1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/ParameterAttributes.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 /// These are manifest constants used by the bitcode writer. They do not need to 29 /// be kept in sync with the reader, but need to be consistent within this file. 30 enum { 31 CurVersion = 0, 32 33 // VALUE_SYMTAB_BLOCK abbrev id's. 34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 35 VST_ENTRY_7_ABBREV, 36 VST_ENTRY_6_ABBREV, 37 VST_BBENTRY_6_ABBREV, 38 39 // CONSTANTS_BLOCK abbrev id's. 40 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 CONSTANTS_INTEGER_ABBREV, 42 CONSTANTS_CE_CAST_Abbrev, 43 CONSTANTS_NULL_Abbrev, 44 45 // FUNCTION_BLOCK abbrev id's. 46 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV 47 }; 48 49 50 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 51 switch (Opcode) { 52 default: assert(0 && "Unknown cast instruction!"); 53 case Instruction::Trunc : return bitc::CAST_TRUNC; 54 case Instruction::ZExt : return bitc::CAST_ZEXT; 55 case Instruction::SExt : return bitc::CAST_SEXT; 56 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 57 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 58 case Instruction::UIToFP : return bitc::CAST_UITOFP; 59 case Instruction::SIToFP : return bitc::CAST_SITOFP; 60 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 61 case Instruction::FPExt : return bitc::CAST_FPEXT; 62 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 63 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 64 case Instruction::BitCast : return bitc::CAST_BITCAST; 65 } 66 } 67 68 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 69 switch (Opcode) { 70 default: assert(0 && "Unknown binary instruction!"); 71 case Instruction::Add: return bitc::BINOP_ADD; 72 case Instruction::Sub: return bitc::BINOP_SUB; 73 case Instruction::Mul: return bitc::BINOP_MUL; 74 case Instruction::UDiv: return bitc::BINOP_UDIV; 75 case Instruction::FDiv: 76 case Instruction::SDiv: return bitc::BINOP_SDIV; 77 case Instruction::URem: return bitc::BINOP_UREM; 78 case Instruction::FRem: 79 case Instruction::SRem: return bitc::BINOP_SREM; 80 case Instruction::Shl: return bitc::BINOP_SHL; 81 case Instruction::LShr: return bitc::BINOP_LSHR; 82 case Instruction::AShr: return bitc::BINOP_ASHR; 83 case Instruction::And: return bitc::BINOP_AND; 84 case Instruction::Or: return bitc::BINOP_OR; 85 case Instruction::Xor: return bitc::BINOP_XOR; 86 } 87 } 88 89 90 91 static void WriteStringRecord(unsigned Code, const std::string &Str, 92 unsigned AbbrevToUse, BitstreamWriter &Stream) { 93 SmallVector<unsigned, 64> Vals; 94 95 // Code: [strchar x N] 96 for (unsigned i = 0, e = Str.size(); i != e; ++i) 97 Vals.push_back(Str[i]); 98 99 // Emit the finished record. 100 Stream.EmitRecord(Code, Vals, AbbrevToUse); 101 } 102 103 // Emit information about parameter attributes. 104 static void WriteParamAttrTable(const ValueEnumerator &VE, 105 BitstreamWriter &Stream) { 106 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 107 if (Attrs.empty()) return; 108 109 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 110 111 SmallVector<uint64_t, 64> Record; 112 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 113 const ParamAttrsList *A = Attrs[i]; 114 for (unsigned op = 0, e = A->size(); op != e; ++op) { 115 Record.push_back(A->getParamIndex(op)); 116 Record.push_back(A->getParamAttrsAtIndex(op)); 117 } 118 119 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 120 Record.clear(); 121 } 122 123 Stream.ExitBlock(); 124 } 125 126 /// WriteTypeTable - Write out the type table for a module. 127 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 128 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 129 130 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 131 SmallVector<uint64_t, 64> TypeVals; 132 133 // Abbrev for TYPE_CODE_POINTER. 134 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 135 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 137 Log2_32_Ceil(VE.getTypes().size()+1))); 138 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 139 140 // Abbrev for TYPE_CODE_FUNCTION. 141 Abbv = new BitCodeAbbrev(); 142 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 145 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 148 Log2_32_Ceil(VE.getTypes().size()+1))); 149 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 150 151 // Abbrev for TYPE_CODE_STRUCT. 152 Abbv = new BitCodeAbbrev(); 153 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 157 Log2_32_Ceil(VE.getTypes().size()+1))); 158 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 159 160 // Abbrev for TYPE_CODE_ARRAY. 161 Abbv = new BitCodeAbbrev(); 162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 165 Log2_32_Ceil(VE.getTypes().size()+1))); 166 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 167 168 // Emit an entry count so the reader can reserve space. 169 TypeVals.push_back(TypeList.size()); 170 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 171 TypeVals.clear(); 172 173 // Loop over all of the types, emitting each in turn. 174 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 175 const Type *T = TypeList[i].first; 176 int AbbrevToUse = 0; 177 unsigned Code = 0; 178 179 switch (T->getTypeID()) { 180 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 181 default: assert(0 && "Unknown type!"); 182 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 183 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 184 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 185 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 186 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 187 case Type::IntegerTyID: 188 // INTEGER: [width] 189 Code = bitc::TYPE_CODE_INTEGER; 190 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 191 break; 192 case Type::PointerTyID: 193 // POINTER: [pointee type] 194 Code = bitc::TYPE_CODE_POINTER; 195 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 196 AbbrevToUse = PtrAbbrev; 197 break; 198 199 case Type::FunctionTyID: { 200 const FunctionType *FT = cast<FunctionType>(T); 201 // FUNCTION: [isvararg, attrid, retty, paramty x N] 202 Code = bitc::TYPE_CODE_FUNCTION; 203 TypeVals.push_back(FT->isVarArg()); 204 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 205 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 206 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 207 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 208 AbbrevToUse = FunctionAbbrev; 209 break; 210 } 211 case Type::StructTyID: { 212 const StructType *ST = cast<StructType>(T); 213 // STRUCT: [ispacked, eltty x N] 214 Code = bitc::TYPE_CODE_STRUCT; 215 TypeVals.push_back(ST->isPacked()); 216 // Output all of the element types. 217 for (StructType::element_iterator I = ST->element_begin(), 218 E = ST->element_end(); I != E; ++I) 219 TypeVals.push_back(VE.getTypeID(*I)); 220 AbbrevToUse = StructAbbrev; 221 break; 222 } 223 case Type::ArrayTyID: { 224 const ArrayType *AT = cast<ArrayType>(T); 225 // ARRAY: [numelts, eltty] 226 Code = bitc::TYPE_CODE_ARRAY; 227 TypeVals.push_back(AT->getNumElements()); 228 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 229 AbbrevToUse = ArrayAbbrev; 230 break; 231 } 232 case Type::VectorTyID: { 233 const VectorType *VT = cast<VectorType>(T); 234 // VECTOR [numelts, eltty] 235 Code = bitc::TYPE_CODE_VECTOR; 236 TypeVals.push_back(VT->getNumElements()); 237 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 238 break; 239 } 240 } 241 242 // Emit the finished record. 243 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 244 TypeVals.clear(); 245 } 246 247 Stream.ExitBlock(); 248 } 249 250 static unsigned getEncodedLinkage(const GlobalValue *GV) { 251 switch (GV->getLinkage()) { 252 default: assert(0 && "Invalid linkage!"); 253 case GlobalValue::ExternalLinkage: return 0; 254 case GlobalValue::WeakLinkage: return 1; 255 case GlobalValue::AppendingLinkage: return 2; 256 case GlobalValue::InternalLinkage: return 3; 257 case GlobalValue::LinkOnceLinkage: return 4; 258 case GlobalValue::DLLImportLinkage: return 5; 259 case GlobalValue::DLLExportLinkage: return 6; 260 case GlobalValue::ExternalWeakLinkage: return 7; 261 } 262 } 263 264 static unsigned getEncodedVisibility(const GlobalValue *GV) { 265 switch (GV->getVisibility()) { 266 default: assert(0 && "Invalid visibility!"); 267 case GlobalValue::DefaultVisibility: return 0; 268 case GlobalValue::HiddenVisibility: return 1; 269 case GlobalValue::ProtectedVisibility: return 2; 270 } 271 } 272 273 // Emit top-level description of module, including target triple, inline asm, 274 // descriptors for global variables, and function prototype info. 275 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 276 BitstreamWriter &Stream) { 277 // Emit the list of dependent libraries for the Module. 278 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 279 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 280 281 // Emit various pieces of data attached to a module. 282 if (!M->getTargetTriple().empty()) 283 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 284 0/*TODO*/, Stream); 285 if (!M->getDataLayout().empty()) 286 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 287 0/*TODO*/, Stream); 288 if (!M->getModuleInlineAsm().empty()) 289 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 290 0/*TODO*/, Stream); 291 292 // Emit information about sections, computing how many there are. Also 293 // compute the maximum alignment value. 294 std::map<std::string, unsigned> SectionMap; 295 unsigned MaxAlignment = 0; 296 unsigned MaxGlobalType = 0; 297 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 298 GV != E; ++GV) { 299 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 300 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 301 302 if (!GV->hasSection()) continue; 303 // Give section names unique ID's. 304 unsigned &Entry = SectionMap[GV->getSection()]; 305 if (Entry != 0) continue; 306 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 307 0/*TODO*/, Stream); 308 Entry = SectionMap.size(); 309 } 310 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 311 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 312 if (!F->hasSection()) continue; 313 // Give section names unique ID's. 314 unsigned &Entry = SectionMap[F->getSection()]; 315 if (Entry != 0) continue; 316 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 317 0/*TODO*/, Stream); 318 Entry = SectionMap.size(); 319 } 320 321 // Emit abbrev for globals, now that we know # sections and max alignment. 322 unsigned SimpleGVarAbbrev = 0; 323 if (!M->global_empty()) { 324 // Add an abbrev for common globals with no visibility or thread localness. 325 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 326 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 328 Log2_32_Ceil(MaxGlobalType+1))); 329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 332 if (MaxAlignment == 0) // Alignment. 333 Abbv->Add(BitCodeAbbrevOp(0)); 334 else { 335 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 337 Log2_32_Ceil(MaxEncAlignment+1))); 338 } 339 if (SectionMap.empty()) // Section. 340 Abbv->Add(BitCodeAbbrevOp(0)); 341 else 342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 343 Log2_32_Ceil(SectionMap.size()+1))); 344 // Don't bother emitting vis + thread local. 345 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 346 } 347 348 // Emit the global variable information. 349 SmallVector<unsigned, 64> Vals; 350 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 351 GV != E; ++GV) { 352 unsigned AbbrevToUse = 0; 353 354 // GLOBALVAR: [type, isconst, initid, 355 // linkage, alignment, section, visibility, threadlocal] 356 Vals.push_back(VE.getTypeID(GV->getType())); 357 Vals.push_back(GV->isConstant()); 358 Vals.push_back(GV->isDeclaration() ? 0 : 359 (VE.getValueID(GV->getInitializer()) + 1)); 360 Vals.push_back(getEncodedLinkage(GV)); 361 Vals.push_back(Log2_32(GV->getAlignment())+1); 362 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 363 if (GV->isThreadLocal() || 364 GV->getVisibility() != GlobalValue::DefaultVisibility) { 365 Vals.push_back(getEncodedVisibility(GV)); 366 Vals.push_back(GV->isThreadLocal()); 367 } else { 368 AbbrevToUse = SimpleGVarAbbrev; 369 } 370 371 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 372 Vals.clear(); 373 } 374 375 // Emit the function proto information. 376 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 377 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 378 // visibility] 379 Vals.push_back(VE.getTypeID(F->getType())); 380 Vals.push_back(F->getCallingConv()); 381 Vals.push_back(F->isDeclaration()); 382 Vals.push_back(getEncodedLinkage(F)); 383 Vals.push_back(Log2_32(F->getAlignment())+1); 384 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 385 Vals.push_back(getEncodedVisibility(F)); 386 387 unsigned AbbrevToUse = 0; 388 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 389 Vals.clear(); 390 } 391 392 393 // Emit the alias information. 394 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 395 AI != E; ++AI) { 396 Vals.push_back(VE.getTypeID(AI->getType())); 397 Vals.push_back(VE.getValueID(AI->getAliasee())); 398 Vals.push_back(getEncodedLinkage(AI)); 399 unsigned AbbrevToUse = 0; 400 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 401 Vals.clear(); 402 } 403 } 404 405 406 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 407 const ValueEnumerator &VE, 408 BitstreamWriter &Stream, bool isGlobal) { 409 if (FirstVal == LastVal) return; 410 411 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 412 413 unsigned AggregateAbbrev = 0; 414 unsigned GEPAbbrev = 0; 415 // If this is a constant pool for the module, emit module-specific abbrevs. 416 if (isGlobal) { 417 // Abbrev for CST_CODE_AGGREGATE. 418 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 419 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 422 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 423 } 424 425 // FIXME: Install and use abbrevs to reduce size. Install them globally so 426 // they don't need to be reemitted for each function body. 427 428 SmallVector<uint64_t, 64> Record; 429 430 const ValueEnumerator::ValueList &Vals = VE.getValues(); 431 const Type *LastTy = 0; 432 for (unsigned i = FirstVal; i != LastVal; ++i) { 433 const Value *V = Vals[i].first; 434 // If we need to switch types, do so now. 435 if (V->getType() != LastTy) { 436 LastTy = V->getType(); 437 Record.push_back(VE.getTypeID(LastTy)); 438 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 439 CONSTANTS_SETTYPE_ABBREV); 440 Record.clear(); 441 } 442 443 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 444 assert(0 && IA && "FIXME: Inline asm writing unimp!"); 445 continue; 446 } 447 const Constant *C = cast<Constant>(V); 448 unsigned Code = -1U; 449 unsigned AbbrevToUse = 0; 450 if (C->isNullValue()) { 451 Code = bitc::CST_CODE_NULL; 452 } else if (isa<UndefValue>(C)) { 453 Code = bitc::CST_CODE_UNDEF; 454 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 455 if (IV->getBitWidth() <= 64) { 456 int64_t V = IV->getSExtValue(); 457 if (V >= 0) 458 Record.push_back(V << 1); 459 else 460 Record.push_back((-V << 1) | 1); 461 Code = bitc::CST_CODE_INTEGER; 462 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 463 } else { // Wide integers, > 64 bits in size. 464 // We have an arbitrary precision integer value to write whose 465 // bit width is > 64. However, in canonical unsigned integer 466 // format it is likely that the high bits are going to be zero. 467 // So, we only write the number of active words. 468 unsigned NWords = IV->getValue().getActiveWords(); 469 const uint64_t *RawWords = IV->getValue().getRawData(); 470 for (unsigned i = 0; i != NWords; ++i) { 471 int64_t V = RawWords[i]; 472 if (V >= 0) 473 Record.push_back(V << 1); 474 else 475 Record.push_back((-V << 1) | 1); 476 } 477 Code = bitc::CST_CODE_WIDE_INTEGER; 478 } 479 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 480 Code = bitc::CST_CODE_FLOAT; 481 if (CFP->getType() == Type::FloatTy) { 482 Record.push_back(FloatToBits((float)CFP->getValue())); 483 } else { 484 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 485 Record.push_back(DoubleToBits((double)CFP->getValue())); 486 } 487 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 488 isa<ConstantVector>(V)) { 489 Code = bitc::CST_CODE_AGGREGATE; 490 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 491 Record.push_back(VE.getValueID(C->getOperand(i))); 492 AbbrevToUse = AggregateAbbrev; 493 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 494 switch (CE->getOpcode()) { 495 default: 496 if (Instruction::isCast(CE->getOpcode())) { 497 Code = bitc::CST_CODE_CE_CAST; 498 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 499 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 500 Record.push_back(VE.getValueID(C->getOperand(0))); 501 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 502 } else { 503 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 504 Code = bitc::CST_CODE_CE_BINOP; 505 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 506 Record.push_back(VE.getValueID(C->getOperand(0))); 507 Record.push_back(VE.getValueID(C->getOperand(1))); 508 } 509 break; 510 case Instruction::GetElementPtr: 511 Code = bitc::CST_CODE_CE_GEP; 512 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 513 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 514 Record.push_back(VE.getValueID(C->getOperand(i))); 515 } 516 AbbrevToUse = GEPAbbrev; 517 break; 518 case Instruction::Select: 519 Code = bitc::CST_CODE_CE_SELECT; 520 Record.push_back(VE.getValueID(C->getOperand(0))); 521 Record.push_back(VE.getValueID(C->getOperand(1))); 522 Record.push_back(VE.getValueID(C->getOperand(2))); 523 break; 524 case Instruction::ExtractElement: 525 Code = bitc::CST_CODE_CE_EXTRACTELT; 526 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 527 Record.push_back(VE.getValueID(C->getOperand(0))); 528 Record.push_back(VE.getValueID(C->getOperand(1))); 529 break; 530 case Instruction::InsertElement: 531 Code = bitc::CST_CODE_CE_INSERTELT; 532 Record.push_back(VE.getValueID(C->getOperand(0))); 533 Record.push_back(VE.getValueID(C->getOperand(1))); 534 Record.push_back(VE.getValueID(C->getOperand(2))); 535 break; 536 case Instruction::ShuffleVector: 537 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 538 Record.push_back(VE.getValueID(C->getOperand(0))); 539 Record.push_back(VE.getValueID(C->getOperand(1))); 540 Record.push_back(VE.getValueID(C->getOperand(2))); 541 break; 542 case Instruction::ICmp: 543 case Instruction::FCmp: 544 Code = bitc::CST_CODE_CE_CMP; 545 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 546 Record.push_back(VE.getValueID(C->getOperand(0))); 547 Record.push_back(VE.getValueID(C->getOperand(1))); 548 Record.push_back(CE->getPredicate()); 549 break; 550 } 551 } else { 552 assert(0 && "Unknown constant!"); 553 } 554 Stream.EmitRecord(Code, Record, AbbrevToUse); 555 Record.clear(); 556 } 557 558 Stream.ExitBlock(); 559 } 560 561 static void WriteModuleConstants(const ValueEnumerator &VE, 562 BitstreamWriter &Stream) { 563 const ValueEnumerator::ValueList &Vals = VE.getValues(); 564 565 // Find the first constant to emit, which is the first non-globalvalue value. 566 // We know globalvalues have been emitted by WriteModuleInfo. 567 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 568 if (!isa<GlobalValue>(Vals[i].first)) { 569 WriteConstants(i, Vals.size(), VE, Stream, true); 570 return; 571 } 572 } 573 } 574 575 /// WriteInstruction - Emit an instruction to the specified stream. 576 static void WriteInstruction(const Instruction &I, ValueEnumerator &VE, 577 BitstreamWriter &Stream, 578 SmallVector<unsigned, 64> &Vals) { 579 unsigned Code = 0; 580 unsigned AbbrevToUse = 0; 581 switch (I.getOpcode()) { 582 default: 583 if (Instruction::isCast(I.getOpcode())) { 584 Code = bitc::FUNC_CODE_INST_CAST; 585 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 586 Vals.push_back(VE.getTypeID(I.getType())); 587 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 588 Vals.push_back(VE.getValueID(I.getOperand(0))); 589 } else { 590 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 591 Code = bitc::FUNC_CODE_INST_BINOP; 592 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 593 Vals.push_back(VE.getTypeID(I.getType())); 594 Vals.push_back(VE.getValueID(I.getOperand(0))); 595 Vals.push_back(VE.getValueID(I.getOperand(1))); 596 } 597 break; 598 599 case Instruction::GetElementPtr: 600 Code = bitc::FUNC_CODE_INST_GEP; 601 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 602 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 603 Vals.push_back(VE.getValueID(I.getOperand(i))); 604 } 605 break; 606 case Instruction::Select: 607 Code = bitc::FUNC_CODE_INST_SELECT; 608 Vals.push_back(VE.getTypeID(I.getType())); 609 Vals.push_back(VE.getValueID(I.getOperand(0))); 610 Vals.push_back(VE.getValueID(I.getOperand(1))); 611 Vals.push_back(VE.getValueID(I.getOperand(2))); 612 break; 613 case Instruction::ExtractElement: 614 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 615 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 616 Vals.push_back(VE.getValueID(I.getOperand(0))); 617 Vals.push_back(VE.getValueID(I.getOperand(1))); 618 break; 619 case Instruction::InsertElement: 620 Code = bitc::FUNC_CODE_INST_INSERTELT; 621 Vals.push_back(VE.getTypeID(I.getType())); 622 Vals.push_back(VE.getValueID(I.getOperand(0))); 623 Vals.push_back(VE.getValueID(I.getOperand(1))); 624 Vals.push_back(VE.getValueID(I.getOperand(2))); 625 break; 626 case Instruction::ShuffleVector: 627 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 628 Vals.push_back(VE.getTypeID(I.getType())); 629 Vals.push_back(VE.getValueID(I.getOperand(0))); 630 Vals.push_back(VE.getValueID(I.getOperand(1))); 631 Vals.push_back(VE.getValueID(I.getOperand(2))); 632 break; 633 case Instruction::ICmp: 634 case Instruction::FCmp: 635 Code = bitc::FUNC_CODE_INST_CMP; 636 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 637 Vals.push_back(VE.getValueID(I.getOperand(0))); 638 Vals.push_back(VE.getValueID(I.getOperand(1))); 639 Vals.push_back(cast<CmpInst>(I).getPredicate()); 640 break; 641 642 case Instruction::Ret: 643 Code = bitc::FUNC_CODE_INST_RET; 644 if (I.getNumOperands()) { 645 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 646 Vals.push_back(VE.getValueID(I.getOperand(0))); 647 } 648 break; 649 case Instruction::Br: 650 Code = bitc::FUNC_CODE_INST_BR; 651 Vals.push_back(VE.getValueID(I.getOperand(0))); 652 if (cast<BranchInst>(I).isConditional()) { 653 Vals.push_back(VE.getValueID(I.getOperand(1))); 654 Vals.push_back(VE.getValueID(I.getOperand(2))); 655 } 656 break; 657 case Instruction::Switch: 658 Code = bitc::FUNC_CODE_INST_SWITCH; 659 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 660 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 661 Vals.push_back(VE.getValueID(I.getOperand(i))); 662 break; 663 case Instruction::Invoke: { 664 Code = bitc::FUNC_CODE_INST_INVOKE; 665 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 666 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 667 Vals.push_back(VE.getValueID(I.getOperand(0))); // callee 668 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal 669 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind 670 671 // Emit value #'s for the fixed parameters. 672 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 673 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 674 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 675 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 676 677 // Emit type/value pairs for varargs params. 678 if (FTy->isVarArg()) { 679 unsigned NumVarargs = I.getNumOperands()-3-FTy->getNumParams(); 680 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 681 i != e; ++i) { 682 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 683 Vals.push_back(VE.getValueID(I.getOperand(i))); 684 } 685 } 686 break; 687 } 688 case Instruction::Unwind: 689 Code = bitc::FUNC_CODE_INST_UNWIND; 690 break; 691 case Instruction::Unreachable: 692 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 693 break; 694 695 case Instruction::PHI: 696 Code = bitc::FUNC_CODE_INST_PHI; 697 Vals.push_back(VE.getTypeID(I.getType())); 698 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 699 Vals.push_back(VE.getValueID(I.getOperand(i))); 700 break; 701 702 case Instruction::Malloc: 703 Code = bitc::FUNC_CODE_INST_MALLOC; 704 Vals.push_back(VE.getTypeID(I.getType())); 705 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 706 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 707 break; 708 709 case Instruction::Free: 710 Code = bitc::FUNC_CODE_INST_FREE; 711 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 712 Vals.push_back(VE.getValueID(I.getOperand(0))); 713 break; 714 715 case Instruction::Alloca: 716 Code = bitc::FUNC_CODE_INST_ALLOCA; 717 Vals.push_back(VE.getTypeID(I.getType())); 718 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 719 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 720 break; 721 722 case Instruction::Load: 723 Code = bitc::FUNC_CODE_INST_LOAD; 724 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 725 Vals.push_back(VE.getValueID(I.getOperand(0))); // ptr. 726 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 727 Vals.push_back(cast<LoadInst>(I).isVolatile()); 728 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 729 break; 730 case Instruction::Store: 731 Code = bitc::FUNC_CODE_INST_STORE; 732 Vals.push_back(VE.getTypeID(I.getOperand(1)->getType())); // Pointer 733 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 734 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 735 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 736 Vals.push_back(cast<StoreInst>(I).isVolatile()); 737 break; 738 case Instruction::Call: { 739 Code = bitc::FUNC_CODE_INST_CALL; 740 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 741 cast<CallInst>(I).isTailCall()); 742 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 743 Vals.push_back(VE.getValueID(I.getOperand(0))); // callee 744 745 // Emit value #'s for the fixed parameters. 746 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 747 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 748 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 749 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 750 751 // Emit type/value pairs for varargs params. 752 if (FTy->isVarArg()) { 753 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 754 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 755 i != e; ++i) { 756 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 757 Vals.push_back(VE.getValueID(I.getOperand(i))); 758 } 759 } 760 break; 761 } 762 case Instruction::VAArg: 763 Code = bitc::FUNC_CODE_INST_VAARG; 764 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 765 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 766 Vals.push_back(VE.getTypeID(I.getType())); // restype. 767 break; 768 } 769 770 Stream.EmitRecord(Code, Vals, AbbrevToUse); 771 Vals.clear(); 772 } 773 774 // Emit names for globals/functions etc. 775 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 776 const ValueEnumerator &VE, 777 BitstreamWriter &Stream) { 778 if (VST.empty()) return; 779 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 780 781 // FIXME: Set up the abbrev, we know how many values there are! 782 // FIXME: We know if the type names can use 7-bit ascii. 783 SmallVector<unsigned, 64> NameVals; 784 785 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 786 SI != SE; ++SI) { 787 788 const ValueName &Name = *SI; 789 790 // Figure out the encoding to use for the name. 791 bool is7Bit = true; 792 bool isChar6 = true; 793 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 794 C != E; ++C) { 795 if (isChar6) 796 isChar6 = BitCodeAbbrevOp::isChar6(*C); 797 if ((unsigned char)*C & 128) { 798 is7Bit = false; 799 break; // don't bother scanning the rest. 800 } 801 } 802 803 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 804 805 // VST_ENTRY: [valueid, namechar x N] 806 // VST_BBENTRY: [bbid, namechar x N] 807 unsigned Code; 808 if (isa<BasicBlock>(SI->getValue())) { 809 Code = bitc::VST_CODE_BBENTRY; 810 if (isChar6) 811 AbbrevToUse = VST_BBENTRY_6_ABBREV; 812 } else { 813 Code = bitc::VST_CODE_ENTRY; 814 if (isChar6) 815 AbbrevToUse = VST_ENTRY_6_ABBREV; 816 else if (is7Bit) 817 AbbrevToUse = VST_ENTRY_7_ABBREV; 818 } 819 820 NameVals.push_back(VE.getValueID(SI->getValue())); 821 for (const char *P = Name.getKeyData(), 822 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 823 NameVals.push_back((unsigned char)*P); 824 825 // Emit the finished record. 826 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 827 NameVals.clear(); 828 } 829 Stream.ExitBlock(); 830 } 831 832 /// WriteFunction - Emit a function body to the module stream. 833 static void WriteFunction(const Function &F, ValueEnumerator &VE, 834 BitstreamWriter &Stream) { 835 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3); 836 VE.incorporateFunction(F); 837 838 SmallVector<unsigned, 64> Vals; 839 840 // Emit the number of basic blocks, so the reader can create them ahead of 841 // time. 842 Vals.push_back(VE.getBasicBlocks().size()); 843 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 844 Vals.clear(); 845 846 // FIXME: Function attributes? 847 848 // If there are function-local constants, emit them now. 849 unsigned CstStart, CstEnd; 850 VE.getFunctionConstantRange(CstStart, CstEnd); 851 WriteConstants(CstStart, CstEnd, VE, Stream, false); 852 853 // Finally, emit all the instructions, in order. 854 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 855 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 856 WriteInstruction(*I, VE, Stream, Vals); 857 858 // Emit names for all the instructions etc. 859 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 860 861 VE.purgeFunction(); 862 Stream.ExitBlock(); 863 } 864 865 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 866 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 867 const ValueEnumerator &VE, 868 BitstreamWriter &Stream) { 869 if (TST.empty()) return; 870 871 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 872 873 // 7-bit fixed width VST_CODE_ENTRY strings. 874 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 877 Log2_32_Ceil(VE.getTypes().size()+1))); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 880 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 881 882 SmallVector<unsigned, 64> NameVals; 883 884 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 885 TI != TE; ++TI) { 886 // TST_ENTRY: [typeid, namechar x N] 887 NameVals.push_back(VE.getTypeID(TI->second)); 888 889 const std::string &Str = TI->first; 890 bool is7Bit = true; 891 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 892 NameVals.push_back((unsigned char)Str[i]); 893 if (Str[i] & 128) 894 is7Bit = false; 895 } 896 897 // Emit the finished record. 898 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 899 NameVals.clear(); 900 } 901 902 Stream.ExitBlock(); 903 } 904 905 // Emit blockinfo, which defines the standard abbreviations etc. 906 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 907 // We only want to emit block info records for blocks that have multiple 908 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 909 // blocks can defined their abbrevs inline. 910 Stream.EnterBlockInfoBlock(2); 911 912 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 913 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 918 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 919 Abbv) != VST_ENTRY_8_ABBREV) 920 assert(0 && "Unexpected abbrev ordering!"); 921 } 922 923 { // 7-bit fixed width VST_ENTRY strings. 924 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 925 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 929 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 930 Abbv) != VST_ENTRY_7_ABBREV) 931 assert(0 && "Unexpected abbrev ordering!"); 932 } 933 { // 6-bit char6 VST_ENTRY strings. 934 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 935 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 939 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 940 Abbv) != VST_ENTRY_6_ABBREV) 941 assert(0 && "Unexpected abbrev ordering!"); 942 } 943 { // 6-bit char6 VST_BBENTRY strings. 944 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 945 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 949 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 950 Abbv) != VST_BBENTRY_6_ABBREV) 951 assert(0 && "Unexpected abbrev ordering!"); 952 } 953 954 955 956 { // SETTYPE abbrev for CONSTANTS_BLOCK. 957 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 958 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 960 Log2_32_Ceil(VE.getTypes().size()+1))); 961 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 962 Abbv) != CONSTANTS_SETTYPE_ABBREV) 963 assert(0 && "Unexpected abbrev ordering!"); 964 } 965 966 { // INTEGER abbrev for CONSTANTS_BLOCK. 967 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 968 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 970 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 971 Abbv) != CONSTANTS_INTEGER_ABBREV) 972 assert(0 && "Unexpected abbrev ordering!"); 973 } 974 975 { // CE_CAST abbrev for CONSTANTS_BLOCK. 976 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 977 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 980 Log2_32_Ceil(VE.getTypes().size()+1))); 981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 982 983 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 984 Abbv) != CONSTANTS_CE_CAST_Abbrev) 985 assert(0 && "Unexpected abbrev ordering!"); 986 } 987 { // NULL abbrev for CONSTANTS_BLOCK. 988 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 989 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 990 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 991 Abbv) != CONSTANTS_NULL_Abbrev) 992 assert(0 && "Unexpected abbrev ordering!"); 993 } 994 995 // FIXME: This should only use space for first class types! 996 997 { // INST_LOAD abbrev for FUNCTION_BLOCK. 998 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 999 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1001 Log2_32_Ceil(VE.getTypes().size()+1))); 1002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1005 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1006 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1007 assert(0 && "Unexpected abbrev ordering!"); 1008 } 1009 1010 Stream.ExitBlock(); 1011 } 1012 1013 1014 /// WriteModule - Emit the specified module to the bitstream. 1015 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1016 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1017 1018 // Emit the version number if it is non-zero. 1019 if (CurVersion) { 1020 SmallVector<unsigned, 1> Vals; 1021 Vals.push_back(CurVersion); 1022 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1023 } 1024 1025 // Analyze the module, enumerating globals, functions, etc. 1026 ValueEnumerator VE(M); 1027 1028 // Emit blockinfo, which defines the standard abbreviations etc. 1029 WriteBlockInfo(VE, Stream); 1030 1031 // Emit information about parameter attributes. 1032 WriteParamAttrTable(VE, Stream); 1033 1034 // Emit information describing all of the types in the module. 1035 WriteTypeTable(VE, Stream); 1036 1037 // Emit top-level description of module, including target triple, inline asm, 1038 // descriptors for global variables, and function prototype info. 1039 WriteModuleInfo(M, VE, Stream); 1040 1041 // Emit constants. 1042 WriteModuleConstants(VE, Stream); 1043 1044 // If we have any aggregate values in the value table, purge them - these can 1045 // only be used to initialize global variables. Doing so makes the value 1046 // namespace smaller for code in functions. 1047 int NumNonAggregates = VE.PurgeAggregateValues(); 1048 if (NumNonAggregates != -1) { 1049 SmallVector<unsigned, 1> Vals; 1050 Vals.push_back(NumNonAggregates); 1051 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1052 } 1053 1054 // Emit function bodies. 1055 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1056 if (!I->isDeclaration()) 1057 WriteFunction(*I, VE, Stream); 1058 1059 // Emit the type symbol table information. 1060 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1061 1062 // Emit names for globals/functions etc. 1063 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1064 1065 Stream.ExitBlock(); 1066 } 1067 1068 1069 /// WriteBitcodeToFile - Write the specified module to the specified output 1070 /// stream. 1071 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1072 std::vector<unsigned char> Buffer; 1073 BitstreamWriter Stream(Buffer); 1074 1075 Buffer.reserve(256*1024); 1076 1077 // Emit the file header. 1078 Stream.Emit((unsigned)'B', 8); 1079 Stream.Emit((unsigned)'C', 8); 1080 Stream.Emit(0x0, 4); 1081 Stream.Emit(0xC, 4); 1082 Stream.Emit(0xE, 4); 1083 Stream.Emit(0xD, 4); 1084 1085 // Emit the module. 1086 WriteModule(M, Stream); 1087 1088 // Write the generated bitstream to "Out". 1089 Out.write((char*)&Buffer.front(), Buffer.size()); 1090 } 1091