clear(); 112 } 113 114 Stream.ExitBlock(); 115 } 116 117 /// WriteTypeTable - Write out the type table for a module. 118 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 119 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 120 121 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 122 SmallVector<uint64_t, 64> TypeVals; 123 124 // Abbrev for TYPE_CODE_POINTER. 125 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 126 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 128 Log2_32_Ceil(VE.getTypes().size()+1))); 129 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 130 131 // Abbrev for TYPE_CODE_FUNCTION. 132 Abbv = new BitCodeAbbrev(); 133 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 136 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 139 Log2_32_Ceil(VE.getTypes().size()+1))); 140 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 141 142 // Abbrev for TYPE_CODE_STRUCT. 143 Abbv = new BitCodeAbbrev(); 144 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 148 Log2_32_Ceil(VE.getTypes().size()+1))); 149 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 150 151 // Abbrev for TYPE_CODE_ARRAY. 152 Abbv = new BitCodeAbbrev(); 153 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 156 Log2_32_Ceil(VE.getTypes().size()+1))); 157 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 158 159 // Emit an entry count so the reader can reserve space. 160 TypeVals.push_back(TypeList.size()); 161 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 162 TypeVals.clear(); 163 164 // Loop over all of the types, emitting each in turn. 165 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 166 const Type *T = TypeList[i].first; 167 int AbbrevToUse = 0; 168 unsigned Code = 0; 169 170 switch (T->getTypeID()) { 171 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 172 default: assert(0 && "Unknown type!"); 173 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 174 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 175 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 176 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 177 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 178 case Type::IntegerTyID: 179 // INTEGER: [width] 180 Code = bitc::TYPE_CODE_INTEGER; 181 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 182 break; 183 case Type::PointerTyID: 184 // POINTER: [pointee type] 185 Code = bitc::TYPE_CODE_POINTER; 186 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 187 AbbrevToUse = PtrAbbrev; 188 break; 189 190 case Type::FunctionTyID: { 191 const FunctionType *FT = cast<FunctionType>(T); 192 // FUNCTION: [isvararg, attrid, retty, paramty x N] 193 Code = bitc::TYPE_CODE_FUNCTION; 194 TypeVals.push_back(FT->isVarArg()); 195 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 196 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 197 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 198 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 199 AbbrevToUse = FunctionAbbrev; 200 break; 201 } 202 case Type::StructTyID: { 203 const StructType *ST = cast<StructType>(T); 204 // STRUCT: [ispacked, eltty x N] 205 Code = bitc::TYPE_CODE_STRUCT; 206 TypeVals.push_back(ST->isPacked()); 207 // Output all of the element types. 208 for (StructType::element_iterator I = ST->element_begin(), 209 E = ST->element_end(); I != E; ++I) 210 TypeVals.push_back(VE.getTypeID(*I)); 211 AbbrevToUse = StructAbbrev; 212 break; 213 } 214 case Type::ArrayTyID: { 215 const ArrayType *AT = cast<ArrayType>(T); 216 // ARRAY: [numelts, eltty] 217 Code = bitc::TYPE_CODE_ARRAY; 218 TypeVals.push_back(AT->getNumElements()); 219 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 220 AbbrevToUse = ArrayAbbrev; 221 break; 222 } 223 case Type::VectorTyID: { 224 const VectorType *VT = cast<VectorType>(T); 225 // VECTOR [numelts, eltty] 226 Code = bitc::TYPE_CODE_VECTOR; 227 TypeVals.push_back(VT->getNumElements()); 228 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 229 break; 230 } 231 } 232 233 // Emit the finished record. 234 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 235 TypeVals.clear(); 236 } 237 238 Stream.ExitBlock(); 239 } 240 241 static unsigned getEncodedLinkage(const GlobalValue *GV) { 242 switch (GV->getLinkage()) { 243 default: assert(0 && "Invalid linkage!"); 244 case GlobalValue::ExternalLinkage: return 0; 245 case GlobalValue::WeakLinkage: return 1; 246 case GlobalValue::AppendingLinkage: return 2; 247 case GlobalValue::InternalLinkage: return 3; 248 case GlobalValue::LinkOnceLinkage: return 4; 249 case GlobalValue::DLLImportLinkage: return 5; 250 case GlobalValue::DLLExportLinkage: return 6; 251 case GlobalValue::ExternalWeakLinkage: return 7; 252 } 253 } 254 255 static unsigned getEncodedVisibility(const GlobalValue *GV) { 256 switch (GV->getVisibility()) { 257 default: assert(0 && "Invalid visibility!"); 258 case GlobalValue::DefaultVisibility: return 0; 259 case GlobalValue::HiddenVisibility: return 1; 260 case GlobalValue::ProtectedVisibility: return 2; 261 } 262 } 263 264 // Emit top-level description of module, including target triple, inline asm, 265 // descriptors for global variables, and function prototype info. 266 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 267 BitstreamWriter &Stream) { 268 // Emit the list of dependent libraries for the Module. 269 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 270 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 271 272 // Emit various pieces of data attached to a module. 273 if (!M->getTargetTriple().empty()) 274 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 275 0/*TODO*/, Stream); 276 if (!M->getDataLayout().empty()) 277 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 278 0/*TODO*/, Stream); 279 if (!M->getModuleInlineAsm().empty()) 280 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 281 0/*TODO*/, Stream); 282 283 // Emit information about sections, computing how many there are. Also 284 // compute the maximum alignment value. 285 std::map<std::string, unsigned> SectionMap; 286 unsigned MaxAlignment = 0; 287 unsigned MaxGlobalType = 0; 288 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 289 GV != E; ++GV) { 290 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 291 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 292 293 if (!GV->hasSection()) continue; 294 // Give section names unique ID's. 295 unsigned &Entry = SectionMap[GV->getSection()]; 296 if (Entry != 0) continue; 297 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 298 0/*TODO*/, Stream); 299 Entry = SectionMap.size(); 300 } 301 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 302 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 303 if (!F->hasSection()) continue; 304 // Give section names unique ID's. 305 unsigned &Entry = SectionMap[F->getSection()]; 306 if (Entry != 0) continue; 307 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 308 0/*TODO*/, Stream); 309 Entry = SectionMap.size(); 310 } 311 312 // Emit abbrev for globals, now that we know # sections and max alignment. 313 unsigned SimpleGVarAbbrev = 0; 314 if (!M->global_empty()) { 315 // Add an abbrev for common globals with no visibility or thread localness. 316 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 317 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 319 Log2_32_Ceil(MaxGlobalType+1))); 320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 323 if (MaxAlignment == 0) // Alignment. 324 Abbv->Add(BitCodeAbbrevOp(0)); 325 else { 326 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 328 Log2_32_Ceil(MaxEncAlignment+1))); 329 } 330 if (SectionMap.empty()) // Section. 331 Abbv->Add(BitCodeAbbrevOp(0)); 332 else 333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 334 Log2_32_Ceil(SectionMap.size()+1))); 335 // Don't bother emitting vis + thread local. 336 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 337 } 338 339 // Emit the global variable information. 340 SmallVector<unsigned, 64> Vals; 341 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 342 GV != E; ++GV) { 343 unsigned AbbrevToUse = 0; 344 345 // GLOBALVAR: [type, isconst, initid, 346 // linkage, alignment, section, visibility, threadlocal] 347 Vals.push_back(VE.getTypeID(GV->getType())); 348 Vals.push_back(GV->isConstant()); 349 Vals.push_back(GV->isDeclaration() ? 0 : 350 (VE.getValueID(GV->getInitializer()) + 1)); 351 Vals.push_back(getEncodedLinkage(GV)); 352 Vals.push_back(Log2_32(GV->getAlignment())+1); 353 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 354 if (GV->isThreadLocal() || 355 GV->getVisibility() != GlobalValue::DefaultVisibility) { 356 Vals.push_back(getEncodedVisibility(GV)); 357 Vals.push_back(GV->isThreadLocal()); 358 } else { 359 AbbrevToUse = SimpleGVarAbbrev; 360 } 361 362 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 363 Vals.clear(); 364 } 365 366 // Emit the function proto information. 367 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 368 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 369 // visibility] 370 Vals.push_back(VE.getTypeID(F->getType())); 371 Vals.push_back(F->getCallingConv()); 372 Vals.push_back(F->isDeclaration()); 373 Vals.push_back(getEncodedLinkage(F)); 374 Vals.push_back(Log2_32(F->getAlignment())+1); 375 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 376 Vals.push_back(getEncodedVisibility(F)); 377 378 unsigned AbbrevToUse = 0; 379 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 380 Vals.clear(); 381 } 382 383 384 // Emit the alias information. 385 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 386 AI != E; ++AI) { 387 Vals.push_back(VE.getTypeID(AI->getType())); 388 Vals.push_back(VE.getValueID(AI->getAliasee())); 389 Vals.push_back(getEncodedLinkage(AI)); 390 unsigned AbbrevToUse = 0; 391 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 392 Vals.clear(); 393 } 394 } 395 396 397 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 398 const ValueEnumerator &VE, 399 BitstreamWriter &Stream) { 400 if (FirstVal == LastVal) return; 401 402 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 2); 403 404 // FIXME: Install and use abbrevs to reduce size. Install them globally so 405 // they don't need to be reemitted for each function body. 406 407 SmallVector<uint64_t, 64> Record; 408 409 const ValueEnumerator::ValueList &Vals = VE.getValues(); 410 const Type *LastTy = 0; 411 for (unsigned i = FirstVal; i != LastVal; ++i) { 412 const Value *V = Vals[i].first; 413 // If we need to switch types, do so now. 414 if (V->getType() != LastTy) { 415 LastTy = V->getType(); 416 Record.push_back(VE.getTypeID(LastTy)); 417 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record); 418 Record.clear(); 419 } 420 421 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 422 assert(0 && IA && "FIXME: Inline asm writing unimp!"); 423 continue; 424 } 425 const Constant *C = cast<Constant>(V); 426 unsigned Code = -1U; 427 unsigned AbbrevToUse = 0; 428 if (C->isNullValue()) { 429 Code = bitc::CST_CODE_NULL; 430 } else if (isa<UndefValue>(C)) { 431 Code = bitc::CST_CODE_UNDEF; 432 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 433 if (IV->getBitWidth() <= 64) { 434 int64_t V = IV->getSExtValue(); 435 if (V >= 0) 436 Record.push_back(V << 1); 437 else 438 Record.push_back((-V << 1) | 1); 439 Code = bitc::CST_CODE_INTEGER; 440 } else { // Wide integers, > 64 bits in size. 441 // We have an arbitrary precision integer value to write whose 442 // bit width is > 64. However, in canonical unsigned integer 443 // format it is likely that the high bits are going to be zero. 444 // So, we only write the number of active words. 445 unsigned NWords = IV->getValue().getActiveWords(); 446 const uint64_t *RawWords = IV->getValue().getRawData(); 447 for (unsigned i = 0; i != NWords; ++i) { 448 int64_t V = RawWords[i]; 449 if (V >= 0) 450 Record.push_back(V << 1); 451 else 452 Record.push_back((-V << 1) | 1); 453 } 454 Code = bitc::CST_CODE_WIDE_INTEGER; 455 } 456 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 457 Code = bitc::CST_CODE_FLOAT; 458 if (CFP->getType() == Type::FloatTy) { 459 Record.push_back(FloatToBits((float)CFP->getValue())); 460 } else { 461 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 462 Record.push_back(DoubleToBits((double)CFP->getValue())); 463 } 464 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 465 isa<ConstantVector>(V)) { 466 Code = bitc::CST_CODE_AGGREGATE; 467 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 468 Record.push_back(VE.getValueID(C->getOperand(i))); 469 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 470 switch (CE->getOpcode()) { 471 default: 472 if (Instruction::isCast(CE->getOpcode())) { 473 Code = bitc::CST_CODE_CE_CAST; 474 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 475 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 476 Record.push_back(VE.getValueID(C->getOperand(0))); 477 } else { 478 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 479 Code = bitc::CST_CODE_CE_BINOP; 480 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 481 Record.push_back(VE.getValueID(C->getOperand(0))); 482 Record.push_back(VE.getValueID(C->getOperand(1))); 483 } 484 break; 485 case Instruction::GetElementPtr: 486 Code = bitc::CST_CODE_CE_GEP; 487 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 488 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 489 Record.push_back(VE.getValueID(C->getOperand(i))); 490 } 491 break; 492 case Instruction::Select: 493 Code = bitc::CST_CODE_CE_SELECT; 494 Record.push_back(VE.getValueID(C->getOperand(0))); 495 Record.push_back(VE.getValueID(C->getOperand(1))); 496 Record.push_back(VE.getValueID(C->getOperand(2))); 497 break; 498 case Instruction::ExtractElement: 499 Code = bitc::CST_CODE_CE_EXTRACTELT; 500 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 501 Record.push_back(VE.getValueID(C->getOperand(0))); 502 Record.push_back(VE.getValueID(C->getOperand(1))); 503 break; 504 case Instruction::InsertElement: 505 Code = bitc::CST_CODE_CE_INSERTELT; 506 Record.push_back(VE.getValueID(C->getOperand(0))); 507 Record.push_back(VE.getValueID(C->getOperand(1))); 508 Record.push_back(VE.getValueID(C->getOperand(2))); 509 break; 510 case Instruction::ShuffleVector: 511 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 512 Record.push_back(VE.getValueID(C->getOperand(0))); 513 Record.push_back(VE.getValueID(C->getOperand(1))); 514 Record.push_back(VE.getValueID(C->getOperand(2))); 515 break; 516 case Instruction::ICmp: 517 case Instruction::FCmp: 518 Code = bitc::CST_CODE_CE_CMP; 519 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 520 Record.push_back(VE.getValueID(C->getOperand(0))); 521 Record.push_back(VE.getValueID(C->getOperand(1))); 522 Record.push_back(CE->getPredicate()); 523 break; 524 } 525 } else { 526 assert(0 && "Unknown constant!"); 527 } 528 Stream.EmitRecord(Code, Record, AbbrevToUse); 529 Record.clear(); 530 } 531 532 Stream.ExitBlock(); 533 } 534 535 static void WriteModuleConstants(const ValueEnumerator &VE, 536 BitstreamWriter &Stream) { 537 const ValueEnumerator::ValueList &Vals = VE.getValues(); 538 539 // Find the first constant to emit, which is the first non-globalvalue value. 540 // We know globalvalues have been emitted by WriteModuleInfo. 541 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 542 if (!isa<GlobalValue>(Vals[i].first)) { 543 WriteConstants(i, Vals.size(), VE, Stream); 544 return; 545 } 546 } 547 } 548 549 /// WriteInstruction - Emit an instruction to the specified stream. 550 static void WriteInstruction(const Instruction &I, ValueEnumerator &VE, 551 BitstreamWriter &Stream, 552 SmallVector<unsigned, 64> &Vals) { 553 unsigned Code = 0; 554 unsigned AbbrevToUse = 0; 555 switch (I.getOpcode()) { 556 default: 557 if (Instruction::isCast(I.getOpcode())) { 558 Code = bitc::FUNC_CODE_INST_CAST; 559 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 560 Vals.push_back(VE.getTypeID(I.getType())); 561 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 562 Vals.push_back(VE.getValueID(I.getOperand(0))); 563 } else { 564 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 565 Code = bitc::FUNC_CODE_INST_BINOP; 566 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 567 Vals.push_back(VE.getTypeID(I.getType())); 568 Vals.push_back(VE.getValueID(I.getOperand(0))); 569 Vals.push_back(VE.getValueID(I.getOperand(1))); 570 } 571 break; 572 573 case Instruction::GetElementPtr: 574 Code = bitc::FUNC_CODE_INST_GEP; 575 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 576 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 577 Vals.push_back(VE.getValueID(I.getOperand(i))); 578 } 579 break; 580 case Instruction::Select: 581 Code = bitc::FUNC_CODE_INST_SELECT; 582 Vals.push_back(VE.getTypeID(I.getType())); 583 Vals.push_back(VE.getValueID(I.getOperand(0))); 584 Vals.push_back(VE.getValueID(I.getOperand(1))); 585 Vals.push_back(VE.getValueID(I.getOperand(2))); 586 break; 587 case Instruction::ExtractElement: 588 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 589 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 590 Vals.push_back(VE.getValueID(I.getOperand(0))); 591 Vals.push_back(VE.getValueID(I.getOperand(1))); 592 break; 593 case Instruction::InsertElement: 594 Code = bitc::FUNC_CODE_INST_INSERTELT; 595 Vals.push_back(VE.getTypeID(I.getType())); 596 Vals.push_back(VE.getValueID(I.getOperand(0))); 597 Vals.push_back(VE.getValueID(I.getOperand(1))); 598 Vals.push_back(VE.getValueID(I.getOperand(2))); 599 break; 600 case Instruction::ShuffleVector: 601 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 602 Vals.push_back(VE.getTypeID(I.getType())); 603 Vals.push_back(VE.getValueID(I.getOperand(0))); 604 Vals.push_back(VE.getValueID(I.getOperand(1))); 605 Vals.push_back(VE.getValueID(I.getOperand(2))); 606 break; 607 case Instruction::ICmp: 608 case Instruction::FCmp: 609 Code = bitc::FUNC_CODE_INST_CMP; 610 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 611 Vals.push_back(VE.getValueID(I.getOperand(0))); 612 Vals.push_back(VE.getValueID(I.getOperand(1))); 613 Vals.push_back(cast<CmpInst>(I).getPredicate()); 614 break; 615 616 case Instruction::Ret: 617 Code = bitc::FUNC_CODE_INST_RET; 618 if (I.getNumOperands()) { 619 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 620 Vals.push_back(VE.getValueID(I.getOperand(0))); 621 } 622 break; 623 case Instruction::Br: 624 Code = bitc::FUNC_CODE_INST_BR; 625 Vals.push_back(VE.getValueID(I.getOperand(0))); 626 if (cast<BranchInst>(I).isConditional()) { 627 Vals.push_back(VE.getValueID(I.getOperand(1))); 628 Vals.push_back(VE.getValueID(I.getOperand(2))); 629 } 630 break; 631 case Instruction::Switch: 632 Code = bitc::FUNC_CODE_INST_SWITCH; 633 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 634 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 635 Vals.push_back(VE.getValueID(I.getOperand(i))); 636 break; 637 case Instruction::Invoke: { 638 Code = bitc::FUNC_CODE_INST_INVOKE; 639 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 640 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 641 Vals.push_back(VE.getValueID(I.getOperand(0))); // callee 642 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal 643 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind 644 645 // Emit value #'s for the fixed parameters. 646 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 647 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 648 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 649 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 650 651 // Emit type/value pairs for varargs params. 652 if (FTy->isVarArg()) { 653 unsigned NumVarargs = I.getNumOperands()-3-FTy->getNumParams(); 654 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 655 i != e; ++i) { 656 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 657 Vals.push_back(VE.getValueID(I.getOperand(i))); 658 } 659 } 660 break; 661 } 662 case Instruction::Unwind: 663 Code = bitc::FUNC_CODE_INST_UNWIND; 664 break; 665 case Instruction::Unreachable: 666 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 667 break; 668 669 case Instruction::PHI: 670 Code = bitc::FUNC_CODE_INST_PHI; 671 Vals.push_back(VE.getTypeID(I.getType())); 672 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 673 Vals.push_back(VE.getValueID(I.getOperand(i))); 674 break; 675 676 case Instruction::Malloc: 677 Code = bitc::FUNC_CODE_INST_MALLOC; 678 Vals.push_back(VE.getTypeID(I.getType())); 679 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 680 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 681 break; 682 683 case Instruction::Free: 684 Code = bitc::FUNC_CODE_INST_FREE; 685 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 686 Vals.push_back(VE.getValueID(I.getOperand(0))); 687 break; 688 689 case Instruction::Alloca: 690 Code = bitc::FUNC_CODE_INST_ALLOCA; 691 Vals.push_back(VE.getTypeID(I.getType())); 692 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 693 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 694 break; 695 696 case Instruction::Load: 697 Code = bitc::FUNC_CODE_INST_LOAD; 698 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 699 Vals.push_back(VE.getValueID(I.getOperand(0))); // ptr. 700 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 701 Vals.push_back(cast<LoadInst>(I).isVolatile()); 702 break; 703 case Instruction::Store: 704 Code = bitc::FUNC_CODE_INST_STORE; 705 Vals.push_back(VE.getTypeID(I.getOperand(1)->getType())); // Pointer 706 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 707 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 708 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 709 Vals.push_back(cast<StoreInst>(I).isVolatile()); 710 break; 711 case Instruction::Call: { 712 Code = bitc::FUNC_CODE_INST_CALL; 713 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 714 cast<CallInst>(I).isTailCall()); 715 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 716 Vals.push_back(VE.getValueID(I.getOperand(0))); // callee 717 718 // Emit value #'s for the fixed parameters. 719 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 720 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 721 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 722 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 723 724 // Emit type/value pairs for varargs params. 725 if (FTy->isVarArg()) { 726 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 727 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 728 i != e; ++i) { 729 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 730 Vals.push_back(VE.getValueID(I.getOperand(i))); 731 } 732 } 733 break; 734 } 735 case Instruction::VAArg: 736 Code = bitc::FUNC_CODE_INST_VAARG; 737 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 738 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 739 Vals.push_back(VE.getTypeID(I.getType())); // restype. 740 break; 741 } 742 743 Stream.EmitRecord(Code, Vals, AbbrevToUse); 744 Vals.clear(); 745 } 746 747 // Emit names for globals/functions etc. 748 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 749 const ValueEnumerator &VE, 750 BitstreamWriter &Stream) { 751 if (VST.empty()) return; 752 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 753 754 // FIXME: Set up the abbrev, we know how many values there are! 755 // FIXME: We know if the type names can use 7-bit ascii. 756 SmallVector<unsigned, 64> NameVals; 757 758 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 759 SI != SE; ++SI) { 760 761 const ValueName &Name = *SI; 762 763 // Figure out the encoding to use for the name. 764 bool is7Bit = true; 765 bool isChar6 = true; 766 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 767 C != E; ++C) { 768 if (isChar6) 769 isChar6 = BitCodeAbbrevOp::isChar6(*C); 770 if ((unsigned char)*C & 128) { 771 is7Bit = false; 772 break; // don't bother scanning the rest. 773 } 774 } 775 776 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 777 778 // VST_ENTRY: [valueid, namechar x N] 779 // VST_BBENTRY: [bbid, namechar x N] 780 unsigned Code; 781 if (isa<BasicBlock>(SI->getValue())) { 782 Code = bitc::VST_CODE_BBENTRY; 783 if (isChar6) 784 AbbrevToUse = VST_BBENTRY_6_ABBREV; 785 } else { 786 Code = bitc::VST_CODE_ENTRY; 787 if (isChar6) 788 AbbrevToUse = VST_ENTRY_6_ABBREV; 789 else if (is7Bit) 790 AbbrevToUse = VST_ENTRY_7_ABBREV; 791 } 792 793 NameVals.push_back(VE.getValueID(SI->getValue())); 794 for (const char *P = Name.getKeyData(), 795 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 796 NameVals.push_back((unsigned char)*P); 797 798 // Emit the finished record. 799 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 800 NameVals.clear(); 801 } 802 Stream.ExitBlock(); 803 } 804 805 /// WriteFunction - Emit a function body to the module stream. 806 static void WriteFunction(const Function &F, ValueEnumerator &VE, 807 BitstreamWriter &Stream) { 808 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3); 809 VE.incorporateFunction(F); 810 811 SmallVector<unsigned, 64> Vals; 812 813 // Emit the number of basic blocks, so the reader can create them ahead of 814 // time. 815 Vals.push_back(VE.getBasicBlocks().size()); 816 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 817 Vals.clear(); 818 819 // FIXME: Function attributes? 820 821 // If there are function-local constants, emit them now. 822 unsigned CstStart, CstEnd; 823 VE.getFunctionConstantRange(CstStart, CstEnd); 824 WriteConstants(CstStart, CstEnd, VE, Stream); 825 826 // Finally, emit all the instructions, in order. 827 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 828 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 829 WriteInstruction(*I, VE, Stream, Vals); 830 831 // Emit names for all the instructions etc. 832 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 833 834 VE.purgeFunction(); 835 Stream.ExitBlock(); 836 } 837 838 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 839 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 840 const ValueEnumerator &VE, 841 BitstreamWriter &Stream) { 842 if (TST.empty()) return; 843 844 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 845 846 // 7-bit fixed width VST_CODE_ENTRY strings. 847 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 848 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 850 Log2_32_Ceil(VE.getTypes().size()+1))); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 853 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 854 855 SmallVector<unsigned, 64> NameVals; 856 857 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 858 TI != TE; ++TI) { 859 // TST_ENTRY: [typeid, namechar x N] 860 NameVals.push_back(VE.getTypeID(TI->second)); 861 862 const std::string &Str = TI->first; 863 bool is7Bit = true; 864 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 865 NameVals.push_back((unsigned char)Str[i]); 866 if (Str[i] & 128) 867 is7Bit = false; 868 } 869 870 // Emit the finished record. 871 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 872 NameVals.clear(); 873 } 874 875 Stream.ExitBlock(); 876 } 877 878 879 /// WriteModule - Emit the specified module to the bitstream. 880 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 881 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 882 883 // Emit the version number if it is non-zero. 884 if (CurVersion) { 885 SmallVector<unsigned, 1> Vals; 886 Vals.push_back(CurVersion); 887 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 888 } 889 890 // Analyze the module, enumerating globals, functions, etc. 891 ValueEnumerator VE(M); 892 893 // Emit information about parameter attributes. 894 WriteParamAttrTable(VE, Stream); 895 896 // Emit information describing all of the types in the module. 897 WriteTypeTable(VE, Stream); 898 899 // Emit top-level description of module, including target triple, inline asm, 900 // descriptors for global variables, and function prototype info. 901 WriteModuleInfo(M, VE, Stream); 902 903 // Emit constants. 904 WriteModuleConstants(VE, Stream); 905 906 // If we have any aggregate values in the value table, purge them - these can 907 // only be used to initialize global variables. Doing so makes the value 908 // namespace smaller for code in functions. 909 int NumNonAggregates = VE.PurgeAggregateValues(); 910 if (NumNonAggregates != -1) { 911 SmallVector<unsigned, 1> Vals; 912 Vals.push_back(NumNonAggregates); 913 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 914 } 915 916 // Emit function bodies. 917 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 918 if (!I->isDeclaration()) 919 WriteFunction(*I, VE, Stream); 920 921 // Emit the type symbol table information. 922 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 923 924 // Emit names for globals/functions etc. 925 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 926 927 Stream.ExitBlock(); 928 } 929 930 // Emit blockinfo, which defines the standard abbreviations etc. 931 static void WriteBlockInfo(BitstreamWriter &Stream) { 932 // We only want to emit block info records for blocks that have multiple 933 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 934 // blocks can defined their abbrevs inline. 935 Stream.EnterBlockInfoBlock(2); 936 937 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 938 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 943 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 944 Abbv) != VST_ENTRY_8_ABBREV) 945 assert(0 && "Unexpected abbrev ordering!"); 946 } 947 948 { // 7-bit fixed width VST_ENTRY strings. 949 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 950 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 954 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 955 Abbv) != VST_ENTRY_7_ABBREV) 956 assert(0 && "Unexpected abbrev ordering!"); 957 } 958 { // 6-bit char6 VST_ENTRY strings. 959 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 960 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 964 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 965 Abbv) != VST_ENTRY_6_ABBREV) 966 assert(0 && "Unexpected abbrev ordering!"); 967 } 968 { // 6-bit char6 VST_BBENTRY strings. 969 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 970 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 974 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 975 Abbv) != VST_BBENTRY_6_ABBREV) 976 assert(0 && "Unexpected abbrev ordering!"); 977 } 978 979 Stream.ExitBlock(); 980 } 981 982 983 /// WriteBitcodeToFile - Write the specified module to the specified output 984 /// stream. 985 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 986 std::vector<unsigned char> Buffer; 987 BitstreamWriter Stream(Buffer); 988 989 Buffer.reserve(256*1024); 990 991 // Emit the file header. 992 Stream.Emit((unsigned)'B', 8); 993 Stream.Emit((unsigned)'C', 8); 994 Stream.Emit(0x0, 4); 995 Stream.Emit(0xC, 4); 996 Stream.Emit(0xE, 4); 997 Stream.Emit(0xD, 4); 998 999 // Emit blockinfo, which defines the standard abbreviations etc. 1000 WriteBlockInfo(Stream); 1001 1002 // Emit the module. 1003 WriteModule(M, Stream); 1004 1005 // Write the generated bitstream to "Out". 1006 Out.write((char*)&Buffer.front(), Buffer.size()); 1007 } 1008