1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Bitcode/BitCodes.h"
29 #include "llvm/Bitcode/BitstreamWriter.h"
30 #include "llvm/Bitcode/LLVMBitCodes.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 static cl::opt<unsigned>
86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                    cl::desc("Number of metadatas above which we emit an index "
88                             "to enable lazy-loading"));
89 
90 cl::opt<bool> WriteRelBFToSummary(
91     "write-relbf-to-summary", cl::Hidden, cl::init(false),
92     cl::desc("Write relative block frequency to function summary "));
93 
94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95 
96 namespace {
97 
98 /// These are manifest constants used by the bitcode writer. They do not need to
99 /// be kept in sync with the reader, but need to be consistent within this file.
100 enum {
101   // VALUE_SYMTAB_BLOCK abbrev id's.
102   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
103   VST_ENTRY_7_ABBREV,
104   VST_ENTRY_6_ABBREV,
105   VST_BBENTRY_6_ABBREV,
106 
107   // CONSTANTS_BLOCK abbrev id's.
108   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109   CONSTANTS_INTEGER_ABBREV,
110   CONSTANTS_CE_CAST_Abbrev,
111   CONSTANTS_NULL_Abbrev,
112 
113   // FUNCTION_BLOCK abbrev id's.
114   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115   FUNCTION_INST_BINOP_ABBREV,
116   FUNCTION_INST_BINOP_FLAGS_ABBREV,
117   FUNCTION_INST_CAST_ABBREV,
118   FUNCTION_INST_RET_VOID_ABBREV,
119   FUNCTION_INST_RET_VAL_ABBREV,
120   FUNCTION_INST_UNREACHABLE_ABBREV,
121   FUNCTION_INST_GEP_ABBREV,
122 };
123 
124 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
125 /// file type.
126 class BitcodeWriterBase {
127 protected:
128   /// The stream created and owned by the client.
129   BitstreamWriter &Stream;
130 
131   StringTableBuilder &StrtabBuilder;
132 
133 public:
134   /// Constructs a BitcodeWriterBase object that writes to the provided
135   /// \p Stream.
136   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
137       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
138 
139 protected:
140   void writeBitcodeHeader();
141   void writeModuleVersion();
142 };
143 
144 void BitcodeWriterBase::writeModuleVersion() {
145   // VERSION: [version#]
146   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
147 }
148 
149 /// Base class to manage the module bitcode writing, currently subclassed for
150 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
151 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
152 protected:
153   /// The Module to write to bitcode.
154   const Module &M;
155 
156   /// Enumerates ids for all values in the module.
157   ValueEnumerator VE;
158 
159   /// Optional per-module index to write for ThinLTO.
160   const ModuleSummaryIndex *Index;
161 
162   /// Map that holds the correspondence between GUIDs in the summary index,
163   /// that came from indirect call profiles, and a value id generated by this
164   /// class to use in the VST and summary block records.
165   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
166 
167   /// Tracks the last value id recorded in the GUIDToValueMap.
168   unsigned GlobalValueId;
169 
170   /// Saves the offset of the VSTOffset record that must eventually be
171   /// backpatched with the offset of the actual VST.
172   uint64_t VSTOffsetPlaceholder = 0;
173 
174 public:
175   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
176   /// writing to the provided \p Buffer.
177   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
178                           BitstreamWriter &Stream,
179                           bool ShouldPreserveUseListOrder,
180                           const ModuleSummaryIndex *Index)
181       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
182         VE(M, ShouldPreserveUseListOrder), Index(Index) {
183     // Assign ValueIds to any callee values in the index that came from
184     // indirect call profiles and were recorded as a GUID not a Value*
185     // (which would have been assigned an ID by the ValueEnumerator).
186     // The starting ValueId is just after the number of values in the
187     // ValueEnumerator, so that they can be emitted in the VST.
188     GlobalValueId = VE.getValues().size();
189     if (!Index)
190       return;
191     for (const auto &GUIDSummaryLists : *Index)
192       // Examine all summaries for this GUID.
193       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
194         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
195           // For each call in the function summary, see if the call
196           // is to a GUID (which means it is for an indirect call,
197           // otherwise we would have a Value for it). If so, synthesize
198           // a value id.
199           for (auto &CallEdge : FS->calls())
200             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
201               assignValueId(CallEdge.first.getGUID());
202   }
203 
204 protected:
205   void writePerModuleGlobalValueSummary();
206 
207 private:
208   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
209                                            GlobalValueSummary *Summary,
210                                            unsigned ValueID,
211                                            unsigned FSCallsAbbrev,
212                                            unsigned FSCallsProfileAbbrev,
213                                            const Function &F);
214   void writeModuleLevelReferences(const GlobalVariable &V,
215                                   SmallVector<uint64_t, 64> &NameVals,
216                                   unsigned FSModRefsAbbrev);
217 
218   void assignValueId(GlobalValue::GUID ValGUID) {
219     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
220   }
221 
222   unsigned getValueId(GlobalValue::GUID ValGUID) {
223     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
224     // Expect that any GUID value had a value Id assigned by an
225     // earlier call to assignValueId.
226     assert(VMI != GUIDToValueIdMap.end() &&
227            "GUID does not have assigned value Id");
228     return VMI->second;
229   }
230 
231   // Helper to get the valueId for the type of value recorded in VI.
232   unsigned getValueId(ValueInfo VI) {
233     if (!VI.haveGVs() || !VI.getValue())
234       return getValueId(VI.getGUID());
235     return VE.getValueID(VI.getValue());
236   }
237 
238   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
239 };
240 
241 /// Class to manage the bitcode writing for a module.
242 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
243   /// Pointer to the buffer allocated by caller for bitcode writing.
244   const SmallVectorImpl<char> &Buffer;
245 
246   /// True if a module hash record should be written.
247   bool GenerateHash;
248 
249   /// If non-null, when GenerateHash is true, the resulting hash is written
250   /// into ModHash.
251   ModuleHash *ModHash;
252 
253   SHA1 Hasher;
254 
255   /// The start bit of the identification block.
256   uint64_t BitcodeStartBit;
257 
258 public:
259   /// Constructs a ModuleBitcodeWriter object for the given Module,
260   /// writing to the provided \p Buffer.
261   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
262                       StringTableBuilder &StrtabBuilder,
263                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
264                       const ModuleSummaryIndex *Index, bool GenerateHash,
265                       ModuleHash *ModHash = nullptr)
266       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
267                                 ShouldPreserveUseListOrder, Index),
268         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
269         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
270 
271   /// Emit the current module to the bitstream.
272   void write();
273 
274 private:
275   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
276 
277   size_t addToStrtab(StringRef Str);
278 
279   void writeAttributeGroupTable();
280   void writeAttributeTable();
281   void writeTypeTable();
282   void writeComdats();
283   void writeValueSymbolTableForwardDecl();
284   void writeModuleInfo();
285   void writeValueAsMetadata(const ValueAsMetadata *MD,
286                             SmallVectorImpl<uint64_t> &Record);
287   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
288                     unsigned Abbrev);
289   unsigned createDILocationAbbrev();
290   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
291                        unsigned &Abbrev);
292   unsigned createGenericDINodeAbbrev();
293   void writeGenericDINode(const GenericDINode *N,
294                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
295   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
296                        unsigned Abbrev);
297   void writeDIEnumerator(const DIEnumerator *N,
298                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
299   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
300                         unsigned Abbrev);
301   void writeDIDerivedType(const DIDerivedType *N,
302                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
303   void writeDICompositeType(const DICompositeType *N,
304                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305   void writeDISubroutineType(const DISubroutineType *N,
306                              SmallVectorImpl<uint64_t> &Record,
307                              unsigned Abbrev);
308   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
309                    unsigned Abbrev);
310   void writeDICompileUnit(const DICompileUnit *N,
311                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312   void writeDISubprogram(const DISubprogram *N,
313                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314   void writeDILexicalBlock(const DILexicalBlock *N,
315                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
317                                SmallVectorImpl<uint64_t> &Record,
318                                unsigned Abbrev);
319   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
320                         unsigned Abbrev);
321   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
322                     unsigned Abbrev);
323   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
324                         unsigned Abbrev);
325   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
326                      unsigned Abbrev);
327   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
328                                     SmallVectorImpl<uint64_t> &Record,
329                                     unsigned Abbrev);
330   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
331                                      SmallVectorImpl<uint64_t> &Record,
332                                      unsigned Abbrev);
333   void writeDIGlobalVariable(const DIGlobalVariable *N,
334                              SmallVectorImpl<uint64_t> &Record,
335                              unsigned Abbrev);
336   void writeDILocalVariable(const DILocalVariable *N,
337                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338   void writeDILabel(const DILabel *N,
339                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
340   void writeDIExpression(const DIExpression *N,
341                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
343                                        SmallVectorImpl<uint64_t> &Record,
344                                        unsigned Abbrev);
345   void writeDIObjCProperty(const DIObjCProperty *N,
346                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
347   void writeDIImportedEntity(const DIImportedEntity *N,
348                              SmallVectorImpl<uint64_t> &Record,
349                              unsigned Abbrev);
350   unsigned createNamedMetadataAbbrev();
351   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
352   unsigned createMetadataStringsAbbrev();
353   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
354                             SmallVectorImpl<uint64_t> &Record);
355   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
356                             SmallVectorImpl<uint64_t> &Record,
357                             std::vector<unsigned> *MDAbbrevs = nullptr,
358                             std::vector<uint64_t> *IndexPos = nullptr);
359   void writeModuleMetadata();
360   void writeFunctionMetadata(const Function &F);
361   void writeFunctionMetadataAttachment(const Function &F);
362   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
363   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
364                                     const GlobalObject &GO);
365   void writeModuleMetadataKinds();
366   void writeOperandBundleTags();
367   void writeSyncScopeNames();
368   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
369   void writeModuleConstants();
370   bool pushValueAndType(const Value *V, unsigned InstID,
371                         SmallVectorImpl<unsigned> &Vals);
372   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
373   void pushValue(const Value *V, unsigned InstID,
374                  SmallVectorImpl<unsigned> &Vals);
375   void pushValueSigned(const Value *V, unsigned InstID,
376                        SmallVectorImpl<uint64_t> &Vals);
377   void writeInstruction(const Instruction &I, unsigned InstID,
378                         SmallVectorImpl<unsigned> &Vals);
379   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
380   void writeGlobalValueSymbolTable(
381       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
382   void writeUseList(UseListOrder &&Order);
383   void writeUseListBlock(const Function *F);
384   void
385   writeFunction(const Function &F,
386                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
387   void writeBlockInfo();
388   void writeModuleHash(size_t BlockStartPos);
389 
390   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
391     return unsigned(SSID);
392   }
393 };
394 
395 /// Class to manage the bitcode writing for a combined index.
396 class IndexBitcodeWriter : public BitcodeWriterBase {
397   /// The combined index to write to bitcode.
398   const ModuleSummaryIndex &Index;
399 
400   /// When writing a subset of the index for distributed backends, client
401   /// provides a map of modules to the corresponding GUIDs/summaries to write.
402   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
403 
404   /// Map that holds the correspondence between the GUID used in the combined
405   /// index and a value id generated by this class to use in references.
406   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
407 
408   /// Tracks the last value id recorded in the GUIDToValueMap.
409   unsigned GlobalValueId = 0;
410 
411 public:
412   /// Constructs a IndexBitcodeWriter object for the given combined index,
413   /// writing to the provided \p Buffer. When writing a subset of the index
414   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
415   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
416                      const ModuleSummaryIndex &Index,
417                      const std::map<std::string, GVSummaryMapTy>
418                          *ModuleToSummariesForIndex = nullptr)
419       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
420         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
421     // Assign unique value ids to all summaries to be written, for use
422     // in writing out the call graph edges. Save the mapping from GUID
423     // to the new global value id to use when writing those edges, which
424     // are currently saved in the index in terms of GUID.
425     forEachSummary([&](GVInfo I, bool) {
426       GUIDToValueIdMap[I.first] = ++GlobalValueId;
427     });
428   }
429 
430   /// The below iterator returns the GUID and associated summary.
431   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
432 
433   /// Calls the callback for each value GUID and summary to be written to
434   /// bitcode. This hides the details of whether they are being pulled from the
435   /// entire index or just those in a provided ModuleToSummariesForIndex map.
436   template<typename Functor>
437   void forEachSummary(Functor Callback) {
438     if (ModuleToSummariesForIndex) {
439       for (auto &M : *ModuleToSummariesForIndex)
440         for (auto &Summary : M.second) {
441           Callback(Summary, false);
442           // Ensure aliasee is handled, e.g. for assigning a valueId,
443           // even if we are not importing the aliasee directly (the
444           // imported alias will contain a copy of aliasee).
445           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
446             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
447         }
448     } else {
449       for (auto &Summaries : Index)
450         for (auto &Summary : Summaries.second.SummaryList)
451           Callback({Summaries.first, Summary.get()}, false);
452     }
453   }
454 
455   /// Calls the callback for each entry in the modulePaths StringMap that
456   /// should be written to the module path string table. This hides the details
457   /// of whether they are being pulled from the entire index or just those in a
458   /// provided ModuleToSummariesForIndex map.
459   template <typename Functor> void forEachModule(Functor Callback) {
460     if (ModuleToSummariesForIndex) {
461       for (const auto &M : *ModuleToSummariesForIndex) {
462         const auto &MPI = Index.modulePaths().find(M.first);
463         if (MPI == Index.modulePaths().end()) {
464           // This should only happen if the bitcode file was empty, in which
465           // case we shouldn't be importing (the ModuleToSummariesForIndex
466           // would only include the module we are writing and index for).
467           assert(ModuleToSummariesForIndex->size() == 1);
468           continue;
469         }
470         Callback(*MPI);
471       }
472     } else {
473       for (const auto &MPSE : Index.modulePaths())
474         Callback(MPSE);
475     }
476   }
477 
478   /// Main entry point for writing a combined index to bitcode.
479   void write();
480 
481 private:
482   void writeModStrings();
483   void writeCombinedGlobalValueSummary();
484 
485   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
486     auto VMI = GUIDToValueIdMap.find(ValGUID);
487     if (VMI == GUIDToValueIdMap.end())
488       return None;
489     return VMI->second;
490   }
491 
492   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
493 };
494 
495 } // end anonymous namespace
496 
497 static unsigned getEncodedCastOpcode(unsigned Opcode) {
498   switch (Opcode) {
499   default: llvm_unreachable("Unknown cast instruction!");
500   case Instruction::Trunc   : return bitc::CAST_TRUNC;
501   case Instruction::ZExt    : return bitc::CAST_ZEXT;
502   case Instruction::SExt    : return bitc::CAST_SEXT;
503   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
504   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
505   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
506   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
507   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
508   case Instruction::FPExt   : return bitc::CAST_FPEXT;
509   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
510   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
511   case Instruction::BitCast : return bitc::CAST_BITCAST;
512   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
513   }
514 }
515 
516 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
517   switch (Opcode) {
518   default: llvm_unreachable("Unknown binary instruction!");
519   case Instruction::Add:
520   case Instruction::FAdd: return bitc::BINOP_ADD;
521   case Instruction::Sub:
522   case Instruction::FSub: return bitc::BINOP_SUB;
523   case Instruction::Mul:
524   case Instruction::FMul: return bitc::BINOP_MUL;
525   case Instruction::UDiv: return bitc::BINOP_UDIV;
526   case Instruction::FDiv:
527   case Instruction::SDiv: return bitc::BINOP_SDIV;
528   case Instruction::URem: return bitc::BINOP_UREM;
529   case Instruction::FRem:
530   case Instruction::SRem: return bitc::BINOP_SREM;
531   case Instruction::Shl:  return bitc::BINOP_SHL;
532   case Instruction::LShr: return bitc::BINOP_LSHR;
533   case Instruction::AShr: return bitc::BINOP_ASHR;
534   case Instruction::And:  return bitc::BINOP_AND;
535   case Instruction::Or:   return bitc::BINOP_OR;
536   case Instruction::Xor:  return bitc::BINOP_XOR;
537   }
538 }
539 
540 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
541   switch (Op) {
542   default: llvm_unreachable("Unknown RMW operation!");
543   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
544   case AtomicRMWInst::Add: return bitc::RMW_ADD;
545   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
546   case AtomicRMWInst::And: return bitc::RMW_AND;
547   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
548   case AtomicRMWInst::Or: return bitc::RMW_OR;
549   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
550   case AtomicRMWInst::Max: return bitc::RMW_MAX;
551   case AtomicRMWInst::Min: return bitc::RMW_MIN;
552   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
553   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
554   }
555 }
556 
557 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
558   switch (Ordering) {
559   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
560   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
561   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
562   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
563   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
564   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
565   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
566   }
567   llvm_unreachable("Invalid ordering");
568 }
569 
570 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
571                               StringRef Str, unsigned AbbrevToUse) {
572   SmallVector<unsigned, 64> Vals;
573 
574   // Code: [strchar x N]
575   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
576     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
577       AbbrevToUse = 0;
578     Vals.push_back(Str[i]);
579   }
580 
581   // Emit the finished record.
582   Stream.EmitRecord(Code, Vals, AbbrevToUse);
583 }
584 
585 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
586   switch (Kind) {
587   case Attribute::Alignment:
588     return bitc::ATTR_KIND_ALIGNMENT;
589   case Attribute::AllocSize:
590     return bitc::ATTR_KIND_ALLOC_SIZE;
591   case Attribute::AlwaysInline:
592     return bitc::ATTR_KIND_ALWAYS_INLINE;
593   case Attribute::ArgMemOnly:
594     return bitc::ATTR_KIND_ARGMEMONLY;
595   case Attribute::Builtin:
596     return bitc::ATTR_KIND_BUILTIN;
597   case Attribute::ByVal:
598     return bitc::ATTR_KIND_BY_VAL;
599   case Attribute::Convergent:
600     return bitc::ATTR_KIND_CONVERGENT;
601   case Attribute::InAlloca:
602     return bitc::ATTR_KIND_IN_ALLOCA;
603   case Attribute::Cold:
604     return bitc::ATTR_KIND_COLD;
605   case Attribute::InaccessibleMemOnly:
606     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
607   case Attribute::InaccessibleMemOrArgMemOnly:
608     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
609   case Attribute::InlineHint:
610     return bitc::ATTR_KIND_INLINE_HINT;
611   case Attribute::InReg:
612     return bitc::ATTR_KIND_IN_REG;
613   case Attribute::JumpTable:
614     return bitc::ATTR_KIND_JUMP_TABLE;
615   case Attribute::MinSize:
616     return bitc::ATTR_KIND_MIN_SIZE;
617   case Attribute::Naked:
618     return bitc::ATTR_KIND_NAKED;
619   case Attribute::Nest:
620     return bitc::ATTR_KIND_NEST;
621   case Attribute::NoAlias:
622     return bitc::ATTR_KIND_NO_ALIAS;
623   case Attribute::NoBuiltin:
624     return bitc::ATTR_KIND_NO_BUILTIN;
625   case Attribute::NoCapture:
626     return bitc::ATTR_KIND_NO_CAPTURE;
627   case Attribute::NoDuplicate:
628     return bitc::ATTR_KIND_NO_DUPLICATE;
629   case Attribute::NoImplicitFloat:
630     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
631   case Attribute::NoInline:
632     return bitc::ATTR_KIND_NO_INLINE;
633   case Attribute::NoRecurse:
634     return bitc::ATTR_KIND_NO_RECURSE;
635   case Attribute::NonLazyBind:
636     return bitc::ATTR_KIND_NON_LAZY_BIND;
637   case Attribute::NonNull:
638     return bitc::ATTR_KIND_NON_NULL;
639   case Attribute::Dereferenceable:
640     return bitc::ATTR_KIND_DEREFERENCEABLE;
641   case Attribute::DereferenceableOrNull:
642     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
643   case Attribute::NoRedZone:
644     return bitc::ATTR_KIND_NO_RED_ZONE;
645   case Attribute::NoReturn:
646     return bitc::ATTR_KIND_NO_RETURN;
647   case Attribute::NoCfCheck:
648     return bitc::ATTR_KIND_NOCF_CHECK;
649   case Attribute::NoUnwind:
650     return bitc::ATTR_KIND_NO_UNWIND;
651   case Attribute::OptForFuzzing:
652     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
653   case Attribute::OptimizeForSize:
654     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
655   case Attribute::OptimizeNone:
656     return bitc::ATTR_KIND_OPTIMIZE_NONE;
657   case Attribute::ReadNone:
658     return bitc::ATTR_KIND_READ_NONE;
659   case Attribute::ReadOnly:
660     return bitc::ATTR_KIND_READ_ONLY;
661   case Attribute::Returned:
662     return bitc::ATTR_KIND_RETURNED;
663   case Attribute::ReturnsTwice:
664     return bitc::ATTR_KIND_RETURNS_TWICE;
665   case Attribute::SExt:
666     return bitc::ATTR_KIND_S_EXT;
667   case Attribute::Speculatable:
668     return bitc::ATTR_KIND_SPECULATABLE;
669   case Attribute::StackAlignment:
670     return bitc::ATTR_KIND_STACK_ALIGNMENT;
671   case Attribute::StackProtect:
672     return bitc::ATTR_KIND_STACK_PROTECT;
673   case Attribute::StackProtectReq:
674     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
675   case Attribute::StackProtectStrong:
676     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
677   case Attribute::SafeStack:
678     return bitc::ATTR_KIND_SAFESTACK;
679   case Attribute::ShadowCallStack:
680     return bitc::ATTR_KIND_SHADOWCALLSTACK;
681   case Attribute::StrictFP:
682     return bitc::ATTR_KIND_STRICT_FP;
683   case Attribute::StructRet:
684     return bitc::ATTR_KIND_STRUCT_RET;
685   case Attribute::SanitizeAddress:
686     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
687   case Attribute::SanitizeHWAddress:
688     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
689   case Attribute::SanitizeThread:
690     return bitc::ATTR_KIND_SANITIZE_THREAD;
691   case Attribute::SanitizeMemory:
692     return bitc::ATTR_KIND_SANITIZE_MEMORY;
693   case Attribute::SpeculativeLoadHardening:
694     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
695   case Attribute::SwiftError:
696     return bitc::ATTR_KIND_SWIFT_ERROR;
697   case Attribute::SwiftSelf:
698     return bitc::ATTR_KIND_SWIFT_SELF;
699   case Attribute::UWTable:
700     return bitc::ATTR_KIND_UW_TABLE;
701   case Attribute::WriteOnly:
702     return bitc::ATTR_KIND_WRITEONLY;
703   case Attribute::ZExt:
704     return bitc::ATTR_KIND_Z_EXT;
705   case Attribute::EndAttrKinds:
706     llvm_unreachable("Can not encode end-attribute kinds marker.");
707   case Attribute::None:
708     llvm_unreachable("Can not encode none-attribute.");
709   }
710 
711   llvm_unreachable("Trying to encode unknown attribute");
712 }
713 
714 void ModuleBitcodeWriter::writeAttributeGroupTable() {
715   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
716       VE.getAttributeGroups();
717   if (AttrGrps.empty()) return;
718 
719   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
720 
721   SmallVector<uint64_t, 64> Record;
722   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
723     unsigned AttrListIndex = Pair.first;
724     AttributeSet AS = Pair.second;
725     Record.push_back(VE.getAttributeGroupID(Pair));
726     Record.push_back(AttrListIndex);
727 
728     for (Attribute Attr : AS) {
729       if (Attr.isEnumAttribute()) {
730         Record.push_back(0);
731         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
732       } else if (Attr.isIntAttribute()) {
733         Record.push_back(1);
734         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
735         Record.push_back(Attr.getValueAsInt());
736       } else {
737         StringRef Kind = Attr.getKindAsString();
738         StringRef Val = Attr.getValueAsString();
739 
740         Record.push_back(Val.empty() ? 3 : 4);
741         Record.append(Kind.begin(), Kind.end());
742         Record.push_back(0);
743         if (!Val.empty()) {
744           Record.append(Val.begin(), Val.end());
745           Record.push_back(0);
746         }
747       }
748     }
749 
750     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
751     Record.clear();
752   }
753 
754   Stream.ExitBlock();
755 }
756 
757 void ModuleBitcodeWriter::writeAttributeTable() {
758   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
759   if (Attrs.empty()) return;
760 
761   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
762 
763   SmallVector<uint64_t, 64> Record;
764   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
765     AttributeList AL = Attrs[i];
766     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
767       AttributeSet AS = AL.getAttributes(i);
768       if (AS.hasAttributes())
769         Record.push_back(VE.getAttributeGroupID({i, AS}));
770     }
771 
772     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
773     Record.clear();
774   }
775 
776   Stream.ExitBlock();
777 }
778 
779 /// WriteTypeTable - Write out the type table for a module.
780 void ModuleBitcodeWriter::writeTypeTable() {
781   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
782 
783   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
784   SmallVector<uint64_t, 64> TypeVals;
785 
786   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
787 
788   // Abbrev for TYPE_CODE_POINTER.
789   auto Abbv = std::make_shared<BitCodeAbbrev>();
790   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
791   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
792   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
793   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
794 
795   // Abbrev for TYPE_CODE_FUNCTION.
796   Abbv = std::make_shared<BitCodeAbbrev>();
797   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
798   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
799   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
801   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
802 
803   // Abbrev for TYPE_CODE_STRUCT_ANON.
804   Abbv = std::make_shared<BitCodeAbbrev>();
805   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
806   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
807   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
808   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
809   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
810 
811   // Abbrev for TYPE_CODE_STRUCT_NAME.
812   Abbv = std::make_shared<BitCodeAbbrev>();
813   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
814   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
815   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
816   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
817 
818   // Abbrev for TYPE_CODE_STRUCT_NAMED.
819   Abbv = std::make_shared<BitCodeAbbrev>();
820   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
821   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
822   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
823   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
824   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
825 
826   // Abbrev for TYPE_CODE_ARRAY.
827   Abbv = std::make_shared<BitCodeAbbrev>();
828   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
829   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
830   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
831   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
832 
833   // Emit an entry count so the reader can reserve space.
834   TypeVals.push_back(TypeList.size());
835   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
836   TypeVals.clear();
837 
838   // Loop over all of the types, emitting each in turn.
839   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
840     Type *T = TypeList[i];
841     int AbbrevToUse = 0;
842     unsigned Code = 0;
843 
844     switch (T->getTypeID()) {
845     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
846     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
847     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
848     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
849     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
850     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
851     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
852     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
853     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
854     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
855     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
856     case Type::IntegerTyID:
857       // INTEGER: [width]
858       Code = bitc::TYPE_CODE_INTEGER;
859       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
860       break;
861     case Type::PointerTyID: {
862       PointerType *PTy = cast<PointerType>(T);
863       // POINTER: [pointee type, address space]
864       Code = bitc::TYPE_CODE_POINTER;
865       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
866       unsigned AddressSpace = PTy->getAddressSpace();
867       TypeVals.push_back(AddressSpace);
868       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
869       break;
870     }
871     case Type::FunctionTyID: {
872       FunctionType *FT = cast<FunctionType>(T);
873       // FUNCTION: [isvararg, retty, paramty x N]
874       Code = bitc::TYPE_CODE_FUNCTION;
875       TypeVals.push_back(FT->isVarArg());
876       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
877       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
878         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
879       AbbrevToUse = FunctionAbbrev;
880       break;
881     }
882     case Type::StructTyID: {
883       StructType *ST = cast<StructType>(T);
884       // STRUCT: [ispacked, eltty x N]
885       TypeVals.push_back(ST->isPacked());
886       // Output all of the element types.
887       for (StructType::element_iterator I = ST->element_begin(),
888            E = ST->element_end(); I != E; ++I)
889         TypeVals.push_back(VE.getTypeID(*I));
890 
891       if (ST->isLiteral()) {
892         Code = bitc::TYPE_CODE_STRUCT_ANON;
893         AbbrevToUse = StructAnonAbbrev;
894       } else {
895         if (ST->isOpaque()) {
896           Code = bitc::TYPE_CODE_OPAQUE;
897         } else {
898           Code = bitc::TYPE_CODE_STRUCT_NAMED;
899           AbbrevToUse = StructNamedAbbrev;
900         }
901 
902         // Emit the name if it is present.
903         if (!ST->getName().empty())
904           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
905                             StructNameAbbrev);
906       }
907       break;
908     }
909     case Type::ArrayTyID: {
910       ArrayType *AT = cast<ArrayType>(T);
911       // ARRAY: [numelts, eltty]
912       Code = bitc::TYPE_CODE_ARRAY;
913       TypeVals.push_back(AT->getNumElements());
914       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
915       AbbrevToUse = ArrayAbbrev;
916       break;
917     }
918     case Type::VectorTyID: {
919       VectorType *VT = cast<VectorType>(T);
920       // VECTOR [numelts, eltty]
921       Code = bitc::TYPE_CODE_VECTOR;
922       TypeVals.push_back(VT->getNumElements());
923       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
924       break;
925     }
926     }
927 
928     // Emit the finished record.
929     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
930     TypeVals.clear();
931   }
932 
933   Stream.ExitBlock();
934 }
935 
936 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
937   switch (Linkage) {
938   case GlobalValue::ExternalLinkage:
939     return 0;
940   case GlobalValue::WeakAnyLinkage:
941     return 16;
942   case GlobalValue::AppendingLinkage:
943     return 2;
944   case GlobalValue::InternalLinkage:
945     return 3;
946   case GlobalValue::LinkOnceAnyLinkage:
947     return 18;
948   case GlobalValue::ExternalWeakLinkage:
949     return 7;
950   case GlobalValue::CommonLinkage:
951     return 8;
952   case GlobalValue::PrivateLinkage:
953     return 9;
954   case GlobalValue::WeakODRLinkage:
955     return 17;
956   case GlobalValue::LinkOnceODRLinkage:
957     return 19;
958   case GlobalValue::AvailableExternallyLinkage:
959     return 12;
960   }
961   llvm_unreachable("Invalid linkage");
962 }
963 
964 static unsigned getEncodedLinkage(const GlobalValue &GV) {
965   return getEncodedLinkage(GV.getLinkage());
966 }
967 
968 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
969   uint64_t RawFlags = 0;
970   RawFlags |= Flags.ReadNone;
971   RawFlags |= (Flags.ReadOnly << 1);
972   RawFlags |= (Flags.NoRecurse << 2);
973   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
974   RawFlags |= (Flags.NoInline << 4);
975   return RawFlags;
976 }
977 
978 // Decode the flags for GlobalValue in the summary
979 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
980   uint64_t RawFlags = 0;
981 
982   RawFlags |= Flags.NotEligibleToImport; // bool
983   RawFlags |= (Flags.Live << 1);
984   RawFlags |= (Flags.DSOLocal << 2);
985 
986   // Linkage don't need to be remapped at that time for the summary. Any future
987   // change to the getEncodedLinkage() function will need to be taken into
988   // account here as well.
989   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
990 
991   return RawFlags;
992 }
993 
994 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
995   uint64_t RawFlags = Flags.ReadOnly;
996   return RawFlags;
997 }
998 
999 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1000   switch (GV.getVisibility()) {
1001   case GlobalValue::DefaultVisibility:   return 0;
1002   case GlobalValue::HiddenVisibility:    return 1;
1003   case GlobalValue::ProtectedVisibility: return 2;
1004   }
1005   llvm_unreachable("Invalid visibility");
1006 }
1007 
1008 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1009   switch (GV.getDLLStorageClass()) {
1010   case GlobalValue::DefaultStorageClass:   return 0;
1011   case GlobalValue::DLLImportStorageClass: return 1;
1012   case GlobalValue::DLLExportStorageClass: return 2;
1013   }
1014   llvm_unreachable("Invalid DLL storage class");
1015 }
1016 
1017 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1018   switch (GV.getThreadLocalMode()) {
1019     case GlobalVariable::NotThreadLocal:         return 0;
1020     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1021     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1022     case GlobalVariable::InitialExecTLSModel:    return 3;
1023     case GlobalVariable::LocalExecTLSModel:      return 4;
1024   }
1025   llvm_unreachable("Invalid TLS model");
1026 }
1027 
1028 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1029   switch (C.getSelectionKind()) {
1030   case Comdat::Any:
1031     return bitc::COMDAT_SELECTION_KIND_ANY;
1032   case Comdat::ExactMatch:
1033     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1034   case Comdat::Largest:
1035     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1036   case Comdat::NoDuplicates:
1037     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1038   case Comdat::SameSize:
1039     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1040   }
1041   llvm_unreachable("Invalid selection kind");
1042 }
1043 
1044 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1045   switch (GV.getUnnamedAddr()) {
1046   case GlobalValue::UnnamedAddr::None:   return 0;
1047   case GlobalValue::UnnamedAddr::Local:  return 2;
1048   case GlobalValue::UnnamedAddr::Global: return 1;
1049   }
1050   llvm_unreachable("Invalid unnamed_addr");
1051 }
1052 
1053 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1054   if (GenerateHash)
1055     Hasher.update(Str);
1056   return StrtabBuilder.add(Str);
1057 }
1058 
1059 void ModuleBitcodeWriter::writeComdats() {
1060   SmallVector<unsigned, 64> Vals;
1061   for (const Comdat *C : VE.getComdats()) {
1062     // COMDAT: [strtab offset, strtab size, selection_kind]
1063     Vals.push_back(addToStrtab(C->getName()));
1064     Vals.push_back(C->getName().size());
1065     Vals.push_back(getEncodedComdatSelectionKind(*C));
1066     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1067     Vals.clear();
1068   }
1069 }
1070 
1071 /// Write a record that will eventually hold the word offset of the
1072 /// module-level VST. For now the offset is 0, which will be backpatched
1073 /// after the real VST is written. Saves the bit offset to backpatch.
1074 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1075   // Write a placeholder value in for the offset of the real VST,
1076   // which is written after the function blocks so that it can include
1077   // the offset of each function. The placeholder offset will be
1078   // updated when the real VST is written.
1079   auto Abbv = std::make_shared<BitCodeAbbrev>();
1080   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1081   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1082   // hold the real VST offset. Must use fixed instead of VBR as we don't
1083   // know how many VBR chunks to reserve ahead of time.
1084   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1085   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1086 
1087   // Emit the placeholder
1088   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1089   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1090 
1091   // Compute and save the bit offset to the placeholder, which will be
1092   // patched when the real VST is written. We can simply subtract the 32-bit
1093   // fixed size from the current bit number to get the location to backpatch.
1094   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1095 }
1096 
1097 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1098 
1099 /// Determine the encoding to use for the given string name and length.
1100 static StringEncoding getStringEncoding(StringRef Str) {
1101   bool isChar6 = true;
1102   for (char C : Str) {
1103     if (isChar6)
1104       isChar6 = BitCodeAbbrevOp::isChar6(C);
1105     if ((unsigned char)C & 128)
1106       // don't bother scanning the rest.
1107       return SE_Fixed8;
1108   }
1109   if (isChar6)
1110     return SE_Char6;
1111   return SE_Fixed7;
1112 }
1113 
1114 /// Emit top-level description of module, including target triple, inline asm,
1115 /// descriptors for global variables, and function prototype info.
1116 /// Returns the bit offset to backpatch with the location of the real VST.
1117 void ModuleBitcodeWriter::writeModuleInfo() {
1118   // Emit various pieces of data attached to a module.
1119   if (!M.getTargetTriple().empty())
1120     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1121                       0 /*TODO*/);
1122   const std::string &DL = M.getDataLayoutStr();
1123   if (!DL.empty())
1124     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1125   if (!M.getModuleInlineAsm().empty())
1126     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1127                       0 /*TODO*/);
1128 
1129   // Emit information about sections and GC, computing how many there are. Also
1130   // compute the maximum alignment value.
1131   std::map<std::string, unsigned> SectionMap;
1132   std::map<std::string, unsigned> GCMap;
1133   unsigned MaxAlignment = 0;
1134   unsigned MaxGlobalType = 0;
1135   for (const GlobalValue &GV : M.globals()) {
1136     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1137     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1138     if (GV.hasSection()) {
1139       // Give section names unique ID's.
1140       unsigned &Entry = SectionMap[GV.getSection()];
1141       if (!Entry) {
1142         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1143                           0 /*TODO*/);
1144         Entry = SectionMap.size();
1145       }
1146     }
1147   }
1148   for (const Function &F : M) {
1149     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1150     if (F.hasSection()) {
1151       // Give section names unique ID's.
1152       unsigned &Entry = SectionMap[F.getSection()];
1153       if (!Entry) {
1154         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1155                           0 /*TODO*/);
1156         Entry = SectionMap.size();
1157       }
1158     }
1159     if (F.hasGC()) {
1160       // Same for GC names.
1161       unsigned &Entry = GCMap[F.getGC()];
1162       if (!Entry) {
1163         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1164                           0 /*TODO*/);
1165         Entry = GCMap.size();
1166       }
1167     }
1168   }
1169 
1170   // Emit abbrev for globals, now that we know # sections and max alignment.
1171   unsigned SimpleGVarAbbrev = 0;
1172   if (!M.global_empty()) {
1173     // Add an abbrev for common globals with no visibility or thread localness.
1174     auto Abbv = std::make_shared<BitCodeAbbrev>();
1175     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1177     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1178     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1179                               Log2_32_Ceil(MaxGlobalType+1)));
1180     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1181                                                            //| explicitType << 1
1182                                                            //| constant
1183     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1184     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1185     if (MaxAlignment == 0)                                 // Alignment.
1186       Abbv->Add(BitCodeAbbrevOp(0));
1187     else {
1188       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1189       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1190                                Log2_32_Ceil(MaxEncAlignment+1)));
1191     }
1192     if (SectionMap.empty())                                    // Section.
1193       Abbv->Add(BitCodeAbbrevOp(0));
1194     else
1195       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1196                                Log2_32_Ceil(SectionMap.size()+1)));
1197     // Don't bother emitting vis + thread local.
1198     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1199   }
1200 
1201   SmallVector<unsigned, 64> Vals;
1202   // Emit the module's source file name.
1203   {
1204     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1205     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1206     if (Bits == SE_Char6)
1207       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1208     else if (Bits == SE_Fixed7)
1209       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1210 
1211     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1212     auto Abbv = std::make_shared<BitCodeAbbrev>();
1213     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1214     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1215     Abbv->Add(AbbrevOpToUse);
1216     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1217 
1218     for (const auto P : M.getSourceFileName())
1219       Vals.push_back((unsigned char)P);
1220 
1221     // Emit the finished record.
1222     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1223     Vals.clear();
1224   }
1225 
1226   // Emit the global variable information.
1227   for (const GlobalVariable &GV : M.globals()) {
1228     unsigned AbbrevToUse = 0;
1229 
1230     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1231     //             linkage, alignment, section, visibility, threadlocal,
1232     //             unnamed_addr, externally_initialized, dllstorageclass,
1233     //             comdat, attributes, DSO_Local]
1234     Vals.push_back(addToStrtab(GV.getName()));
1235     Vals.push_back(GV.getName().size());
1236     Vals.push_back(VE.getTypeID(GV.getValueType()));
1237     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1238     Vals.push_back(GV.isDeclaration() ? 0 :
1239                    (VE.getValueID(GV.getInitializer()) + 1));
1240     Vals.push_back(getEncodedLinkage(GV));
1241     Vals.push_back(Log2_32(GV.getAlignment())+1);
1242     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1243     if (GV.isThreadLocal() ||
1244         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1245         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1246         GV.isExternallyInitialized() ||
1247         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1248         GV.hasComdat() ||
1249         GV.hasAttributes() ||
1250         GV.isDSOLocal()) {
1251       Vals.push_back(getEncodedVisibility(GV));
1252       Vals.push_back(getEncodedThreadLocalMode(GV));
1253       Vals.push_back(getEncodedUnnamedAddr(GV));
1254       Vals.push_back(GV.isExternallyInitialized());
1255       Vals.push_back(getEncodedDLLStorageClass(GV));
1256       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1257 
1258       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1259       Vals.push_back(VE.getAttributeListID(AL));
1260 
1261       Vals.push_back(GV.isDSOLocal());
1262     } else {
1263       AbbrevToUse = SimpleGVarAbbrev;
1264     }
1265 
1266     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1267     Vals.clear();
1268   }
1269 
1270   // Emit the function proto information.
1271   for (const Function &F : M) {
1272     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1273     //             linkage, paramattrs, alignment, section, visibility, gc,
1274     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1275     //             prefixdata, personalityfn, DSO_Local, addrspace]
1276     Vals.push_back(addToStrtab(F.getName()));
1277     Vals.push_back(F.getName().size());
1278     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1279     Vals.push_back(F.getCallingConv());
1280     Vals.push_back(F.isDeclaration());
1281     Vals.push_back(getEncodedLinkage(F));
1282     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1283     Vals.push_back(Log2_32(F.getAlignment())+1);
1284     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1285     Vals.push_back(getEncodedVisibility(F));
1286     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1287     Vals.push_back(getEncodedUnnamedAddr(F));
1288     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1289                                        : 0);
1290     Vals.push_back(getEncodedDLLStorageClass(F));
1291     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1292     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1293                                      : 0);
1294     Vals.push_back(
1295         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1296 
1297     Vals.push_back(F.isDSOLocal());
1298     Vals.push_back(F.getAddressSpace());
1299 
1300     unsigned AbbrevToUse = 0;
1301     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1302     Vals.clear();
1303   }
1304 
1305   // Emit the alias information.
1306   for (const GlobalAlias &A : M.aliases()) {
1307     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1308     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1309     //         DSO_Local]
1310     Vals.push_back(addToStrtab(A.getName()));
1311     Vals.push_back(A.getName().size());
1312     Vals.push_back(VE.getTypeID(A.getValueType()));
1313     Vals.push_back(A.getType()->getAddressSpace());
1314     Vals.push_back(VE.getValueID(A.getAliasee()));
1315     Vals.push_back(getEncodedLinkage(A));
1316     Vals.push_back(getEncodedVisibility(A));
1317     Vals.push_back(getEncodedDLLStorageClass(A));
1318     Vals.push_back(getEncodedThreadLocalMode(A));
1319     Vals.push_back(getEncodedUnnamedAddr(A));
1320     Vals.push_back(A.isDSOLocal());
1321 
1322     unsigned AbbrevToUse = 0;
1323     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1324     Vals.clear();
1325   }
1326 
1327   // Emit the ifunc information.
1328   for (const GlobalIFunc &I : M.ifuncs()) {
1329     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1330     //         val#, linkage, visibility, DSO_Local]
1331     Vals.push_back(addToStrtab(I.getName()));
1332     Vals.push_back(I.getName().size());
1333     Vals.push_back(VE.getTypeID(I.getValueType()));
1334     Vals.push_back(I.getType()->getAddressSpace());
1335     Vals.push_back(VE.getValueID(I.getResolver()));
1336     Vals.push_back(getEncodedLinkage(I));
1337     Vals.push_back(getEncodedVisibility(I));
1338     Vals.push_back(I.isDSOLocal());
1339     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1340     Vals.clear();
1341   }
1342 
1343   writeValueSymbolTableForwardDecl();
1344 }
1345 
1346 static uint64_t getOptimizationFlags(const Value *V) {
1347   uint64_t Flags = 0;
1348 
1349   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1350     if (OBO->hasNoSignedWrap())
1351       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1352     if (OBO->hasNoUnsignedWrap())
1353       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1354   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1355     if (PEO->isExact())
1356       Flags |= 1 << bitc::PEO_EXACT;
1357   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1358     if (FPMO->hasAllowReassoc())
1359       Flags |= bitc::AllowReassoc;
1360     if (FPMO->hasNoNaNs())
1361       Flags |= bitc::NoNaNs;
1362     if (FPMO->hasNoInfs())
1363       Flags |= bitc::NoInfs;
1364     if (FPMO->hasNoSignedZeros())
1365       Flags |= bitc::NoSignedZeros;
1366     if (FPMO->hasAllowReciprocal())
1367       Flags |= bitc::AllowReciprocal;
1368     if (FPMO->hasAllowContract())
1369       Flags |= bitc::AllowContract;
1370     if (FPMO->hasApproxFunc())
1371       Flags |= bitc::ApproxFunc;
1372   }
1373 
1374   return Flags;
1375 }
1376 
1377 void ModuleBitcodeWriter::writeValueAsMetadata(
1378     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1379   // Mimic an MDNode with a value as one operand.
1380   Value *V = MD->getValue();
1381   Record.push_back(VE.getTypeID(V->getType()));
1382   Record.push_back(VE.getValueID(V));
1383   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1384   Record.clear();
1385 }
1386 
1387 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1388                                        SmallVectorImpl<uint64_t> &Record,
1389                                        unsigned Abbrev) {
1390   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1391     Metadata *MD = N->getOperand(i);
1392     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1393            "Unexpected function-local metadata");
1394     Record.push_back(VE.getMetadataOrNullID(MD));
1395   }
1396   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1397                                     : bitc::METADATA_NODE,
1398                     Record, Abbrev);
1399   Record.clear();
1400 }
1401 
1402 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1403   // Assume the column is usually under 128, and always output the inlined-at
1404   // location (it's never more expensive than building an array size 1).
1405   auto Abbv = std::make_shared<BitCodeAbbrev>();
1406   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1407   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1408   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1409   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1410   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1411   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1412   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1413   return Stream.EmitAbbrev(std::move(Abbv));
1414 }
1415 
1416 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1417                                           SmallVectorImpl<uint64_t> &Record,
1418                                           unsigned &Abbrev) {
1419   if (!Abbrev)
1420     Abbrev = createDILocationAbbrev();
1421 
1422   Record.push_back(N->isDistinct());
1423   Record.push_back(N->getLine());
1424   Record.push_back(N->getColumn());
1425   Record.push_back(VE.getMetadataID(N->getScope()));
1426   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1427   Record.push_back(N->isImplicitCode());
1428 
1429   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1430   Record.clear();
1431 }
1432 
1433 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1434   // Assume the column is usually under 128, and always output the inlined-at
1435   // location (it's never more expensive than building an array size 1).
1436   auto Abbv = std::make_shared<BitCodeAbbrev>();
1437   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1438   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1439   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1440   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1441   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1442   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1443   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1444   return Stream.EmitAbbrev(std::move(Abbv));
1445 }
1446 
1447 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1448                                              SmallVectorImpl<uint64_t> &Record,
1449                                              unsigned &Abbrev) {
1450   if (!Abbrev)
1451     Abbrev = createGenericDINodeAbbrev();
1452 
1453   Record.push_back(N->isDistinct());
1454   Record.push_back(N->getTag());
1455   Record.push_back(0); // Per-tag version field; unused for now.
1456 
1457   for (auto &I : N->operands())
1458     Record.push_back(VE.getMetadataOrNullID(I));
1459 
1460   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1461   Record.clear();
1462 }
1463 
1464 static uint64_t rotateSign(int64_t I) {
1465   uint64_t U = I;
1466   return I < 0 ? ~(U << 1) : U << 1;
1467 }
1468 
1469 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1470                                           SmallVectorImpl<uint64_t> &Record,
1471                                           unsigned Abbrev) {
1472   const uint64_t Version = 1 << 1;
1473   Record.push_back((uint64_t)N->isDistinct() | Version);
1474   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1475   Record.push_back(rotateSign(N->getLowerBound()));
1476 
1477   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1478   Record.clear();
1479 }
1480 
1481 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1482                                             SmallVectorImpl<uint64_t> &Record,
1483                                             unsigned Abbrev) {
1484   Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1485   Record.push_back(rotateSign(N->getValue()));
1486   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1487 
1488   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1489   Record.clear();
1490 }
1491 
1492 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1493                                            SmallVectorImpl<uint64_t> &Record,
1494                                            unsigned Abbrev) {
1495   Record.push_back(N->isDistinct());
1496   Record.push_back(N->getTag());
1497   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1498   Record.push_back(N->getSizeInBits());
1499   Record.push_back(N->getAlignInBits());
1500   Record.push_back(N->getEncoding());
1501   Record.push_back(N->getFlags());
1502 
1503   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1504   Record.clear();
1505 }
1506 
1507 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1508                                              SmallVectorImpl<uint64_t> &Record,
1509                                              unsigned Abbrev) {
1510   Record.push_back(N->isDistinct());
1511   Record.push_back(N->getTag());
1512   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1513   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1514   Record.push_back(N->getLine());
1515   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1516   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1517   Record.push_back(N->getSizeInBits());
1518   Record.push_back(N->getAlignInBits());
1519   Record.push_back(N->getOffsetInBits());
1520   Record.push_back(N->getFlags());
1521   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1522 
1523   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1524   // that there is no DWARF address space associated with DIDerivedType.
1525   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1526     Record.push_back(*DWARFAddressSpace + 1);
1527   else
1528     Record.push_back(0);
1529 
1530   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1531   Record.clear();
1532 }
1533 
1534 void ModuleBitcodeWriter::writeDICompositeType(
1535     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1536     unsigned Abbrev) {
1537   const unsigned IsNotUsedInOldTypeRef = 0x2;
1538   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1539   Record.push_back(N->getTag());
1540   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1541   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1542   Record.push_back(N->getLine());
1543   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1544   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1545   Record.push_back(N->getSizeInBits());
1546   Record.push_back(N->getAlignInBits());
1547   Record.push_back(N->getOffsetInBits());
1548   Record.push_back(N->getFlags());
1549   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1550   Record.push_back(N->getRuntimeLang());
1551   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1552   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1553   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1554   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1555 
1556   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1557   Record.clear();
1558 }
1559 
1560 void ModuleBitcodeWriter::writeDISubroutineType(
1561     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1562     unsigned Abbrev) {
1563   const unsigned HasNoOldTypeRefs = 0x2;
1564   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1565   Record.push_back(N->getFlags());
1566   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1567   Record.push_back(N->getCC());
1568 
1569   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1570   Record.clear();
1571 }
1572 
1573 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1574                                       SmallVectorImpl<uint64_t> &Record,
1575                                       unsigned Abbrev) {
1576   Record.push_back(N->isDistinct());
1577   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1578   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1579   if (N->getRawChecksum()) {
1580     Record.push_back(N->getRawChecksum()->Kind);
1581     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1582   } else {
1583     // Maintain backwards compatibility with the old internal representation of
1584     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1585     Record.push_back(0);
1586     Record.push_back(VE.getMetadataOrNullID(nullptr));
1587   }
1588   auto Source = N->getRawSource();
1589   if (Source)
1590     Record.push_back(VE.getMetadataOrNullID(*Source));
1591 
1592   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1593   Record.clear();
1594 }
1595 
1596 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1597                                              SmallVectorImpl<uint64_t> &Record,
1598                                              unsigned Abbrev) {
1599   assert(N->isDistinct() && "Expected distinct compile units");
1600   Record.push_back(/* IsDistinct */ true);
1601   Record.push_back(N->getSourceLanguage());
1602   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1603   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1604   Record.push_back(N->isOptimized());
1605   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1606   Record.push_back(N->getRuntimeVersion());
1607   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1608   Record.push_back(N->getEmissionKind());
1609   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1610   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1611   Record.push_back(/* subprograms */ 0);
1612   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1613   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1614   Record.push_back(N->getDWOId());
1615   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1616   Record.push_back(N->getSplitDebugInlining());
1617   Record.push_back(N->getDebugInfoForProfiling());
1618   Record.push_back((unsigned)N->getNameTableKind());
1619 
1620   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1621   Record.clear();
1622 }
1623 
1624 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1625                                             SmallVectorImpl<uint64_t> &Record,
1626                                             unsigned Abbrev) {
1627   uint64_t HasUnitFlag = 1 << 1;
1628   Record.push_back(N->isDistinct() | HasUnitFlag);
1629   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1630   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1631   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1632   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1633   Record.push_back(N->getLine());
1634   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1635   Record.push_back(N->isLocalToUnit());
1636   Record.push_back(N->isDefinition());
1637   Record.push_back(N->getScopeLine());
1638   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1639   Record.push_back(N->getVirtuality());
1640   Record.push_back(N->getVirtualIndex());
1641   Record.push_back(N->getFlags());
1642   Record.push_back(N->isOptimized());
1643   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1644   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1645   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1646   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1647   Record.push_back(N->getThisAdjustment());
1648   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1649 
1650   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1651   Record.clear();
1652 }
1653 
1654 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1655                                               SmallVectorImpl<uint64_t> &Record,
1656                                               unsigned Abbrev) {
1657   Record.push_back(N->isDistinct());
1658   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1659   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1660   Record.push_back(N->getLine());
1661   Record.push_back(N->getColumn());
1662 
1663   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1664   Record.clear();
1665 }
1666 
1667 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1668     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1669     unsigned Abbrev) {
1670   Record.push_back(N->isDistinct());
1671   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1672   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1673   Record.push_back(N->getDiscriminator());
1674 
1675   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1676   Record.clear();
1677 }
1678 
1679 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1680                                            SmallVectorImpl<uint64_t> &Record,
1681                                            unsigned Abbrev) {
1682   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1683   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1684   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1685 
1686   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1687   Record.clear();
1688 }
1689 
1690 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1691                                        SmallVectorImpl<uint64_t> &Record,
1692                                        unsigned Abbrev) {
1693   Record.push_back(N->isDistinct());
1694   Record.push_back(N->getMacinfoType());
1695   Record.push_back(N->getLine());
1696   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1697   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1698 
1699   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1700   Record.clear();
1701 }
1702 
1703 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1704                                            SmallVectorImpl<uint64_t> &Record,
1705                                            unsigned Abbrev) {
1706   Record.push_back(N->isDistinct());
1707   Record.push_back(N->getMacinfoType());
1708   Record.push_back(N->getLine());
1709   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1710   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1711 
1712   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1713   Record.clear();
1714 }
1715 
1716 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1717                                         SmallVectorImpl<uint64_t> &Record,
1718                                         unsigned Abbrev) {
1719   Record.push_back(N->isDistinct());
1720   for (auto &I : N->operands())
1721     Record.push_back(VE.getMetadataOrNullID(I));
1722 
1723   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1724   Record.clear();
1725 }
1726 
1727 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1728     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1729     unsigned Abbrev) {
1730   Record.push_back(N->isDistinct());
1731   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1732   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1733 
1734   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1735   Record.clear();
1736 }
1737 
1738 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1739     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1740     unsigned Abbrev) {
1741   Record.push_back(N->isDistinct());
1742   Record.push_back(N->getTag());
1743   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1744   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1745   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1746 
1747   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1748   Record.clear();
1749 }
1750 
1751 void ModuleBitcodeWriter::writeDIGlobalVariable(
1752     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1753     unsigned Abbrev) {
1754   const uint64_t Version = 2 << 1;
1755   Record.push_back((uint64_t)N->isDistinct() | Version);
1756   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1757   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1758   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1759   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1760   Record.push_back(N->getLine());
1761   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1762   Record.push_back(N->isLocalToUnit());
1763   Record.push_back(N->isDefinition());
1764   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1765   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1766   Record.push_back(N->getAlignInBits());
1767 
1768   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1769   Record.clear();
1770 }
1771 
1772 void ModuleBitcodeWriter::writeDILocalVariable(
1773     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1774     unsigned Abbrev) {
1775   // In order to support all possible bitcode formats in BitcodeReader we need
1776   // to distinguish the following cases:
1777   // 1) Record has no artificial tag (Record[1]),
1778   //   has no obsolete inlinedAt field (Record[9]).
1779   //   In this case Record size will be 8, HasAlignment flag is false.
1780   // 2) Record has artificial tag (Record[1]),
1781   //   has no obsolete inlignedAt field (Record[9]).
1782   //   In this case Record size will be 9, HasAlignment flag is false.
1783   // 3) Record has both artificial tag (Record[1]) and
1784   //   obsolete inlignedAt field (Record[9]).
1785   //   In this case Record size will be 10, HasAlignment flag is false.
1786   // 4) Record has neither artificial tag, nor inlignedAt field, but
1787   //   HasAlignment flag is true and Record[8] contains alignment value.
1788   const uint64_t HasAlignmentFlag = 1 << 1;
1789   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1790   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1791   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1792   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1793   Record.push_back(N->getLine());
1794   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1795   Record.push_back(N->getArg());
1796   Record.push_back(N->getFlags());
1797   Record.push_back(N->getAlignInBits());
1798 
1799   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1800   Record.clear();
1801 }
1802 
1803 void ModuleBitcodeWriter::writeDILabel(
1804     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1805     unsigned Abbrev) {
1806   Record.push_back((uint64_t)N->isDistinct());
1807   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1808   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1809   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1810   Record.push_back(N->getLine());
1811 
1812   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1813   Record.clear();
1814 }
1815 
1816 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1817                                             SmallVectorImpl<uint64_t> &Record,
1818                                             unsigned Abbrev) {
1819   Record.reserve(N->getElements().size() + 1);
1820   const uint64_t Version = 3 << 1;
1821   Record.push_back((uint64_t)N->isDistinct() | Version);
1822   Record.append(N->elements_begin(), N->elements_end());
1823 
1824   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1825   Record.clear();
1826 }
1827 
1828 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1829     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1830     unsigned Abbrev) {
1831   Record.push_back(N->isDistinct());
1832   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1833   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1834 
1835   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1836   Record.clear();
1837 }
1838 
1839 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1840                                               SmallVectorImpl<uint64_t> &Record,
1841                                               unsigned Abbrev) {
1842   Record.push_back(N->isDistinct());
1843   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1844   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1845   Record.push_back(N->getLine());
1846   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1847   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1848   Record.push_back(N->getAttributes());
1849   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1850 
1851   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1852   Record.clear();
1853 }
1854 
1855 void ModuleBitcodeWriter::writeDIImportedEntity(
1856     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1857     unsigned Abbrev) {
1858   Record.push_back(N->isDistinct());
1859   Record.push_back(N->getTag());
1860   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1861   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1862   Record.push_back(N->getLine());
1863   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1864   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1865 
1866   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1867   Record.clear();
1868 }
1869 
1870 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1871   auto Abbv = std::make_shared<BitCodeAbbrev>();
1872   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1873   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1874   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1875   return Stream.EmitAbbrev(std::move(Abbv));
1876 }
1877 
1878 void ModuleBitcodeWriter::writeNamedMetadata(
1879     SmallVectorImpl<uint64_t> &Record) {
1880   if (M.named_metadata_empty())
1881     return;
1882 
1883   unsigned Abbrev = createNamedMetadataAbbrev();
1884   for (const NamedMDNode &NMD : M.named_metadata()) {
1885     // Write name.
1886     StringRef Str = NMD.getName();
1887     Record.append(Str.bytes_begin(), Str.bytes_end());
1888     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1889     Record.clear();
1890 
1891     // Write named metadata operands.
1892     for (const MDNode *N : NMD.operands())
1893       Record.push_back(VE.getMetadataID(N));
1894     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1895     Record.clear();
1896   }
1897 }
1898 
1899 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1900   auto Abbv = std::make_shared<BitCodeAbbrev>();
1901   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1902   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1903   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1904   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1905   return Stream.EmitAbbrev(std::move(Abbv));
1906 }
1907 
1908 /// Write out a record for MDString.
1909 ///
1910 /// All the metadata strings in a metadata block are emitted in a single
1911 /// record.  The sizes and strings themselves are shoved into a blob.
1912 void ModuleBitcodeWriter::writeMetadataStrings(
1913     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1914   if (Strings.empty())
1915     return;
1916 
1917   // Start the record with the number of strings.
1918   Record.push_back(bitc::METADATA_STRINGS);
1919   Record.push_back(Strings.size());
1920 
1921   // Emit the sizes of the strings in the blob.
1922   SmallString<256> Blob;
1923   {
1924     BitstreamWriter W(Blob);
1925     for (const Metadata *MD : Strings)
1926       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1927     W.FlushToWord();
1928   }
1929 
1930   // Add the offset to the strings to the record.
1931   Record.push_back(Blob.size());
1932 
1933   // Add the strings to the blob.
1934   for (const Metadata *MD : Strings)
1935     Blob.append(cast<MDString>(MD)->getString());
1936 
1937   // Emit the final record.
1938   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1939   Record.clear();
1940 }
1941 
1942 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1943 enum MetadataAbbrev : unsigned {
1944 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1945 #include "llvm/IR/Metadata.def"
1946   LastPlusOne
1947 };
1948 
1949 void ModuleBitcodeWriter::writeMetadataRecords(
1950     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
1951     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1952   if (MDs.empty())
1953     return;
1954 
1955   // Initialize MDNode abbreviations.
1956 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1957 #include "llvm/IR/Metadata.def"
1958 
1959   for (const Metadata *MD : MDs) {
1960     if (IndexPos)
1961       IndexPos->push_back(Stream.GetCurrentBitNo());
1962     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1963       assert(N->isResolved() && "Expected forward references to be resolved");
1964 
1965       switch (N->getMetadataID()) {
1966       default:
1967         llvm_unreachable("Invalid MDNode subclass");
1968 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1969   case Metadata::CLASS##Kind:                                                  \
1970     if (MDAbbrevs)                                                             \
1971       write##CLASS(cast<CLASS>(N), Record,                                     \
1972                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
1973     else                                                                       \
1974       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
1975     continue;
1976 #include "llvm/IR/Metadata.def"
1977       }
1978     }
1979     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1980   }
1981 }
1982 
1983 void ModuleBitcodeWriter::writeModuleMetadata() {
1984   if (!VE.hasMDs() && M.named_metadata_empty())
1985     return;
1986 
1987   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1988   SmallVector<uint64_t, 64> Record;
1989 
1990   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1991   // block and load any metadata.
1992   std::vector<unsigned> MDAbbrevs;
1993 
1994   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1995   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1996   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1997       createGenericDINodeAbbrev();
1998 
1999   auto Abbv = std::make_shared<BitCodeAbbrev>();
2000   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2001   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2002   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2003   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2004 
2005   Abbv = std::make_shared<BitCodeAbbrev>();
2006   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2007   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2008   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2009   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2010 
2011   // Emit MDStrings together upfront.
2012   writeMetadataStrings(VE.getMDStrings(), Record);
2013 
2014   // We only emit an index for the metadata record if we have more than a given
2015   // (naive) threshold of metadatas, otherwise it is not worth it.
2016   if (VE.getNonMDStrings().size() > IndexThreshold) {
2017     // Write a placeholder value in for the offset of the metadata index,
2018     // which is written after the records, so that it can include
2019     // the offset of each entry. The placeholder offset will be
2020     // updated after all records are emitted.
2021     uint64_t Vals[] = {0, 0};
2022     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2023   }
2024 
2025   // Compute and save the bit offset to the current position, which will be
2026   // patched when we emit the index later. We can simply subtract the 64-bit
2027   // fixed size from the current bit number to get the location to backpatch.
2028   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2029 
2030   // This index will contain the bitpos for each individual record.
2031   std::vector<uint64_t> IndexPos;
2032   IndexPos.reserve(VE.getNonMDStrings().size());
2033 
2034   // Write all the records
2035   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2036 
2037   if (VE.getNonMDStrings().size() > IndexThreshold) {
2038     // Now that we have emitted all the records we will emit the index. But
2039     // first
2040     // backpatch the forward reference so that the reader can skip the records
2041     // efficiently.
2042     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2043                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2044 
2045     // Delta encode the index.
2046     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2047     for (auto &Elt : IndexPos) {
2048       auto EltDelta = Elt - PreviousValue;
2049       PreviousValue = Elt;
2050       Elt = EltDelta;
2051     }
2052     // Emit the index record.
2053     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2054     IndexPos.clear();
2055   }
2056 
2057   // Write the named metadata now.
2058   writeNamedMetadata(Record);
2059 
2060   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2061     SmallVector<uint64_t, 4> Record;
2062     Record.push_back(VE.getValueID(&GO));
2063     pushGlobalMetadataAttachment(Record, GO);
2064     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2065   };
2066   for (const Function &F : M)
2067     if (F.isDeclaration() && F.hasMetadata())
2068       AddDeclAttachedMetadata(F);
2069   // FIXME: Only store metadata for declarations here, and move data for global
2070   // variable definitions to a separate block (PR28134).
2071   for (const GlobalVariable &GV : M.globals())
2072     if (GV.hasMetadata())
2073       AddDeclAttachedMetadata(GV);
2074 
2075   Stream.ExitBlock();
2076 }
2077 
2078 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2079   if (!VE.hasMDs())
2080     return;
2081 
2082   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2083   SmallVector<uint64_t, 64> Record;
2084   writeMetadataStrings(VE.getMDStrings(), Record);
2085   writeMetadataRecords(VE.getNonMDStrings(), Record);
2086   Stream.ExitBlock();
2087 }
2088 
2089 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2090     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2091   // [n x [id, mdnode]]
2092   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2093   GO.getAllMetadata(MDs);
2094   for (const auto &I : MDs) {
2095     Record.push_back(I.first);
2096     Record.push_back(VE.getMetadataID(I.second));
2097   }
2098 }
2099 
2100 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2101   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2102 
2103   SmallVector<uint64_t, 64> Record;
2104 
2105   if (F.hasMetadata()) {
2106     pushGlobalMetadataAttachment(Record, F);
2107     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2108     Record.clear();
2109   }
2110 
2111   // Write metadata attachments
2112   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2113   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2114   for (const BasicBlock &BB : F)
2115     for (const Instruction &I : BB) {
2116       MDs.clear();
2117       I.getAllMetadataOtherThanDebugLoc(MDs);
2118 
2119       // If no metadata, ignore instruction.
2120       if (MDs.empty()) continue;
2121 
2122       Record.push_back(VE.getInstructionID(&I));
2123 
2124       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2125         Record.push_back(MDs[i].first);
2126         Record.push_back(VE.getMetadataID(MDs[i].second));
2127       }
2128       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2129       Record.clear();
2130     }
2131 
2132   Stream.ExitBlock();
2133 }
2134 
2135 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2136   SmallVector<uint64_t, 64> Record;
2137 
2138   // Write metadata kinds
2139   // METADATA_KIND - [n x [id, name]]
2140   SmallVector<StringRef, 8> Names;
2141   M.getMDKindNames(Names);
2142 
2143   if (Names.empty()) return;
2144 
2145   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2146 
2147   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2148     Record.push_back(MDKindID);
2149     StringRef KName = Names[MDKindID];
2150     Record.append(KName.begin(), KName.end());
2151 
2152     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2153     Record.clear();
2154   }
2155 
2156   Stream.ExitBlock();
2157 }
2158 
2159 void ModuleBitcodeWriter::writeOperandBundleTags() {
2160   // Write metadata kinds
2161   //
2162   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2163   //
2164   // OPERAND_BUNDLE_TAG - [strchr x N]
2165 
2166   SmallVector<StringRef, 8> Tags;
2167   M.getOperandBundleTags(Tags);
2168 
2169   if (Tags.empty())
2170     return;
2171 
2172   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2173 
2174   SmallVector<uint64_t, 64> Record;
2175 
2176   for (auto Tag : Tags) {
2177     Record.append(Tag.begin(), Tag.end());
2178 
2179     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2180     Record.clear();
2181   }
2182 
2183   Stream.ExitBlock();
2184 }
2185 
2186 void ModuleBitcodeWriter::writeSyncScopeNames() {
2187   SmallVector<StringRef, 8> SSNs;
2188   M.getContext().getSyncScopeNames(SSNs);
2189   if (SSNs.empty())
2190     return;
2191 
2192   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2193 
2194   SmallVector<uint64_t, 64> Record;
2195   for (auto SSN : SSNs) {
2196     Record.append(SSN.begin(), SSN.end());
2197     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2198     Record.clear();
2199   }
2200 
2201   Stream.ExitBlock();
2202 }
2203 
2204 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2205   if ((int64_t)V >= 0)
2206     Vals.push_back(V << 1);
2207   else
2208     Vals.push_back((-V << 1) | 1);
2209 }
2210 
2211 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2212                                          bool isGlobal) {
2213   if (FirstVal == LastVal) return;
2214 
2215   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2216 
2217   unsigned AggregateAbbrev = 0;
2218   unsigned String8Abbrev = 0;
2219   unsigned CString7Abbrev = 0;
2220   unsigned CString6Abbrev = 0;
2221   // If this is a constant pool for the module, emit module-specific abbrevs.
2222   if (isGlobal) {
2223     // Abbrev for CST_CODE_AGGREGATE.
2224     auto Abbv = std::make_shared<BitCodeAbbrev>();
2225     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2226     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2227     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2228     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2229 
2230     // Abbrev for CST_CODE_STRING.
2231     Abbv = std::make_shared<BitCodeAbbrev>();
2232     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2233     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2234     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2235     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2236     // Abbrev for CST_CODE_CSTRING.
2237     Abbv = std::make_shared<BitCodeAbbrev>();
2238     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2239     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2240     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2241     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2242     // Abbrev for CST_CODE_CSTRING.
2243     Abbv = std::make_shared<BitCodeAbbrev>();
2244     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2247     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2248   }
2249 
2250   SmallVector<uint64_t, 64> Record;
2251 
2252   const ValueEnumerator::ValueList &Vals = VE.getValues();
2253   Type *LastTy = nullptr;
2254   for (unsigned i = FirstVal; i != LastVal; ++i) {
2255     const Value *V = Vals[i].first;
2256     // If we need to switch types, do so now.
2257     if (V->getType() != LastTy) {
2258       LastTy = V->getType();
2259       Record.push_back(VE.getTypeID(LastTy));
2260       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2261                         CONSTANTS_SETTYPE_ABBREV);
2262       Record.clear();
2263     }
2264 
2265     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2266       Record.push_back(unsigned(IA->hasSideEffects()) |
2267                        unsigned(IA->isAlignStack()) << 1 |
2268                        unsigned(IA->getDialect()&1) << 2);
2269 
2270       // Add the asm string.
2271       const std::string &AsmStr = IA->getAsmString();
2272       Record.push_back(AsmStr.size());
2273       Record.append(AsmStr.begin(), AsmStr.end());
2274 
2275       // Add the constraint string.
2276       const std::string &ConstraintStr = IA->getConstraintString();
2277       Record.push_back(ConstraintStr.size());
2278       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2279       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2280       Record.clear();
2281       continue;
2282     }
2283     const Constant *C = cast<Constant>(V);
2284     unsigned Code = -1U;
2285     unsigned AbbrevToUse = 0;
2286     if (C->isNullValue()) {
2287       Code = bitc::CST_CODE_NULL;
2288     } else if (isa<UndefValue>(C)) {
2289       Code = bitc::CST_CODE_UNDEF;
2290     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2291       if (IV->getBitWidth() <= 64) {
2292         uint64_t V = IV->getSExtValue();
2293         emitSignedInt64(Record, V);
2294         Code = bitc::CST_CODE_INTEGER;
2295         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2296       } else {                             // Wide integers, > 64 bits in size.
2297         // We have an arbitrary precision integer value to write whose
2298         // bit width is > 64. However, in canonical unsigned integer
2299         // format it is likely that the high bits are going to be zero.
2300         // So, we only write the number of active words.
2301         unsigned NWords = IV->getValue().getActiveWords();
2302         const uint64_t *RawWords = IV->getValue().getRawData();
2303         for (unsigned i = 0; i != NWords; ++i) {
2304           emitSignedInt64(Record, RawWords[i]);
2305         }
2306         Code = bitc::CST_CODE_WIDE_INTEGER;
2307       }
2308     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2309       Code = bitc::CST_CODE_FLOAT;
2310       Type *Ty = CFP->getType();
2311       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2312         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2313       } else if (Ty->isX86_FP80Ty()) {
2314         // api needed to prevent premature destruction
2315         // bits are not in the same order as a normal i80 APInt, compensate.
2316         APInt api = CFP->getValueAPF().bitcastToAPInt();
2317         const uint64_t *p = api.getRawData();
2318         Record.push_back((p[1] << 48) | (p[0] >> 16));
2319         Record.push_back(p[0] & 0xffffLL);
2320       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2321         APInt api = CFP->getValueAPF().bitcastToAPInt();
2322         const uint64_t *p = api.getRawData();
2323         Record.push_back(p[0]);
2324         Record.push_back(p[1]);
2325       } else {
2326         assert(0 && "Unknown FP type!");
2327       }
2328     } else if (isa<ConstantDataSequential>(C) &&
2329                cast<ConstantDataSequential>(C)->isString()) {
2330       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2331       // Emit constant strings specially.
2332       unsigned NumElts = Str->getNumElements();
2333       // If this is a null-terminated string, use the denser CSTRING encoding.
2334       if (Str->isCString()) {
2335         Code = bitc::CST_CODE_CSTRING;
2336         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2337       } else {
2338         Code = bitc::CST_CODE_STRING;
2339         AbbrevToUse = String8Abbrev;
2340       }
2341       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2342       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2343       for (unsigned i = 0; i != NumElts; ++i) {
2344         unsigned char V = Str->getElementAsInteger(i);
2345         Record.push_back(V);
2346         isCStr7 &= (V & 128) == 0;
2347         if (isCStrChar6)
2348           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2349       }
2350 
2351       if (isCStrChar6)
2352         AbbrevToUse = CString6Abbrev;
2353       else if (isCStr7)
2354         AbbrevToUse = CString7Abbrev;
2355     } else if (const ConstantDataSequential *CDS =
2356                   dyn_cast<ConstantDataSequential>(C)) {
2357       Code = bitc::CST_CODE_DATA;
2358       Type *EltTy = CDS->getType()->getElementType();
2359       if (isa<IntegerType>(EltTy)) {
2360         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2361           Record.push_back(CDS->getElementAsInteger(i));
2362       } else {
2363         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2364           Record.push_back(
2365               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2366       }
2367     } else if (isa<ConstantAggregate>(C)) {
2368       Code = bitc::CST_CODE_AGGREGATE;
2369       for (const Value *Op : C->operands())
2370         Record.push_back(VE.getValueID(Op));
2371       AbbrevToUse = AggregateAbbrev;
2372     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2373       switch (CE->getOpcode()) {
2374       default:
2375         if (Instruction::isCast(CE->getOpcode())) {
2376           Code = bitc::CST_CODE_CE_CAST;
2377           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2378           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2379           Record.push_back(VE.getValueID(C->getOperand(0)));
2380           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2381         } else {
2382           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2383           Code = bitc::CST_CODE_CE_BINOP;
2384           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2385           Record.push_back(VE.getValueID(C->getOperand(0)));
2386           Record.push_back(VE.getValueID(C->getOperand(1)));
2387           uint64_t Flags = getOptimizationFlags(CE);
2388           if (Flags != 0)
2389             Record.push_back(Flags);
2390         }
2391         break;
2392       case Instruction::GetElementPtr: {
2393         Code = bitc::CST_CODE_CE_GEP;
2394         const auto *GO = cast<GEPOperator>(C);
2395         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2396         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2397           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2398           Record.push_back((*Idx << 1) | GO->isInBounds());
2399         } else if (GO->isInBounds())
2400           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2401         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2402           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2403           Record.push_back(VE.getValueID(C->getOperand(i)));
2404         }
2405         break;
2406       }
2407       case Instruction::Select:
2408         Code = bitc::CST_CODE_CE_SELECT;
2409         Record.push_back(VE.getValueID(C->getOperand(0)));
2410         Record.push_back(VE.getValueID(C->getOperand(1)));
2411         Record.push_back(VE.getValueID(C->getOperand(2)));
2412         break;
2413       case Instruction::ExtractElement:
2414         Code = bitc::CST_CODE_CE_EXTRACTELT;
2415         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2416         Record.push_back(VE.getValueID(C->getOperand(0)));
2417         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2418         Record.push_back(VE.getValueID(C->getOperand(1)));
2419         break;
2420       case Instruction::InsertElement:
2421         Code = bitc::CST_CODE_CE_INSERTELT;
2422         Record.push_back(VE.getValueID(C->getOperand(0)));
2423         Record.push_back(VE.getValueID(C->getOperand(1)));
2424         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2425         Record.push_back(VE.getValueID(C->getOperand(2)));
2426         break;
2427       case Instruction::ShuffleVector:
2428         // If the return type and argument types are the same, this is a
2429         // standard shufflevector instruction.  If the types are different,
2430         // then the shuffle is widening or truncating the input vectors, and
2431         // the argument type must also be encoded.
2432         if (C->getType() == C->getOperand(0)->getType()) {
2433           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2434         } else {
2435           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2436           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2437         }
2438         Record.push_back(VE.getValueID(C->getOperand(0)));
2439         Record.push_back(VE.getValueID(C->getOperand(1)));
2440         Record.push_back(VE.getValueID(C->getOperand(2)));
2441         break;
2442       case Instruction::ICmp:
2443       case Instruction::FCmp:
2444         Code = bitc::CST_CODE_CE_CMP;
2445         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2446         Record.push_back(VE.getValueID(C->getOperand(0)));
2447         Record.push_back(VE.getValueID(C->getOperand(1)));
2448         Record.push_back(CE->getPredicate());
2449         break;
2450       }
2451     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2452       Code = bitc::CST_CODE_BLOCKADDRESS;
2453       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2454       Record.push_back(VE.getValueID(BA->getFunction()));
2455       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2456     } else {
2457 #ifndef NDEBUG
2458       C->dump();
2459 #endif
2460       llvm_unreachable("Unknown constant!");
2461     }
2462     Stream.EmitRecord(Code, Record, AbbrevToUse);
2463     Record.clear();
2464   }
2465 
2466   Stream.ExitBlock();
2467 }
2468 
2469 void ModuleBitcodeWriter::writeModuleConstants() {
2470   const ValueEnumerator::ValueList &Vals = VE.getValues();
2471 
2472   // Find the first constant to emit, which is the first non-globalvalue value.
2473   // We know globalvalues have been emitted by WriteModuleInfo.
2474   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2475     if (!isa<GlobalValue>(Vals[i].first)) {
2476       writeConstants(i, Vals.size(), true);
2477       return;
2478     }
2479   }
2480 }
2481 
2482 /// pushValueAndType - The file has to encode both the value and type id for
2483 /// many values, because we need to know what type to create for forward
2484 /// references.  However, most operands are not forward references, so this type
2485 /// field is not needed.
2486 ///
2487 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2488 /// instruction ID, then it is a forward reference, and it also includes the
2489 /// type ID.  The value ID that is written is encoded relative to the InstID.
2490 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2491                                            SmallVectorImpl<unsigned> &Vals) {
2492   unsigned ValID = VE.getValueID(V);
2493   // Make encoding relative to the InstID.
2494   Vals.push_back(InstID - ValID);
2495   if (ValID >= InstID) {
2496     Vals.push_back(VE.getTypeID(V->getType()));
2497     return true;
2498   }
2499   return false;
2500 }
2501 
2502 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2503                                               unsigned InstID) {
2504   SmallVector<unsigned, 64> Record;
2505   LLVMContext &C = CS.getInstruction()->getContext();
2506 
2507   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2508     const auto &Bundle = CS.getOperandBundleAt(i);
2509     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2510 
2511     for (auto &Input : Bundle.Inputs)
2512       pushValueAndType(Input, InstID, Record);
2513 
2514     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2515     Record.clear();
2516   }
2517 }
2518 
2519 /// pushValue - Like pushValueAndType, but where the type of the value is
2520 /// omitted (perhaps it was already encoded in an earlier operand).
2521 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2522                                     SmallVectorImpl<unsigned> &Vals) {
2523   unsigned ValID = VE.getValueID(V);
2524   Vals.push_back(InstID - ValID);
2525 }
2526 
2527 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2528                                           SmallVectorImpl<uint64_t> &Vals) {
2529   unsigned ValID = VE.getValueID(V);
2530   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2531   emitSignedInt64(Vals, diff);
2532 }
2533 
2534 /// WriteInstruction - Emit an instruction to the specified stream.
2535 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2536                                            unsigned InstID,
2537                                            SmallVectorImpl<unsigned> &Vals) {
2538   unsigned Code = 0;
2539   unsigned AbbrevToUse = 0;
2540   VE.setInstructionID(&I);
2541   switch (I.getOpcode()) {
2542   default:
2543     if (Instruction::isCast(I.getOpcode())) {
2544       Code = bitc::FUNC_CODE_INST_CAST;
2545       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2546         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2547       Vals.push_back(VE.getTypeID(I.getType()));
2548       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2549     } else {
2550       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2551       Code = bitc::FUNC_CODE_INST_BINOP;
2552       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2553         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2554       pushValue(I.getOperand(1), InstID, Vals);
2555       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2556       uint64_t Flags = getOptimizationFlags(&I);
2557       if (Flags != 0) {
2558         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2559           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2560         Vals.push_back(Flags);
2561       }
2562     }
2563     break;
2564 
2565   case Instruction::GetElementPtr: {
2566     Code = bitc::FUNC_CODE_INST_GEP;
2567     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2568     auto &GEPInst = cast<GetElementPtrInst>(I);
2569     Vals.push_back(GEPInst.isInBounds());
2570     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2571     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2572       pushValueAndType(I.getOperand(i), InstID, Vals);
2573     break;
2574   }
2575   case Instruction::ExtractValue: {
2576     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2577     pushValueAndType(I.getOperand(0), InstID, Vals);
2578     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2579     Vals.append(EVI->idx_begin(), EVI->idx_end());
2580     break;
2581   }
2582   case Instruction::InsertValue: {
2583     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2584     pushValueAndType(I.getOperand(0), InstID, Vals);
2585     pushValueAndType(I.getOperand(1), InstID, Vals);
2586     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2587     Vals.append(IVI->idx_begin(), IVI->idx_end());
2588     break;
2589   }
2590   case Instruction::Select:
2591     Code = bitc::FUNC_CODE_INST_VSELECT;
2592     pushValueAndType(I.getOperand(1), InstID, Vals);
2593     pushValue(I.getOperand(2), InstID, Vals);
2594     pushValueAndType(I.getOperand(0), InstID, Vals);
2595     break;
2596   case Instruction::ExtractElement:
2597     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2598     pushValueAndType(I.getOperand(0), InstID, Vals);
2599     pushValueAndType(I.getOperand(1), InstID, Vals);
2600     break;
2601   case Instruction::InsertElement:
2602     Code = bitc::FUNC_CODE_INST_INSERTELT;
2603     pushValueAndType(I.getOperand(0), InstID, Vals);
2604     pushValue(I.getOperand(1), InstID, Vals);
2605     pushValueAndType(I.getOperand(2), InstID, Vals);
2606     break;
2607   case Instruction::ShuffleVector:
2608     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2609     pushValueAndType(I.getOperand(0), InstID, Vals);
2610     pushValue(I.getOperand(1), InstID, Vals);
2611     pushValue(I.getOperand(2), InstID, Vals);
2612     break;
2613   case Instruction::ICmp:
2614   case Instruction::FCmp: {
2615     // compare returning Int1Ty or vector of Int1Ty
2616     Code = bitc::FUNC_CODE_INST_CMP2;
2617     pushValueAndType(I.getOperand(0), InstID, Vals);
2618     pushValue(I.getOperand(1), InstID, Vals);
2619     Vals.push_back(cast<CmpInst>(I).getPredicate());
2620     uint64_t Flags = getOptimizationFlags(&I);
2621     if (Flags != 0)
2622       Vals.push_back(Flags);
2623     break;
2624   }
2625 
2626   case Instruction::Ret:
2627     {
2628       Code = bitc::FUNC_CODE_INST_RET;
2629       unsigned NumOperands = I.getNumOperands();
2630       if (NumOperands == 0)
2631         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2632       else if (NumOperands == 1) {
2633         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2634           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2635       } else {
2636         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2637           pushValueAndType(I.getOperand(i), InstID, Vals);
2638       }
2639     }
2640     break;
2641   case Instruction::Br:
2642     {
2643       Code = bitc::FUNC_CODE_INST_BR;
2644       const BranchInst &II = cast<BranchInst>(I);
2645       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2646       if (II.isConditional()) {
2647         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2648         pushValue(II.getCondition(), InstID, Vals);
2649       }
2650     }
2651     break;
2652   case Instruction::Switch:
2653     {
2654       Code = bitc::FUNC_CODE_INST_SWITCH;
2655       const SwitchInst &SI = cast<SwitchInst>(I);
2656       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2657       pushValue(SI.getCondition(), InstID, Vals);
2658       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2659       for (auto Case : SI.cases()) {
2660         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2661         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2662       }
2663     }
2664     break;
2665   case Instruction::IndirectBr:
2666     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2667     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2668     // Encode the address operand as relative, but not the basic blocks.
2669     pushValue(I.getOperand(0), InstID, Vals);
2670     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2671       Vals.push_back(VE.getValueID(I.getOperand(i)));
2672     break;
2673 
2674   case Instruction::Invoke: {
2675     const InvokeInst *II = cast<InvokeInst>(&I);
2676     const Value *Callee = II->getCalledValue();
2677     FunctionType *FTy = II->getFunctionType();
2678 
2679     if (II->hasOperandBundles())
2680       writeOperandBundles(II, InstID);
2681 
2682     Code = bitc::FUNC_CODE_INST_INVOKE;
2683 
2684     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2685     Vals.push_back(II->getCallingConv() | 1 << 13);
2686     Vals.push_back(VE.getValueID(II->getNormalDest()));
2687     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2688     Vals.push_back(VE.getTypeID(FTy));
2689     pushValueAndType(Callee, InstID, Vals);
2690 
2691     // Emit value #'s for the fixed parameters.
2692     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2693       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2694 
2695     // Emit type/value pairs for varargs params.
2696     if (FTy->isVarArg()) {
2697       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2698            i != e; ++i)
2699         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2700     }
2701     break;
2702   }
2703   case Instruction::Resume:
2704     Code = bitc::FUNC_CODE_INST_RESUME;
2705     pushValueAndType(I.getOperand(0), InstID, Vals);
2706     break;
2707   case Instruction::CleanupRet: {
2708     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2709     const auto &CRI = cast<CleanupReturnInst>(I);
2710     pushValue(CRI.getCleanupPad(), InstID, Vals);
2711     if (CRI.hasUnwindDest())
2712       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2713     break;
2714   }
2715   case Instruction::CatchRet: {
2716     Code = bitc::FUNC_CODE_INST_CATCHRET;
2717     const auto &CRI = cast<CatchReturnInst>(I);
2718     pushValue(CRI.getCatchPad(), InstID, Vals);
2719     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2720     break;
2721   }
2722   case Instruction::CleanupPad:
2723   case Instruction::CatchPad: {
2724     const auto &FuncletPad = cast<FuncletPadInst>(I);
2725     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2726                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2727     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2728 
2729     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2730     Vals.push_back(NumArgOperands);
2731     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2732       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2733     break;
2734   }
2735   case Instruction::CatchSwitch: {
2736     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2737     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2738 
2739     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2740 
2741     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2742     Vals.push_back(NumHandlers);
2743     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2744       Vals.push_back(VE.getValueID(CatchPadBB));
2745 
2746     if (CatchSwitch.hasUnwindDest())
2747       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2748     break;
2749   }
2750   case Instruction::Unreachable:
2751     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2752     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2753     break;
2754 
2755   case Instruction::PHI: {
2756     const PHINode &PN = cast<PHINode>(I);
2757     Code = bitc::FUNC_CODE_INST_PHI;
2758     // With the newer instruction encoding, forward references could give
2759     // negative valued IDs.  This is most common for PHIs, so we use
2760     // signed VBRs.
2761     SmallVector<uint64_t, 128> Vals64;
2762     Vals64.push_back(VE.getTypeID(PN.getType()));
2763     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2764       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2765       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2766     }
2767     // Emit a Vals64 vector and exit.
2768     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2769     Vals64.clear();
2770     return;
2771   }
2772 
2773   case Instruction::LandingPad: {
2774     const LandingPadInst &LP = cast<LandingPadInst>(I);
2775     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2776     Vals.push_back(VE.getTypeID(LP.getType()));
2777     Vals.push_back(LP.isCleanup());
2778     Vals.push_back(LP.getNumClauses());
2779     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2780       if (LP.isCatch(I))
2781         Vals.push_back(LandingPadInst::Catch);
2782       else
2783         Vals.push_back(LandingPadInst::Filter);
2784       pushValueAndType(LP.getClause(I), InstID, Vals);
2785     }
2786     break;
2787   }
2788 
2789   case Instruction::Alloca: {
2790     Code = bitc::FUNC_CODE_INST_ALLOCA;
2791     const AllocaInst &AI = cast<AllocaInst>(I);
2792     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2793     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2794     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2795     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2796     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2797            "not enough bits for maximum alignment");
2798     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2799     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2800     AlignRecord |= 1 << 6;
2801     AlignRecord |= AI.isSwiftError() << 7;
2802     Vals.push_back(AlignRecord);
2803     break;
2804   }
2805 
2806   case Instruction::Load:
2807     if (cast<LoadInst>(I).isAtomic()) {
2808       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2809       pushValueAndType(I.getOperand(0), InstID, Vals);
2810     } else {
2811       Code = bitc::FUNC_CODE_INST_LOAD;
2812       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2813         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2814     }
2815     Vals.push_back(VE.getTypeID(I.getType()));
2816     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2817     Vals.push_back(cast<LoadInst>(I).isVolatile());
2818     if (cast<LoadInst>(I).isAtomic()) {
2819       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2820       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2821     }
2822     break;
2823   case Instruction::Store:
2824     if (cast<StoreInst>(I).isAtomic())
2825       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2826     else
2827       Code = bitc::FUNC_CODE_INST_STORE;
2828     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2829     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2830     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2831     Vals.push_back(cast<StoreInst>(I).isVolatile());
2832     if (cast<StoreInst>(I).isAtomic()) {
2833       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2834       Vals.push_back(
2835           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2836     }
2837     break;
2838   case Instruction::AtomicCmpXchg:
2839     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2840     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2841     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2842     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2843     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2844     Vals.push_back(
2845         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2846     Vals.push_back(
2847         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2848     Vals.push_back(
2849         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2850     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2851     break;
2852   case Instruction::AtomicRMW:
2853     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2854     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2855     pushValue(I.getOperand(1), InstID, Vals);        // val.
2856     Vals.push_back(
2857         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2858     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2859     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2860     Vals.push_back(
2861         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2862     break;
2863   case Instruction::Fence:
2864     Code = bitc::FUNC_CODE_INST_FENCE;
2865     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2866     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2867     break;
2868   case Instruction::Call: {
2869     const CallInst &CI = cast<CallInst>(I);
2870     FunctionType *FTy = CI.getFunctionType();
2871 
2872     if (CI.hasOperandBundles())
2873       writeOperandBundles(&CI, InstID);
2874 
2875     Code = bitc::FUNC_CODE_INST_CALL;
2876 
2877     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2878 
2879     unsigned Flags = getOptimizationFlags(&I);
2880     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2881                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2882                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2883                    1 << bitc::CALL_EXPLICIT_TYPE |
2884                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2885                    unsigned(Flags != 0) << bitc::CALL_FMF);
2886     if (Flags != 0)
2887       Vals.push_back(Flags);
2888 
2889     Vals.push_back(VE.getTypeID(FTy));
2890     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2891 
2892     // Emit value #'s for the fixed parameters.
2893     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2894       // Check for labels (can happen with asm labels).
2895       if (FTy->getParamType(i)->isLabelTy())
2896         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2897       else
2898         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2899     }
2900 
2901     // Emit type/value pairs for varargs params.
2902     if (FTy->isVarArg()) {
2903       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2904            i != e; ++i)
2905         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2906     }
2907     break;
2908   }
2909   case Instruction::VAArg:
2910     Code = bitc::FUNC_CODE_INST_VAARG;
2911     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2912     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2913     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2914     break;
2915   }
2916 
2917   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2918   Vals.clear();
2919 }
2920 
2921 /// Write a GlobalValue VST to the module. The purpose of this data structure is
2922 /// to allow clients to efficiently find the function body.
2923 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
2924   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2925   // Get the offset of the VST we are writing, and backpatch it into
2926   // the VST forward declaration record.
2927   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2928   // The BitcodeStartBit was the stream offset of the identification block.
2929   VSTOffset -= bitcodeStartBit();
2930   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2931   // Note that we add 1 here because the offset is relative to one word
2932   // before the start of the identification block, which was historically
2933   // always the start of the regular bitcode header.
2934   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2935 
2936   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2937 
2938   auto Abbv = std::make_shared<BitCodeAbbrev>();
2939   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2940   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2941   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2942   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2943 
2944   for (const Function &F : M) {
2945     uint64_t Record[2];
2946 
2947     if (F.isDeclaration())
2948       continue;
2949 
2950     Record[0] = VE.getValueID(&F);
2951 
2952     // Save the word offset of the function (from the start of the
2953     // actual bitcode written to the stream).
2954     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
2955     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2956     // Note that we add 1 here because the offset is relative to one word
2957     // before the start of the identification block, which was historically
2958     // always the start of the regular bitcode header.
2959     Record[1] = BitcodeIndex / 32 + 1;
2960 
2961     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
2962   }
2963 
2964   Stream.ExitBlock();
2965 }
2966 
2967 /// Emit names for arguments, instructions and basic blocks in a function.
2968 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
2969     const ValueSymbolTable &VST) {
2970   if (VST.empty())
2971     return;
2972 
2973   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2974 
2975   // FIXME: Set up the abbrev, we know how many values there are!
2976   // FIXME: We know if the type names can use 7-bit ascii.
2977   SmallVector<uint64_t, 64> NameVals;
2978 
2979   for (const ValueName &Name : VST) {
2980     // Figure out the encoding to use for the name.
2981     StringEncoding Bits = getStringEncoding(Name.getKey());
2982 
2983     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2984     NameVals.push_back(VE.getValueID(Name.getValue()));
2985 
2986     // VST_CODE_ENTRY:   [valueid, namechar x N]
2987     // VST_CODE_BBENTRY: [bbid, namechar x N]
2988     unsigned Code;
2989     if (isa<BasicBlock>(Name.getValue())) {
2990       Code = bitc::VST_CODE_BBENTRY;
2991       if (Bits == SE_Char6)
2992         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2993     } else {
2994       Code = bitc::VST_CODE_ENTRY;
2995       if (Bits == SE_Char6)
2996         AbbrevToUse = VST_ENTRY_6_ABBREV;
2997       else if (Bits == SE_Fixed7)
2998         AbbrevToUse = VST_ENTRY_7_ABBREV;
2999     }
3000 
3001     for (const auto P : Name.getKey())
3002       NameVals.push_back((unsigned char)P);
3003 
3004     // Emit the finished record.
3005     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3006     NameVals.clear();
3007   }
3008 
3009   Stream.ExitBlock();
3010 }
3011 
3012 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3013   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3014   unsigned Code;
3015   if (isa<BasicBlock>(Order.V))
3016     Code = bitc::USELIST_CODE_BB;
3017   else
3018     Code = bitc::USELIST_CODE_DEFAULT;
3019 
3020   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3021   Record.push_back(VE.getValueID(Order.V));
3022   Stream.EmitRecord(Code, Record);
3023 }
3024 
3025 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3026   assert(VE.shouldPreserveUseListOrder() &&
3027          "Expected to be preserving use-list order");
3028 
3029   auto hasMore = [&]() {
3030     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3031   };
3032   if (!hasMore())
3033     // Nothing to do.
3034     return;
3035 
3036   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3037   while (hasMore()) {
3038     writeUseList(std::move(VE.UseListOrders.back()));
3039     VE.UseListOrders.pop_back();
3040   }
3041   Stream.ExitBlock();
3042 }
3043 
3044 /// Emit a function body to the module stream.
3045 void ModuleBitcodeWriter::writeFunction(
3046     const Function &F,
3047     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3048   // Save the bitcode index of the start of this function block for recording
3049   // in the VST.
3050   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3051 
3052   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3053   VE.incorporateFunction(F);
3054 
3055   SmallVector<unsigned, 64> Vals;
3056 
3057   // Emit the number of basic blocks, so the reader can create them ahead of
3058   // time.
3059   Vals.push_back(VE.getBasicBlocks().size());
3060   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3061   Vals.clear();
3062 
3063   // If there are function-local constants, emit them now.
3064   unsigned CstStart, CstEnd;
3065   VE.getFunctionConstantRange(CstStart, CstEnd);
3066   writeConstants(CstStart, CstEnd, false);
3067 
3068   // If there is function-local metadata, emit it now.
3069   writeFunctionMetadata(F);
3070 
3071   // Keep a running idea of what the instruction ID is.
3072   unsigned InstID = CstEnd;
3073 
3074   bool NeedsMetadataAttachment = F.hasMetadata();
3075 
3076   DILocation *LastDL = nullptr;
3077   // Finally, emit all the instructions, in order.
3078   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3079     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3080          I != E; ++I) {
3081       writeInstruction(*I, InstID, Vals);
3082 
3083       if (!I->getType()->isVoidTy())
3084         ++InstID;
3085 
3086       // If the instruction has metadata, write a metadata attachment later.
3087       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3088 
3089       // If the instruction has a debug location, emit it.
3090       DILocation *DL = I->getDebugLoc();
3091       if (!DL)
3092         continue;
3093 
3094       if (DL == LastDL) {
3095         // Just repeat the same debug loc as last time.
3096         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3097         continue;
3098       }
3099 
3100       Vals.push_back(DL->getLine());
3101       Vals.push_back(DL->getColumn());
3102       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3103       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3104       Vals.push_back(DL->isImplicitCode());
3105       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3106       Vals.clear();
3107 
3108       LastDL = DL;
3109     }
3110 
3111   // Emit names for all the instructions etc.
3112   if (auto *Symtab = F.getValueSymbolTable())
3113     writeFunctionLevelValueSymbolTable(*Symtab);
3114 
3115   if (NeedsMetadataAttachment)
3116     writeFunctionMetadataAttachment(F);
3117   if (VE.shouldPreserveUseListOrder())
3118     writeUseListBlock(&F);
3119   VE.purgeFunction();
3120   Stream.ExitBlock();
3121 }
3122 
3123 // Emit blockinfo, which defines the standard abbreviations etc.
3124 void ModuleBitcodeWriter::writeBlockInfo() {
3125   // We only want to emit block info records for blocks that have multiple
3126   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3127   // Other blocks can define their abbrevs inline.
3128   Stream.EnterBlockInfoBlock();
3129 
3130   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3131     auto Abbv = std::make_shared<BitCodeAbbrev>();
3132     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3133     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3134     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3135     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3136     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3137         VST_ENTRY_8_ABBREV)
3138       llvm_unreachable("Unexpected abbrev ordering!");
3139   }
3140 
3141   { // 7-bit fixed width VST_CODE_ENTRY strings.
3142     auto Abbv = std::make_shared<BitCodeAbbrev>();
3143     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3144     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3145     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3146     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3147     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3148         VST_ENTRY_7_ABBREV)
3149       llvm_unreachable("Unexpected abbrev ordering!");
3150   }
3151   { // 6-bit char6 VST_CODE_ENTRY strings.
3152     auto Abbv = std::make_shared<BitCodeAbbrev>();
3153     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3154     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3155     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3157     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3158         VST_ENTRY_6_ABBREV)
3159       llvm_unreachable("Unexpected abbrev ordering!");
3160   }
3161   { // 6-bit char6 VST_CODE_BBENTRY strings.
3162     auto Abbv = std::make_shared<BitCodeAbbrev>();
3163     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3164     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3165     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3166     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3167     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3168         VST_BBENTRY_6_ABBREV)
3169       llvm_unreachable("Unexpected abbrev ordering!");
3170   }
3171 
3172   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3173     auto Abbv = std::make_shared<BitCodeAbbrev>();
3174     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3176                               VE.computeBitsRequiredForTypeIndicies()));
3177     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3178         CONSTANTS_SETTYPE_ABBREV)
3179       llvm_unreachable("Unexpected abbrev ordering!");
3180   }
3181 
3182   { // INTEGER abbrev for CONSTANTS_BLOCK.
3183     auto Abbv = std::make_shared<BitCodeAbbrev>();
3184     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3185     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3186     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3187         CONSTANTS_INTEGER_ABBREV)
3188       llvm_unreachable("Unexpected abbrev ordering!");
3189   }
3190 
3191   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3192     auto Abbv = std::make_shared<BitCodeAbbrev>();
3193     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3194     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3195     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3196                               VE.computeBitsRequiredForTypeIndicies()));
3197     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3198 
3199     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3200         CONSTANTS_CE_CAST_Abbrev)
3201       llvm_unreachable("Unexpected abbrev ordering!");
3202   }
3203   { // NULL abbrev for CONSTANTS_BLOCK.
3204     auto Abbv = std::make_shared<BitCodeAbbrev>();
3205     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3206     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3207         CONSTANTS_NULL_Abbrev)
3208       llvm_unreachable("Unexpected abbrev ordering!");
3209   }
3210 
3211   // FIXME: This should only use space for first class types!
3212 
3213   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3214     auto Abbv = std::make_shared<BitCodeAbbrev>();
3215     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3216     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3217     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3218                               VE.computeBitsRequiredForTypeIndicies()));
3219     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3220     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3221     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3222         FUNCTION_INST_LOAD_ABBREV)
3223       llvm_unreachable("Unexpected abbrev ordering!");
3224   }
3225   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3226     auto Abbv = std::make_shared<BitCodeAbbrev>();
3227     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3228     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3229     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3230     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3231     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3232         FUNCTION_INST_BINOP_ABBREV)
3233       llvm_unreachable("Unexpected abbrev ordering!");
3234   }
3235   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3236     auto Abbv = std::make_shared<BitCodeAbbrev>();
3237     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3238     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3239     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3240     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3241     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3242     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3243         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3244       llvm_unreachable("Unexpected abbrev ordering!");
3245   }
3246   { // INST_CAST abbrev for FUNCTION_BLOCK.
3247     auto Abbv = std::make_shared<BitCodeAbbrev>();
3248     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3249     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3250     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3251                               VE.computeBitsRequiredForTypeIndicies()));
3252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3253     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3254         FUNCTION_INST_CAST_ABBREV)
3255       llvm_unreachable("Unexpected abbrev ordering!");
3256   }
3257 
3258   { // INST_RET abbrev for FUNCTION_BLOCK.
3259     auto Abbv = std::make_shared<BitCodeAbbrev>();
3260     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3261     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3262         FUNCTION_INST_RET_VOID_ABBREV)
3263       llvm_unreachable("Unexpected abbrev ordering!");
3264   }
3265   { // INST_RET abbrev for FUNCTION_BLOCK.
3266     auto Abbv = std::make_shared<BitCodeAbbrev>();
3267     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3268     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3269     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3270         FUNCTION_INST_RET_VAL_ABBREV)
3271       llvm_unreachable("Unexpected abbrev ordering!");
3272   }
3273   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3274     auto Abbv = std::make_shared<BitCodeAbbrev>();
3275     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3276     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3277         FUNCTION_INST_UNREACHABLE_ABBREV)
3278       llvm_unreachable("Unexpected abbrev ordering!");
3279   }
3280   {
3281     auto Abbv = std::make_shared<BitCodeAbbrev>();
3282     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3283     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3284     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3285                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3288     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3289         FUNCTION_INST_GEP_ABBREV)
3290       llvm_unreachable("Unexpected abbrev ordering!");
3291   }
3292 
3293   Stream.ExitBlock();
3294 }
3295 
3296 /// Write the module path strings, currently only used when generating
3297 /// a combined index file.
3298 void IndexBitcodeWriter::writeModStrings() {
3299   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3300 
3301   // TODO: See which abbrev sizes we actually need to emit
3302 
3303   // 8-bit fixed-width MST_ENTRY strings.
3304   auto Abbv = std::make_shared<BitCodeAbbrev>();
3305   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3306   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3307   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3308   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3309   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3310 
3311   // 7-bit fixed width MST_ENTRY strings.
3312   Abbv = std::make_shared<BitCodeAbbrev>();
3313   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3314   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3315   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3316   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3317   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3318 
3319   // 6-bit char6 MST_ENTRY strings.
3320   Abbv = std::make_shared<BitCodeAbbrev>();
3321   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3322   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3323   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3324   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3325   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3326 
3327   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3328   Abbv = std::make_shared<BitCodeAbbrev>();
3329   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3332   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3333   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3334   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3335   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3336 
3337   SmallVector<unsigned, 64> Vals;
3338   forEachModule(
3339       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3340         StringRef Key = MPSE.getKey();
3341         const auto &Value = MPSE.getValue();
3342         StringEncoding Bits = getStringEncoding(Key);
3343         unsigned AbbrevToUse = Abbrev8Bit;
3344         if (Bits == SE_Char6)
3345           AbbrevToUse = Abbrev6Bit;
3346         else if (Bits == SE_Fixed7)
3347           AbbrevToUse = Abbrev7Bit;
3348 
3349         Vals.push_back(Value.first);
3350         Vals.append(Key.begin(), Key.end());
3351 
3352         // Emit the finished record.
3353         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3354 
3355         // Emit an optional hash for the module now
3356         const auto &Hash = Value.second;
3357         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3358           Vals.assign(Hash.begin(), Hash.end());
3359           // Emit the hash record.
3360           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3361         }
3362 
3363         Vals.clear();
3364       });
3365   Stream.ExitBlock();
3366 }
3367 
3368 /// Write the function type metadata related records that need to appear before
3369 /// a function summary entry (whether per-module or combined).
3370 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3371                                              FunctionSummary *FS) {
3372   if (!FS->type_tests().empty())
3373     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3374 
3375   SmallVector<uint64_t, 64> Record;
3376 
3377   auto WriteVFuncIdVec = [&](uint64_t Ty,
3378                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3379     if (VFs.empty())
3380       return;
3381     Record.clear();
3382     for (auto &VF : VFs) {
3383       Record.push_back(VF.GUID);
3384       Record.push_back(VF.Offset);
3385     }
3386     Stream.EmitRecord(Ty, Record);
3387   };
3388 
3389   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3390                   FS->type_test_assume_vcalls());
3391   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3392                   FS->type_checked_load_vcalls());
3393 
3394   auto WriteConstVCallVec = [&](uint64_t Ty,
3395                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3396     for (auto &VC : VCs) {
3397       Record.clear();
3398       Record.push_back(VC.VFunc.GUID);
3399       Record.push_back(VC.VFunc.Offset);
3400       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3401       Stream.EmitRecord(Ty, Record);
3402     }
3403   };
3404 
3405   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3406                      FS->type_test_assume_const_vcalls());
3407   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3408                      FS->type_checked_load_const_vcalls());
3409 }
3410 
3411 /// Collect type IDs from type tests used by function.
3412 static void
3413 getReferencedTypeIds(FunctionSummary *FS,
3414                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3415   if (!FS->type_tests().empty())
3416     for (auto &TT : FS->type_tests())
3417       ReferencedTypeIds.insert(TT);
3418 
3419   auto GetReferencedTypesFromVFuncIdVec =
3420       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3421         for (auto &VF : VFs)
3422           ReferencedTypeIds.insert(VF.GUID);
3423       };
3424 
3425   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3426   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3427 
3428   auto GetReferencedTypesFromConstVCallVec =
3429       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3430         for (auto &VC : VCs)
3431           ReferencedTypeIds.insert(VC.VFunc.GUID);
3432       };
3433 
3434   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3435   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3436 }
3437 
3438 static void writeWholeProgramDevirtResolutionByArg(
3439     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3440     const WholeProgramDevirtResolution::ByArg &ByArg) {
3441   NameVals.push_back(args.size());
3442   NameVals.insert(NameVals.end(), args.begin(), args.end());
3443 
3444   NameVals.push_back(ByArg.TheKind);
3445   NameVals.push_back(ByArg.Info);
3446   NameVals.push_back(ByArg.Byte);
3447   NameVals.push_back(ByArg.Bit);
3448 }
3449 
3450 static void writeWholeProgramDevirtResolution(
3451     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3452     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3453   NameVals.push_back(Id);
3454 
3455   NameVals.push_back(Wpd.TheKind);
3456   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3457   NameVals.push_back(Wpd.SingleImplName.size());
3458 
3459   NameVals.push_back(Wpd.ResByArg.size());
3460   for (auto &A : Wpd.ResByArg)
3461     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3462 }
3463 
3464 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3465                                      StringTableBuilder &StrtabBuilder,
3466                                      const std::string &Id,
3467                                      const TypeIdSummary &Summary) {
3468   NameVals.push_back(StrtabBuilder.add(Id));
3469   NameVals.push_back(Id.size());
3470 
3471   NameVals.push_back(Summary.TTRes.TheKind);
3472   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3473   NameVals.push_back(Summary.TTRes.AlignLog2);
3474   NameVals.push_back(Summary.TTRes.SizeM1);
3475   NameVals.push_back(Summary.TTRes.BitMask);
3476   NameVals.push_back(Summary.TTRes.InlineBits);
3477 
3478   for (auto &W : Summary.WPDRes)
3479     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3480                                       W.second);
3481 }
3482 
3483 // Helper to emit a single function summary record.
3484 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3485     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3486     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3487     const Function &F) {
3488   NameVals.push_back(ValueID);
3489 
3490   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3491   writeFunctionTypeMetadataRecords(Stream, FS);
3492 
3493   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3494   NameVals.push_back(FS->instCount());
3495   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3496   NameVals.push_back(FS->refs().size());
3497   NameVals.push_back(FS->immutableRefCount());
3498 
3499   for (auto &RI : FS->refs())
3500     NameVals.push_back(VE.getValueID(RI.getValue()));
3501 
3502   bool HasProfileData =
3503       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3504   for (auto &ECI : FS->calls()) {
3505     NameVals.push_back(getValueId(ECI.first));
3506     if (HasProfileData)
3507       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3508     else if (WriteRelBFToSummary)
3509       NameVals.push_back(ECI.second.RelBlockFreq);
3510   }
3511 
3512   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3513   unsigned Code =
3514       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3515                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3516                                              : bitc::FS_PERMODULE));
3517 
3518   // Emit the finished record.
3519   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3520   NameVals.clear();
3521 }
3522 
3523 // Collect the global value references in the given variable's initializer,
3524 // and emit them in a summary record.
3525 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3526     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3527     unsigned FSModRefsAbbrev) {
3528   auto VI = Index->getValueInfo(V.getGUID());
3529   if (!VI || VI.getSummaryList().empty()) {
3530     // Only declarations should not have a summary (a declaration might however
3531     // have a summary if the def was in module level asm).
3532     assert(V.isDeclaration());
3533     return;
3534   }
3535   auto *Summary = VI.getSummaryList()[0].get();
3536   NameVals.push_back(VE.getValueID(&V));
3537   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3538   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3539   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3540 
3541   unsigned SizeBeforeRefs = NameVals.size();
3542   for (auto &RI : VS->refs())
3543     NameVals.push_back(VE.getValueID(RI.getValue()));
3544   // Sort the refs for determinism output, the vector returned by FS->refs() has
3545   // been initialized from a DenseSet.
3546   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3547 
3548   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3549                     FSModRefsAbbrev);
3550   NameVals.clear();
3551 }
3552 
3553 // Current version for the summary.
3554 // This is bumped whenever we introduce changes in the way some record are
3555 // interpreted, like flags for instance.
3556 static const uint64_t INDEX_VERSION = 5;
3557 
3558 /// Emit the per-module summary section alongside the rest of
3559 /// the module's bitcode.
3560 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3561   // By default we compile with ThinLTO if the module has a summary, but the
3562   // client can request full LTO with a module flag.
3563   bool IsThinLTO = true;
3564   if (auto *MD =
3565           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3566     IsThinLTO = MD->getZExtValue();
3567   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3568                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3569                        4);
3570 
3571   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3572 
3573   if (Index->begin() == Index->end()) {
3574     Stream.ExitBlock();
3575     return;
3576   }
3577 
3578   for (const auto &GVI : valueIds()) {
3579     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3580                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3581   }
3582 
3583   // Abbrev for FS_PERMODULE_PROFILE.
3584   auto Abbv = std::make_shared<BitCodeAbbrev>();
3585   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3586   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3587   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3588   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3589   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3590   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3591   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3592   // numrefs x valueid, n x (valueid, hotness)
3593   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3594   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3595   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3596 
3597   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3598   Abbv = std::make_shared<BitCodeAbbrev>();
3599   if (WriteRelBFToSummary)
3600     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3601   else
3602     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3603   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3604   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3605   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3606   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3607   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3608   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3609   // numrefs x valueid, n x (valueid [, rel_block_freq])
3610   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3611   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3612   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3613 
3614   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3615   Abbv = std::make_shared<BitCodeAbbrev>();
3616   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3617   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3618   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3619   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3620   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3621   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3622 
3623   // Abbrev for FS_ALIAS.
3624   Abbv = std::make_shared<BitCodeAbbrev>();
3625   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3626   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3627   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3628   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3629   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3630 
3631   SmallVector<uint64_t, 64> NameVals;
3632   // Iterate over the list of functions instead of the Index to
3633   // ensure the ordering is stable.
3634   for (const Function &F : M) {
3635     // Summary emission does not support anonymous functions, they have to
3636     // renamed using the anonymous function renaming pass.
3637     if (!F.hasName())
3638       report_fatal_error("Unexpected anonymous function when writing summary");
3639 
3640     ValueInfo VI = Index->getValueInfo(F.getGUID());
3641     if (!VI || VI.getSummaryList().empty()) {
3642       // Only declarations should not have a summary (a declaration might
3643       // however have a summary if the def was in module level asm).
3644       assert(F.isDeclaration());
3645       continue;
3646     }
3647     auto *Summary = VI.getSummaryList()[0].get();
3648     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3649                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3650   }
3651 
3652   // Capture references from GlobalVariable initializers, which are outside
3653   // of a function scope.
3654   for (const GlobalVariable &G : M.globals())
3655     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3656 
3657   for (const GlobalAlias &A : M.aliases()) {
3658     auto *Aliasee = A.getBaseObject();
3659     if (!Aliasee->hasName())
3660       // Nameless function don't have an entry in the summary, skip it.
3661       continue;
3662     auto AliasId = VE.getValueID(&A);
3663     auto AliaseeId = VE.getValueID(Aliasee);
3664     NameVals.push_back(AliasId);
3665     auto *Summary = Index->getGlobalValueSummary(A);
3666     AliasSummary *AS = cast<AliasSummary>(Summary);
3667     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3668     NameVals.push_back(AliaseeId);
3669     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3670     NameVals.clear();
3671   }
3672 
3673   Stream.ExitBlock();
3674 }
3675 
3676 /// Emit the combined summary section into the combined index file.
3677 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3678   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3679   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3680 
3681   // Write the index flags.
3682   uint64_t Flags = 0;
3683   if (Index.withGlobalValueDeadStripping())
3684     Flags |= 0x1;
3685   if (Index.skipModuleByDistributedBackend())
3686     Flags |= 0x2;
3687   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3688 
3689   for (const auto &GVI : valueIds()) {
3690     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3691                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3692   }
3693 
3694   // Abbrev for FS_COMBINED.
3695   auto Abbv = std::make_shared<BitCodeAbbrev>();
3696   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3697   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3698   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3699   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3700   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3701   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3702   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3703   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3704   // numrefs x valueid, n x (valueid)
3705   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3706   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3707   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3708 
3709   // Abbrev for FS_COMBINED_PROFILE.
3710   Abbv = std::make_shared<BitCodeAbbrev>();
3711   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3712   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3713   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3714   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3715   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3716   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3717   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3718   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // immutablerefcnt
3719   // numrefs x valueid, n x (valueid, hotness)
3720   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3721   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3722   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3723 
3724   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3725   Abbv = std::make_shared<BitCodeAbbrev>();
3726   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3727   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3728   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3729   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3730   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3731   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3732   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3733 
3734   // Abbrev for FS_COMBINED_ALIAS.
3735   Abbv = std::make_shared<BitCodeAbbrev>();
3736   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3737   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3738   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3739   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3740   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3741   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3742 
3743   // The aliases are emitted as a post-pass, and will point to the value
3744   // id of the aliasee. Save them in a vector for post-processing.
3745   SmallVector<AliasSummary *, 64> Aliases;
3746 
3747   // Save the value id for each summary for alias emission.
3748   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3749 
3750   SmallVector<uint64_t, 64> NameVals;
3751 
3752   // Set that will be populated during call to writeFunctionTypeMetadataRecords
3753   // with the type ids referenced by this index file.
3754   std::set<GlobalValue::GUID> ReferencedTypeIds;
3755 
3756   // For local linkage, we also emit the original name separately
3757   // immediately after the record.
3758   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3759     if (!GlobalValue::isLocalLinkage(S.linkage()))
3760       return;
3761     NameVals.push_back(S.getOriginalName());
3762     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3763     NameVals.clear();
3764   };
3765 
3766   forEachSummary([&](GVInfo I, bool IsAliasee) {
3767     GlobalValueSummary *S = I.second;
3768     assert(S);
3769 
3770     auto ValueId = getValueId(I.first);
3771     assert(ValueId);
3772     SummaryToValueIdMap[S] = *ValueId;
3773 
3774     // If this is invoked for an aliasee, we want to record the above
3775     // mapping, but then not emit a summary entry (if the aliasee is
3776     // to be imported, we will invoke this separately with IsAliasee=false).
3777     if (IsAliasee)
3778       return;
3779 
3780     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3781       // Will process aliases as a post-pass because the reader wants all
3782       // global to be loaded first.
3783       Aliases.push_back(AS);
3784       return;
3785     }
3786 
3787     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3788       NameVals.push_back(*ValueId);
3789       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3790       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3791       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3792       for (auto &RI : VS->refs()) {
3793         auto RefValueId = getValueId(RI.getGUID());
3794         if (!RefValueId)
3795           continue;
3796         NameVals.push_back(*RefValueId);
3797       }
3798 
3799       // Emit the finished record.
3800       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3801                         FSModRefsAbbrev);
3802       NameVals.clear();
3803       MaybeEmitOriginalName(*S);
3804       return;
3805     }
3806 
3807     auto *FS = cast<FunctionSummary>(S);
3808     writeFunctionTypeMetadataRecords(Stream, FS);
3809     getReferencedTypeIds(FS, ReferencedTypeIds);
3810 
3811     NameVals.push_back(*ValueId);
3812     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3813     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3814     NameVals.push_back(FS->instCount());
3815     NameVals.push_back(getEncodedFFlags(FS->fflags()));
3816     // Fill in below
3817     NameVals.push_back(0); // numrefs
3818     NameVals.push_back(0); // immutablerefcnt
3819 
3820     unsigned Count = 0, ImmutableRefCnt = 0;
3821     for (auto &RI : FS->refs()) {
3822       auto RefValueId = getValueId(RI.getGUID());
3823       if (!RefValueId)
3824         continue;
3825       NameVals.push_back(*RefValueId);
3826       if (RI.isReadOnly())
3827         ImmutableRefCnt++;
3828       Count++;
3829     }
3830     NameVals[5] = Count;
3831     NameVals[6] = ImmutableRefCnt;
3832 
3833     bool HasProfileData = false;
3834     for (auto &EI : FS->calls()) {
3835       HasProfileData |=
3836           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3837       if (HasProfileData)
3838         break;
3839     }
3840 
3841     for (auto &EI : FS->calls()) {
3842       // If this GUID doesn't have a value id, it doesn't have a function
3843       // summary and we don't need to record any calls to it.
3844       GlobalValue::GUID GUID = EI.first.getGUID();
3845       auto CallValueId = getValueId(GUID);
3846       if (!CallValueId) {
3847         // For SamplePGO, the indirect call targets for local functions will
3848         // have its original name annotated in profile. We try to find the
3849         // corresponding PGOFuncName as the GUID.
3850         GUID = Index.getGUIDFromOriginalID(GUID);
3851         if (GUID == 0)
3852           continue;
3853         CallValueId = getValueId(GUID);
3854         if (!CallValueId)
3855           continue;
3856         // The mapping from OriginalId to GUID may return a GUID
3857         // that corresponds to a static variable. Filter it out here.
3858         // This can happen when
3859         // 1) There is a call to a library function which does not have
3860         // a CallValidId;
3861         // 2) There is a static variable with the  OriginalGUID identical
3862         // to the GUID of the library function in 1);
3863         // When this happens, the logic for SamplePGO kicks in and
3864         // the static variable in 2) will be found, which needs to be
3865         // filtered out.
3866         auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3867         if (GVSum &&
3868             GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3869           continue;
3870       }
3871       NameVals.push_back(*CallValueId);
3872       if (HasProfileData)
3873         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3874     }
3875 
3876     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3877     unsigned Code =
3878         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3879 
3880     // Emit the finished record.
3881     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3882     NameVals.clear();
3883     MaybeEmitOriginalName(*S);
3884   });
3885 
3886   for (auto *AS : Aliases) {
3887     auto AliasValueId = SummaryToValueIdMap[AS];
3888     assert(AliasValueId);
3889     NameVals.push_back(AliasValueId);
3890     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3891     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3892     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3893     assert(AliaseeValueId);
3894     NameVals.push_back(AliaseeValueId);
3895 
3896     // Emit the finished record.
3897     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3898     NameVals.clear();
3899     MaybeEmitOriginalName(*AS);
3900 
3901     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
3902       getReferencedTypeIds(FS, ReferencedTypeIds);
3903   }
3904 
3905   if (!Index.cfiFunctionDefs().empty()) {
3906     for (auto &S : Index.cfiFunctionDefs()) {
3907       NameVals.push_back(StrtabBuilder.add(S));
3908       NameVals.push_back(S.size());
3909     }
3910     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
3911     NameVals.clear();
3912   }
3913 
3914   if (!Index.cfiFunctionDecls().empty()) {
3915     for (auto &S : Index.cfiFunctionDecls()) {
3916       NameVals.push_back(StrtabBuilder.add(S));
3917       NameVals.push_back(S.size());
3918     }
3919     Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
3920     NameVals.clear();
3921   }
3922 
3923   // Walk the GUIDs that were referenced, and write the
3924   // corresponding type id records.
3925   for (auto &T : ReferencedTypeIds) {
3926     auto TidIter = Index.typeIds().equal_range(T);
3927     for (auto It = TidIter.first; It != TidIter.second; ++It) {
3928       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
3929                                It->second.second);
3930       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
3931       NameVals.clear();
3932     }
3933   }
3934 
3935   Stream.ExitBlock();
3936 }
3937 
3938 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3939 /// current llvm version, and a record for the epoch number.
3940 static void writeIdentificationBlock(BitstreamWriter &Stream) {
3941   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3942 
3943   // Write the "user readable" string identifying the bitcode producer
3944   auto Abbv = std::make_shared<BitCodeAbbrev>();
3945   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3947   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3948   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3949   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3950                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3951 
3952   // Write the epoch version
3953   Abbv = std::make_shared<BitCodeAbbrev>();
3954   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3955   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3956   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3957   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3958   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3959   Stream.ExitBlock();
3960 }
3961 
3962 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3963   // Emit the module's hash.
3964   // MODULE_CODE_HASH: [5*i32]
3965   if (GenerateHash) {
3966     uint32_t Vals[5];
3967     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3968                                     Buffer.size() - BlockStartPos));
3969     StringRef Hash = Hasher.result();
3970     for (int Pos = 0; Pos < 20; Pos += 4) {
3971       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3972     }
3973 
3974     // Emit the finished record.
3975     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3976 
3977     if (ModHash)
3978       // Save the written hash value.
3979       std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash));
3980   }
3981 }
3982 
3983 void ModuleBitcodeWriter::write() {
3984   writeIdentificationBlock(Stream);
3985 
3986   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3987   size_t BlockStartPos = Buffer.size();
3988 
3989   writeModuleVersion();
3990 
3991   // Emit blockinfo, which defines the standard abbreviations etc.
3992   writeBlockInfo();
3993 
3994   // Emit information about attribute groups.
3995   writeAttributeGroupTable();
3996 
3997   // Emit information about parameter attributes.
3998   writeAttributeTable();
3999 
4000   // Emit information describing all of the types in the module.
4001   writeTypeTable();
4002 
4003   writeComdats();
4004 
4005   // Emit top-level description of module, including target triple, inline asm,
4006   // descriptors for global variables, and function prototype info.
4007   writeModuleInfo();
4008 
4009   // Emit constants.
4010   writeModuleConstants();
4011 
4012   // Emit metadata kind names.
4013   writeModuleMetadataKinds();
4014 
4015   // Emit metadata.
4016   writeModuleMetadata();
4017 
4018   // Emit module-level use-lists.
4019   if (VE.shouldPreserveUseListOrder())
4020     writeUseListBlock(nullptr);
4021 
4022   writeOperandBundleTags();
4023   writeSyncScopeNames();
4024 
4025   // Emit function bodies.
4026   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4027   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4028     if (!F->isDeclaration())
4029       writeFunction(*F, FunctionToBitcodeIndex);
4030 
4031   // Need to write after the above call to WriteFunction which populates
4032   // the summary information in the index.
4033   if (Index)
4034     writePerModuleGlobalValueSummary();
4035 
4036   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4037 
4038   writeModuleHash(BlockStartPos);
4039 
4040   Stream.ExitBlock();
4041 }
4042 
4043 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4044                                uint32_t &Position) {
4045   support::endian::write32le(&Buffer[Position], Value);
4046   Position += 4;
4047 }
4048 
4049 /// If generating a bc file on darwin, we have to emit a
4050 /// header and trailer to make it compatible with the system archiver.  To do
4051 /// this we emit the following header, and then emit a trailer that pads the
4052 /// file out to be a multiple of 16 bytes.
4053 ///
4054 /// struct bc_header {
4055 ///   uint32_t Magic;         // 0x0B17C0DE
4056 ///   uint32_t Version;       // Version, currently always 0.
4057 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4058 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4059 ///   uint32_t CPUType;       // CPU specifier.
4060 ///   ... potentially more later ...
4061 /// };
4062 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4063                                          const Triple &TT) {
4064   unsigned CPUType = ~0U;
4065 
4066   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4067   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4068   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4069   // specific constants here because they are implicitly part of the Darwin ABI.
4070   enum {
4071     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4072     DARWIN_CPU_TYPE_X86        = 7,
4073     DARWIN_CPU_TYPE_ARM        = 12,
4074     DARWIN_CPU_TYPE_POWERPC    = 18
4075   };
4076 
4077   Triple::ArchType Arch = TT.getArch();
4078   if (Arch == Triple::x86_64)
4079     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4080   else if (Arch == Triple::x86)
4081     CPUType = DARWIN_CPU_TYPE_X86;
4082   else if (Arch == Triple::ppc)
4083     CPUType = DARWIN_CPU_TYPE_POWERPC;
4084   else if (Arch == Triple::ppc64)
4085     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4086   else if (Arch == Triple::arm || Arch == Triple::thumb)
4087     CPUType = DARWIN_CPU_TYPE_ARM;
4088 
4089   // Traditional Bitcode starts after header.
4090   assert(Buffer.size() >= BWH_HeaderSize &&
4091          "Expected header size to be reserved");
4092   unsigned BCOffset = BWH_HeaderSize;
4093   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4094 
4095   // Write the magic and version.
4096   unsigned Position = 0;
4097   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4098   writeInt32ToBuffer(0, Buffer, Position); // Version.
4099   writeInt32ToBuffer(BCOffset, Buffer, Position);
4100   writeInt32ToBuffer(BCSize, Buffer, Position);
4101   writeInt32ToBuffer(CPUType, Buffer, Position);
4102 
4103   // If the file is not a multiple of 16 bytes, insert dummy padding.
4104   while (Buffer.size() & 15)
4105     Buffer.push_back(0);
4106 }
4107 
4108 /// Helper to write the header common to all bitcode files.
4109 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4110   // Emit the file header.
4111   Stream.Emit((unsigned)'B', 8);
4112   Stream.Emit((unsigned)'C', 8);
4113   Stream.Emit(0x0, 4);
4114   Stream.Emit(0xC, 4);
4115   Stream.Emit(0xE, 4);
4116   Stream.Emit(0xD, 4);
4117 }
4118 
4119 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4120     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4121   writeBitcodeHeader(*Stream);
4122 }
4123 
4124 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4125 
4126 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4127   Stream->EnterSubblock(Block, 3);
4128 
4129   auto Abbv = std::make_shared<BitCodeAbbrev>();
4130   Abbv->Add(BitCodeAbbrevOp(Record));
4131   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4132   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4133 
4134   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4135 
4136   Stream->ExitBlock();
4137 }
4138 
4139 void BitcodeWriter::writeSymtab() {
4140   assert(!WroteStrtab && !WroteSymtab);
4141 
4142   // If any module has module-level inline asm, we will require a registered asm
4143   // parser for the target so that we can create an accurate symbol table for
4144   // the module.
4145   for (Module *M : Mods) {
4146     if (M->getModuleInlineAsm().empty())
4147       continue;
4148 
4149     std::string Err;
4150     const Triple TT(M->getTargetTriple());
4151     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4152     if (!T || !T->hasMCAsmParser())
4153       return;
4154   }
4155 
4156   WroteSymtab = true;
4157   SmallVector<char, 0> Symtab;
4158   // The irsymtab::build function may be unable to create a symbol table if the
4159   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4160   // table is not required for correctness, but we still want to be able to
4161   // write malformed modules to bitcode files, so swallow the error.
4162   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4163     consumeError(std::move(E));
4164     return;
4165   }
4166 
4167   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4168             {Symtab.data(), Symtab.size()});
4169 }
4170 
4171 void BitcodeWriter::writeStrtab() {
4172   assert(!WroteStrtab);
4173 
4174   std::vector<char> Strtab;
4175   StrtabBuilder.finalizeInOrder();
4176   Strtab.resize(StrtabBuilder.getSize());
4177   StrtabBuilder.write((uint8_t *)Strtab.data());
4178 
4179   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4180             {Strtab.data(), Strtab.size()});
4181 
4182   WroteStrtab = true;
4183 }
4184 
4185 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4186   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4187   WroteStrtab = true;
4188 }
4189 
4190 void BitcodeWriter::writeModule(const Module &M,
4191                                 bool ShouldPreserveUseListOrder,
4192                                 const ModuleSummaryIndex *Index,
4193                                 bool GenerateHash, ModuleHash *ModHash) {
4194   assert(!WroteStrtab);
4195 
4196   // The Mods vector is used by irsymtab::build, which requires non-const
4197   // Modules in case it needs to materialize metadata. But the bitcode writer
4198   // requires that the module is materialized, so we can cast to non-const here,
4199   // after checking that it is in fact materialized.
4200   assert(M.isMaterialized());
4201   Mods.push_back(const_cast<Module *>(&M));
4202 
4203   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4204                                    ShouldPreserveUseListOrder, Index,
4205                                    GenerateHash, ModHash);
4206   ModuleWriter.write();
4207 }
4208 
4209 void BitcodeWriter::writeIndex(
4210     const ModuleSummaryIndex *Index,
4211     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4212   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4213                                  ModuleToSummariesForIndex);
4214   IndexWriter.write();
4215 }
4216 
4217 /// Write the specified module to the specified output stream.
4218 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4219                               bool ShouldPreserveUseListOrder,
4220                               const ModuleSummaryIndex *Index,
4221                               bool GenerateHash, ModuleHash *ModHash) {
4222   SmallVector<char, 0> Buffer;
4223   Buffer.reserve(256*1024);
4224 
4225   // If this is darwin or another generic macho target, reserve space for the
4226   // header.
4227   Triple TT(M.getTargetTriple());
4228   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4229     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4230 
4231   BitcodeWriter Writer(Buffer);
4232   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4233                      ModHash);
4234   Writer.writeSymtab();
4235   Writer.writeStrtab();
4236 
4237   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4238     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4239 
4240   // Write the generated bitstream to "Out".
4241   Out.write((char*)&Buffer.front(), Buffer.size());
4242 }
4243 
4244 void IndexBitcodeWriter::write() {
4245   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4246 
4247   writeModuleVersion();
4248 
4249   // Write the module paths in the combined index.
4250   writeModStrings();
4251 
4252   // Write the summary combined index records.
4253   writeCombinedGlobalValueSummary();
4254 
4255   Stream.ExitBlock();
4256 }
4257 
4258 // Write the specified module summary index to the given raw output stream,
4259 // where it will be written in a new bitcode block. This is used when
4260 // writing the combined index file for ThinLTO. When writing a subset of the
4261 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4262 void llvm::WriteIndexToFile(
4263     const ModuleSummaryIndex &Index, raw_ostream &Out,
4264     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4265   SmallVector<char, 0> Buffer;
4266   Buffer.reserve(256 * 1024);
4267 
4268   BitcodeWriter Writer(Buffer);
4269   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4270   Writer.writeStrtab();
4271 
4272   Out.write((char *)&Buffer.front(), Buffer.size());
4273 }
4274 
4275 namespace {
4276 
4277 /// Class to manage the bitcode writing for a thin link bitcode file.
4278 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4279   /// ModHash is for use in ThinLTO incremental build, generated while writing
4280   /// the module bitcode file.
4281   const ModuleHash *ModHash;
4282 
4283 public:
4284   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4285                         BitstreamWriter &Stream,
4286                         const ModuleSummaryIndex &Index,
4287                         const ModuleHash &ModHash)
4288       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4289                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4290         ModHash(&ModHash) {}
4291 
4292   void write();
4293 
4294 private:
4295   void writeSimplifiedModuleInfo();
4296 };
4297 
4298 } // end anonymous namespace
4299 
4300 // This function writes a simpilified module info for thin link bitcode file.
4301 // It only contains the source file name along with the name(the offset and
4302 // size in strtab) and linkage for global values. For the global value info
4303 // entry, in order to keep linkage at offset 5, there are three zeros used
4304 // as padding.
4305 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4306   SmallVector<unsigned, 64> Vals;
4307   // Emit the module's source file name.
4308   {
4309     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4310     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4311     if (Bits == SE_Char6)
4312       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4313     else if (Bits == SE_Fixed7)
4314       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4315 
4316     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4317     auto Abbv = std::make_shared<BitCodeAbbrev>();
4318     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4319     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4320     Abbv->Add(AbbrevOpToUse);
4321     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4322 
4323     for (const auto P : M.getSourceFileName())
4324       Vals.push_back((unsigned char)P);
4325 
4326     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4327     Vals.clear();
4328   }
4329 
4330   // Emit the global variable information.
4331   for (const GlobalVariable &GV : M.globals()) {
4332     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4333     Vals.push_back(StrtabBuilder.add(GV.getName()));
4334     Vals.push_back(GV.getName().size());
4335     Vals.push_back(0);
4336     Vals.push_back(0);
4337     Vals.push_back(0);
4338     Vals.push_back(getEncodedLinkage(GV));
4339 
4340     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4341     Vals.clear();
4342   }
4343 
4344   // Emit the function proto information.
4345   for (const Function &F : M) {
4346     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4347     Vals.push_back(StrtabBuilder.add(F.getName()));
4348     Vals.push_back(F.getName().size());
4349     Vals.push_back(0);
4350     Vals.push_back(0);
4351     Vals.push_back(0);
4352     Vals.push_back(getEncodedLinkage(F));
4353 
4354     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4355     Vals.clear();
4356   }
4357 
4358   // Emit the alias information.
4359   for (const GlobalAlias &A : M.aliases()) {
4360     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4361     Vals.push_back(StrtabBuilder.add(A.getName()));
4362     Vals.push_back(A.getName().size());
4363     Vals.push_back(0);
4364     Vals.push_back(0);
4365     Vals.push_back(0);
4366     Vals.push_back(getEncodedLinkage(A));
4367 
4368     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4369     Vals.clear();
4370   }
4371 
4372   // Emit the ifunc information.
4373   for (const GlobalIFunc &I : M.ifuncs()) {
4374     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4375     Vals.push_back(StrtabBuilder.add(I.getName()));
4376     Vals.push_back(I.getName().size());
4377     Vals.push_back(0);
4378     Vals.push_back(0);
4379     Vals.push_back(0);
4380     Vals.push_back(getEncodedLinkage(I));
4381 
4382     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4383     Vals.clear();
4384   }
4385 }
4386 
4387 void ThinLinkBitcodeWriter::write() {
4388   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4389 
4390   writeModuleVersion();
4391 
4392   writeSimplifiedModuleInfo();
4393 
4394   writePerModuleGlobalValueSummary();
4395 
4396   // Write module hash.
4397   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4398 
4399   Stream.ExitBlock();
4400 }
4401 
4402 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4403                                          const ModuleSummaryIndex &Index,
4404                                          const ModuleHash &ModHash) {
4405   assert(!WroteStrtab);
4406 
4407   // The Mods vector is used by irsymtab::build, which requires non-const
4408   // Modules in case it needs to materialize metadata. But the bitcode writer
4409   // requires that the module is materialized, so we can cast to non-const here,
4410   // after checking that it is in fact materialized.
4411   assert(M.isMaterialized());
4412   Mods.push_back(const_cast<Module *>(&M));
4413 
4414   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4415                                        ModHash);
4416   ThinLinkWriter.write();
4417 }
4418 
4419 // Write the specified thin link bitcode file to the given raw output stream,
4420 // where it will be written in a new bitcode block. This is used when
4421 // writing the per-module index file for ThinLTO.
4422 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4423                                       const ModuleSummaryIndex &Index,
4424                                       const ModuleHash &ModHash) {
4425   SmallVector<char, 0> Buffer;
4426   Buffer.reserve(256 * 1024);
4427 
4428   BitcodeWriter Writer(Buffer);
4429   Writer.writeThinLinkBitcode(M, Index, ModHash);
4430   Writer.writeSymtab();
4431   Writer.writeStrtab();
4432 
4433   Out.write((char *)&Buffer.front(), Buffer.size());
4434 }
4435