1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeBitcodeHeader(); 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 } 581 } 582 583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 584 switch (Ordering) { 585 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 586 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 587 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 590 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 591 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 592 } 593 llvm_unreachable("Invalid ordering"); 594 } 595 596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 597 StringRef Str, unsigned AbbrevToUse) { 598 SmallVector<unsigned, 64> Vals; 599 600 // Code: [strchar x N] 601 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 602 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 603 AbbrevToUse = 0; 604 Vals.push_back(Str[i]); 605 } 606 607 // Emit the finished record. 608 Stream.EmitRecord(Code, Vals, AbbrevToUse); 609 } 610 611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 612 switch (Kind) { 613 case Attribute::Alignment: 614 return bitc::ATTR_KIND_ALIGNMENT; 615 case Attribute::AllocSize: 616 return bitc::ATTR_KIND_ALLOC_SIZE; 617 case Attribute::AlwaysInline: 618 return bitc::ATTR_KIND_ALWAYS_INLINE; 619 case Attribute::ArgMemOnly: 620 return bitc::ATTR_KIND_ARGMEMONLY; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::InaccessibleMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 635 case Attribute::InaccessibleMemOrArgMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 637 case Attribute::InlineHint: 638 return bitc::ATTR_KIND_INLINE_HINT; 639 case Attribute::InReg: 640 return bitc::ATTR_KIND_IN_REG; 641 case Attribute::JumpTable: 642 return bitc::ATTR_KIND_JUMP_TABLE; 643 case Attribute::MinSize: 644 return bitc::ATTR_KIND_MIN_SIZE; 645 case Attribute::Naked: 646 return bitc::ATTR_KIND_NAKED; 647 case Attribute::Nest: 648 return bitc::ATTR_KIND_NEST; 649 case Attribute::NoAlias: 650 return bitc::ATTR_KIND_NO_ALIAS; 651 case Attribute::NoBuiltin: 652 return bitc::ATTR_KIND_NO_BUILTIN; 653 case Attribute::NoCallback: 654 return bitc::ATTR_KIND_NO_CALLBACK; 655 case Attribute::NoCapture: 656 return bitc::ATTR_KIND_NO_CAPTURE; 657 case Attribute::NoDuplicate: 658 return bitc::ATTR_KIND_NO_DUPLICATE; 659 case Attribute::NoFree: 660 return bitc::ATTR_KIND_NOFREE; 661 case Attribute::NoImplicitFloat: 662 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 663 case Attribute::NoInline: 664 return bitc::ATTR_KIND_NO_INLINE; 665 case Attribute::NoRecurse: 666 return bitc::ATTR_KIND_NO_RECURSE; 667 case Attribute::NoMerge: 668 return bitc::ATTR_KIND_NO_MERGE; 669 case Attribute::NonLazyBind: 670 return bitc::ATTR_KIND_NON_LAZY_BIND; 671 case Attribute::NonNull: 672 return bitc::ATTR_KIND_NON_NULL; 673 case Attribute::Dereferenceable: 674 return bitc::ATTR_KIND_DEREFERENCEABLE; 675 case Attribute::DereferenceableOrNull: 676 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 677 case Attribute::NoRedZone: 678 return bitc::ATTR_KIND_NO_RED_ZONE; 679 case Attribute::NoReturn: 680 return bitc::ATTR_KIND_NO_RETURN; 681 case Attribute::NoSync: 682 return bitc::ATTR_KIND_NOSYNC; 683 case Attribute::NoCfCheck: 684 return bitc::ATTR_KIND_NOCF_CHECK; 685 case Attribute::NoProfile: 686 return bitc::ATTR_KIND_NO_PROFILE; 687 case Attribute::NoUnwind: 688 return bitc::ATTR_KIND_NO_UNWIND; 689 case Attribute::NullPointerIsValid: 690 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 691 case Attribute::OptForFuzzing: 692 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 693 case Attribute::OptimizeForSize: 694 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 695 case Attribute::OptimizeNone: 696 return bitc::ATTR_KIND_OPTIMIZE_NONE; 697 case Attribute::ReadNone: 698 return bitc::ATTR_KIND_READ_NONE; 699 case Attribute::ReadOnly: 700 return bitc::ATTR_KIND_READ_ONLY; 701 case Attribute::Returned: 702 return bitc::ATTR_KIND_RETURNED; 703 case Attribute::ReturnsTwice: 704 return bitc::ATTR_KIND_RETURNS_TWICE; 705 case Attribute::SExt: 706 return bitc::ATTR_KIND_S_EXT; 707 case Attribute::Speculatable: 708 return bitc::ATTR_KIND_SPECULATABLE; 709 case Attribute::StackAlignment: 710 return bitc::ATTR_KIND_STACK_ALIGNMENT; 711 case Attribute::StackProtect: 712 return bitc::ATTR_KIND_STACK_PROTECT; 713 case Attribute::StackProtectReq: 714 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 715 case Attribute::StackProtectStrong: 716 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 717 case Attribute::SafeStack: 718 return bitc::ATTR_KIND_SAFESTACK; 719 case Attribute::ShadowCallStack: 720 return bitc::ATTR_KIND_SHADOWCALLSTACK; 721 case Attribute::StrictFP: 722 return bitc::ATTR_KIND_STRICT_FP; 723 case Attribute::StructRet: 724 return bitc::ATTR_KIND_STRUCT_RET; 725 case Attribute::SanitizeAddress: 726 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 727 case Attribute::SanitizeHWAddress: 728 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 729 case Attribute::SanitizeThread: 730 return bitc::ATTR_KIND_SANITIZE_THREAD; 731 case Attribute::SanitizeMemory: 732 return bitc::ATTR_KIND_SANITIZE_MEMORY; 733 case Attribute::SpeculativeLoadHardening: 734 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 735 case Attribute::SwiftError: 736 return bitc::ATTR_KIND_SWIFT_ERROR; 737 case Attribute::SwiftSelf: 738 return bitc::ATTR_KIND_SWIFT_SELF; 739 case Attribute::UWTable: 740 return bitc::ATTR_KIND_UW_TABLE; 741 case Attribute::WillReturn: 742 return bitc::ATTR_KIND_WILLRETURN; 743 case Attribute::WriteOnly: 744 return bitc::ATTR_KIND_WRITEONLY; 745 case Attribute::ZExt: 746 return bitc::ATTR_KIND_Z_EXT; 747 case Attribute::ImmArg: 748 return bitc::ATTR_KIND_IMMARG; 749 case Attribute::SanitizeMemTag: 750 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 751 case Attribute::Preallocated: 752 return bitc::ATTR_KIND_PREALLOCATED; 753 case Attribute::NoUndef: 754 return bitc::ATTR_KIND_NOUNDEF; 755 case Attribute::ByRef: 756 return bitc::ATTR_KIND_BYREF; 757 case Attribute::MustProgress: 758 return bitc::ATTR_KIND_MUSTPROGRESS; 759 case Attribute::EndAttrKinds: 760 llvm_unreachable("Can not encode end-attribute kinds marker."); 761 case Attribute::None: 762 llvm_unreachable("Can not encode none-attribute."); 763 case Attribute::EmptyKey: 764 case Attribute::TombstoneKey: 765 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 766 } 767 768 llvm_unreachable("Trying to encode unknown attribute"); 769 } 770 771 void ModuleBitcodeWriter::writeAttributeGroupTable() { 772 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 773 VE.getAttributeGroups(); 774 if (AttrGrps.empty()) return; 775 776 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 777 778 SmallVector<uint64_t, 64> Record; 779 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 780 unsigned AttrListIndex = Pair.first; 781 AttributeSet AS = Pair.second; 782 Record.push_back(VE.getAttributeGroupID(Pair)); 783 Record.push_back(AttrListIndex); 784 785 for (Attribute Attr : AS) { 786 if (Attr.isEnumAttribute()) { 787 Record.push_back(0); 788 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 789 } else if (Attr.isIntAttribute()) { 790 Record.push_back(1); 791 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 792 Record.push_back(Attr.getValueAsInt()); 793 } else if (Attr.isStringAttribute()) { 794 StringRef Kind = Attr.getKindAsString(); 795 StringRef Val = Attr.getValueAsString(); 796 797 Record.push_back(Val.empty() ? 3 : 4); 798 Record.append(Kind.begin(), Kind.end()); 799 Record.push_back(0); 800 if (!Val.empty()) { 801 Record.append(Val.begin(), Val.end()); 802 Record.push_back(0); 803 } 804 } else { 805 assert(Attr.isTypeAttribute()); 806 Type *Ty = Attr.getValueAsType(); 807 Record.push_back(Ty ? 6 : 5); 808 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 809 if (Ty) 810 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 811 } 812 } 813 814 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 815 Record.clear(); 816 } 817 818 Stream.ExitBlock(); 819 } 820 821 void ModuleBitcodeWriter::writeAttributeTable() { 822 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 823 if (Attrs.empty()) return; 824 825 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 826 827 SmallVector<uint64_t, 64> Record; 828 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 829 AttributeList AL = Attrs[i]; 830 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 831 AttributeSet AS = AL.getAttributes(i); 832 if (AS.hasAttributes()) 833 Record.push_back(VE.getAttributeGroupID({i, AS})); 834 } 835 836 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 837 Record.clear(); 838 } 839 840 Stream.ExitBlock(); 841 } 842 843 /// WriteTypeTable - Write out the type table for a module. 844 void ModuleBitcodeWriter::writeTypeTable() { 845 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 846 847 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 848 SmallVector<uint64_t, 64> TypeVals; 849 850 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 851 852 // Abbrev for TYPE_CODE_POINTER. 853 auto Abbv = std::make_shared<BitCodeAbbrev>(); 854 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 856 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 857 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 858 859 // Abbrev for TYPE_CODE_FUNCTION. 860 Abbv = std::make_shared<BitCodeAbbrev>(); 861 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 865 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_STRUCT_ANON. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 873 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 874 875 // Abbrev for TYPE_CODE_STRUCT_NAME. 876 Abbv = std::make_shared<BitCodeAbbrev>(); 877 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 880 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 881 882 // Abbrev for TYPE_CODE_STRUCT_NAMED. 883 Abbv = std::make_shared<BitCodeAbbrev>(); 884 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 888 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 889 890 // Abbrev for TYPE_CODE_ARRAY. 891 Abbv = std::make_shared<BitCodeAbbrev>(); 892 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 895 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 896 897 // Emit an entry count so the reader can reserve space. 898 TypeVals.push_back(TypeList.size()); 899 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 900 TypeVals.clear(); 901 902 // Loop over all of the types, emitting each in turn. 903 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 904 Type *T = TypeList[i]; 905 int AbbrevToUse = 0; 906 unsigned Code = 0; 907 908 switch (T->getTypeID()) { 909 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 910 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 911 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 912 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 913 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 914 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 915 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 916 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 917 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 918 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 919 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 920 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 921 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 922 case Type::IntegerTyID: 923 // INTEGER: [width] 924 Code = bitc::TYPE_CODE_INTEGER; 925 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 926 break; 927 case Type::PointerTyID: { 928 PointerType *PTy = cast<PointerType>(T); 929 // POINTER: [pointee type, address space] 930 Code = bitc::TYPE_CODE_POINTER; 931 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 932 unsigned AddressSpace = PTy->getAddressSpace(); 933 TypeVals.push_back(AddressSpace); 934 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 935 break; 936 } 937 case Type::FunctionTyID: { 938 FunctionType *FT = cast<FunctionType>(T); 939 // FUNCTION: [isvararg, retty, paramty x N] 940 Code = bitc::TYPE_CODE_FUNCTION; 941 TypeVals.push_back(FT->isVarArg()); 942 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 943 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 944 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 945 AbbrevToUse = FunctionAbbrev; 946 break; 947 } 948 case Type::StructTyID: { 949 StructType *ST = cast<StructType>(T); 950 // STRUCT: [ispacked, eltty x N] 951 TypeVals.push_back(ST->isPacked()); 952 // Output all of the element types. 953 for (StructType::element_iterator I = ST->element_begin(), 954 E = ST->element_end(); I != E; ++I) 955 TypeVals.push_back(VE.getTypeID(*I)); 956 957 if (ST->isLiteral()) { 958 Code = bitc::TYPE_CODE_STRUCT_ANON; 959 AbbrevToUse = StructAnonAbbrev; 960 } else { 961 if (ST->isOpaque()) { 962 Code = bitc::TYPE_CODE_OPAQUE; 963 } else { 964 Code = bitc::TYPE_CODE_STRUCT_NAMED; 965 AbbrevToUse = StructNamedAbbrev; 966 } 967 968 // Emit the name if it is present. 969 if (!ST->getName().empty()) 970 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 971 StructNameAbbrev); 972 } 973 break; 974 } 975 case Type::ArrayTyID: { 976 ArrayType *AT = cast<ArrayType>(T); 977 // ARRAY: [numelts, eltty] 978 Code = bitc::TYPE_CODE_ARRAY; 979 TypeVals.push_back(AT->getNumElements()); 980 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 981 AbbrevToUse = ArrayAbbrev; 982 break; 983 } 984 case Type::FixedVectorTyID: 985 case Type::ScalableVectorTyID: { 986 VectorType *VT = cast<VectorType>(T); 987 // VECTOR [numelts, eltty] or 988 // [numelts, eltty, scalable] 989 Code = bitc::TYPE_CODE_VECTOR; 990 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 991 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 992 if (isa<ScalableVectorType>(VT)) 993 TypeVals.push_back(true); 994 break; 995 } 996 } 997 998 // Emit the finished record. 999 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1000 TypeVals.clear(); 1001 } 1002 1003 Stream.ExitBlock(); 1004 } 1005 1006 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1007 switch (Linkage) { 1008 case GlobalValue::ExternalLinkage: 1009 return 0; 1010 case GlobalValue::WeakAnyLinkage: 1011 return 16; 1012 case GlobalValue::AppendingLinkage: 1013 return 2; 1014 case GlobalValue::InternalLinkage: 1015 return 3; 1016 case GlobalValue::LinkOnceAnyLinkage: 1017 return 18; 1018 case GlobalValue::ExternalWeakLinkage: 1019 return 7; 1020 case GlobalValue::CommonLinkage: 1021 return 8; 1022 case GlobalValue::PrivateLinkage: 1023 return 9; 1024 case GlobalValue::WeakODRLinkage: 1025 return 17; 1026 case GlobalValue::LinkOnceODRLinkage: 1027 return 19; 1028 case GlobalValue::AvailableExternallyLinkage: 1029 return 12; 1030 } 1031 llvm_unreachable("Invalid linkage"); 1032 } 1033 1034 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1035 return getEncodedLinkage(GV.getLinkage()); 1036 } 1037 1038 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1039 uint64_t RawFlags = 0; 1040 RawFlags |= Flags.ReadNone; 1041 RawFlags |= (Flags.ReadOnly << 1); 1042 RawFlags |= (Flags.NoRecurse << 2); 1043 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1044 RawFlags |= (Flags.NoInline << 4); 1045 RawFlags |= (Flags.AlwaysInline << 5); 1046 return RawFlags; 1047 } 1048 1049 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1050 // in BitcodeReader.cpp. 1051 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1052 uint64_t RawFlags = 0; 1053 1054 RawFlags |= Flags.NotEligibleToImport; // bool 1055 RawFlags |= (Flags.Live << 1); 1056 RawFlags |= (Flags.DSOLocal << 2); 1057 RawFlags |= (Flags.CanAutoHide << 3); 1058 1059 // Linkage don't need to be remapped at that time for the summary. Any future 1060 // change to the getEncodedLinkage() function will need to be taken into 1061 // account here as well. 1062 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1063 1064 RawFlags |= (Flags.Visibility << 8); // 2 bits 1065 1066 return RawFlags; 1067 } 1068 1069 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1070 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1071 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1072 return RawFlags; 1073 } 1074 1075 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1076 switch (GV.getVisibility()) { 1077 case GlobalValue::DefaultVisibility: return 0; 1078 case GlobalValue::HiddenVisibility: return 1; 1079 case GlobalValue::ProtectedVisibility: return 2; 1080 } 1081 llvm_unreachable("Invalid visibility"); 1082 } 1083 1084 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1085 switch (GV.getDLLStorageClass()) { 1086 case GlobalValue::DefaultStorageClass: return 0; 1087 case GlobalValue::DLLImportStorageClass: return 1; 1088 case GlobalValue::DLLExportStorageClass: return 2; 1089 } 1090 llvm_unreachable("Invalid DLL storage class"); 1091 } 1092 1093 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1094 switch (GV.getThreadLocalMode()) { 1095 case GlobalVariable::NotThreadLocal: return 0; 1096 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1097 case GlobalVariable::LocalDynamicTLSModel: return 2; 1098 case GlobalVariable::InitialExecTLSModel: return 3; 1099 case GlobalVariable::LocalExecTLSModel: return 4; 1100 } 1101 llvm_unreachable("Invalid TLS model"); 1102 } 1103 1104 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1105 switch (C.getSelectionKind()) { 1106 case Comdat::Any: 1107 return bitc::COMDAT_SELECTION_KIND_ANY; 1108 case Comdat::ExactMatch: 1109 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1110 case Comdat::Largest: 1111 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1112 case Comdat::NoDuplicates: 1113 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1114 case Comdat::SameSize: 1115 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1116 } 1117 llvm_unreachable("Invalid selection kind"); 1118 } 1119 1120 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1121 switch (GV.getUnnamedAddr()) { 1122 case GlobalValue::UnnamedAddr::None: return 0; 1123 case GlobalValue::UnnamedAddr::Local: return 2; 1124 case GlobalValue::UnnamedAddr::Global: return 1; 1125 } 1126 llvm_unreachable("Invalid unnamed_addr"); 1127 } 1128 1129 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1130 if (GenerateHash) 1131 Hasher.update(Str); 1132 return StrtabBuilder.add(Str); 1133 } 1134 1135 void ModuleBitcodeWriter::writeComdats() { 1136 SmallVector<unsigned, 64> Vals; 1137 for (const Comdat *C : VE.getComdats()) { 1138 // COMDAT: [strtab offset, strtab size, selection_kind] 1139 Vals.push_back(addToStrtab(C->getName())); 1140 Vals.push_back(C->getName().size()); 1141 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1142 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1143 Vals.clear(); 1144 } 1145 } 1146 1147 /// Write a record that will eventually hold the word offset of the 1148 /// module-level VST. For now the offset is 0, which will be backpatched 1149 /// after the real VST is written. Saves the bit offset to backpatch. 1150 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1151 // Write a placeholder value in for the offset of the real VST, 1152 // which is written after the function blocks so that it can include 1153 // the offset of each function. The placeholder offset will be 1154 // updated when the real VST is written. 1155 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1156 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1157 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1158 // hold the real VST offset. Must use fixed instead of VBR as we don't 1159 // know how many VBR chunks to reserve ahead of time. 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1161 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1162 1163 // Emit the placeholder 1164 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1165 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1166 1167 // Compute and save the bit offset to the placeholder, which will be 1168 // patched when the real VST is written. We can simply subtract the 32-bit 1169 // fixed size from the current bit number to get the location to backpatch. 1170 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1171 } 1172 1173 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1174 1175 /// Determine the encoding to use for the given string name and length. 1176 static StringEncoding getStringEncoding(StringRef Str) { 1177 bool isChar6 = true; 1178 for (char C : Str) { 1179 if (isChar6) 1180 isChar6 = BitCodeAbbrevOp::isChar6(C); 1181 if ((unsigned char)C & 128) 1182 // don't bother scanning the rest. 1183 return SE_Fixed8; 1184 } 1185 if (isChar6) 1186 return SE_Char6; 1187 return SE_Fixed7; 1188 } 1189 1190 /// Emit top-level description of module, including target triple, inline asm, 1191 /// descriptors for global variables, and function prototype info. 1192 /// Returns the bit offset to backpatch with the location of the real VST. 1193 void ModuleBitcodeWriter::writeModuleInfo() { 1194 // Emit various pieces of data attached to a module. 1195 if (!M.getTargetTriple().empty()) 1196 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1197 0 /*TODO*/); 1198 const std::string &DL = M.getDataLayoutStr(); 1199 if (!DL.empty()) 1200 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1201 if (!M.getModuleInlineAsm().empty()) 1202 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1203 0 /*TODO*/); 1204 1205 // Emit information about sections and GC, computing how many there are. Also 1206 // compute the maximum alignment value. 1207 std::map<std::string, unsigned> SectionMap; 1208 std::map<std::string, unsigned> GCMap; 1209 MaybeAlign MaxAlignment; 1210 unsigned MaxGlobalType = 0; 1211 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1212 if (A) 1213 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1214 }; 1215 for (const GlobalVariable &GV : M.globals()) { 1216 UpdateMaxAlignment(GV.getAlign()); 1217 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1218 if (GV.hasSection()) { 1219 // Give section names unique ID's. 1220 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1221 if (!Entry) { 1222 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1223 0 /*TODO*/); 1224 Entry = SectionMap.size(); 1225 } 1226 } 1227 } 1228 for (const Function &F : M) { 1229 UpdateMaxAlignment(F.getAlign()); 1230 if (F.hasSection()) { 1231 // Give section names unique ID's. 1232 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1233 if (!Entry) { 1234 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1235 0 /*TODO*/); 1236 Entry = SectionMap.size(); 1237 } 1238 } 1239 if (F.hasGC()) { 1240 // Same for GC names. 1241 unsigned &Entry = GCMap[F.getGC()]; 1242 if (!Entry) { 1243 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1244 0 /*TODO*/); 1245 Entry = GCMap.size(); 1246 } 1247 } 1248 } 1249 1250 // Emit abbrev for globals, now that we know # sections and max alignment. 1251 unsigned SimpleGVarAbbrev = 0; 1252 if (!M.global_empty()) { 1253 // Add an abbrev for common globals with no visibility or thread localness. 1254 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1255 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1259 Log2_32_Ceil(MaxGlobalType+1))); 1260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1261 //| explicitType << 1 1262 //| constant 1263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1265 if (!MaxAlignment) // Alignment. 1266 Abbv->Add(BitCodeAbbrevOp(0)); 1267 else { 1268 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1270 Log2_32_Ceil(MaxEncAlignment+1))); 1271 } 1272 if (SectionMap.empty()) // Section. 1273 Abbv->Add(BitCodeAbbrevOp(0)); 1274 else 1275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1276 Log2_32_Ceil(SectionMap.size()+1))); 1277 // Don't bother emitting vis + thread local. 1278 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1279 } 1280 1281 SmallVector<unsigned, 64> Vals; 1282 // Emit the module's source file name. 1283 { 1284 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1285 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1286 if (Bits == SE_Char6) 1287 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1288 else if (Bits == SE_Fixed7) 1289 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1290 1291 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1292 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1293 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1295 Abbv->Add(AbbrevOpToUse); 1296 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1297 1298 for (const auto P : M.getSourceFileName()) 1299 Vals.push_back((unsigned char)P); 1300 1301 // Emit the finished record. 1302 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1303 Vals.clear(); 1304 } 1305 1306 // Emit the global variable information. 1307 for (const GlobalVariable &GV : M.globals()) { 1308 unsigned AbbrevToUse = 0; 1309 1310 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1311 // linkage, alignment, section, visibility, threadlocal, 1312 // unnamed_addr, externally_initialized, dllstorageclass, 1313 // comdat, attributes, DSO_Local] 1314 Vals.push_back(addToStrtab(GV.getName())); 1315 Vals.push_back(GV.getName().size()); 1316 Vals.push_back(VE.getTypeID(GV.getValueType())); 1317 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1318 Vals.push_back(GV.isDeclaration() ? 0 : 1319 (VE.getValueID(GV.getInitializer()) + 1)); 1320 Vals.push_back(getEncodedLinkage(GV)); 1321 Vals.push_back(getEncodedAlign(GV.getAlign())); 1322 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1323 : 0); 1324 if (GV.isThreadLocal() || 1325 GV.getVisibility() != GlobalValue::DefaultVisibility || 1326 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1327 GV.isExternallyInitialized() || 1328 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1329 GV.hasComdat() || 1330 GV.hasAttributes() || 1331 GV.isDSOLocal() || 1332 GV.hasPartition()) { 1333 Vals.push_back(getEncodedVisibility(GV)); 1334 Vals.push_back(getEncodedThreadLocalMode(GV)); 1335 Vals.push_back(getEncodedUnnamedAddr(GV)); 1336 Vals.push_back(GV.isExternallyInitialized()); 1337 Vals.push_back(getEncodedDLLStorageClass(GV)); 1338 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1339 1340 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1341 Vals.push_back(VE.getAttributeListID(AL)); 1342 1343 Vals.push_back(GV.isDSOLocal()); 1344 Vals.push_back(addToStrtab(GV.getPartition())); 1345 Vals.push_back(GV.getPartition().size()); 1346 } else { 1347 AbbrevToUse = SimpleGVarAbbrev; 1348 } 1349 1350 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1351 Vals.clear(); 1352 } 1353 1354 // Emit the function proto information. 1355 for (const Function &F : M) { 1356 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1357 // linkage, paramattrs, alignment, section, visibility, gc, 1358 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1359 // prefixdata, personalityfn, DSO_Local, addrspace] 1360 Vals.push_back(addToStrtab(F.getName())); 1361 Vals.push_back(F.getName().size()); 1362 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1363 Vals.push_back(F.getCallingConv()); 1364 Vals.push_back(F.isDeclaration()); 1365 Vals.push_back(getEncodedLinkage(F)); 1366 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1367 Vals.push_back(getEncodedAlign(F.getAlign())); 1368 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1369 : 0); 1370 Vals.push_back(getEncodedVisibility(F)); 1371 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1372 Vals.push_back(getEncodedUnnamedAddr(F)); 1373 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1374 : 0); 1375 Vals.push_back(getEncodedDLLStorageClass(F)); 1376 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1377 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1378 : 0); 1379 Vals.push_back( 1380 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1381 1382 Vals.push_back(F.isDSOLocal()); 1383 Vals.push_back(F.getAddressSpace()); 1384 Vals.push_back(addToStrtab(F.getPartition())); 1385 Vals.push_back(F.getPartition().size()); 1386 1387 unsigned AbbrevToUse = 0; 1388 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1389 Vals.clear(); 1390 } 1391 1392 // Emit the alias information. 1393 for (const GlobalAlias &A : M.aliases()) { 1394 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1395 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1396 // DSO_Local] 1397 Vals.push_back(addToStrtab(A.getName())); 1398 Vals.push_back(A.getName().size()); 1399 Vals.push_back(VE.getTypeID(A.getValueType())); 1400 Vals.push_back(A.getType()->getAddressSpace()); 1401 Vals.push_back(VE.getValueID(A.getAliasee())); 1402 Vals.push_back(getEncodedLinkage(A)); 1403 Vals.push_back(getEncodedVisibility(A)); 1404 Vals.push_back(getEncodedDLLStorageClass(A)); 1405 Vals.push_back(getEncodedThreadLocalMode(A)); 1406 Vals.push_back(getEncodedUnnamedAddr(A)); 1407 Vals.push_back(A.isDSOLocal()); 1408 Vals.push_back(addToStrtab(A.getPartition())); 1409 Vals.push_back(A.getPartition().size()); 1410 1411 unsigned AbbrevToUse = 0; 1412 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1413 Vals.clear(); 1414 } 1415 1416 // Emit the ifunc information. 1417 for (const GlobalIFunc &I : M.ifuncs()) { 1418 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1419 // val#, linkage, visibility, DSO_Local] 1420 Vals.push_back(addToStrtab(I.getName())); 1421 Vals.push_back(I.getName().size()); 1422 Vals.push_back(VE.getTypeID(I.getValueType())); 1423 Vals.push_back(I.getType()->getAddressSpace()); 1424 Vals.push_back(VE.getValueID(I.getResolver())); 1425 Vals.push_back(getEncodedLinkage(I)); 1426 Vals.push_back(getEncodedVisibility(I)); 1427 Vals.push_back(I.isDSOLocal()); 1428 Vals.push_back(addToStrtab(I.getPartition())); 1429 Vals.push_back(I.getPartition().size()); 1430 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1431 Vals.clear(); 1432 } 1433 1434 writeValueSymbolTableForwardDecl(); 1435 } 1436 1437 static uint64_t getOptimizationFlags(const Value *V) { 1438 uint64_t Flags = 0; 1439 1440 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1441 if (OBO->hasNoSignedWrap()) 1442 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1443 if (OBO->hasNoUnsignedWrap()) 1444 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1445 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1446 if (PEO->isExact()) 1447 Flags |= 1 << bitc::PEO_EXACT; 1448 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1449 if (FPMO->hasAllowReassoc()) 1450 Flags |= bitc::AllowReassoc; 1451 if (FPMO->hasNoNaNs()) 1452 Flags |= bitc::NoNaNs; 1453 if (FPMO->hasNoInfs()) 1454 Flags |= bitc::NoInfs; 1455 if (FPMO->hasNoSignedZeros()) 1456 Flags |= bitc::NoSignedZeros; 1457 if (FPMO->hasAllowReciprocal()) 1458 Flags |= bitc::AllowReciprocal; 1459 if (FPMO->hasAllowContract()) 1460 Flags |= bitc::AllowContract; 1461 if (FPMO->hasApproxFunc()) 1462 Flags |= bitc::ApproxFunc; 1463 } 1464 1465 return Flags; 1466 } 1467 1468 void ModuleBitcodeWriter::writeValueAsMetadata( 1469 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1470 // Mimic an MDNode with a value as one operand. 1471 Value *V = MD->getValue(); 1472 Record.push_back(VE.getTypeID(V->getType())); 1473 Record.push_back(VE.getValueID(V)); 1474 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1475 Record.clear(); 1476 } 1477 1478 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1479 SmallVectorImpl<uint64_t> &Record, 1480 unsigned Abbrev) { 1481 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1482 Metadata *MD = N->getOperand(i); 1483 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1484 "Unexpected function-local metadata"); 1485 Record.push_back(VE.getMetadataOrNullID(MD)); 1486 } 1487 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1488 : bitc::METADATA_NODE, 1489 Record, Abbrev); 1490 Record.clear(); 1491 } 1492 1493 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1494 // Assume the column is usually under 128, and always output the inlined-at 1495 // location (it's never more expensive than building an array size 1). 1496 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1497 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1504 return Stream.EmitAbbrev(std::move(Abbv)); 1505 } 1506 1507 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1508 SmallVectorImpl<uint64_t> &Record, 1509 unsigned &Abbrev) { 1510 if (!Abbrev) 1511 Abbrev = createDILocationAbbrev(); 1512 1513 Record.push_back(N->isDistinct()); 1514 Record.push_back(N->getLine()); 1515 Record.push_back(N->getColumn()); 1516 Record.push_back(VE.getMetadataID(N->getScope())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1518 Record.push_back(N->isImplicitCode()); 1519 1520 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1521 Record.clear(); 1522 } 1523 1524 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1525 // Assume the column is usually under 128, and always output the inlined-at 1526 // location (it's never more expensive than building an array size 1). 1527 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1528 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1535 return Stream.EmitAbbrev(std::move(Abbv)); 1536 } 1537 1538 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1539 SmallVectorImpl<uint64_t> &Record, 1540 unsigned &Abbrev) { 1541 if (!Abbrev) 1542 Abbrev = createGenericDINodeAbbrev(); 1543 1544 Record.push_back(N->isDistinct()); 1545 Record.push_back(N->getTag()); 1546 Record.push_back(0); // Per-tag version field; unused for now. 1547 1548 for (auto &I : N->operands()) 1549 Record.push_back(VE.getMetadataOrNullID(I)); 1550 1551 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1552 Record.clear(); 1553 } 1554 1555 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1556 SmallVectorImpl<uint64_t> &Record, 1557 unsigned Abbrev) { 1558 const uint64_t Version = 2 << 1; 1559 Record.push_back((uint64_t)N->isDistinct() | Version); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1562 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1564 1565 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1566 Record.clear(); 1567 } 1568 1569 void ModuleBitcodeWriter::writeDIGenericSubrange( 1570 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1571 unsigned Abbrev) { 1572 Record.push_back((uint64_t)N->isDistinct()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1574 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1575 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1576 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1577 1578 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1579 Record.clear(); 1580 } 1581 1582 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1583 if ((int64_t)V >= 0) 1584 Vals.push_back(V << 1); 1585 else 1586 Vals.push_back((-V << 1) | 1); 1587 } 1588 1589 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1590 // We have an arbitrary precision integer value to write whose 1591 // bit width is > 64. However, in canonical unsigned integer 1592 // format it is likely that the high bits are going to be zero. 1593 // So, we only write the number of active words. 1594 unsigned NumWords = A.getActiveWords(); 1595 const uint64_t *RawData = A.getRawData(); 1596 for (unsigned i = 0; i < NumWords; i++) 1597 emitSignedInt64(Vals, RawData[i]); 1598 } 1599 1600 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1601 SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 const uint64_t IsBigInt = 1 << 2; 1604 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1605 Record.push_back(N->getValue().getBitWidth()); 1606 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1607 emitWideAPInt(Record, N->getValue()); 1608 1609 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1610 Record.clear(); 1611 } 1612 1613 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1614 SmallVectorImpl<uint64_t> &Record, 1615 unsigned Abbrev) { 1616 Record.push_back(N->isDistinct()); 1617 Record.push_back(N->getTag()); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1619 Record.push_back(N->getSizeInBits()); 1620 Record.push_back(N->getAlignInBits()); 1621 Record.push_back(N->getEncoding()); 1622 Record.push_back(N->getFlags()); 1623 1624 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1625 Record.clear(); 1626 } 1627 1628 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1629 SmallVectorImpl<uint64_t> &Record, 1630 unsigned Abbrev) { 1631 Record.push_back(N->isDistinct()); 1632 Record.push_back(N->getTag()); 1633 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1634 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1635 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1636 Record.push_back(N->getSizeInBits()); 1637 Record.push_back(N->getAlignInBits()); 1638 Record.push_back(N->getEncoding()); 1639 1640 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1641 Record.clear(); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1645 SmallVectorImpl<uint64_t> &Record, 1646 unsigned Abbrev) { 1647 Record.push_back(N->isDistinct()); 1648 Record.push_back(N->getTag()); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1651 Record.push_back(N->getLine()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1653 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1654 Record.push_back(N->getSizeInBits()); 1655 Record.push_back(N->getAlignInBits()); 1656 Record.push_back(N->getOffsetInBits()); 1657 Record.push_back(N->getFlags()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1659 1660 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1661 // that there is no DWARF address space associated with DIDerivedType. 1662 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1663 Record.push_back(*DWARFAddressSpace + 1); 1664 else 1665 Record.push_back(0); 1666 1667 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void ModuleBitcodeWriter::writeDICompositeType( 1672 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 const unsigned IsNotUsedInOldTypeRef = 0x2; 1675 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1676 Record.push_back(N->getTag()); 1677 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1679 Record.push_back(N->getLine()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1682 Record.push_back(N->getSizeInBits()); 1683 Record.push_back(N->getAlignInBits()); 1684 Record.push_back(N->getOffsetInBits()); 1685 Record.push_back(N->getFlags()); 1686 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1687 Record.push_back(N->getRuntimeLang()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1696 1697 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1698 Record.clear(); 1699 } 1700 1701 void ModuleBitcodeWriter::writeDISubroutineType( 1702 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1703 unsigned Abbrev) { 1704 const unsigned HasNoOldTypeRefs = 0x2; 1705 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1706 Record.push_back(N->getFlags()); 1707 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1708 Record.push_back(N->getCC()); 1709 1710 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1711 Record.clear(); 1712 } 1713 1714 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1715 SmallVectorImpl<uint64_t> &Record, 1716 unsigned Abbrev) { 1717 Record.push_back(N->isDistinct()); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1720 if (N->getRawChecksum()) { 1721 Record.push_back(N->getRawChecksum()->Kind); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1723 } else { 1724 // Maintain backwards compatibility with the old internal representation of 1725 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1726 Record.push_back(0); 1727 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1728 } 1729 auto Source = N->getRawSource(); 1730 if (Source) 1731 Record.push_back(VE.getMetadataOrNullID(*Source)); 1732 1733 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1734 Record.clear(); 1735 } 1736 1737 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1738 SmallVectorImpl<uint64_t> &Record, 1739 unsigned Abbrev) { 1740 assert(N->isDistinct() && "Expected distinct compile units"); 1741 Record.push_back(/* IsDistinct */ true); 1742 Record.push_back(N->getSourceLanguage()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1745 Record.push_back(N->isOptimized()); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1747 Record.push_back(N->getRuntimeVersion()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1749 Record.push_back(N->getEmissionKind()); 1750 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1752 Record.push_back(/* subprograms */ 0); 1753 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1755 Record.push_back(N->getDWOId()); 1756 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1757 Record.push_back(N->getSplitDebugInlining()); 1758 Record.push_back(N->getDebugInfoForProfiling()); 1759 Record.push_back((unsigned)N->getNameTableKind()); 1760 Record.push_back(N->getRangesBaseAddress()); 1761 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1762 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1763 1764 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1765 Record.clear(); 1766 } 1767 1768 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1769 SmallVectorImpl<uint64_t> &Record, 1770 unsigned Abbrev) { 1771 const uint64_t HasUnitFlag = 1 << 1; 1772 const uint64_t HasSPFlagsFlag = 1 << 2; 1773 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1774 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1775 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1778 Record.push_back(N->getLine()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1780 Record.push_back(N->getScopeLine()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1782 Record.push_back(N->getSPFlags()); 1783 Record.push_back(N->getVirtualIndex()); 1784 Record.push_back(N->getFlags()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1789 Record.push_back(N->getThisAdjustment()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1791 1792 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1793 Record.clear(); 1794 } 1795 1796 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1797 SmallVectorImpl<uint64_t> &Record, 1798 unsigned Abbrev) { 1799 Record.push_back(N->isDistinct()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1802 Record.push_back(N->getLine()); 1803 Record.push_back(N->getColumn()); 1804 1805 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1806 Record.clear(); 1807 } 1808 1809 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1810 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1811 unsigned Abbrev) { 1812 Record.push_back(N->isDistinct()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1815 Record.push_back(N->getDiscriminator()); 1816 1817 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1818 Record.clear(); 1819 } 1820 1821 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1822 SmallVectorImpl<uint64_t> &Record, 1823 unsigned Abbrev) { 1824 Record.push_back(N->isDistinct()); 1825 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1829 Record.push_back(N->getLineNo()); 1830 1831 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1832 Record.clear(); 1833 } 1834 1835 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1836 SmallVectorImpl<uint64_t> &Record, 1837 unsigned Abbrev) { 1838 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1839 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1840 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1841 1842 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1843 Record.clear(); 1844 } 1845 1846 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1847 SmallVectorImpl<uint64_t> &Record, 1848 unsigned Abbrev) { 1849 Record.push_back(N->isDistinct()); 1850 Record.push_back(N->getMacinfoType()); 1851 Record.push_back(N->getLine()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1854 1855 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1856 Record.clear(); 1857 } 1858 1859 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1860 SmallVectorImpl<uint64_t> &Record, 1861 unsigned Abbrev) { 1862 Record.push_back(N->isDistinct()); 1863 Record.push_back(N->getMacinfoType()); 1864 Record.push_back(N->getLine()); 1865 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1867 1868 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1869 Record.clear(); 1870 } 1871 1872 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1873 SmallVectorImpl<uint64_t> &Record, 1874 unsigned Abbrev) { 1875 Record.reserve(N->getArgs().size()); 1876 for (ValueAsMetadata *MD : N->getArgs()) 1877 Record.push_back(VE.getMetadataOrNullID(MD)); 1878 1879 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1880 Record.clear(); 1881 } 1882 1883 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1884 SmallVectorImpl<uint64_t> &Record, 1885 unsigned Abbrev) { 1886 Record.push_back(N->isDistinct()); 1887 for (auto &I : N->operands()) 1888 Record.push_back(VE.getMetadataOrNullID(I)); 1889 Record.push_back(N->getLineNo()); 1890 Record.push_back(N->getIsDecl()); 1891 1892 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1893 Record.clear(); 1894 } 1895 1896 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1897 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1898 unsigned Abbrev) { 1899 Record.push_back(N->isDistinct()); 1900 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1901 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1902 Record.push_back(N->isDefault()); 1903 1904 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1905 Record.clear(); 1906 } 1907 1908 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1909 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1910 unsigned Abbrev) { 1911 Record.push_back(N->isDistinct()); 1912 Record.push_back(N->getTag()); 1913 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1914 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1915 Record.push_back(N->isDefault()); 1916 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1917 1918 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1919 Record.clear(); 1920 } 1921 1922 void ModuleBitcodeWriter::writeDIGlobalVariable( 1923 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1924 unsigned Abbrev) { 1925 const uint64_t Version = 2 << 1; 1926 Record.push_back((uint64_t)N->isDistinct() | Version); 1927 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1931 Record.push_back(N->getLine()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1933 Record.push_back(N->isLocalToUnit()); 1934 Record.push_back(N->isDefinition()); 1935 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1937 Record.push_back(N->getAlignInBits()); 1938 1939 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1940 Record.clear(); 1941 } 1942 1943 void ModuleBitcodeWriter::writeDILocalVariable( 1944 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1945 unsigned Abbrev) { 1946 // In order to support all possible bitcode formats in BitcodeReader we need 1947 // to distinguish the following cases: 1948 // 1) Record has no artificial tag (Record[1]), 1949 // has no obsolete inlinedAt field (Record[9]). 1950 // In this case Record size will be 8, HasAlignment flag is false. 1951 // 2) Record has artificial tag (Record[1]), 1952 // has no obsolete inlignedAt field (Record[9]). 1953 // In this case Record size will be 9, HasAlignment flag is false. 1954 // 3) Record has both artificial tag (Record[1]) and 1955 // obsolete inlignedAt field (Record[9]). 1956 // In this case Record size will be 10, HasAlignment flag is false. 1957 // 4) Record has neither artificial tag, nor inlignedAt field, but 1958 // HasAlignment flag is true and Record[8] contains alignment value. 1959 const uint64_t HasAlignmentFlag = 1 << 1; 1960 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1961 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1964 Record.push_back(N->getLine()); 1965 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1966 Record.push_back(N->getArg()); 1967 Record.push_back(N->getFlags()); 1968 Record.push_back(N->getAlignInBits()); 1969 1970 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1971 Record.clear(); 1972 } 1973 1974 void ModuleBitcodeWriter::writeDILabel( 1975 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1976 unsigned Abbrev) { 1977 Record.push_back((uint64_t)N->isDistinct()); 1978 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1979 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1980 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1981 Record.push_back(N->getLine()); 1982 1983 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1984 Record.clear(); 1985 } 1986 1987 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1988 SmallVectorImpl<uint64_t> &Record, 1989 unsigned Abbrev) { 1990 Record.reserve(N->getElements().size() + 1); 1991 const uint64_t Version = 3 << 1; 1992 Record.push_back((uint64_t)N->isDistinct() | Version); 1993 Record.append(N->elements_begin(), N->elements_end()); 1994 1995 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1996 Record.clear(); 1997 } 1998 1999 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2000 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2001 unsigned Abbrev) { 2002 Record.push_back(N->isDistinct()); 2003 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2004 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2005 2006 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2007 Record.clear(); 2008 } 2009 2010 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2011 SmallVectorImpl<uint64_t> &Record, 2012 unsigned Abbrev) { 2013 Record.push_back(N->isDistinct()); 2014 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2016 Record.push_back(N->getLine()); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2019 Record.push_back(N->getAttributes()); 2020 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2021 2022 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2023 Record.clear(); 2024 } 2025 2026 void ModuleBitcodeWriter::writeDIImportedEntity( 2027 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2028 unsigned Abbrev) { 2029 Record.push_back(N->isDistinct()); 2030 Record.push_back(N->getTag()); 2031 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2032 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2033 Record.push_back(N->getLine()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2036 2037 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2038 Record.clear(); 2039 } 2040 2041 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2042 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2043 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2046 return Stream.EmitAbbrev(std::move(Abbv)); 2047 } 2048 2049 void ModuleBitcodeWriter::writeNamedMetadata( 2050 SmallVectorImpl<uint64_t> &Record) { 2051 if (M.named_metadata_empty()) 2052 return; 2053 2054 unsigned Abbrev = createNamedMetadataAbbrev(); 2055 for (const NamedMDNode &NMD : M.named_metadata()) { 2056 // Write name. 2057 StringRef Str = NMD.getName(); 2058 Record.append(Str.bytes_begin(), Str.bytes_end()); 2059 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2060 Record.clear(); 2061 2062 // Write named metadata operands. 2063 for (const MDNode *N : NMD.operands()) 2064 Record.push_back(VE.getMetadataID(N)); 2065 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2066 Record.clear(); 2067 } 2068 } 2069 2070 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2071 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2072 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2076 return Stream.EmitAbbrev(std::move(Abbv)); 2077 } 2078 2079 /// Write out a record for MDString. 2080 /// 2081 /// All the metadata strings in a metadata block are emitted in a single 2082 /// record. The sizes and strings themselves are shoved into a blob. 2083 void ModuleBitcodeWriter::writeMetadataStrings( 2084 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2085 if (Strings.empty()) 2086 return; 2087 2088 // Start the record with the number of strings. 2089 Record.push_back(bitc::METADATA_STRINGS); 2090 Record.push_back(Strings.size()); 2091 2092 // Emit the sizes of the strings in the blob. 2093 SmallString<256> Blob; 2094 { 2095 BitstreamWriter W(Blob); 2096 for (const Metadata *MD : Strings) 2097 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2098 W.FlushToWord(); 2099 } 2100 2101 // Add the offset to the strings to the record. 2102 Record.push_back(Blob.size()); 2103 2104 // Add the strings to the blob. 2105 for (const Metadata *MD : Strings) 2106 Blob.append(cast<MDString>(MD)->getString()); 2107 2108 // Emit the final record. 2109 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2110 Record.clear(); 2111 } 2112 2113 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2114 enum MetadataAbbrev : unsigned { 2115 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2116 #include "llvm/IR/Metadata.def" 2117 LastPlusOne 2118 }; 2119 2120 void ModuleBitcodeWriter::writeMetadataRecords( 2121 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2122 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2123 if (MDs.empty()) 2124 return; 2125 2126 // Initialize MDNode abbreviations. 2127 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2128 #include "llvm/IR/Metadata.def" 2129 2130 for (const Metadata *MD : MDs) { 2131 if (IndexPos) 2132 IndexPos->push_back(Stream.GetCurrentBitNo()); 2133 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2134 assert(N->isResolved() && "Expected forward references to be resolved"); 2135 2136 switch (N->getMetadataID()) { 2137 default: 2138 llvm_unreachable("Invalid MDNode subclass"); 2139 #define HANDLE_MDNODE_LEAF(CLASS) \ 2140 case Metadata::CLASS##Kind: \ 2141 if (MDAbbrevs) \ 2142 write##CLASS(cast<CLASS>(N), Record, \ 2143 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2144 else \ 2145 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2146 continue; 2147 #include "llvm/IR/Metadata.def" 2148 } 2149 } 2150 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2151 } 2152 } 2153 2154 void ModuleBitcodeWriter::writeModuleMetadata() { 2155 if (!VE.hasMDs() && M.named_metadata_empty()) 2156 return; 2157 2158 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2159 SmallVector<uint64_t, 64> Record; 2160 2161 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2162 // block and load any metadata. 2163 std::vector<unsigned> MDAbbrevs; 2164 2165 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2166 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2167 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2168 createGenericDINodeAbbrev(); 2169 2170 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2171 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2174 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2175 2176 Abbv = std::make_shared<BitCodeAbbrev>(); 2177 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2180 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2181 2182 // Emit MDStrings together upfront. 2183 writeMetadataStrings(VE.getMDStrings(), Record); 2184 2185 // We only emit an index for the metadata record if we have more than a given 2186 // (naive) threshold of metadatas, otherwise it is not worth it. 2187 if (VE.getNonMDStrings().size() > IndexThreshold) { 2188 // Write a placeholder value in for the offset of the metadata index, 2189 // which is written after the records, so that it can include 2190 // the offset of each entry. The placeholder offset will be 2191 // updated after all records are emitted. 2192 uint64_t Vals[] = {0, 0}; 2193 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2194 } 2195 2196 // Compute and save the bit offset to the current position, which will be 2197 // patched when we emit the index later. We can simply subtract the 64-bit 2198 // fixed size from the current bit number to get the location to backpatch. 2199 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2200 2201 // This index will contain the bitpos for each individual record. 2202 std::vector<uint64_t> IndexPos; 2203 IndexPos.reserve(VE.getNonMDStrings().size()); 2204 2205 // Write all the records 2206 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2207 2208 if (VE.getNonMDStrings().size() > IndexThreshold) { 2209 // Now that we have emitted all the records we will emit the index. But 2210 // first 2211 // backpatch the forward reference so that the reader can skip the records 2212 // efficiently. 2213 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2214 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2215 2216 // Delta encode the index. 2217 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2218 for (auto &Elt : IndexPos) { 2219 auto EltDelta = Elt - PreviousValue; 2220 PreviousValue = Elt; 2221 Elt = EltDelta; 2222 } 2223 // Emit the index record. 2224 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2225 IndexPos.clear(); 2226 } 2227 2228 // Write the named metadata now. 2229 writeNamedMetadata(Record); 2230 2231 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2232 SmallVector<uint64_t, 4> Record; 2233 Record.push_back(VE.getValueID(&GO)); 2234 pushGlobalMetadataAttachment(Record, GO); 2235 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2236 }; 2237 for (const Function &F : M) 2238 if (F.isDeclaration() && F.hasMetadata()) 2239 AddDeclAttachedMetadata(F); 2240 // FIXME: Only store metadata for declarations here, and move data for global 2241 // variable definitions to a separate block (PR28134). 2242 for (const GlobalVariable &GV : M.globals()) 2243 if (GV.hasMetadata()) 2244 AddDeclAttachedMetadata(GV); 2245 2246 Stream.ExitBlock(); 2247 } 2248 2249 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2250 if (!VE.hasMDs()) 2251 return; 2252 2253 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2254 SmallVector<uint64_t, 64> Record; 2255 writeMetadataStrings(VE.getMDStrings(), Record); 2256 writeMetadataRecords(VE.getNonMDStrings(), Record); 2257 Stream.ExitBlock(); 2258 } 2259 2260 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2261 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2262 // [n x [id, mdnode]] 2263 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2264 GO.getAllMetadata(MDs); 2265 for (const auto &I : MDs) { 2266 Record.push_back(I.first); 2267 Record.push_back(VE.getMetadataID(I.second)); 2268 } 2269 } 2270 2271 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2272 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2273 2274 SmallVector<uint64_t, 64> Record; 2275 2276 if (F.hasMetadata()) { 2277 pushGlobalMetadataAttachment(Record, F); 2278 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2279 Record.clear(); 2280 } 2281 2282 // Write metadata attachments 2283 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2284 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2285 for (const BasicBlock &BB : F) 2286 for (const Instruction &I : BB) { 2287 MDs.clear(); 2288 I.getAllMetadataOtherThanDebugLoc(MDs); 2289 2290 // If no metadata, ignore instruction. 2291 if (MDs.empty()) continue; 2292 2293 Record.push_back(VE.getInstructionID(&I)); 2294 2295 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2296 Record.push_back(MDs[i].first); 2297 Record.push_back(VE.getMetadataID(MDs[i].second)); 2298 } 2299 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2300 Record.clear(); 2301 } 2302 2303 Stream.ExitBlock(); 2304 } 2305 2306 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2307 SmallVector<uint64_t, 64> Record; 2308 2309 // Write metadata kinds 2310 // METADATA_KIND - [n x [id, name]] 2311 SmallVector<StringRef, 8> Names; 2312 M.getMDKindNames(Names); 2313 2314 if (Names.empty()) return; 2315 2316 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2317 2318 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2319 Record.push_back(MDKindID); 2320 StringRef KName = Names[MDKindID]; 2321 Record.append(KName.begin(), KName.end()); 2322 2323 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2324 Record.clear(); 2325 } 2326 2327 Stream.ExitBlock(); 2328 } 2329 2330 void ModuleBitcodeWriter::writeOperandBundleTags() { 2331 // Write metadata kinds 2332 // 2333 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2334 // 2335 // OPERAND_BUNDLE_TAG - [strchr x N] 2336 2337 SmallVector<StringRef, 8> Tags; 2338 M.getOperandBundleTags(Tags); 2339 2340 if (Tags.empty()) 2341 return; 2342 2343 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2344 2345 SmallVector<uint64_t, 64> Record; 2346 2347 for (auto Tag : Tags) { 2348 Record.append(Tag.begin(), Tag.end()); 2349 2350 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2351 Record.clear(); 2352 } 2353 2354 Stream.ExitBlock(); 2355 } 2356 2357 void ModuleBitcodeWriter::writeSyncScopeNames() { 2358 SmallVector<StringRef, 8> SSNs; 2359 M.getContext().getSyncScopeNames(SSNs); 2360 if (SSNs.empty()) 2361 return; 2362 2363 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2364 2365 SmallVector<uint64_t, 64> Record; 2366 for (auto SSN : SSNs) { 2367 Record.append(SSN.begin(), SSN.end()); 2368 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2369 Record.clear(); 2370 } 2371 2372 Stream.ExitBlock(); 2373 } 2374 2375 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2376 bool isGlobal) { 2377 if (FirstVal == LastVal) return; 2378 2379 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2380 2381 unsigned AggregateAbbrev = 0; 2382 unsigned String8Abbrev = 0; 2383 unsigned CString7Abbrev = 0; 2384 unsigned CString6Abbrev = 0; 2385 // If this is a constant pool for the module, emit module-specific abbrevs. 2386 if (isGlobal) { 2387 // Abbrev for CST_CODE_AGGREGATE. 2388 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2389 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2392 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2393 2394 // Abbrev for CST_CODE_STRING. 2395 Abbv = std::make_shared<BitCodeAbbrev>(); 2396 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2399 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2400 // Abbrev for CST_CODE_CSTRING. 2401 Abbv = std::make_shared<BitCodeAbbrev>(); 2402 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2405 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2406 // Abbrev for CST_CODE_CSTRING. 2407 Abbv = std::make_shared<BitCodeAbbrev>(); 2408 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2411 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2412 } 2413 2414 SmallVector<uint64_t, 64> Record; 2415 2416 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2417 Type *LastTy = nullptr; 2418 for (unsigned i = FirstVal; i != LastVal; ++i) { 2419 const Value *V = Vals[i].first; 2420 // If we need to switch types, do so now. 2421 if (V->getType() != LastTy) { 2422 LastTy = V->getType(); 2423 Record.push_back(VE.getTypeID(LastTy)); 2424 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2425 CONSTANTS_SETTYPE_ABBREV); 2426 Record.clear(); 2427 } 2428 2429 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2430 Record.push_back(unsigned(IA->hasSideEffects()) | 2431 unsigned(IA->isAlignStack()) << 1 | 2432 unsigned(IA->getDialect()&1) << 2); 2433 2434 // Add the asm string. 2435 const std::string &AsmStr = IA->getAsmString(); 2436 Record.push_back(AsmStr.size()); 2437 Record.append(AsmStr.begin(), AsmStr.end()); 2438 2439 // Add the constraint string. 2440 const std::string &ConstraintStr = IA->getConstraintString(); 2441 Record.push_back(ConstraintStr.size()); 2442 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2443 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2444 Record.clear(); 2445 continue; 2446 } 2447 const Constant *C = cast<Constant>(V); 2448 unsigned Code = -1U; 2449 unsigned AbbrevToUse = 0; 2450 if (C->isNullValue()) { 2451 Code = bitc::CST_CODE_NULL; 2452 } else if (isa<PoisonValue>(C)) { 2453 Code = bitc::CST_CODE_POISON; 2454 } else if (isa<UndefValue>(C)) { 2455 Code = bitc::CST_CODE_UNDEF; 2456 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2457 if (IV->getBitWidth() <= 64) { 2458 uint64_t V = IV->getSExtValue(); 2459 emitSignedInt64(Record, V); 2460 Code = bitc::CST_CODE_INTEGER; 2461 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2462 } else { // Wide integers, > 64 bits in size. 2463 emitWideAPInt(Record, IV->getValue()); 2464 Code = bitc::CST_CODE_WIDE_INTEGER; 2465 } 2466 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2467 Code = bitc::CST_CODE_FLOAT; 2468 Type *Ty = CFP->getType(); 2469 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2470 Ty->isDoubleTy()) { 2471 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2472 } else if (Ty->isX86_FP80Ty()) { 2473 // api needed to prevent premature destruction 2474 // bits are not in the same order as a normal i80 APInt, compensate. 2475 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2476 const uint64_t *p = api.getRawData(); 2477 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2478 Record.push_back(p[0] & 0xffffLL); 2479 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2480 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2481 const uint64_t *p = api.getRawData(); 2482 Record.push_back(p[0]); 2483 Record.push_back(p[1]); 2484 } else { 2485 assert(0 && "Unknown FP type!"); 2486 } 2487 } else if (isa<ConstantDataSequential>(C) && 2488 cast<ConstantDataSequential>(C)->isString()) { 2489 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2490 // Emit constant strings specially. 2491 unsigned NumElts = Str->getNumElements(); 2492 // If this is a null-terminated string, use the denser CSTRING encoding. 2493 if (Str->isCString()) { 2494 Code = bitc::CST_CODE_CSTRING; 2495 --NumElts; // Don't encode the null, which isn't allowed by char6. 2496 } else { 2497 Code = bitc::CST_CODE_STRING; 2498 AbbrevToUse = String8Abbrev; 2499 } 2500 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2501 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2502 for (unsigned i = 0; i != NumElts; ++i) { 2503 unsigned char V = Str->getElementAsInteger(i); 2504 Record.push_back(V); 2505 isCStr7 &= (V & 128) == 0; 2506 if (isCStrChar6) 2507 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2508 } 2509 2510 if (isCStrChar6) 2511 AbbrevToUse = CString6Abbrev; 2512 else if (isCStr7) 2513 AbbrevToUse = CString7Abbrev; 2514 } else if (const ConstantDataSequential *CDS = 2515 dyn_cast<ConstantDataSequential>(C)) { 2516 Code = bitc::CST_CODE_DATA; 2517 Type *EltTy = CDS->getElementType(); 2518 if (isa<IntegerType>(EltTy)) { 2519 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2520 Record.push_back(CDS->getElementAsInteger(i)); 2521 } else { 2522 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2523 Record.push_back( 2524 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2525 } 2526 } else if (isa<ConstantAggregate>(C)) { 2527 Code = bitc::CST_CODE_AGGREGATE; 2528 for (const Value *Op : C->operands()) 2529 Record.push_back(VE.getValueID(Op)); 2530 AbbrevToUse = AggregateAbbrev; 2531 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2532 switch (CE->getOpcode()) { 2533 default: 2534 if (Instruction::isCast(CE->getOpcode())) { 2535 Code = bitc::CST_CODE_CE_CAST; 2536 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2537 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2538 Record.push_back(VE.getValueID(C->getOperand(0))); 2539 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2540 } else { 2541 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2542 Code = bitc::CST_CODE_CE_BINOP; 2543 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2544 Record.push_back(VE.getValueID(C->getOperand(0))); 2545 Record.push_back(VE.getValueID(C->getOperand(1))); 2546 uint64_t Flags = getOptimizationFlags(CE); 2547 if (Flags != 0) 2548 Record.push_back(Flags); 2549 } 2550 break; 2551 case Instruction::FNeg: { 2552 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2553 Code = bitc::CST_CODE_CE_UNOP; 2554 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2555 Record.push_back(VE.getValueID(C->getOperand(0))); 2556 uint64_t Flags = getOptimizationFlags(CE); 2557 if (Flags != 0) 2558 Record.push_back(Flags); 2559 break; 2560 } 2561 case Instruction::GetElementPtr: { 2562 Code = bitc::CST_CODE_CE_GEP; 2563 const auto *GO = cast<GEPOperator>(C); 2564 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2565 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2566 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2567 Record.push_back((*Idx << 1) | GO->isInBounds()); 2568 } else if (GO->isInBounds()) 2569 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2570 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2571 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2572 Record.push_back(VE.getValueID(C->getOperand(i))); 2573 } 2574 break; 2575 } 2576 case Instruction::Select: 2577 Code = bitc::CST_CODE_CE_SELECT; 2578 Record.push_back(VE.getValueID(C->getOperand(0))); 2579 Record.push_back(VE.getValueID(C->getOperand(1))); 2580 Record.push_back(VE.getValueID(C->getOperand(2))); 2581 break; 2582 case Instruction::ExtractElement: 2583 Code = bitc::CST_CODE_CE_EXTRACTELT; 2584 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2585 Record.push_back(VE.getValueID(C->getOperand(0))); 2586 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2587 Record.push_back(VE.getValueID(C->getOperand(1))); 2588 break; 2589 case Instruction::InsertElement: 2590 Code = bitc::CST_CODE_CE_INSERTELT; 2591 Record.push_back(VE.getValueID(C->getOperand(0))); 2592 Record.push_back(VE.getValueID(C->getOperand(1))); 2593 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2594 Record.push_back(VE.getValueID(C->getOperand(2))); 2595 break; 2596 case Instruction::ShuffleVector: 2597 // If the return type and argument types are the same, this is a 2598 // standard shufflevector instruction. If the types are different, 2599 // then the shuffle is widening or truncating the input vectors, and 2600 // the argument type must also be encoded. 2601 if (C->getType() == C->getOperand(0)->getType()) { 2602 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2603 } else { 2604 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2605 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2606 } 2607 Record.push_back(VE.getValueID(C->getOperand(0))); 2608 Record.push_back(VE.getValueID(C->getOperand(1))); 2609 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2610 break; 2611 case Instruction::ICmp: 2612 case Instruction::FCmp: 2613 Code = bitc::CST_CODE_CE_CMP; 2614 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2615 Record.push_back(VE.getValueID(C->getOperand(0))); 2616 Record.push_back(VE.getValueID(C->getOperand(1))); 2617 Record.push_back(CE->getPredicate()); 2618 break; 2619 } 2620 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2621 Code = bitc::CST_CODE_BLOCKADDRESS; 2622 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2623 Record.push_back(VE.getValueID(BA->getFunction())); 2624 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2625 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2626 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2627 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2628 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2629 } else { 2630 #ifndef NDEBUG 2631 C->dump(); 2632 #endif 2633 llvm_unreachable("Unknown constant!"); 2634 } 2635 Stream.EmitRecord(Code, Record, AbbrevToUse); 2636 Record.clear(); 2637 } 2638 2639 Stream.ExitBlock(); 2640 } 2641 2642 void ModuleBitcodeWriter::writeModuleConstants() { 2643 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2644 2645 // Find the first constant to emit, which is the first non-globalvalue value. 2646 // We know globalvalues have been emitted by WriteModuleInfo. 2647 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2648 if (!isa<GlobalValue>(Vals[i].first)) { 2649 writeConstants(i, Vals.size(), true); 2650 return; 2651 } 2652 } 2653 } 2654 2655 /// pushValueAndType - The file has to encode both the value and type id for 2656 /// many values, because we need to know what type to create for forward 2657 /// references. However, most operands are not forward references, so this type 2658 /// field is not needed. 2659 /// 2660 /// This function adds V's value ID to Vals. If the value ID is higher than the 2661 /// instruction ID, then it is a forward reference, and it also includes the 2662 /// type ID. The value ID that is written is encoded relative to the InstID. 2663 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2664 SmallVectorImpl<unsigned> &Vals) { 2665 unsigned ValID = VE.getValueID(V); 2666 // Make encoding relative to the InstID. 2667 Vals.push_back(InstID - ValID); 2668 if (ValID >= InstID) { 2669 Vals.push_back(VE.getTypeID(V->getType())); 2670 return true; 2671 } 2672 return false; 2673 } 2674 2675 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2676 unsigned InstID) { 2677 SmallVector<unsigned, 64> Record; 2678 LLVMContext &C = CS.getContext(); 2679 2680 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2681 const auto &Bundle = CS.getOperandBundleAt(i); 2682 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2683 2684 for (auto &Input : Bundle.Inputs) 2685 pushValueAndType(Input, InstID, Record); 2686 2687 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2688 Record.clear(); 2689 } 2690 } 2691 2692 /// pushValue - Like pushValueAndType, but where the type of the value is 2693 /// omitted (perhaps it was already encoded in an earlier operand). 2694 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2695 SmallVectorImpl<unsigned> &Vals) { 2696 unsigned ValID = VE.getValueID(V); 2697 Vals.push_back(InstID - ValID); 2698 } 2699 2700 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2701 SmallVectorImpl<uint64_t> &Vals) { 2702 unsigned ValID = VE.getValueID(V); 2703 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2704 emitSignedInt64(Vals, diff); 2705 } 2706 2707 /// WriteInstruction - Emit an instruction to the specified stream. 2708 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2709 unsigned InstID, 2710 SmallVectorImpl<unsigned> &Vals) { 2711 unsigned Code = 0; 2712 unsigned AbbrevToUse = 0; 2713 VE.setInstructionID(&I); 2714 switch (I.getOpcode()) { 2715 default: 2716 if (Instruction::isCast(I.getOpcode())) { 2717 Code = bitc::FUNC_CODE_INST_CAST; 2718 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2719 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2720 Vals.push_back(VE.getTypeID(I.getType())); 2721 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2722 } else { 2723 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2724 Code = bitc::FUNC_CODE_INST_BINOP; 2725 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2726 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2727 pushValue(I.getOperand(1), InstID, Vals); 2728 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2729 uint64_t Flags = getOptimizationFlags(&I); 2730 if (Flags != 0) { 2731 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2732 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2733 Vals.push_back(Flags); 2734 } 2735 } 2736 break; 2737 case Instruction::FNeg: { 2738 Code = bitc::FUNC_CODE_INST_UNOP; 2739 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2740 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2741 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2742 uint64_t Flags = getOptimizationFlags(&I); 2743 if (Flags != 0) { 2744 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2745 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2746 Vals.push_back(Flags); 2747 } 2748 break; 2749 } 2750 case Instruction::GetElementPtr: { 2751 Code = bitc::FUNC_CODE_INST_GEP; 2752 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2753 auto &GEPInst = cast<GetElementPtrInst>(I); 2754 Vals.push_back(GEPInst.isInBounds()); 2755 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2756 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2757 pushValueAndType(I.getOperand(i), InstID, Vals); 2758 break; 2759 } 2760 case Instruction::ExtractValue: { 2761 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2762 pushValueAndType(I.getOperand(0), InstID, Vals); 2763 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2764 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2765 break; 2766 } 2767 case Instruction::InsertValue: { 2768 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2769 pushValueAndType(I.getOperand(0), InstID, Vals); 2770 pushValueAndType(I.getOperand(1), InstID, Vals); 2771 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2772 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2773 break; 2774 } 2775 case Instruction::Select: { 2776 Code = bitc::FUNC_CODE_INST_VSELECT; 2777 pushValueAndType(I.getOperand(1), InstID, Vals); 2778 pushValue(I.getOperand(2), InstID, Vals); 2779 pushValueAndType(I.getOperand(0), InstID, Vals); 2780 uint64_t Flags = getOptimizationFlags(&I); 2781 if (Flags != 0) 2782 Vals.push_back(Flags); 2783 break; 2784 } 2785 case Instruction::ExtractElement: 2786 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2787 pushValueAndType(I.getOperand(0), InstID, Vals); 2788 pushValueAndType(I.getOperand(1), InstID, Vals); 2789 break; 2790 case Instruction::InsertElement: 2791 Code = bitc::FUNC_CODE_INST_INSERTELT; 2792 pushValueAndType(I.getOperand(0), InstID, Vals); 2793 pushValue(I.getOperand(1), InstID, Vals); 2794 pushValueAndType(I.getOperand(2), InstID, Vals); 2795 break; 2796 case Instruction::ShuffleVector: 2797 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2798 pushValueAndType(I.getOperand(0), InstID, Vals); 2799 pushValue(I.getOperand(1), InstID, Vals); 2800 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2801 Vals); 2802 break; 2803 case Instruction::ICmp: 2804 case Instruction::FCmp: { 2805 // compare returning Int1Ty or vector of Int1Ty 2806 Code = bitc::FUNC_CODE_INST_CMP2; 2807 pushValueAndType(I.getOperand(0), InstID, Vals); 2808 pushValue(I.getOperand(1), InstID, Vals); 2809 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2810 uint64_t Flags = getOptimizationFlags(&I); 2811 if (Flags != 0) 2812 Vals.push_back(Flags); 2813 break; 2814 } 2815 2816 case Instruction::Ret: 2817 { 2818 Code = bitc::FUNC_CODE_INST_RET; 2819 unsigned NumOperands = I.getNumOperands(); 2820 if (NumOperands == 0) 2821 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2822 else if (NumOperands == 1) { 2823 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2824 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2825 } else { 2826 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2827 pushValueAndType(I.getOperand(i), InstID, Vals); 2828 } 2829 } 2830 break; 2831 case Instruction::Br: 2832 { 2833 Code = bitc::FUNC_CODE_INST_BR; 2834 const BranchInst &II = cast<BranchInst>(I); 2835 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2836 if (II.isConditional()) { 2837 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2838 pushValue(II.getCondition(), InstID, Vals); 2839 } 2840 } 2841 break; 2842 case Instruction::Switch: 2843 { 2844 Code = bitc::FUNC_CODE_INST_SWITCH; 2845 const SwitchInst &SI = cast<SwitchInst>(I); 2846 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2847 pushValue(SI.getCondition(), InstID, Vals); 2848 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2849 for (auto Case : SI.cases()) { 2850 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2851 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2852 } 2853 } 2854 break; 2855 case Instruction::IndirectBr: 2856 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2857 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2858 // Encode the address operand as relative, but not the basic blocks. 2859 pushValue(I.getOperand(0), InstID, Vals); 2860 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2861 Vals.push_back(VE.getValueID(I.getOperand(i))); 2862 break; 2863 2864 case Instruction::Invoke: { 2865 const InvokeInst *II = cast<InvokeInst>(&I); 2866 const Value *Callee = II->getCalledOperand(); 2867 FunctionType *FTy = II->getFunctionType(); 2868 2869 if (II->hasOperandBundles()) 2870 writeOperandBundles(*II, InstID); 2871 2872 Code = bitc::FUNC_CODE_INST_INVOKE; 2873 2874 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2875 Vals.push_back(II->getCallingConv() | 1 << 13); 2876 Vals.push_back(VE.getValueID(II->getNormalDest())); 2877 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2878 Vals.push_back(VE.getTypeID(FTy)); 2879 pushValueAndType(Callee, InstID, Vals); 2880 2881 // Emit value #'s for the fixed parameters. 2882 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2883 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2884 2885 // Emit type/value pairs for varargs params. 2886 if (FTy->isVarArg()) { 2887 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2888 i != e; ++i) 2889 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2890 } 2891 break; 2892 } 2893 case Instruction::Resume: 2894 Code = bitc::FUNC_CODE_INST_RESUME; 2895 pushValueAndType(I.getOperand(0), InstID, Vals); 2896 break; 2897 case Instruction::CleanupRet: { 2898 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2899 const auto &CRI = cast<CleanupReturnInst>(I); 2900 pushValue(CRI.getCleanupPad(), InstID, Vals); 2901 if (CRI.hasUnwindDest()) 2902 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2903 break; 2904 } 2905 case Instruction::CatchRet: { 2906 Code = bitc::FUNC_CODE_INST_CATCHRET; 2907 const auto &CRI = cast<CatchReturnInst>(I); 2908 pushValue(CRI.getCatchPad(), InstID, Vals); 2909 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2910 break; 2911 } 2912 case Instruction::CleanupPad: 2913 case Instruction::CatchPad: { 2914 const auto &FuncletPad = cast<FuncletPadInst>(I); 2915 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2916 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2917 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2918 2919 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2920 Vals.push_back(NumArgOperands); 2921 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2922 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2923 break; 2924 } 2925 case Instruction::CatchSwitch: { 2926 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2927 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2928 2929 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2930 2931 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2932 Vals.push_back(NumHandlers); 2933 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2934 Vals.push_back(VE.getValueID(CatchPadBB)); 2935 2936 if (CatchSwitch.hasUnwindDest()) 2937 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2938 break; 2939 } 2940 case Instruction::CallBr: { 2941 const CallBrInst *CBI = cast<CallBrInst>(&I); 2942 const Value *Callee = CBI->getCalledOperand(); 2943 FunctionType *FTy = CBI->getFunctionType(); 2944 2945 if (CBI->hasOperandBundles()) 2946 writeOperandBundles(*CBI, InstID); 2947 2948 Code = bitc::FUNC_CODE_INST_CALLBR; 2949 2950 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2951 2952 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2953 1 << bitc::CALL_EXPLICIT_TYPE); 2954 2955 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2956 Vals.push_back(CBI->getNumIndirectDests()); 2957 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2958 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2959 2960 Vals.push_back(VE.getTypeID(FTy)); 2961 pushValueAndType(Callee, InstID, Vals); 2962 2963 // Emit value #'s for the fixed parameters. 2964 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2965 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2966 2967 // Emit type/value pairs for varargs params. 2968 if (FTy->isVarArg()) { 2969 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2970 i != e; ++i) 2971 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2972 } 2973 break; 2974 } 2975 case Instruction::Unreachable: 2976 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2977 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2978 break; 2979 2980 case Instruction::PHI: { 2981 const PHINode &PN = cast<PHINode>(I); 2982 Code = bitc::FUNC_CODE_INST_PHI; 2983 // With the newer instruction encoding, forward references could give 2984 // negative valued IDs. This is most common for PHIs, so we use 2985 // signed VBRs. 2986 SmallVector<uint64_t, 128> Vals64; 2987 Vals64.push_back(VE.getTypeID(PN.getType())); 2988 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2989 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2990 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2991 } 2992 2993 uint64_t Flags = getOptimizationFlags(&I); 2994 if (Flags != 0) 2995 Vals64.push_back(Flags); 2996 2997 // Emit a Vals64 vector and exit. 2998 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2999 Vals64.clear(); 3000 return; 3001 } 3002 3003 case Instruction::LandingPad: { 3004 const LandingPadInst &LP = cast<LandingPadInst>(I); 3005 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3006 Vals.push_back(VE.getTypeID(LP.getType())); 3007 Vals.push_back(LP.isCleanup()); 3008 Vals.push_back(LP.getNumClauses()); 3009 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3010 if (LP.isCatch(I)) 3011 Vals.push_back(LandingPadInst::Catch); 3012 else 3013 Vals.push_back(LandingPadInst::Filter); 3014 pushValueAndType(LP.getClause(I), InstID, Vals); 3015 } 3016 break; 3017 } 3018 3019 case Instruction::Alloca: { 3020 Code = bitc::FUNC_CODE_INST_ALLOCA; 3021 const AllocaInst &AI = cast<AllocaInst>(I); 3022 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3023 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3024 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3025 using APV = AllocaPackedValues; 3026 unsigned Record = 0; 3027 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3028 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3029 Bitfield::set<APV::ExplicitType>(Record, true); 3030 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3031 Vals.push_back(Record); 3032 break; 3033 } 3034 3035 case Instruction::Load: 3036 if (cast<LoadInst>(I).isAtomic()) { 3037 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3038 pushValueAndType(I.getOperand(0), InstID, Vals); 3039 } else { 3040 Code = bitc::FUNC_CODE_INST_LOAD; 3041 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3042 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3043 } 3044 Vals.push_back(VE.getTypeID(I.getType())); 3045 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3046 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3047 if (cast<LoadInst>(I).isAtomic()) { 3048 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3049 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3050 } 3051 break; 3052 case Instruction::Store: 3053 if (cast<StoreInst>(I).isAtomic()) 3054 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3055 else 3056 Code = bitc::FUNC_CODE_INST_STORE; 3057 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3058 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3059 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3060 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3061 if (cast<StoreInst>(I).isAtomic()) { 3062 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3063 Vals.push_back( 3064 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3065 } 3066 break; 3067 case Instruction::AtomicCmpXchg: 3068 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3069 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3070 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3071 pushValue(I.getOperand(2), InstID, Vals); // newval. 3072 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3073 Vals.push_back( 3074 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3075 Vals.push_back( 3076 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3077 Vals.push_back( 3078 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3079 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3080 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3081 break; 3082 case Instruction::AtomicRMW: 3083 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3084 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3085 pushValue(I.getOperand(1), InstID, Vals); // val. 3086 Vals.push_back( 3087 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3088 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3089 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3090 Vals.push_back( 3091 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3092 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3093 break; 3094 case Instruction::Fence: 3095 Code = bitc::FUNC_CODE_INST_FENCE; 3096 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3097 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3098 break; 3099 case Instruction::Call: { 3100 const CallInst &CI = cast<CallInst>(I); 3101 FunctionType *FTy = CI.getFunctionType(); 3102 3103 if (CI.hasOperandBundles()) 3104 writeOperandBundles(CI, InstID); 3105 3106 Code = bitc::FUNC_CODE_INST_CALL; 3107 3108 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3109 3110 unsigned Flags = getOptimizationFlags(&I); 3111 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3112 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3113 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3114 1 << bitc::CALL_EXPLICIT_TYPE | 3115 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3116 unsigned(Flags != 0) << bitc::CALL_FMF); 3117 if (Flags != 0) 3118 Vals.push_back(Flags); 3119 3120 Vals.push_back(VE.getTypeID(FTy)); 3121 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3122 3123 // Emit value #'s for the fixed parameters. 3124 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3125 // Check for labels (can happen with asm labels). 3126 if (FTy->getParamType(i)->isLabelTy()) 3127 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3128 else 3129 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3130 } 3131 3132 // Emit type/value pairs for varargs params. 3133 if (FTy->isVarArg()) { 3134 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3135 i != e; ++i) 3136 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3137 } 3138 break; 3139 } 3140 case Instruction::VAArg: 3141 Code = bitc::FUNC_CODE_INST_VAARG; 3142 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3143 pushValue(I.getOperand(0), InstID, Vals); // valist. 3144 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3145 break; 3146 case Instruction::Freeze: 3147 Code = bitc::FUNC_CODE_INST_FREEZE; 3148 pushValueAndType(I.getOperand(0), InstID, Vals); 3149 break; 3150 } 3151 3152 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3153 Vals.clear(); 3154 } 3155 3156 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3157 /// to allow clients to efficiently find the function body. 3158 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3159 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3160 // Get the offset of the VST we are writing, and backpatch it into 3161 // the VST forward declaration record. 3162 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3163 // The BitcodeStartBit was the stream offset of the identification block. 3164 VSTOffset -= bitcodeStartBit(); 3165 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3166 // Note that we add 1 here because the offset is relative to one word 3167 // before the start of the identification block, which was historically 3168 // always the start of the regular bitcode header. 3169 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3170 3171 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3172 3173 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3174 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3177 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3178 3179 for (const Function &F : M) { 3180 uint64_t Record[2]; 3181 3182 if (F.isDeclaration()) 3183 continue; 3184 3185 Record[0] = VE.getValueID(&F); 3186 3187 // Save the word offset of the function (from the start of the 3188 // actual bitcode written to the stream). 3189 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3190 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3191 // Note that we add 1 here because the offset is relative to one word 3192 // before the start of the identification block, which was historically 3193 // always the start of the regular bitcode header. 3194 Record[1] = BitcodeIndex / 32 + 1; 3195 3196 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3197 } 3198 3199 Stream.ExitBlock(); 3200 } 3201 3202 /// Emit names for arguments, instructions and basic blocks in a function. 3203 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3204 const ValueSymbolTable &VST) { 3205 if (VST.empty()) 3206 return; 3207 3208 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3209 3210 // FIXME: Set up the abbrev, we know how many values there are! 3211 // FIXME: We know if the type names can use 7-bit ascii. 3212 SmallVector<uint64_t, 64> NameVals; 3213 3214 for (const ValueName &Name : VST) { 3215 // Figure out the encoding to use for the name. 3216 StringEncoding Bits = getStringEncoding(Name.getKey()); 3217 3218 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3219 NameVals.push_back(VE.getValueID(Name.getValue())); 3220 3221 // VST_CODE_ENTRY: [valueid, namechar x N] 3222 // VST_CODE_BBENTRY: [bbid, namechar x N] 3223 unsigned Code; 3224 if (isa<BasicBlock>(Name.getValue())) { 3225 Code = bitc::VST_CODE_BBENTRY; 3226 if (Bits == SE_Char6) 3227 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3228 } else { 3229 Code = bitc::VST_CODE_ENTRY; 3230 if (Bits == SE_Char6) 3231 AbbrevToUse = VST_ENTRY_6_ABBREV; 3232 else if (Bits == SE_Fixed7) 3233 AbbrevToUse = VST_ENTRY_7_ABBREV; 3234 } 3235 3236 for (const auto P : Name.getKey()) 3237 NameVals.push_back((unsigned char)P); 3238 3239 // Emit the finished record. 3240 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3241 NameVals.clear(); 3242 } 3243 3244 Stream.ExitBlock(); 3245 } 3246 3247 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3248 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3249 unsigned Code; 3250 if (isa<BasicBlock>(Order.V)) 3251 Code = bitc::USELIST_CODE_BB; 3252 else 3253 Code = bitc::USELIST_CODE_DEFAULT; 3254 3255 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3256 Record.push_back(VE.getValueID(Order.V)); 3257 Stream.EmitRecord(Code, Record); 3258 } 3259 3260 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3261 assert(VE.shouldPreserveUseListOrder() && 3262 "Expected to be preserving use-list order"); 3263 3264 auto hasMore = [&]() { 3265 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3266 }; 3267 if (!hasMore()) 3268 // Nothing to do. 3269 return; 3270 3271 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3272 while (hasMore()) { 3273 writeUseList(std::move(VE.UseListOrders.back())); 3274 VE.UseListOrders.pop_back(); 3275 } 3276 Stream.ExitBlock(); 3277 } 3278 3279 /// Emit a function body to the module stream. 3280 void ModuleBitcodeWriter::writeFunction( 3281 const Function &F, 3282 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3283 // Save the bitcode index of the start of this function block for recording 3284 // in the VST. 3285 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3286 3287 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3288 VE.incorporateFunction(F); 3289 3290 SmallVector<unsigned, 64> Vals; 3291 3292 // Emit the number of basic blocks, so the reader can create them ahead of 3293 // time. 3294 Vals.push_back(VE.getBasicBlocks().size()); 3295 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3296 Vals.clear(); 3297 3298 // If there are function-local constants, emit them now. 3299 unsigned CstStart, CstEnd; 3300 VE.getFunctionConstantRange(CstStart, CstEnd); 3301 writeConstants(CstStart, CstEnd, false); 3302 3303 // If there is function-local metadata, emit it now. 3304 writeFunctionMetadata(F); 3305 3306 // Keep a running idea of what the instruction ID is. 3307 unsigned InstID = CstEnd; 3308 3309 bool NeedsMetadataAttachment = F.hasMetadata(); 3310 3311 DILocation *LastDL = nullptr; 3312 // Finally, emit all the instructions, in order. 3313 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3314 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3315 I != E; ++I) { 3316 writeInstruction(*I, InstID, Vals); 3317 3318 if (!I->getType()->isVoidTy()) 3319 ++InstID; 3320 3321 // If the instruction has metadata, write a metadata attachment later. 3322 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3323 3324 // If the instruction has a debug location, emit it. 3325 DILocation *DL = I->getDebugLoc(); 3326 if (!DL) 3327 continue; 3328 3329 if (DL == LastDL) { 3330 // Just repeat the same debug loc as last time. 3331 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3332 continue; 3333 } 3334 3335 Vals.push_back(DL->getLine()); 3336 Vals.push_back(DL->getColumn()); 3337 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3338 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3339 Vals.push_back(DL->isImplicitCode()); 3340 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3341 Vals.clear(); 3342 3343 LastDL = DL; 3344 } 3345 3346 // Emit names for all the instructions etc. 3347 if (auto *Symtab = F.getValueSymbolTable()) 3348 writeFunctionLevelValueSymbolTable(*Symtab); 3349 3350 if (NeedsMetadataAttachment) 3351 writeFunctionMetadataAttachment(F); 3352 if (VE.shouldPreserveUseListOrder()) 3353 writeUseListBlock(&F); 3354 VE.purgeFunction(); 3355 Stream.ExitBlock(); 3356 } 3357 3358 // Emit blockinfo, which defines the standard abbreviations etc. 3359 void ModuleBitcodeWriter::writeBlockInfo() { 3360 // We only want to emit block info records for blocks that have multiple 3361 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3362 // Other blocks can define their abbrevs inline. 3363 Stream.EnterBlockInfoBlock(); 3364 3365 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3366 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3371 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3372 VST_ENTRY_8_ABBREV) 3373 llvm_unreachable("Unexpected abbrev ordering!"); 3374 } 3375 3376 { // 7-bit fixed width VST_CODE_ENTRY strings. 3377 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3378 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3382 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3383 VST_ENTRY_7_ABBREV) 3384 llvm_unreachable("Unexpected abbrev ordering!"); 3385 } 3386 { // 6-bit char6 VST_CODE_ENTRY strings. 3387 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3388 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3392 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3393 VST_ENTRY_6_ABBREV) 3394 llvm_unreachable("Unexpected abbrev ordering!"); 3395 } 3396 { // 6-bit char6 VST_CODE_BBENTRY strings. 3397 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3398 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3402 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3403 VST_BBENTRY_6_ABBREV) 3404 llvm_unreachable("Unexpected abbrev ordering!"); 3405 } 3406 3407 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3408 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3409 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3411 VE.computeBitsRequiredForTypeIndicies())); 3412 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3413 CONSTANTS_SETTYPE_ABBREV) 3414 llvm_unreachable("Unexpected abbrev ordering!"); 3415 } 3416 3417 { // INTEGER abbrev for CONSTANTS_BLOCK. 3418 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3419 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3421 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3422 CONSTANTS_INTEGER_ABBREV) 3423 llvm_unreachable("Unexpected abbrev ordering!"); 3424 } 3425 3426 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3427 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3428 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3431 VE.computeBitsRequiredForTypeIndicies())); 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3433 3434 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3435 CONSTANTS_CE_CAST_Abbrev) 3436 llvm_unreachable("Unexpected abbrev ordering!"); 3437 } 3438 { // NULL abbrev for CONSTANTS_BLOCK. 3439 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3440 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3441 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3442 CONSTANTS_NULL_Abbrev) 3443 llvm_unreachable("Unexpected abbrev ordering!"); 3444 } 3445 3446 // FIXME: This should only use space for first class types! 3447 3448 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3449 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3450 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3453 VE.computeBitsRequiredForTypeIndicies())); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3456 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3457 FUNCTION_INST_LOAD_ABBREV) 3458 llvm_unreachable("Unexpected abbrev ordering!"); 3459 } 3460 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3461 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3462 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3465 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3466 FUNCTION_INST_UNOP_ABBREV) 3467 llvm_unreachable("Unexpected abbrev ordering!"); 3468 } 3469 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3470 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3471 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3475 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3476 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3477 llvm_unreachable("Unexpected abbrev ordering!"); 3478 } 3479 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3480 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3481 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3485 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3486 FUNCTION_INST_BINOP_ABBREV) 3487 llvm_unreachable("Unexpected abbrev ordering!"); 3488 } 3489 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3490 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3491 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3496 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3497 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3498 llvm_unreachable("Unexpected abbrev ordering!"); 3499 } 3500 { // INST_CAST abbrev for FUNCTION_BLOCK. 3501 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3502 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3505 VE.computeBitsRequiredForTypeIndicies())); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3507 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3508 FUNCTION_INST_CAST_ABBREV) 3509 llvm_unreachable("Unexpected abbrev ordering!"); 3510 } 3511 3512 { // INST_RET abbrev for FUNCTION_BLOCK. 3513 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3514 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3515 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3516 FUNCTION_INST_RET_VOID_ABBREV) 3517 llvm_unreachable("Unexpected abbrev ordering!"); 3518 } 3519 { // INST_RET abbrev for FUNCTION_BLOCK. 3520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3521 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3523 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3524 FUNCTION_INST_RET_VAL_ABBREV) 3525 llvm_unreachable("Unexpected abbrev ordering!"); 3526 } 3527 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3528 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3529 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3530 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3531 FUNCTION_INST_UNREACHABLE_ABBREV) 3532 llvm_unreachable("Unexpected abbrev ordering!"); 3533 } 3534 { 3535 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3536 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3539 Log2_32_Ceil(VE.getTypes().size() + 1))); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3542 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3543 FUNCTION_INST_GEP_ABBREV) 3544 llvm_unreachable("Unexpected abbrev ordering!"); 3545 } 3546 3547 Stream.ExitBlock(); 3548 } 3549 3550 /// Write the module path strings, currently only used when generating 3551 /// a combined index file. 3552 void IndexBitcodeWriter::writeModStrings() { 3553 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3554 3555 // TODO: See which abbrev sizes we actually need to emit 3556 3557 // 8-bit fixed-width MST_ENTRY strings. 3558 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3559 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3563 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3564 3565 // 7-bit fixed width MST_ENTRY strings. 3566 Abbv = std::make_shared<BitCodeAbbrev>(); 3567 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3571 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3572 3573 // 6-bit char6 MST_ENTRY strings. 3574 Abbv = std::make_shared<BitCodeAbbrev>(); 3575 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3579 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3580 3581 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3582 Abbv = std::make_shared<BitCodeAbbrev>(); 3583 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3589 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3590 3591 SmallVector<unsigned, 64> Vals; 3592 forEachModule( 3593 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3594 StringRef Key = MPSE.getKey(); 3595 const auto &Value = MPSE.getValue(); 3596 StringEncoding Bits = getStringEncoding(Key); 3597 unsigned AbbrevToUse = Abbrev8Bit; 3598 if (Bits == SE_Char6) 3599 AbbrevToUse = Abbrev6Bit; 3600 else if (Bits == SE_Fixed7) 3601 AbbrevToUse = Abbrev7Bit; 3602 3603 Vals.push_back(Value.first); 3604 Vals.append(Key.begin(), Key.end()); 3605 3606 // Emit the finished record. 3607 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3608 3609 // Emit an optional hash for the module now 3610 const auto &Hash = Value.second; 3611 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3612 Vals.assign(Hash.begin(), Hash.end()); 3613 // Emit the hash record. 3614 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3615 } 3616 3617 Vals.clear(); 3618 }); 3619 Stream.ExitBlock(); 3620 } 3621 3622 /// Write the function type metadata related records that need to appear before 3623 /// a function summary entry (whether per-module or combined). 3624 template <typename Fn> 3625 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3626 FunctionSummary *FS, 3627 Fn GetValueID) { 3628 if (!FS->type_tests().empty()) 3629 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3630 3631 SmallVector<uint64_t, 64> Record; 3632 3633 auto WriteVFuncIdVec = [&](uint64_t Ty, 3634 ArrayRef<FunctionSummary::VFuncId> VFs) { 3635 if (VFs.empty()) 3636 return; 3637 Record.clear(); 3638 for (auto &VF : VFs) { 3639 Record.push_back(VF.GUID); 3640 Record.push_back(VF.Offset); 3641 } 3642 Stream.EmitRecord(Ty, Record); 3643 }; 3644 3645 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3646 FS->type_test_assume_vcalls()); 3647 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3648 FS->type_checked_load_vcalls()); 3649 3650 auto WriteConstVCallVec = [&](uint64_t Ty, 3651 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3652 for (auto &VC : VCs) { 3653 Record.clear(); 3654 Record.push_back(VC.VFunc.GUID); 3655 Record.push_back(VC.VFunc.Offset); 3656 llvm::append_range(Record, VC.Args); 3657 Stream.EmitRecord(Ty, Record); 3658 } 3659 }; 3660 3661 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3662 FS->type_test_assume_const_vcalls()); 3663 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3664 FS->type_checked_load_const_vcalls()); 3665 3666 auto WriteRange = [&](ConstantRange Range) { 3667 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3668 assert(Range.getLower().getNumWords() == 1); 3669 assert(Range.getUpper().getNumWords() == 1); 3670 emitSignedInt64(Record, *Range.getLower().getRawData()); 3671 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3672 }; 3673 3674 if (!FS->paramAccesses().empty()) { 3675 Record.clear(); 3676 for (auto &Arg : FS->paramAccesses()) { 3677 size_t UndoSize = Record.size(); 3678 Record.push_back(Arg.ParamNo); 3679 WriteRange(Arg.Use); 3680 Record.push_back(Arg.Calls.size()); 3681 for (auto &Call : Arg.Calls) { 3682 Record.push_back(Call.ParamNo); 3683 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3684 if (!ValueID) { 3685 // If ValueID is unknown we can't drop just this call, we must drop 3686 // entire parameter. 3687 Record.resize(UndoSize); 3688 break; 3689 } 3690 Record.push_back(*ValueID); 3691 WriteRange(Call.Offsets); 3692 } 3693 } 3694 if (!Record.empty()) 3695 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3696 } 3697 } 3698 3699 /// Collect type IDs from type tests used by function. 3700 static void 3701 getReferencedTypeIds(FunctionSummary *FS, 3702 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3703 if (!FS->type_tests().empty()) 3704 for (auto &TT : FS->type_tests()) 3705 ReferencedTypeIds.insert(TT); 3706 3707 auto GetReferencedTypesFromVFuncIdVec = 3708 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3709 for (auto &VF : VFs) 3710 ReferencedTypeIds.insert(VF.GUID); 3711 }; 3712 3713 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3714 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3715 3716 auto GetReferencedTypesFromConstVCallVec = 3717 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3718 for (auto &VC : VCs) 3719 ReferencedTypeIds.insert(VC.VFunc.GUID); 3720 }; 3721 3722 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3723 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3724 } 3725 3726 static void writeWholeProgramDevirtResolutionByArg( 3727 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3728 const WholeProgramDevirtResolution::ByArg &ByArg) { 3729 NameVals.push_back(args.size()); 3730 llvm::append_range(NameVals, args); 3731 3732 NameVals.push_back(ByArg.TheKind); 3733 NameVals.push_back(ByArg.Info); 3734 NameVals.push_back(ByArg.Byte); 3735 NameVals.push_back(ByArg.Bit); 3736 } 3737 3738 static void writeWholeProgramDevirtResolution( 3739 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3740 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3741 NameVals.push_back(Id); 3742 3743 NameVals.push_back(Wpd.TheKind); 3744 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3745 NameVals.push_back(Wpd.SingleImplName.size()); 3746 3747 NameVals.push_back(Wpd.ResByArg.size()); 3748 for (auto &A : Wpd.ResByArg) 3749 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3750 } 3751 3752 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3753 StringTableBuilder &StrtabBuilder, 3754 const std::string &Id, 3755 const TypeIdSummary &Summary) { 3756 NameVals.push_back(StrtabBuilder.add(Id)); 3757 NameVals.push_back(Id.size()); 3758 3759 NameVals.push_back(Summary.TTRes.TheKind); 3760 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3761 NameVals.push_back(Summary.TTRes.AlignLog2); 3762 NameVals.push_back(Summary.TTRes.SizeM1); 3763 NameVals.push_back(Summary.TTRes.BitMask); 3764 NameVals.push_back(Summary.TTRes.InlineBits); 3765 3766 for (auto &W : Summary.WPDRes) 3767 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3768 W.second); 3769 } 3770 3771 static void writeTypeIdCompatibleVtableSummaryRecord( 3772 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3773 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3774 ValueEnumerator &VE) { 3775 NameVals.push_back(StrtabBuilder.add(Id)); 3776 NameVals.push_back(Id.size()); 3777 3778 for (auto &P : Summary) { 3779 NameVals.push_back(P.AddressPointOffset); 3780 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3781 } 3782 } 3783 3784 // Helper to emit a single function summary record. 3785 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3786 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3787 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3788 const Function &F) { 3789 NameVals.push_back(ValueID); 3790 3791 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3792 3793 writeFunctionTypeMetadataRecords( 3794 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3795 return {VE.getValueID(VI.getValue())}; 3796 }); 3797 3798 auto SpecialRefCnts = FS->specialRefCounts(); 3799 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3800 NameVals.push_back(FS->instCount()); 3801 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3802 NameVals.push_back(FS->refs().size()); 3803 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3804 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3805 3806 for (auto &RI : FS->refs()) 3807 NameVals.push_back(VE.getValueID(RI.getValue())); 3808 3809 bool HasProfileData = 3810 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3811 for (auto &ECI : FS->calls()) { 3812 NameVals.push_back(getValueId(ECI.first)); 3813 if (HasProfileData) 3814 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3815 else if (WriteRelBFToSummary) 3816 NameVals.push_back(ECI.second.RelBlockFreq); 3817 } 3818 3819 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3820 unsigned Code = 3821 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3822 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3823 : bitc::FS_PERMODULE)); 3824 3825 // Emit the finished record. 3826 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3827 NameVals.clear(); 3828 } 3829 3830 // Collect the global value references in the given variable's initializer, 3831 // and emit them in a summary record. 3832 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3833 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3834 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3835 auto VI = Index->getValueInfo(V.getGUID()); 3836 if (!VI || VI.getSummaryList().empty()) { 3837 // Only declarations should not have a summary (a declaration might however 3838 // have a summary if the def was in module level asm). 3839 assert(V.isDeclaration()); 3840 return; 3841 } 3842 auto *Summary = VI.getSummaryList()[0].get(); 3843 NameVals.push_back(VE.getValueID(&V)); 3844 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3845 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3846 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3847 3848 auto VTableFuncs = VS->vTableFuncs(); 3849 if (!VTableFuncs.empty()) 3850 NameVals.push_back(VS->refs().size()); 3851 3852 unsigned SizeBeforeRefs = NameVals.size(); 3853 for (auto &RI : VS->refs()) 3854 NameVals.push_back(VE.getValueID(RI.getValue())); 3855 // Sort the refs for determinism output, the vector returned by FS->refs() has 3856 // been initialized from a DenseSet. 3857 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3858 3859 if (VTableFuncs.empty()) 3860 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3861 FSModRefsAbbrev); 3862 else { 3863 // VTableFuncs pairs should already be sorted by offset. 3864 for (auto &P : VTableFuncs) { 3865 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3866 NameVals.push_back(P.VTableOffset); 3867 } 3868 3869 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3870 FSModVTableRefsAbbrev); 3871 } 3872 NameVals.clear(); 3873 } 3874 3875 /// Emit the per-module summary section alongside the rest of 3876 /// the module's bitcode. 3877 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3878 // By default we compile with ThinLTO if the module has a summary, but the 3879 // client can request full LTO with a module flag. 3880 bool IsThinLTO = true; 3881 if (auto *MD = 3882 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3883 IsThinLTO = MD->getZExtValue(); 3884 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3885 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3886 4); 3887 3888 Stream.EmitRecord( 3889 bitc::FS_VERSION, 3890 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3891 3892 // Write the index flags. 3893 uint64_t Flags = 0; 3894 // Bits 1-3 are set only in the combined index, skip them. 3895 if (Index->enableSplitLTOUnit()) 3896 Flags |= 0x8; 3897 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3898 3899 if (Index->begin() == Index->end()) { 3900 Stream.ExitBlock(); 3901 return; 3902 } 3903 3904 for (const auto &GVI : valueIds()) { 3905 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3906 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3907 } 3908 3909 // Abbrev for FS_PERMODULE_PROFILE. 3910 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3911 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3919 // numrefs x valueid, n x (valueid, hotness) 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3922 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3923 3924 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3925 Abbv = std::make_shared<BitCodeAbbrev>(); 3926 if (WriteRelBFToSummary) 3927 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3928 else 3929 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3937 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3940 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3941 3942 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3943 Abbv = std::make_shared<BitCodeAbbrev>(); 3944 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3949 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3950 3951 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3952 Abbv = std::make_shared<BitCodeAbbrev>(); 3953 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3957 // numrefs x valueid, n x (valueid , offset) 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3960 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3961 3962 // Abbrev for FS_ALIAS. 3963 Abbv = std::make_shared<BitCodeAbbrev>(); 3964 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3968 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3969 3970 // Abbrev for FS_TYPE_ID_METADATA 3971 Abbv = std::make_shared<BitCodeAbbrev>(); 3972 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3975 // n x (valueid , offset) 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3978 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3979 3980 SmallVector<uint64_t, 64> NameVals; 3981 // Iterate over the list of functions instead of the Index to 3982 // ensure the ordering is stable. 3983 for (const Function &F : M) { 3984 // Summary emission does not support anonymous functions, they have to 3985 // renamed using the anonymous function renaming pass. 3986 if (!F.hasName()) 3987 report_fatal_error("Unexpected anonymous function when writing summary"); 3988 3989 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3990 if (!VI || VI.getSummaryList().empty()) { 3991 // Only declarations should not have a summary (a declaration might 3992 // however have a summary if the def was in module level asm). 3993 assert(F.isDeclaration()); 3994 continue; 3995 } 3996 auto *Summary = VI.getSummaryList()[0].get(); 3997 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3998 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3999 } 4000 4001 // Capture references from GlobalVariable initializers, which are outside 4002 // of a function scope. 4003 for (const GlobalVariable &G : M.globals()) 4004 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4005 FSModVTableRefsAbbrev); 4006 4007 for (const GlobalAlias &A : M.aliases()) { 4008 auto *Aliasee = A.getBaseObject(); 4009 if (!Aliasee->hasName()) 4010 // Nameless function don't have an entry in the summary, skip it. 4011 continue; 4012 auto AliasId = VE.getValueID(&A); 4013 auto AliaseeId = VE.getValueID(Aliasee); 4014 NameVals.push_back(AliasId); 4015 auto *Summary = Index->getGlobalValueSummary(A); 4016 AliasSummary *AS = cast<AliasSummary>(Summary); 4017 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4018 NameVals.push_back(AliaseeId); 4019 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4020 NameVals.clear(); 4021 } 4022 4023 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4024 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4025 S.second, VE); 4026 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4027 TypeIdCompatibleVtableAbbrev); 4028 NameVals.clear(); 4029 } 4030 4031 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4032 ArrayRef<uint64_t>{Index->getBlockCount()}); 4033 4034 Stream.ExitBlock(); 4035 } 4036 4037 /// Emit the combined summary section into the combined index file. 4038 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4039 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4040 Stream.EmitRecord( 4041 bitc::FS_VERSION, 4042 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4043 4044 // Write the index flags. 4045 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4046 4047 for (const auto &GVI : valueIds()) { 4048 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4049 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4050 } 4051 4052 // Abbrev for FS_COMBINED. 4053 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4054 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4064 // numrefs x valueid, n x (valueid) 4065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4067 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4068 4069 // Abbrev for FS_COMBINED_PROFILE. 4070 Abbv = std::make_shared<BitCodeAbbrev>(); 4071 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4081 // numrefs x valueid, n x (valueid, hotness) 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4084 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4085 4086 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4087 Abbv = std::make_shared<BitCodeAbbrev>(); 4088 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4094 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4095 4096 // Abbrev for FS_COMBINED_ALIAS. 4097 Abbv = std::make_shared<BitCodeAbbrev>(); 4098 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4103 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4104 4105 // The aliases are emitted as a post-pass, and will point to the value 4106 // id of the aliasee. Save them in a vector for post-processing. 4107 SmallVector<AliasSummary *, 64> Aliases; 4108 4109 // Save the value id for each summary for alias emission. 4110 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4111 4112 SmallVector<uint64_t, 64> NameVals; 4113 4114 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4115 // with the type ids referenced by this index file. 4116 std::set<GlobalValue::GUID> ReferencedTypeIds; 4117 4118 // For local linkage, we also emit the original name separately 4119 // immediately after the record. 4120 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4121 if (!GlobalValue::isLocalLinkage(S.linkage())) 4122 return; 4123 NameVals.push_back(S.getOriginalName()); 4124 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4125 NameVals.clear(); 4126 }; 4127 4128 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4129 forEachSummary([&](GVInfo I, bool IsAliasee) { 4130 GlobalValueSummary *S = I.second; 4131 assert(S); 4132 DefOrUseGUIDs.insert(I.first); 4133 for (const ValueInfo &VI : S->refs()) 4134 DefOrUseGUIDs.insert(VI.getGUID()); 4135 4136 auto ValueId = getValueId(I.first); 4137 assert(ValueId); 4138 SummaryToValueIdMap[S] = *ValueId; 4139 4140 // If this is invoked for an aliasee, we want to record the above 4141 // mapping, but then not emit a summary entry (if the aliasee is 4142 // to be imported, we will invoke this separately with IsAliasee=false). 4143 if (IsAliasee) 4144 return; 4145 4146 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4147 // Will process aliases as a post-pass because the reader wants all 4148 // global to be loaded first. 4149 Aliases.push_back(AS); 4150 return; 4151 } 4152 4153 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4154 NameVals.push_back(*ValueId); 4155 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4156 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4157 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4158 for (auto &RI : VS->refs()) { 4159 auto RefValueId = getValueId(RI.getGUID()); 4160 if (!RefValueId) 4161 continue; 4162 NameVals.push_back(*RefValueId); 4163 } 4164 4165 // Emit the finished record. 4166 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4167 FSModRefsAbbrev); 4168 NameVals.clear(); 4169 MaybeEmitOriginalName(*S); 4170 return; 4171 } 4172 4173 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4174 GlobalValue::GUID GUID = VI.getGUID(); 4175 Optional<unsigned> CallValueId = getValueId(GUID); 4176 if (CallValueId) 4177 return CallValueId; 4178 // For SamplePGO, the indirect call targets for local functions will 4179 // have its original name annotated in profile. We try to find the 4180 // corresponding PGOFuncName as the GUID. 4181 GUID = Index.getGUIDFromOriginalID(GUID); 4182 if (!GUID) 4183 return None; 4184 CallValueId = getValueId(GUID); 4185 if (!CallValueId) 4186 return None; 4187 // The mapping from OriginalId to GUID may return a GUID 4188 // that corresponds to a static variable. Filter it out here. 4189 // This can happen when 4190 // 1) There is a call to a library function which does not have 4191 // a CallValidId; 4192 // 2) There is a static variable with the OriginalGUID identical 4193 // to the GUID of the library function in 1); 4194 // When this happens, the logic for SamplePGO kicks in and 4195 // the static variable in 2) will be found, which needs to be 4196 // filtered out. 4197 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4198 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4199 return None; 4200 return CallValueId; 4201 }; 4202 4203 auto *FS = cast<FunctionSummary>(S); 4204 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4205 getReferencedTypeIds(FS, ReferencedTypeIds); 4206 4207 NameVals.push_back(*ValueId); 4208 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4209 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4210 NameVals.push_back(FS->instCount()); 4211 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4212 NameVals.push_back(FS->entryCount()); 4213 4214 // Fill in below 4215 NameVals.push_back(0); // numrefs 4216 NameVals.push_back(0); // rorefcnt 4217 NameVals.push_back(0); // worefcnt 4218 4219 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4220 for (auto &RI : FS->refs()) { 4221 auto RefValueId = getValueId(RI.getGUID()); 4222 if (!RefValueId) 4223 continue; 4224 NameVals.push_back(*RefValueId); 4225 if (RI.isReadOnly()) 4226 RORefCnt++; 4227 else if (RI.isWriteOnly()) 4228 WORefCnt++; 4229 Count++; 4230 } 4231 NameVals[6] = Count; 4232 NameVals[7] = RORefCnt; 4233 NameVals[8] = WORefCnt; 4234 4235 bool HasProfileData = false; 4236 for (auto &EI : FS->calls()) { 4237 HasProfileData |= 4238 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4239 if (HasProfileData) 4240 break; 4241 } 4242 4243 for (auto &EI : FS->calls()) { 4244 // If this GUID doesn't have a value id, it doesn't have a function 4245 // summary and we don't need to record any calls to it. 4246 Optional<unsigned> CallValueId = GetValueId(EI.first); 4247 if (!CallValueId) 4248 continue; 4249 NameVals.push_back(*CallValueId); 4250 if (HasProfileData) 4251 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4252 } 4253 4254 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4255 unsigned Code = 4256 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4257 4258 // Emit the finished record. 4259 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4260 NameVals.clear(); 4261 MaybeEmitOriginalName(*S); 4262 }); 4263 4264 for (auto *AS : Aliases) { 4265 auto AliasValueId = SummaryToValueIdMap[AS]; 4266 assert(AliasValueId); 4267 NameVals.push_back(AliasValueId); 4268 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4269 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4270 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4271 assert(AliaseeValueId); 4272 NameVals.push_back(AliaseeValueId); 4273 4274 // Emit the finished record. 4275 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4276 NameVals.clear(); 4277 MaybeEmitOriginalName(*AS); 4278 4279 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4280 getReferencedTypeIds(FS, ReferencedTypeIds); 4281 } 4282 4283 if (!Index.cfiFunctionDefs().empty()) { 4284 for (auto &S : Index.cfiFunctionDefs()) { 4285 if (DefOrUseGUIDs.count( 4286 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4287 NameVals.push_back(StrtabBuilder.add(S)); 4288 NameVals.push_back(S.size()); 4289 } 4290 } 4291 if (!NameVals.empty()) { 4292 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4293 NameVals.clear(); 4294 } 4295 } 4296 4297 if (!Index.cfiFunctionDecls().empty()) { 4298 for (auto &S : Index.cfiFunctionDecls()) { 4299 if (DefOrUseGUIDs.count( 4300 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4301 NameVals.push_back(StrtabBuilder.add(S)); 4302 NameVals.push_back(S.size()); 4303 } 4304 } 4305 if (!NameVals.empty()) { 4306 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4307 NameVals.clear(); 4308 } 4309 } 4310 4311 // Walk the GUIDs that were referenced, and write the 4312 // corresponding type id records. 4313 for (auto &T : ReferencedTypeIds) { 4314 auto TidIter = Index.typeIds().equal_range(T); 4315 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4316 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4317 It->second.second); 4318 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4319 NameVals.clear(); 4320 } 4321 } 4322 4323 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4324 ArrayRef<uint64_t>{Index.getBlockCount()}); 4325 4326 Stream.ExitBlock(); 4327 } 4328 4329 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4330 /// current llvm version, and a record for the epoch number. 4331 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4332 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4333 4334 // Write the "user readable" string identifying the bitcode producer 4335 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4336 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4339 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4340 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4341 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4342 4343 // Write the epoch version 4344 Abbv = std::make_shared<BitCodeAbbrev>(); 4345 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4347 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4348 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4349 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4350 Stream.ExitBlock(); 4351 } 4352 4353 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4354 // Emit the module's hash. 4355 // MODULE_CODE_HASH: [5*i32] 4356 if (GenerateHash) { 4357 uint32_t Vals[5]; 4358 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4359 Buffer.size() - BlockStartPos)); 4360 StringRef Hash = Hasher.result(); 4361 for (int Pos = 0; Pos < 20; Pos += 4) { 4362 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4363 } 4364 4365 // Emit the finished record. 4366 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4367 4368 if (ModHash) 4369 // Save the written hash value. 4370 llvm::copy(Vals, std::begin(*ModHash)); 4371 } 4372 } 4373 4374 void ModuleBitcodeWriter::write() { 4375 writeIdentificationBlock(Stream); 4376 4377 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4378 size_t BlockStartPos = Buffer.size(); 4379 4380 writeModuleVersion(); 4381 4382 // Emit blockinfo, which defines the standard abbreviations etc. 4383 writeBlockInfo(); 4384 4385 // Emit information describing all of the types in the module. 4386 writeTypeTable(); 4387 4388 // Emit information about attribute groups. 4389 writeAttributeGroupTable(); 4390 4391 // Emit information about parameter attributes. 4392 writeAttributeTable(); 4393 4394 writeComdats(); 4395 4396 // Emit top-level description of module, including target triple, inline asm, 4397 // descriptors for global variables, and function prototype info. 4398 writeModuleInfo(); 4399 4400 // Emit constants. 4401 writeModuleConstants(); 4402 4403 // Emit metadata kind names. 4404 writeModuleMetadataKinds(); 4405 4406 // Emit metadata. 4407 writeModuleMetadata(); 4408 4409 // Emit module-level use-lists. 4410 if (VE.shouldPreserveUseListOrder()) 4411 writeUseListBlock(nullptr); 4412 4413 writeOperandBundleTags(); 4414 writeSyncScopeNames(); 4415 4416 // Emit function bodies. 4417 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4418 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4419 if (!F->isDeclaration()) 4420 writeFunction(*F, FunctionToBitcodeIndex); 4421 4422 // Need to write after the above call to WriteFunction which populates 4423 // the summary information in the index. 4424 if (Index) 4425 writePerModuleGlobalValueSummary(); 4426 4427 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4428 4429 writeModuleHash(BlockStartPos); 4430 4431 Stream.ExitBlock(); 4432 } 4433 4434 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4435 uint32_t &Position) { 4436 support::endian::write32le(&Buffer[Position], Value); 4437 Position += 4; 4438 } 4439 4440 /// If generating a bc file on darwin, we have to emit a 4441 /// header and trailer to make it compatible with the system archiver. To do 4442 /// this we emit the following header, and then emit a trailer that pads the 4443 /// file out to be a multiple of 16 bytes. 4444 /// 4445 /// struct bc_header { 4446 /// uint32_t Magic; // 0x0B17C0DE 4447 /// uint32_t Version; // Version, currently always 0. 4448 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4449 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4450 /// uint32_t CPUType; // CPU specifier. 4451 /// ... potentially more later ... 4452 /// }; 4453 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4454 const Triple &TT) { 4455 unsigned CPUType = ~0U; 4456 4457 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4458 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4459 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4460 // specific constants here because they are implicitly part of the Darwin ABI. 4461 enum { 4462 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4463 DARWIN_CPU_TYPE_X86 = 7, 4464 DARWIN_CPU_TYPE_ARM = 12, 4465 DARWIN_CPU_TYPE_POWERPC = 18 4466 }; 4467 4468 Triple::ArchType Arch = TT.getArch(); 4469 if (Arch == Triple::x86_64) 4470 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4471 else if (Arch == Triple::x86) 4472 CPUType = DARWIN_CPU_TYPE_X86; 4473 else if (Arch == Triple::ppc) 4474 CPUType = DARWIN_CPU_TYPE_POWERPC; 4475 else if (Arch == Triple::ppc64) 4476 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4477 else if (Arch == Triple::arm || Arch == Triple::thumb) 4478 CPUType = DARWIN_CPU_TYPE_ARM; 4479 4480 // Traditional Bitcode starts after header. 4481 assert(Buffer.size() >= BWH_HeaderSize && 4482 "Expected header size to be reserved"); 4483 unsigned BCOffset = BWH_HeaderSize; 4484 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4485 4486 // Write the magic and version. 4487 unsigned Position = 0; 4488 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4489 writeInt32ToBuffer(0, Buffer, Position); // Version. 4490 writeInt32ToBuffer(BCOffset, Buffer, Position); 4491 writeInt32ToBuffer(BCSize, Buffer, Position); 4492 writeInt32ToBuffer(CPUType, Buffer, Position); 4493 4494 // If the file is not a multiple of 16 bytes, insert dummy padding. 4495 while (Buffer.size() & 15) 4496 Buffer.push_back(0); 4497 } 4498 4499 /// Helper to write the header common to all bitcode files. 4500 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4501 // Emit the file header. 4502 Stream.Emit((unsigned)'B', 8); 4503 Stream.Emit((unsigned)'C', 8); 4504 Stream.Emit(0x0, 4); 4505 Stream.Emit(0xC, 4); 4506 Stream.Emit(0xE, 4); 4507 Stream.Emit(0xD, 4); 4508 } 4509 4510 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4511 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4512 writeBitcodeHeader(*Stream); 4513 } 4514 4515 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4516 4517 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4518 Stream->EnterSubblock(Block, 3); 4519 4520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4521 Abbv->Add(BitCodeAbbrevOp(Record)); 4522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4523 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4524 4525 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4526 4527 Stream->ExitBlock(); 4528 } 4529 4530 void BitcodeWriter::writeSymtab() { 4531 assert(!WroteStrtab && !WroteSymtab); 4532 4533 // If any module has module-level inline asm, we will require a registered asm 4534 // parser for the target so that we can create an accurate symbol table for 4535 // the module. 4536 for (Module *M : Mods) { 4537 if (M->getModuleInlineAsm().empty()) 4538 continue; 4539 4540 std::string Err; 4541 const Triple TT(M->getTargetTriple()); 4542 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4543 if (!T || !T->hasMCAsmParser()) 4544 return; 4545 } 4546 4547 WroteSymtab = true; 4548 SmallVector<char, 0> Symtab; 4549 // The irsymtab::build function may be unable to create a symbol table if the 4550 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4551 // table is not required for correctness, but we still want to be able to 4552 // write malformed modules to bitcode files, so swallow the error. 4553 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4554 consumeError(std::move(E)); 4555 return; 4556 } 4557 4558 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4559 {Symtab.data(), Symtab.size()}); 4560 } 4561 4562 void BitcodeWriter::writeStrtab() { 4563 assert(!WroteStrtab); 4564 4565 std::vector<char> Strtab; 4566 StrtabBuilder.finalizeInOrder(); 4567 Strtab.resize(StrtabBuilder.getSize()); 4568 StrtabBuilder.write((uint8_t *)Strtab.data()); 4569 4570 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4571 {Strtab.data(), Strtab.size()}); 4572 4573 WroteStrtab = true; 4574 } 4575 4576 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4577 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4578 WroteStrtab = true; 4579 } 4580 4581 void BitcodeWriter::writeModule(const Module &M, 4582 bool ShouldPreserveUseListOrder, 4583 const ModuleSummaryIndex *Index, 4584 bool GenerateHash, ModuleHash *ModHash) { 4585 assert(!WroteStrtab); 4586 4587 // The Mods vector is used by irsymtab::build, which requires non-const 4588 // Modules in case it needs to materialize metadata. But the bitcode writer 4589 // requires that the module is materialized, so we can cast to non-const here, 4590 // after checking that it is in fact materialized. 4591 assert(M.isMaterialized()); 4592 Mods.push_back(const_cast<Module *>(&M)); 4593 4594 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4595 ShouldPreserveUseListOrder, Index, 4596 GenerateHash, ModHash); 4597 ModuleWriter.write(); 4598 } 4599 4600 void BitcodeWriter::writeIndex( 4601 const ModuleSummaryIndex *Index, 4602 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4603 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4604 ModuleToSummariesForIndex); 4605 IndexWriter.write(); 4606 } 4607 4608 /// Write the specified module to the specified output stream. 4609 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4610 bool ShouldPreserveUseListOrder, 4611 const ModuleSummaryIndex *Index, 4612 bool GenerateHash, ModuleHash *ModHash) { 4613 SmallVector<char, 0> Buffer; 4614 Buffer.reserve(256*1024); 4615 4616 // If this is darwin or another generic macho target, reserve space for the 4617 // header. 4618 Triple TT(M.getTargetTriple()); 4619 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4620 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4621 4622 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4623 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4624 ModHash); 4625 Writer.writeSymtab(); 4626 Writer.writeStrtab(); 4627 4628 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4629 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4630 4631 // Write the generated bitstream to "Out". 4632 if (!Buffer.empty()) 4633 Out.write((char *)&Buffer.front(), Buffer.size()); 4634 } 4635 4636 void IndexBitcodeWriter::write() { 4637 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4638 4639 writeModuleVersion(); 4640 4641 // Write the module paths in the combined index. 4642 writeModStrings(); 4643 4644 // Write the summary combined index records. 4645 writeCombinedGlobalValueSummary(); 4646 4647 Stream.ExitBlock(); 4648 } 4649 4650 // Write the specified module summary index to the given raw output stream, 4651 // where it will be written in a new bitcode block. This is used when 4652 // writing the combined index file for ThinLTO. When writing a subset of the 4653 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4654 void llvm::WriteIndexToFile( 4655 const ModuleSummaryIndex &Index, raw_ostream &Out, 4656 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4657 SmallVector<char, 0> Buffer; 4658 Buffer.reserve(256 * 1024); 4659 4660 BitcodeWriter Writer(Buffer); 4661 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4662 Writer.writeStrtab(); 4663 4664 Out.write((char *)&Buffer.front(), Buffer.size()); 4665 } 4666 4667 namespace { 4668 4669 /// Class to manage the bitcode writing for a thin link bitcode file. 4670 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4671 /// ModHash is for use in ThinLTO incremental build, generated while writing 4672 /// the module bitcode file. 4673 const ModuleHash *ModHash; 4674 4675 public: 4676 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4677 BitstreamWriter &Stream, 4678 const ModuleSummaryIndex &Index, 4679 const ModuleHash &ModHash) 4680 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4681 /*ShouldPreserveUseListOrder=*/false, &Index), 4682 ModHash(&ModHash) {} 4683 4684 void write(); 4685 4686 private: 4687 void writeSimplifiedModuleInfo(); 4688 }; 4689 4690 } // end anonymous namespace 4691 4692 // This function writes a simpilified module info for thin link bitcode file. 4693 // It only contains the source file name along with the name(the offset and 4694 // size in strtab) and linkage for global values. For the global value info 4695 // entry, in order to keep linkage at offset 5, there are three zeros used 4696 // as padding. 4697 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4698 SmallVector<unsigned, 64> Vals; 4699 // Emit the module's source file name. 4700 { 4701 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4702 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4703 if (Bits == SE_Char6) 4704 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4705 else if (Bits == SE_Fixed7) 4706 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4707 4708 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4709 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4710 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4712 Abbv->Add(AbbrevOpToUse); 4713 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4714 4715 for (const auto P : M.getSourceFileName()) 4716 Vals.push_back((unsigned char)P); 4717 4718 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4719 Vals.clear(); 4720 } 4721 4722 // Emit the global variable information. 4723 for (const GlobalVariable &GV : M.globals()) { 4724 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4725 Vals.push_back(StrtabBuilder.add(GV.getName())); 4726 Vals.push_back(GV.getName().size()); 4727 Vals.push_back(0); 4728 Vals.push_back(0); 4729 Vals.push_back(0); 4730 Vals.push_back(getEncodedLinkage(GV)); 4731 4732 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4733 Vals.clear(); 4734 } 4735 4736 // Emit the function proto information. 4737 for (const Function &F : M) { 4738 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4739 Vals.push_back(StrtabBuilder.add(F.getName())); 4740 Vals.push_back(F.getName().size()); 4741 Vals.push_back(0); 4742 Vals.push_back(0); 4743 Vals.push_back(0); 4744 Vals.push_back(getEncodedLinkage(F)); 4745 4746 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4747 Vals.clear(); 4748 } 4749 4750 // Emit the alias information. 4751 for (const GlobalAlias &A : M.aliases()) { 4752 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4753 Vals.push_back(StrtabBuilder.add(A.getName())); 4754 Vals.push_back(A.getName().size()); 4755 Vals.push_back(0); 4756 Vals.push_back(0); 4757 Vals.push_back(0); 4758 Vals.push_back(getEncodedLinkage(A)); 4759 4760 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4761 Vals.clear(); 4762 } 4763 4764 // Emit the ifunc information. 4765 for (const GlobalIFunc &I : M.ifuncs()) { 4766 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4767 Vals.push_back(StrtabBuilder.add(I.getName())); 4768 Vals.push_back(I.getName().size()); 4769 Vals.push_back(0); 4770 Vals.push_back(0); 4771 Vals.push_back(0); 4772 Vals.push_back(getEncodedLinkage(I)); 4773 4774 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4775 Vals.clear(); 4776 } 4777 } 4778 4779 void ThinLinkBitcodeWriter::write() { 4780 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4781 4782 writeModuleVersion(); 4783 4784 writeSimplifiedModuleInfo(); 4785 4786 writePerModuleGlobalValueSummary(); 4787 4788 // Write module hash. 4789 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4790 4791 Stream.ExitBlock(); 4792 } 4793 4794 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4795 const ModuleSummaryIndex &Index, 4796 const ModuleHash &ModHash) { 4797 assert(!WroteStrtab); 4798 4799 // The Mods vector is used by irsymtab::build, which requires non-const 4800 // Modules in case it needs to materialize metadata. But the bitcode writer 4801 // requires that the module is materialized, so we can cast to non-const here, 4802 // after checking that it is in fact materialized. 4803 assert(M.isMaterialized()); 4804 Mods.push_back(const_cast<Module *>(&M)); 4805 4806 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4807 ModHash); 4808 ThinLinkWriter.write(); 4809 } 4810 4811 // Write the specified thin link bitcode file to the given raw output stream, 4812 // where it will be written in a new bitcode block. This is used when 4813 // writing the per-module index file for ThinLTO. 4814 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4815 const ModuleSummaryIndex &Index, 4816 const ModuleHash &ModHash) { 4817 SmallVector<char, 0> Buffer; 4818 Buffer.reserve(256 * 1024); 4819 4820 BitcodeWriter Writer(Buffer); 4821 Writer.writeThinLinkBitcode(M, Index, ModHash); 4822 Writer.writeSymtab(); 4823 Writer.writeStrtab(); 4824 4825 Out.write((char *)&Buffer.front(), Buffer.size()); 4826 } 4827 4828 static const char *getSectionNameForBitcode(const Triple &T) { 4829 switch (T.getObjectFormat()) { 4830 case Triple::MachO: 4831 return "__LLVM,__bitcode"; 4832 case Triple::COFF: 4833 case Triple::ELF: 4834 case Triple::Wasm: 4835 case Triple::UnknownObjectFormat: 4836 return ".llvmbc"; 4837 case Triple::GOFF: 4838 llvm_unreachable("GOFF is not yet implemented"); 4839 break; 4840 case Triple::XCOFF: 4841 llvm_unreachable("XCOFF is not yet implemented"); 4842 break; 4843 } 4844 llvm_unreachable("Unimplemented ObjectFormatType"); 4845 } 4846 4847 static const char *getSectionNameForCommandline(const Triple &T) { 4848 switch (T.getObjectFormat()) { 4849 case Triple::MachO: 4850 return "__LLVM,__cmdline"; 4851 case Triple::COFF: 4852 case Triple::ELF: 4853 case Triple::Wasm: 4854 case Triple::UnknownObjectFormat: 4855 return ".llvmcmd"; 4856 case Triple::GOFF: 4857 llvm_unreachable("GOFF is not yet implemented"); 4858 break; 4859 case Triple::XCOFF: 4860 llvm_unreachable("XCOFF is not yet implemented"); 4861 break; 4862 } 4863 llvm_unreachable("Unimplemented ObjectFormatType"); 4864 } 4865 4866 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4867 bool EmbedBitcode, bool EmbedCmdline, 4868 const std::vector<uint8_t> &CmdArgs) { 4869 // Save llvm.compiler.used and remove it. 4870 SmallVector<Constant *, 2> UsedArray; 4871 SmallVector<GlobalValue *, 4> UsedGlobals; 4872 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4873 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4874 for (auto *GV : UsedGlobals) { 4875 if (GV->getName() != "llvm.embedded.module" && 4876 GV->getName() != "llvm.cmdline") 4877 UsedArray.push_back( 4878 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4879 } 4880 if (Used) 4881 Used->eraseFromParent(); 4882 4883 // Embed the bitcode for the llvm module. 4884 std::string Data; 4885 ArrayRef<uint8_t> ModuleData; 4886 Triple T(M.getTargetTriple()); 4887 4888 if (EmbedBitcode) { 4889 if (Buf.getBufferSize() == 0 || 4890 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4891 (const unsigned char *)Buf.getBufferEnd())) { 4892 // If the input is LLVM Assembly, bitcode is produced by serializing 4893 // the module. Use-lists order need to be preserved in this case. 4894 llvm::raw_string_ostream OS(Data); 4895 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4896 ModuleData = 4897 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4898 } else 4899 // If the input is LLVM bitcode, write the input byte stream directly. 4900 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4901 Buf.getBufferSize()); 4902 } 4903 llvm::Constant *ModuleConstant = 4904 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4905 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4906 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4907 ModuleConstant); 4908 GV->setSection(getSectionNameForBitcode(T)); 4909 // Set alignment to 1 to prevent padding between two contributions from input 4910 // sections after linking. 4911 GV->setAlignment(Align(1)); 4912 UsedArray.push_back( 4913 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4914 if (llvm::GlobalVariable *Old = 4915 M.getGlobalVariable("llvm.embedded.module", true)) { 4916 assert(Old->hasOneUse() && 4917 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4918 GV->takeName(Old); 4919 Old->eraseFromParent(); 4920 } else { 4921 GV->setName("llvm.embedded.module"); 4922 } 4923 4924 // Skip if only bitcode needs to be embedded. 4925 if (EmbedCmdline) { 4926 // Embed command-line options. 4927 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4928 CmdArgs.size()); 4929 llvm::Constant *CmdConstant = 4930 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4931 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4932 llvm::GlobalValue::PrivateLinkage, 4933 CmdConstant); 4934 GV->setSection(getSectionNameForCommandline(T)); 4935 GV->setAlignment(Align(1)); 4936 UsedArray.push_back( 4937 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4938 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4939 assert(Old->hasOneUse() && 4940 "llvm.cmdline can only be used once in llvm.compiler.used"); 4941 GV->takeName(Old); 4942 Old->eraseFromParent(); 4943 } else { 4944 GV->setName("llvm.cmdline"); 4945 } 4946 } 4947 4948 if (UsedArray.empty()) 4949 return; 4950 4951 // Recreate llvm.compiler.used. 4952 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4953 auto *NewUsed = new GlobalVariable( 4954 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4955 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4956 NewUsed->setSection("llvm.metadata"); 4957 } 4958