1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/MDNode.h" 23 #include "llvm/Module.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/Streams.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/System/Program.h" 31 using namespace llvm; 32 33 /// These are manifest constants used by the bitcode writer. They do not need to 34 /// be kept in sync with the reader, but need to be consistent within this file. 35 enum { 36 CurVersion = 0, 37 38 // VALUE_SYMTAB_BLOCK abbrev id's. 39 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 40 VST_ENTRY_7_ABBREV, 41 VST_ENTRY_6_ABBREV, 42 VST_BBENTRY_6_ABBREV, 43 44 // CONSTANTS_BLOCK abbrev id's. 45 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 CONSTANTS_INTEGER_ABBREV, 47 CONSTANTS_CE_CAST_Abbrev, 48 CONSTANTS_NULL_Abbrev, 49 50 // FUNCTION_BLOCK abbrev id's. 51 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 FUNCTION_INST_BINOP_ABBREV, 53 FUNCTION_INST_CAST_ABBREV, 54 FUNCTION_INST_RET_VOID_ABBREV, 55 FUNCTION_INST_RET_VAL_ABBREV, 56 FUNCTION_INST_UNREACHABLE_ABBREV 57 }; 58 59 60 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 61 switch (Opcode) { 62 default: llvm_unreachable("Unknown cast instruction!"); 63 case Instruction::Trunc : return bitc::CAST_TRUNC; 64 case Instruction::ZExt : return bitc::CAST_ZEXT; 65 case Instruction::SExt : return bitc::CAST_SEXT; 66 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 67 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 68 case Instruction::UIToFP : return bitc::CAST_UITOFP; 69 case Instruction::SIToFP : return bitc::CAST_SITOFP; 70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 71 case Instruction::FPExt : return bitc::CAST_FPEXT; 72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 74 case Instruction::BitCast : return bitc::CAST_BITCAST; 75 } 76 } 77 78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown binary instruction!"); 81 case Instruction::Add: 82 case Instruction::FAdd: return bitc::BINOP_ADD; 83 case Instruction::Sub: 84 case Instruction::FSub: return bitc::BINOP_SUB; 85 case Instruction::Mul: 86 case Instruction::FMul: return bitc::BINOP_MUL; 87 case Instruction::UDiv: return bitc::BINOP_UDIV; 88 case Instruction::FDiv: 89 case Instruction::SDiv: return bitc::BINOP_SDIV; 90 case Instruction::URem: return bitc::BINOP_UREM; 91 case Instruction::FRem: 92 case Instruction::SRem: return bitc::BINOP_SREM; 93 case Instruction::Shl: return bitc::BINOP_SHL; 94 case Instruction::LShr: return bitc::BINOP_LSHR; 95 case Instruction::AShr: return bitc::BINOP_ASHR; 96 case Instruction::And: return bitc::BINOP_AND; 97 case Instruction::Or: return bitc::BINOP_OR; 98 case Instruction::Xor: return bitc::BINOP_XOR; 99 } 100 } 101 102 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_ARRAY. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Emit an entry count so the reader can reserve space. 193 TypeVals.push_back(TypeList.size()); 194 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 195 TypeVals.clear(); 196 197 // Loop over all of the types, emitting each in turn. 198 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 199 const Type *T = TypeList[i].first; 200 int AbbrevToUse = 0; 201 unsigned Code = 0; 202 203 switch (T->getTypeID()) { 204 default: llvm_unreachable("Unknown type!"); 205 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 206 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 207 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 208 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 209 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 210 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 211 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 212 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 213 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 214 case Type::IntegerTyID: 215 // INTEGER: [width] 216 Code = bitc::TYPE_CODE_INTEGER; 217 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 218 break; 219 case Type::PointerTyID: { 220 const PointerType *PTy = cast<PointerType>(T); 221 // POINTER: [pointee type, address space] 222 Code = bitc::TYPE_CODE_POINTER; 223 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 224 unsigned AddressSpace = PTy->getAddressSpace(); 225 TypeVals.push_back(AddressSpace); 226 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 227 break; 228 } 229 case Type::FunctionTyID: { 230 const FunctionType *FT = cast<FunctionType>(T); 231 // FUNCTION: [isvararg, attrid, retty, paramty x N] 232 Code = bitc::TYPE_CODE_FUNCTION; 233 TypeVals.push_back(FT->isVarArg()); 234 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 235 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 236 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 237 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 238 AbbrevToUse = FunctionAbbrev; 239 break; 240 } 241 case Type::StructTyID: { 242 const StructType *ST = cast<StructType>(T); 243 // STRUCT: [ispacked, eltty x N] 244 Code = bitc::TYPE_CODE_STRUCT; 245 TypeVals.push_back(ST->isPacked()); 246 // Output all of the element types. 247 for (StructType::element_iterator I = ST->element_begin(), 248 E = ST->element_end(); I != E; ++I) 249 TypeVals.push_back(VE.getTypeID(*I)); 250 AbbrevToUse = StructAbbrev; 251 break; 252 } 253 case Type::ArrayTyID: { 254 const ArrayType *AT = cast<ArrayType>(T); 255 // ARRAY: [numelts, eltty] 256 Code = bitc::TYPE_CODE_ARRAY; 257 TypeVals.push_back(AT->getNumElements()); 258 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 259 AbbrevToUse = ArrayAbbrev; 260 break; 261 } 262 case Type::VectorTyID: { 263 const VectorType *VT = cast<VectorType>(T); 264 // VECTOR [numelts, eltty] 265 Code = bitc::TYPE_CODE_VECTOR; 266 TypeVals.push_back(VT->getNumElements()); 267 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 268 break; 269 } 270 } 271 272 // Emit the finished record. 273 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 274 TypeVals.clear(); 275 } 276 277 Stream.ExitBlock(); 278 } 279 280 static unsigned getEncodedLinkage(const GlobalValue *GV) { 281 switch (GV->getLinkage()) { 282 default: llvm_unreachable("Invalid linkage!"); 283 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 284 case GlobalValue::ExternalLinkage: return 0; 285 case GlobalValue::WeakAnyLinkage: return 1; 286 case GlobalValue::AppendingLinkage: return 2; 287 case GlobalValue::InternalLinkage: return 3; 288 case GlobalValue::LinkOnceAnyLinkage: return 4; 289 case GlobalValue::DLLImportLinkage: return 5; 290 case GlobalValue::DLLExportLinkage: return 6; 291 case GlobalValue::ExternalWeakLinkage: return 7; 292 case GlobalValue::CommonLinkage: return 8; 293 case GlobalValue::PrivateLinkage: return 9; 294 case GlobalValue::WeakODRLinkage: return 10; 295 case GlobalValue::LinkOnceODRLinkage: return 11; 296 case GlobalValue::AvailableExternallyLinkage: return 12; 297 case GlobalValue::LinkerPrivateLinkage: return 13; 298 } 299 } 300 301 static unsigned getEncodedVisibility(const GlobalValue *GV) { 302 switch (GV->getVisibility()) { 303 default: llvm_unreachable("Invalid visibility!"); 304 case GlobalValue::DefaultVisibility: return 0; 305 case GlobalValue::HiddenVisibility: return 1; 306 case GlobalValue::ProtectedVisibility: return 2; 307 } 308 } 309 310 // Emit top-level description of module, including target triple, inline asm, 311 // descriptors for global variables, and function prototype info. 312 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 313 BitstreamWriter &Stream) { 314 // Emit the list of dependent libraries for the Module. 315 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 316 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 317 318 // Emit various pieces of data attached to a module. 319 if (!M->getTargetTriple().empty()) 320 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 321 0/*TODO*/, Stream); 322 if (!M->getDataLayout().empty()) 323 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 324 0/*TODO*/, Stream); 325 if (!M->getModuleInlineAsm().empty()) 326 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 327 0/*TODO*/, Stream); 328 329 // Emit information about sections and GC, computing how many there are. Also 330 // compute the maximum alignment value. 331 std::map<std::string, unsigned> SectionMap; 332 std::map<std::string, unsigned> GCMap; 333 unsigned MaxAlignment = 0; 334 unsigned MaxGlobalType = 0; 335 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 336 GV != E; ++GV) { 337 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 338 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 339 340 if (!GV->hasSection()) continue; 341 // Give section names unique ID's. 342 unsigned &Entry = SectionMap[GV->getSection()]; 343 if (Entry != 0) continue; 344 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 345 0/*TODO*/, Stream); 346 Entry = SectionMap.size(); 347 } 348 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 349 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 350 if (F->hasSection()) { 351 // Give section names unique ID's. 352 unsigned &Entry = SectionMap[F->getSection()]; 353 if (!Entry) { 354 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 355 0/*TODO*/, Stream); 356 Entry = SectionMap.size(); 357 } 358 } 359 if (F->hasGC()) { 360 // Same for GC names. 361 unsigned &Entry = GCMap[F->getGC()]; 362 if (!Entry) { 363 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 364 0/*TODO*/, Stream); 365 Entry = GCMap.size(); 366 } 367 } 368 } 369 370 // Emit abbrev for globals, now that we know # sections and max alignment. 371 unsigned SimpleGVarAbbrev = 0; 372 if (!M->global_empty()) { 373 // Add an abbrev for common globals with no visibility or thread localness. 374 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 375 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 377 Log2_32_Ceil(MaxGlobalType+1))); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 381 if (MaxAlignment == 0) // Alignment. 382 Abbv->Add(BitCodeAbbrevOp(0)); 383 else { 384 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 386 Log2_32_Ceil(MaxEncAlignment+1))); 387 } 388 if (SectionMap.empty()) // Section. 389 Abbv->Add(BitCodeAbbrevOp(0)); 390 else 391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 392 Log2_32_Ceil(SectionMap.size()+1))); 393 // Don't bother emitting vis + thread local. 394 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 395 } 396 397 // Emit the global variable information. 398 SmallVector<unsigned, 64> Vals; 399 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 400 GV != E; ++GV) { 401 unsigned AbbrevToUse = 0; 402 403 // GLOBALVAR: [type, isconst, initid, 404 // linkage, alignment, section, visibility, threadlocal] 405 Vals.push_back(VE.getTypeID(GV->getType())); 406 Vals.push_back(GV->isConstant()); 407 Vals.push_back(GV->isDeclaration() ? 0 : 408 (VE.getValueID(GV->getInitializer()) + 1)); 409 Vals.push_back(getEncodedLinkage(GV)); 410 Vals.push_back(Log2_32(GV->getAlignment())+1); 411 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 412 if (GV->isThreadLocal() || 413 GV->getVisibility() != GlobalValue::DefaultVisibility) { 414 Vals.push_back(getEncodedVisibility(GV)); 415 Vals.push_back(GV->isThreadLocal()); 416 } else { 417 AbbrevToUse = SimpleGVarAbbrev; 418 } 419 420 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 421 Vals.clear(); 422 } 423 424 // Emit the function proto information. 425 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 426 // FUNCTION: [type, callingconv, isproto, paramattr, 427 // linkage, alignment, section, visibility, gc] 428 Vals.push_back(VE.getTypeID(F->getType())); 429 Vals.push_back(F->getCallingConv()); 430 Vals.push_back(F->isDeclaration()); 431 Vals.push_back(getEncodedLinkage(F)); 432 Vals.push_back(VE.getAttributeID(F->getAttributes())); 433 Vals.push_back(Log2_32(F->getAlignment())+1); 434 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 435 Vals.push_back(getEncodedVisibility(F)); 436 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 437 438 unsigned AbbrevToUse = 0; 439 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 440 Vals.clear(); 441 } 442 443 444 // Emit the alias information. 445 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 446 AI != E; ++AI) { 447 Vals.push_back(VE.getTypeID(AI->getType())); 448 Vals.push_back(VE.getValueID(AI->getAliasee())); 449 Vals.push_back(getEncodedLinkage(AI)); 450 Vals.push_back(getEncodedVisibility(AI)); 451 unsigned AbbrevToUse = 0; 452 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 453 Vals.clear(); 454 } 455 } 456 457 458 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 459 const ValueEnumerator &VE, 460 BitstreamWriter &Stream, bool isGlobal) { 461 if (FirstVal == LastVal) return; 462 463 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 464 465 unsigned AggregateAbbrev = 0; 466 unsigned String8Abbrev = 0; 467 unsigned CString7Abbrev = 0; 468 unsigned CString6Abbrev = 0; 469 unsigned MDString8Abbrev = 0; 470 unsigned MDString6Abbrev = 0; 471 // If this is a constant pool for the module, emit module-specific abbrevs. 472 if (isGlobal) { 473 // Abbrev for CST_CODE_AGGREGATE. 474 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 475 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 478 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 479 480 // Abbrev for CST_CODE_STRING. 481 Abbv = new BitCodeAbbrev(); 482 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 485 String8Abbrev = Stream.EmitAbbrev(Abbv); 486 // Abbrev for CST_CODE_CSTRING. 487 Abbv = new BitCodeAbbrev(); 488 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 491 CString7Abbrev = Stream.EmitAbbrev(Abbv); 492 // Abbrev for CST_CODE_CSTRING. 493 Abbv = new BitCodeAbbrev(); 494 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 497 CString6Abbrev = Stream.EmitAbbrev(Abbv); 498 499 // Abbrev for CST_CODE_MDSTRING. 500 Abbv = new BitCodeAbbrev(); 501 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 504 MDString8Abbrev = Stream.EmitAbbrev(Abbv); 505 // Abbrev for CST_CODE_MDSTRING. 506 Abbv = new BitCodeAbbrev(); 507 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_MDSTRING)); 508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 510 MDString6Abbrev = Stream.EmitAbbrev(Abbv); 511 } 512 513 SmallVector<uint64_t, 64> Record; 514 515 const ValueEnumerator::ValueList &Vals = VE.getValues(); 516 const Type *LastTy = 0; 517 for (unsigned i = FirstVal; i != LastVal; ++i) { 518 const Value *V = Vals[i].first; 519 // If we need to switch types, do so now. 520 if (V->getType() != LastTy) { 521 LastTy = V->getType(); 522 Record.push_back(VE.getTypeID(LastTy)); 523 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 524 CONSTANTS_SETTYPE_ABBREV); 525 Record.clear(); 526 } 527 528 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 529 Record.push_back(unsigned(IA->hasSideEffects())); 530 531 // Add the asm string. 532 const std::string &AsmStr = IA->getAsmString(); 533 Record.push_back(AsmStr.size()); 534 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 535 Record.push_back(AsmStr[i]); 536 537 // Add the constraint string. 538 const std::string &ConstraintStr = IA->getConstraintString(); 539 Record.push_back(ConstraintStr.size()); 540 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 541 Record.push_back(ConstraintStr[i]); 542 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 543 Record.clear(); 544 continue; 545 } 546 const Constant *C = cast<Constant>(V); 547 unsigned Code = -1U; 548 unsigned AbbrevToUse = 0; 549 if (C->isNullValue()) { 550 Code = bitc::CST_CODE_NULL; 551 } else if (isa<UndefValue>(C)) { 552 Code = bitc::CST_CODE_UNDEF; 553 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 554 if (IV->getBitWidth() <= 64) { 555 int64_t V = IV->getSExtValue(); 556 if (V >= 0) 557 Record.push_back(V << 1); 558 else 559 Record.push_back((-V << 1) | 1); 560 Code = bitc::CST_CODE_INTEGER; 561 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 562 } else { // Wide integers, > 64 bits in size. 563 // We have an arbitrary precision integer value to write whose 564 // bit width is > 64. However, in canonical unsigned integer 565 // format it is likely that the high bits are going to be zero. 566 // So, we only write the number of active words. 567 unsigned NWords = IV->getValue().getActiveWords(); 568 const uint64_t *RawWords = IV->getValue().getRawData(); 569 for (unsigned i = 0; i != NWords; ++i) { 570 int64_t V = RawWords[i]; 571 if (V >= 0) 572 Record.push_back(V << 1); 573 else 574 Record.push_back((-V << 1) | 1); 575 } 576 Code = bitc::CST_CODE_WIDE_INTEGER; 577 } 578 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 579 Code = bitc::CST_CODE_FLOAT; 580 const Type *Ty = CFP->getType(); 581 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 582 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 583 } else if (Ty == Type::X86_FP80Ty) { 584 // api needed to prevent premature destruction 585 // bits are not in the same order as a normal i80 APInt, compensate. 586 APInt api = CFP->getValueAPF().bitcastToAPInt(); 587 const uint64_t *p = api.getRawData(); 588 Record.push_back((p[1] << 48) | (p[0] >> 16)); 589 Record.push_back(p[0] & 0xffffLL); 590 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 591 APInt api = CFP->getValueAPF().bitcastToAPInt(); 592 const uint64_t *p = api.getRawData(); 593 Record.push_back(p[0]); 594 Record.push_back(p[1]); 595 } else { 596 assert (0 && "Unknown FP type!"); 597 } 598 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 599 // Emit constant strings specially. 600 unsigned NumOps = C->getNumOperands(); 601 // If this is a null-terminated string, use the denser CSTRING encoding. 602 if (C->getOperand(NumOps-1)->isNullValue()) { 603 Code = bitc::CST_CODE_CSTRING; 604 --NumOps; // Don't encode the null, which isn't allowed by char6. 605 } else { 606 Code = bitc::CST_CODE_STRING; 607 AbbrevToUse = String8Abbrev; 608 } 609 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 610 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 611 for (unsigned i = 0; i != NumOps; ++i) { 612 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 613 Record.push_back(V); 614 isCStr7 &= (V & 128) == 0; 615 if (isCStrChar6) 616 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 617 } 618 619 if (isCStrChar6) 620 AbbrevToUse = CString6Abbrev; 621 else if (isCStr7) 622 AbbrevToUse = CString7Abbrev; 623 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 624 isa<ConstantVector>(V)) { 625 Code = bitc::CST_CODE_AGGREGATE; 626 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 627 Record.push_back(VE.getValueID(C->getOperand(i))); 628 AbbrevToUse = AggregateAbbrev; 629 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 630 switch (CE->getOpcode()) { 631 default: 632 if (Instruction::isCast(CE->getOpcode())) { 633 Code = bitc::CST_CODE_CE_CAST; 634 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 635 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 636 Record.push_back(VE.getValueID(C->getOperand(0))); 637 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 638 } else { 639 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 640 Code = bitc::CST_CODE_CE_BINOP; 641 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 642 Record.push_back(VE.getValueID(C->getOperand(0))); 643 Record.push_back(VE.getValueID(C->getOperand(1))); 644 } 645 break; 646 case Instruction::GetElementPtr: 647 Code = bitc::CST_CODE_CE_GEP; 648 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 649 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 650 Record.push_back(VE.getValueID(C->getOperand(i))); 651 } 652 break; 653 case Instruction::Select: 654 Code = bitc::CST_CODE_CE_SELECT; 655 Record.push_back(VE.getValueID(C->getOperand(0))); 656 Record.push_back(VE.getValueID(C->getOperand(1))); 657 Record.push_back(VE.getValueID(C->getOperand(2))); 658 break; 659 case Instruction::ExtractElement: 660 Code = bitc::CST_CODE_CE_EXTRACTELT; 661 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 662 Record.push_back(VE.getValueID(C->getOperand(0))); 663 Record.push_back(VE.getValueID(C->getOperand(1))); 664 break; 665 case Instruction::InsertElement: 666 Code = bitc::CST_CODE_CE_INSERTELT; 667 Record.push_back(VE.getValueID(C->getOperand(0))); 668 Record.push_back(VE.getValueID(C->getOperand(1))); 669 Record.push_back(VE.getValueID(C->getOperand(2))); 670 break; 671 case Instruction::ShuffleVector: 672 // If the return type and argument types are the same, this is a 673 // standard shufflevector instruction. If the types are different, 674 // then the shuffle is widening or truncating the input vectors, and 675 // the argument type must also be encoded. 676 if (C->getType() == C->getOperand(0)->getType()) { 677 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 678 } else { 679 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 680 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 681 } 682 Record.push_back(VE.getValueID(C->getOperand(0))); 683 Record.push_back(VE.getValueID(C->getOperand(1))); 684 Record.push_back(VE.getValueID(C->getOperand(2))); 685 break; 686 case Instruction::ICmp: 687 case Instruction::FCmp: 688 Code = bitc::CST_CODE_CE_CMP; 689 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 690 Record.push_back(VE.getValueID(C->getOperand(0))); 691 Record.push_back(VE.getValueID(C->getOperand(1))); 692 Record.push_back(CE->getPredicate()); 693 break; 694 } 695 } else if (const MDString *S = dyn_cast<MDString>(C)) { 696 Code = bitc::CST_CODE_MDSTRING; 697 AbbrevToUse = MDString6Abbrev; 698 for (unsigned i = 0, e = S->size(); i != e; ++i) { 699 char V = S->begin()[i]; 700 Record.push_back(V); 701 702 if (!BitCodeAbbrevOp::isChar6(V)) 703 AbbrevToUse = MDString8Abbrev; 704 } 705 } else if (const MDNode *N = dyn_cast<MDNode>(C)) { 706 Code = bitc::CST_CODE_MDNODE; 707 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 708 if (N->getElement(i)) { 709 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 710 Record.push_back(VE.getValueID(N->getElement(i))); 711 } else { 712 Record.push_back(VE.getTypeID(Type::VoidTy)); 713 Record.push_back(0); 714 } 715 } 716 } else { 717 llvm_unreachable("Unknown constant!"); 718 } 719 Stream.EmitRecord(Code, Record, AbbrevToUse); 720 Record.clear(); 721 } 722 723 Stream.ExitBlock(); 724 } 725 726 static void WriteModuleConstants(const ValueEnumerator &VE, 727 BitstreamWriter &Stream) { 728 const ValueEnumerator::ValueList &Vals = VE.getValues(); 729 730 // Find the first constant to emit, which is the first non-globalvalue value. 731 // We know globalvalues have been emitted by WriteModuleInfo. 732 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 733 if (!isa<GlobalValue>(Vals[i].first)) { 734 WriteConstants(i, Vals.size(), VE, Stream, true); 735 return; 736 } 737 } 738 } 739 740 /// PushValueAndType - The file has to encode both the value and type id for 741 /// many values, because we need to know what type to create for forward 742 /// references. However, most operands are not forward references, so this type 743 /// field is not needed. 744 /// 745 /// This function adds V's value ID to Vals. If the value ID is higher than the 746 /// instruction ID, then it is a forward reference, and it also includes the 747 /// type ID. 748 static bool PushValueAndType(const Value *V, unsigned InstID, 749 SmallVector<unsigned, 64> &Vals, 750 ValueEnumerator &VE) { 751 unsigned ValID = VE.getValueID(V); 752 Vals.push_back(ValID); 753 if (ValID >= InstID) { 754 Vals.push_back(VE.getTypeID(V->getType())); 755 return true; 756 } 757 return false; 758 } 759 760 /// WriteInstruction - Emit an instruction to the specified stream. 761 static void WriteInstruction(const Instruction &I, unsigned InstID, 762 ValueEnumerator &VE, BitstreamWriter &Stream, 763 SmallVector<unsigned, 64> &Vals) { 764 unsigned Code = 0; 765 unsigned AbbrevToUse = 0; 766 switch (I.getOpcode()) { 767 default: 768 if (Instruction::isCast(I.getOpcode())) { 769 Code = bitc::FUNC_CODE_INST_CAST; 770 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 771 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 772 Vals.push_back(VE.getTypeID(I.getType())); 773 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 774 } else { 775 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 776 Code = bitc::FUNC_CODE_INST_BINOP; 777 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 778 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 779 Vals.push_back(VE.getValueID(I.getOperand(1))); 780 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 781 } 782 break; 783 784 case Instruction::GetElementPtr: 785 Code = bitc::FUNC_CODE_INST_GEP; 786 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 787 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 788 break; 789 case Instruction::ExtractValue: { 790 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 791 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 792 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 793 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 794 Vals.push_back(*i); 795 break; 796 } 797 case Instruction::InsertValue: { 798 Code = bitc::FUNC_CODE_INST_INSERTVAL; 799 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 800 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 801 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 802 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 803 Vals.push_back(*i); 804 break; 805 } 806 case Instruction::Select: 807 Code = bitc::FUNC_CODE_INST_VSELECT; 808 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 809 Vals.push_back(VE.getValueID(I.getOperand(2))); 810 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 811 break; 812 case Instruction::ExtractElement: 813 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 814 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 815 Vals.push_back(VE.getValueID(I.getOperand(1))); 816 break; 817 case Instruction::InsertElement: 818 Code = bitc::FUNC_CODE_INST_INSERTELT; 819 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 820 Vals.push_back(VE.getValueID(I.getOperand(1))); 821 Vals.push_back(VE.getValueID(I.getOperand(2))); 822 break; 823 case Instruction::ShuffleVector: 824 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 825 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 826 Vals.push_back(VE.getValueID(I.getOperand(1))); 827 Vals.push_back(VE.getValueID(I.getOperand(2))); 828 break; 829 case Instruction::ICmp: 830 case Instruction::FCmp: 831 // compare returning Int1Ty or vector of Int1Ty 832 Code = bitc::FUNC_CODE_INST_CMP2; 833 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 834 Vals.push_back(VE.getValueID(I.getOperand(1))); 835 Vals.push_back(cast<CmpInst>(I).getPredicate()); 836 break; 837 838 case Instruction::Ret: 839 { 840 Code = bitc::FUNC_CODE_INST_RET; 841 unsigned NumOperands = I.getNumOperands(); 842 if (NumOperands == 0) 843 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 844 else if (NumOperands == 1) { 845 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 846 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 847 } else { 848 for (unsigned i = 0, e = NumOperands; i != e; ++i) 849 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 850 } 851 } 852 break; 853 case Instruction::Br: 854 { 855 Code = bitc::FUNC_CODE_INST_BR; 856 BranchInst &II(cast<BranchInst>(I)); 857 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 858 if (II.isConditional()) { 859 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 860 Vals.push_back(VE.getValueID(II.getCondition())); 861 } 862 } 863 break; 864 case Instruction::Switch: 865 Code = bitc::FUNC_CODE_INST_SWITCH; 866 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 867 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 868 Vals.push_back(VE.getValueID(I.getOperand(i))); 869 break; 870 case Instruction::Invoke: { 871 const InvokeInst *II = cast<InvokeInst>(&I); 872 const Value *Callee(II->getCalledValue()); 873 const PointerType *PTy = cast<PointerType>(Callee->getType()); 874 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 875 Code = bitc::FUNC_CODE_INST_INVOKE; 876 877 Vals.push_back(VE.getAttributeID(II->getAttributes())); 878 Vals.push_back(II->getCallingConv()); 879 Vals.push_back(VE.getValueID(II->getNormalDest())); 880 Vals.push_back(VE.getValueID(II->getUnwindDest())); 881 PushValueAndType(Callee, InstID, Vals, VE); 882 883 // Emit value #'s for the fixed parameters. 884 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 885 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 886 887 // Emit type/value pairs for varargs params. 888 if (FTy->isVarArg()) { 889 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 890 i != e; ++i) 891 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 892 } 893 break; 894 } 895 case Instruction::Unwind: 896 Code = bitc::FUNC_CODE_INST_UNWIND; 897 break; 898 case Instruction::Unreachable: 899 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 900 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 901 break; 902 903 case Instruction::PHI: 904 Code = bitc::FUNC_CODE_INST_PHI; 905 Vals.push_back(VE.getTypeID(I.getType())); 906 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 907 Vals.push_back(VE.getValueID(I.getOperand(i))); 908 break; 909 910 case Instruction::Malloc: 911 Code = bitc::FUNC_CODE_INST_MALLOC; 912 Vals.push_back(VE.getTypeID(I.getType())); 913 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 914 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 915 break; 916 917 case Instruction::Free: 918 Code = bitc::FUNC_CODE_INST_FREE; 919 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 920 break; 921 922 case Instruction::Alloca: 923 Code = bitc::FUNC_CODE_INST_ALLOCA; 924 Vals.push_back(VE.getTypeID(I.getType())); 925 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 926 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 927 break; 928 929 case Instruction::Load: 930 Code = bitc::FUNC_CODE_INST_LOAD; 931 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 932 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 933 934 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 935 Vals.push_back(cast<LoadInst>(I).isVolatile()); 936 break; 937 case Instruction::Store: 938 Code = bitc::FUNC_CODE_INST_STORE2; 939 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 940 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 941 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 942 Vals.push_back(cast<StoreInst>(I).isVolatile()); 943 break; 944 case Instruction::Call: { 945 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 946 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 947 948 Code = bitc::FUNC_CODE_INST_CALL; 949 950 const CallInst *CI = cast<CallInst>(&I); 951 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 952 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 953 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 954 955 // Emit value #'s for the fixed parameters. 956 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 957 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 958 959 // Emit type/value pairs for varargs params. 960 if (FTy->isVarArg()) { 961 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 962 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 963 i != e; ++i) 964 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 965 } 966 break; 967 } 968 case Instruction::VAArg: 969 Code = bitc::FUNC_CODE_INST_VAARG; 970 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 971 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 972 Vals.push_back(VE.getTypeID(I.getType())); // restype. 973 break; 974 } 975 976 Stream.EmitRecord(Code, Vals, AbbrevToUse); 977 Vals.clear(); 978 } 979 980 // Emit names for globals/functions etc. 981 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 982 const ValueEnumerator &VE, 983 BitstreamWriter &Stream) { 984 if (VST.empty()) return; 985 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 986 987 // FIXME: Set up the abbrev, we know how many values there are! 988 // FIXME: We know if the type names can use 7-bit ascii. 989 SmallVector<unsigned, 64> NameVals; 990 991 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 992 SI != SE; ++SI) { 993 994 const ValueName &Name = *SI; 995 996 // Figure out the encoding to use for the name. 997 bool is7Bit = true; 998 bool isChar6 = true; 999 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1000 C != E; ++C) { 1001 if (isChar6) 1002 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1003 if ((unsigned char)*C & 128) { 1004 is7Bit = false; 1005 break; // don't bother scanning the rest. 1006 } 1007 } 1008 1009 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1010 1011 // VST_ENTRY: [valueid, namechar x N] 1012 // VST_BBENTRY: [bbid, namechar x N] 1013 unsigned Code; 1014 if (isa<BasicBlock>(SI->getValue())) { 1015 Code = bitc::VST_CODE_BBENTRY; 1016 if (isChar6) 1017 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1018 } else { 1019 Code = bitc::VST_CODE_ENTRY; 1020 if (isChar6) 1021 AbbrevToUse = VST_ENTRY_6_ABBREV; 1022 else if (is7Bit) 1023 AbbrevToUse = VST_ENTRY_7_ABBREV; 1024 } 1025 1026 NameVals.push_back(VE.getValueID(SI->getValue())); 1027 for (const char *P = Name.getKeyData(), 1028 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1029 NameVals.push_back((unsigned char)*P); 1030 1031 // Emit the finished record. 1032 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1033 NameVals.clear(); 1034 } 1035 Stream.ExitBlock(); 1036 } 1037 1038 /// WriteFunction - Emit a function body to the module stream. 1039 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1040 BitstreamWriter &Stream) { 1041 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1042 VE.incorporateFunction(F); 1043 1044 SmallVector<unsigned, 64> Vals; 1045 1046 // Emit the number of basic blocks, so the reader can create them ahead of 1047 // time. 1048 Vals.push_back(VE.getBasicBlocks().size()); 1049 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1050 Vals.clear(); 1051 1052 // If there are function-local constants, emit them now. 1053 unsigned CstStart, CstEnd; 1054 VE.getFunctionConstantRange(CstStart, CstEnd); 1055 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1056 1057 // Keep a running idea of what the instruction ID is. 1058 unsigned InstID = CstEnd; 1059 1060 // Finally, emit all the instructions, in order. 1061 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1062 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1063 I != E; ++I) { 1064 WriteInstruction(*I, InstID, VE, Stream, Vals); 1065 if (I->getType() != Type::VoidTy) 1066 ++InstID; 1067 } 1068 1069 // Emit names for all the instructions etc. 1070 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1071 1072 VE.purgeFunction(); 1073 Stream.ExitBlock(); 1074 } 1075 1076 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1077 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1078 const ValueEnumerator &VE, 1079 BitstreamWriter &Stream) { 1080 if (TST.empty()) return; 1081 1082 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1083 1084 // 7-bit fixed width VST_CODE_ENTRY strings. 1085 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1086 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1088 Log2_32_Ceil(VE.getTypes().size()+1))); 1089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1091 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1092 1093 SmallVector<unsigned, 64> NameVals; 1094 1095 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1096 TI != TE; ++TI) { 1097 // TST_ENTRY: [typeid, namechar x N] 1098 NameVals.push_back(VE.getTypeID(TI->second)); 1099 1100 const std::string &Str = TI->first; 1101 bool is7Bit = true; 1102 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1103 NameVals.push_back((unsigned char)Str[i]); 1104 if (Str[i] & 128) 1105 is7Bit = false; 1106 } 1107 1108 // Emit the finished record. 1109 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1110 NameVals.clear(); 1111 } 1112 1113 Stream.ExitBlock(); 1114 } 1115 1116 // Emit blockinfo, which defines the standard abbreviations etc. 1117 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1118 // We only want to emit block info records for blocks that have multiple 1119 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1120 // blocks can defined their abbrevs inline. 1121 Stream.EnterBlockInfoBlock(2); 1122 1123 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1124 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1129 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1130 Abbv) != VST_ENTRY_8_ABBREV) 1131 llvm_unreachable("Unexpected abbrev ordering!"); 1132 } 1133 1134 { // 7-bit fixed width VST_ENTRY strings. 1135 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1136 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1140 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1141 Abbv) != VST_ENTRY_7_ABBREV) 1142 llvm_unreachable("Unexpected abbrev ordering!"); 1143 } 1144 { // 6-bit char6 VST_ENTRY strings. 1145 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1146 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1150 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1151 Abbv) != VST_ENTRY_6_ABBREV) 1152 llvm_unreachable("Unexpected abbrev ordering!"); 1153 } 1154 { // 6-bit char6 VST_BBENTRY strings. 1155 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1156 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1160 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1161 Abbv) != VST_BBENTRY_6_ABBREV) 1162 llvm_unreachable("Unexpected abbrev ordering!"); 1163 } 1164 1165 1166 1167 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1168 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1169 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1171 Log2_32_Ceil(VE.getTypes().size()+1))); 1172 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1173 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1174 llvm_unreachable("Unexpected abbrev ordering!"); 1175 } 1176 1177 { // INTEGER abbrev for CONSTANTS_BLOCK. 1178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1179 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1181 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1182 Abbv) != CONSTANTS_INTEGER_ABBREV) 1183 llvm_unreachable("Unexpected abbrev ordering!"); 1184 } 1185 1186 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1187 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1188 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1191 Log2_32_Ceil(VE.getTypes().size()+1))); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1193 1194 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1195 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1196 llvm_unreachable("Unexpected abbrev ordering!"); 1197 } 1198 { // NULL abbrev for CONSTANTS_BLOCK. 1199 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1200 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1201 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1202 Abbv) != CONSTANTS_NULL_Abbrev) 1203 llvm_unreachable("Unexpected abbrev ordering!"); 1204 } 1205 1206 // FIXME: This should only use space for first class types! 1207 1208 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1209 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1210 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1214 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1215 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1216 llvm_unreachable("Unexpected abbrev ordering!"); 1217 } 1218 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1219 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1220 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1224 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1225 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1226 llvm_unreachable("Unexpected abbrev ordering!"); 1227 } 1228 { // INST_CAST abbrev for FUNCTION_BLOCK. 1229 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1230 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1233 Log2_32_Ceil(VE.getTypes().size()+1))); 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1235 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1236 Abbv) != FUNCTION_INST_CAST_ABBREV) 1237 llvm_unreachable("Unexpected abbrev ordering!"); 1238 } 1239 1240 { // INST_RET abbrev for FUNCTION_BLOCK. 1241 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1242 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1243 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1244 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1245 llvm_unreachable("Unexpected abbrev ordering!"); 1246 } 1247 { // INST_RET abbrev for FUNCTION_BLOCK. 1248 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1249 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1251 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1252 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1253 llvm_unreachable("Unexpected abbrev ordering!"); 1254 } 1255 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1256 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1257 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1258 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1259 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1260 llvm_unreachable("Unexpected abbrev ordering!"); 1261 } 1262 1263 Stream.ExitBlock(); 1264 } 1265 1266 1267 /// WriteModule - Emit the specified module to the bitstream. 1268 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1269 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1270 1271 // Emit the version number if it is non-zero. 1272 if (CurVersion) { 1273 SmallVector<unsigned, 1> Vals; 1274 Vals.push_back(CurVersion); 1275 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1276 } 1277 1278 // Analyze the module, enumerating globals, functions, etc. 1279 ValueEnumerator VE(M); 1280 1281 // Emit blockinfo, which defines the standard abbreviations etc. 1282 WriteBlockInfo(VE, Stream); 1283 1284 // Emit information about parameter attributes. 1285 WriteAttributeTable(VE, Stream); 1286 1287 // Emit information describing all of the types in the module. 1288 WriteTypeTable(VE, Stream); 1289 1290 // Emit top-level description of module, including target triple, inline asm, 1291 // descriptors for global variables, and function prototype info. 1292 WriteModuleInfo(M, VE, Stream); 1293 1294 // Emit constants. 1295 WriteModuleConstants(VE, Stream); 1296 1297 // Emit function bodies. 1298 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1299 if (!I->isDeclaration()) 1300 WriteFunction(*I, VE, Stream); 1301 1302 // Emit the type symbol table information. 1303 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1304 1305 // Emit names for globals/functions etc. 1306 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1307 1308 Stream.ExitBlock(); 1309 } 1310 1311 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1312 /// header and trailer to make it compatible with the system archiver. To do 1313 /// this we emit the following header, and then emit a trailer that pads the 1314 /// file out to be a multiple of 16 bytes. 1315 /// 1316 /// struct bc_header { 1317 /// uint32_t Magic; // 0x0B17C0DE 1318 /// uint32_t Version; // Version, currently always 0. 1319 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1320 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1321 /// uint32_t CPUType; // CPU specifier. 1322 /// ... potentially more later ... 1323 /// }; 1324 enum { 1325 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1326 DarwinBCHeaderSize = 5*4 1327 }; 1328 1329 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1330 const std::string &TT) { 1331 unsigned CPUType = ~0U; 1332 1333 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1334 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1335 // specific constants here because they are implicitly part of the Darwin ABI. 1336 enum { 1337 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1338 DARWIN_CPU_TYPE_X86 = 7, 1339 DARWIN_CPU_TYPE_POWERPC = 18 1340 }; 1341 1342 if (TT.find("x86_64-") == 0) 1343 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1344 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1345 TT[4] == '-' && TT[1] - '3' < 6) 1346 CPUType = DARWIN_CPU_TYPE_X86; 1347 else if (TT.find("powerpc-") == 0) 1348 CPUType = DARWIN_CPU_TYPE_POWERPC; 1349 else if (TT.find("powerpc64-") == 0) 1350 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1351 1352 // Traditional Bitcode starts after header. 1353 unsigned BCOffset = DarwinBCHeaderSize; 1354 1355 Stream.Emit(0x0B17C0DE, 32); 1356 Stream.Emit(0 , 32); // Version. 1357 Stream.Emit(BCOffset , 32); 1358 Stream.Emit(0 , 32); // Filled in later. 1359 Stream.Emit(CPUType , 32); 1360 } 1361 1362 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1363 /// finalize the header. 1364 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1365 // Update the size field in the header. 1366 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1367 1368 // If the file is not a multiple of 16 bytes, insert dummy padding. 1369 while (BufferSize & 15) { 1370 Stream.Emit(0, 8); 1371 ++BufferSize; 1372 } 1373 } 1374 1375 1376 /// WriteBitcodeToFile - Write the specified module to the specified output 1377 /// stream. 1378 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1379 raw_os_ostream RawOut(Out); 1380 // If writing to stdout, set binary mode. 1381 if (llvm::cout == Out) 1382 sys::Program::ChangeStdoutToBinary(); 1383 WriteBitcodeToFile(M, RawOut); 1384 } 1385 1386 /// WriteBitcodeToFile - Write the specified module to the specified output 1387 /// stream. 1388 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1389 std::vector<unsigned char> Buffer; 1390 BitstreamWriter Stream(Buffer); 1391 1392 Buffer.reserve(256*1024); 1393 1394 WriteBitcodeToStream( M, Stream ); 1395 1396 // If writing to stdout, set binary mode. 1397 if (&llvm::outs() == &Out) 1398 sys::Program::ChangeStdoutToBinary(); 1399 1400 // Write the generated bitstream to "Out". 1401 Out.write((char*)&Buffer.front(), Buffer.size()); 1402 1403 // Make sure it hits disk now. 1404 Out.flush(); 1405 } 1406 1407 /// WriteBitcodeToStream - Write the specified module to the specified output 1408 /// stream. 1409 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1410 // If this is darwin, emit a file header and trailer if needed. 1411 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1412 if (isDarwin) 1413 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1414 1415 // Emit the file header. 1416 Stream.Emit((unsigned)'B', 8); 1417 Stream.Emit((unsigned)'C', 8); 1418 Stream.Emit(0x0, 4); 1419 Stream.Emit(0xC, 4); 1420 Stream.Emit(0xE, 4); 1421 Stream.Emit(0xD, 4); 1422 1423 // Emit the module. 1424 WriteModule(M, Stream); 1425 1426 if (isDarwin) 1427 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1428 } 1429