1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(const CallBase &CB, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NoMerge: 651 return bitc::ATTR_KIND_NO_MERGE; 652 case Attribute::NonLazyBind: 653 return bitc::ATTR_KIND_NON_LAZY_BIND; 654 case Attribute::NonNull: 655 return bitc::ATTR_KIND_NON_NULL; 656 case Attribute::Dereferenceable: 657 return bitc::ATTR_KIND_DEREFERENCEABLE; 658 case Attribute::DereferenceableOrNull: 659 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 660 case Attribute::NoRedZone: 661 return bitc::ATTR_KIND_NO_RED_ZONE; 662 case Attribute::NoReturn: 663 return bitc::ATTR_KIND_NO_RETURN; 664 case Attribute::NoSync: 665 return bitc::ATTR_KIND_NOSYNC; 666 case Attribute::NoCfCheck: 667 return bitc::ATTR_KIND_NOCF_CHECK; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::NullPointerIsValid: 671 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 672 case Attribute::OptForFuzzing: 673 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 674 case Attribute::OptimizeForSize: 675 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 676 case Attribute::OptimizeNone: 677 return bitc::ATTR_KIND_OPTIMIZE_NONE; 678 case Attribute::ReadNone: 679 return bitc::ATTR_KIND_READ_NONE; 680 case Attribute::ReadOnly: 681 return bitc::ATTR_KIND_READ_ONLY; 682 case Attribute::Returned: 683 return bitc::ATTR_KIND_RETURNED; 684 case Attribute::ReturnsTwice: 685 return bitc::ATTR_KIND_RETURNS_TWICE; 686 case Attribute::SExt: 687 return bitc::ATTR_KIND_S_EXT; 688 case Attribute::Speculatable: 689 return bitc::ATTR_KIND_SPECULATABLE; 690 case Attribute::StackAlignment: 691 return bitc::ATTR_KIND_STACK_ALIGNMENT; 692 case Attribute::StackProtect: 693 return bitc::ATTR_KIND_STACK_PROTECT; 694 case Attribute::StackProtectReq: 695 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 696 case Attribute::StackProtectStrong: 697 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 698 case Attribute::SafeStack: 699 return bitc::ATTR_KIND_SAFESTACK; 700 case Attribute::ShadowCallStack: 701 return bitc::ATTR_KIND_SHADOWCALLSTACK; 702 case Attribute::StrictFP: 703 return bitc::ATTR_KIND_STRICT_FP; 704 case Attribute::StructRet: 705 return bitc::ATTR_KIND_STRUCT_RET; 706 case Attribute::SanitizeAddress: 707 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 708 case Attribute::SanitizeHWAddress: 709 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 710 case Attribute::SanitizeThread: 711 return bitc::ATTR_KIND_SANITIZE_THREAD; 712 case Attribute::SanitizeMemory: 713 return bitc::ATTR_KIND_SANITIZE_MEMORY; 714 case Attribute::SpeculativeLoadHardening: 715 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 716 case Attribute::SwiftError: 717 return bitc::ATTR_KIND_SWIFT_ERROR; 718 case Attribute::SwiftSelf: 719 return bitc::ATTR_KIND_SWIFT_SELF; 720 case Attribute::UWTable: 721 return bitc::ATTR_KIND_UW_TABLE; 722 case Attribute::WillReturn: 723 return bitc::ATTR_KIND_WILLRETURN; 724 case Attribute::WriteOnly: 725 return bitc::ATTR_KIND_WRITEONLY; 726 case Attribute::ZExt: 727 return bitc::ATTR_KIND_Z_EXT; 728 case Attribute::ImmArg: 729 return bitc::ATTR_KIND_IMMARG; 730 case Attribute::SanitizeMemTag: 731 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 732 case Attribute::Preallocated: 733 return bitc::ATTR_KIND_PREALLOCATED; 734 case Attribute::EndAttrKinds: 735 llvm_unreachable("Can not encode end-attribute kinds marker."); 736 case Attribute::None: 737 llvm_unreachable("Can not encode none-attribute."); 738 case Attribute::EmptyKey: 739 case Attribute::TombstoneKey: 740 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 741 } 742 743 llvm_unreachable("Trying to encode unknown attribute"); 744 } 745 746 void ModuleBitcodeWriter::writeAttributeGroupTable() { 747 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 748 VE.getAttributeGroups(); 749 if (AttrGrps.empty()) return; 750 751 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 752 753 SmallVector<uint64_t, 64> Record; 754 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 755 unsigned AttrListIndex = Pair.first; 756 AttributeSet AS = Pair.second; 757 Record.push_back(VE.getAttributeGroupID(Pair)); 758 Record.push_back(AttrListIndex); 759 760 for (Attribute Attr : AS) { 761 if (Attr.isEnumAttribute()) { 762 Record.push_back(0); 763 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 764 } else if (Attr.isIntAttribute()) { 765 Record.push_back(1); 766 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 767 Record.push_back(Attr.getValueAsInt()); 768 } else if (Attr.isStringAttribute()) { 769 StringRef Kind = Attr.getKindAsString(); 770 StringRef Val = Attr.getValueAsString(); 771 772 Record.push_back(Val.empty() ? 3 : 4); 773 Record.append(Kind.begin(), Kind.end()); 774 Record.push_back(0); 775 if (!Val.empty()) { 776 Record.append(Val.begin(), Val.end()); 777 Record.push_back(0); 778 } 779 } else { 780 assert(Attr.isTypeAttribute()); 781 Type *Ty = Attr.getValueAsType(); 782 Record.push_back(Ty ? 6 : 5); 783 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 784 if (Ty) 785 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 786 } 787 } 788 789 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 790 Record.clear(); 791 } 792 793 Stream.ExitBlock(); 794 } 795 796 void ModuleBitcodeWriter::writeAttributeTable() { 797 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 798 if (Attrs.empty()) return; 799 800 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 801 802 SmallVector<uint64_t, 64> Record; 803 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 804 AttributeList AL = Attrs[i]; 805 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 806 AttributeSet AS = AL.getAttributes(i); 807 if (AS.hasAttributes()) 808 Record.push_back(VE.getAttributeGroupID({i, AS})); 809 } 810 811 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 812 Record.clear(); 813 } 814 815 Stream.ExitBlock(); 816 } 817 818 /// WriteTypeTable - Write out the type table for a module. 819 void ModuleBitcodeWriter::writeTypeTable() { 820 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 821 822 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 823 SmallVector<uint64_t, 64> TypeVals; 824 825 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 826 827 // Abbrev for TYPE_CODE_POINTER. 828 auto Abbv = std::make_shared<BitCodeAbbrev>(); 829 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 831 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 832 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_FUNCTION. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 841 842 // Abbrev for TYPE_CODE_STRUCT_ANON. 843 Abbv = std::make_shared<BitCodeAbbrev>(); 844 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 848 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 849 850 // Abbrev for TYPE_CODE_STRUCT_NAME. 851 Abbv = std::make_shared<BitCodeAbbrev>(); 852 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 855 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 856 857 // Abbrev for TYPE_CODE_STRUCT_NAMED. 858 Abbv = std::make_shared<BitCodeAbbrev>(); 859 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 863 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 864 865 // Abbrev for TYPE_CODE_ARRAY. 866 Abbv = std::make_shared<BitCodeAbbrev>(); 867 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 870 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 871 872 // Emit an entry count so the reader can reserve space. 873 TypeVals.push_back(TypeList.size()); 874 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 875 TypeVals.clear(); 876 877 // Loop over all of the types, emitting each in turn. 878 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 879 Type *T = TypeList[i]; 880 int AbbrevToUse = 0; 881 unsigned Code = 0; 882 883 switch (T->getTypeID()) { 884 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 885 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 886 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 887 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 888 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 889 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 890 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 891 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 892 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 893 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 894 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 895 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 896 case Type::IntegerTyID: 897 // INTEGER: [width] 898 Code = bitc::TYPE_CODE_INTEGER; 899 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 900 break; 901 case Type::PointerTyID: { 902 PointerType *PTy = cast<PointerType>(T); 903 // POINTER: [pointee type, address space] 904 Code = bitc::TYPE_CODE_POINTER; 905 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 906 unsigned AddressSpace = PTy->getAddressSpace(); 907 TypeVals.push_back(AddressSpace); 908 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 909 break; 910 } 911 case Type::FunctionTyID: { 912 FunctionType *FT = cast<FunctionType>(T); 913 // FUNCTION: [isvararg, retty, paramty x N] 914 Code = bitc::TYPE_CODE_FUNCTION; 915 TypeVals.push_back(FT->isVarArg()); 916 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 917 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 918 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 919 AbbrevToUse = FunctionAbbrev; 920 break; 921 } 922 case Type::StructTyID: { 923 StructType *ST = cast<StructType>(T); 924 // STRUCT: [ispacked, eltty x N] 925 TypeVals.push_back(ST->isPacked()); 926 // Output all of the element types. 927 for (StructType::element_iterator I = ST->element_begin(), 928 E = ST->element_end(); I != E; ++I) 929 TypeVals.push_back(VE.getTypeID(*I)); 930 931 if (ST->isLiteral()) { 932 Code = bitc::TYPE_CODE_STRUCT_ANON; 933 AbbrevToUse = StructAnonAbbrev; 934 } else { 935 if (ST->isOpaque()) { 936 Code = bitc::TYPE_CODE_OPAQUE; 937 } else { 938 Code = bitc::TYPE_CODE_STRUCT_NAMED; 939 AbbrevToUse = StructNamedAbbrev; 940 } 941 942 // Emit the name if it is present. 943 if (!ST->getName().empty()) 944 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 945 StructNameAbbrev); 946 } 947 break; 948 } 949 case Type::ArrayTyID: { 950 ArrayType *AT = cast<ArrayType>(T); 951 // ARRAY: [numelts, eltty] 952 Code = bitc::TYPE_CODE_ARRAY; 953 TypeVals.push_back(AT->getNumElements()); 954 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 955 AbbrevToUse = ArrayAbbrev; 956 break; 957 } 958 case Type::FixedVectorTyID: 959 case Type::ScalableVectorTyID: { 960 VectorType *VT = cast<VectorType>(T); 961 // VECTOR [numelts, eltty] or 962 // [numelts, eltty, scalable] 963 Code = bitc::TYPE_CODE_VECTOR; 964 TypeVals.push_back(VT->getNumElements()); 965 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 966 if (isa<ScalableVectorType>(VT)) 967 TypeVals.push_back(true); 968 break; 969 } 970 } 971 972 // Emit the finished record. 973 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 974 TypeVals.clear(); 975 } 976 977 Stream.ExitBlock(); 978 } 979 980 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 981 switch (Linkage) { 982 case GlobalValue::ExternalLinkage: 983 return 0; 984 case GlobalValue::WeakAnyLinkage: 985 return 16; 986 case GlobalValue::AppendingLinkage: 987 return 2; 988 case GlobalValue::InternalLinkage: 989 return 3; 990 case GlobalValue::LinkOnceAnyLinkage: 991 return 18; 992 case GlobalValue::ExternalWeakLinkage: 993 return 7; 994 case GlobalValue::CommonLinkage: 995 return 8; 996 case GlobalValue::PrivateLinkage: 997 return 9; 998 case GlobalValue::WeakODRLinkage: 999 return 17; 1000 case GlobalValue::LinkOnceODRLinkage: 1001 return 19; 1002 case GlobalValue::AvailableExternallyLinkage: 1003 return 12; 1004 } 1005 llvm_unreachable("Invalid linkage"); 1006 } 1007 1008 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1009 return getEncodedLinkage(GV.getLinkage()); 1010 } 1011 1012 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1013 uint64_t RawFlags = 0; 1014 RawFlags |= Flags.ReadNone; 1015 RawFlags |= (Flags.ReadOnly << 1); 1016 RawFlags |= (Flags.NoRecurse << 2); 1017 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1018 RawFlags |= (Flags.NoInline << 4); 1019 RawFlags |= (Flags.AlwaysInline << 5); 1020 return RawFlags; 1021 } 1022 1023 // Decode the flags for GlobalValue in the summary 1024 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1025 uint64_t RawFlags = 0; 1026 1027 RawFlags |= Flags.NotEligibleToImport; // bool 1028 RawFlags |= (Flags.Live << 1); 1029 RawFlags |= (Flags.DSOLocal << 2); 1030 RawFlags |= (Flags.CanAutoHide << 3); 1031 1032 // Linkage don't need to be remapped at that time for the summary. Any future 1033 // change to the getEncodedLinkage() function will need to be taken into 1034 // account here as well. 1035 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1036 1037 return RawFlags; 1038 } 1039 1040 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1041 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1042 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1043 return RawFlags; 1044 } 1045 1046 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1047 switch (GV.getVisibility()) { 1048 case GlobalValue::DefaultVisibility: return 0; 1049 case GlobalValue::HiddenVisibility: return 1; 1050 case GlobalValue::ProtectedVisibility: return 2; 1051 } 1052 llvm_unreachable("Invalid visibility"); 1053 } 1054 1055 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1056 switch (GV.getDLLStorageClass()) { 1057 case GlobalValue::DefaultStorageClass: return 0; 1058 case GlobalValue::DLLImportStorageClass: return 1; 1059 case GlobalValue::DLLExportStorageClass: return 2; 1060 } 1061 llvm_unreachable("Invalid DLL storage class"); 1062 } 1063 1064 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1065 switch (GV.getThreadLocalMode()) { 1066 case GlobalVariable::NotThreadLocal: return 0; 1067 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1068 case GlobalVariable::LocalDynamicTLSModel: return 2; 1069 case GlobalVariable::InitialExecTLSModel: return 3; 1070 case GlobalVariable::LocalExecTLSModel: return 4; 1071 } 1072 llvm_unreachable("Invalid TLS model"); 1073 } 1074 1075 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1076 switch (C.getSelectionKind()) { 1077 case Comdat::Any: 1078 return bitc::COMDAT_SELECTION_KIND_ANY; 1079 case Comdat::ExactMatch: 1080 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1081 case Comdat::Largest: 1082 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1083 case Comdat::NoDuplicates: 1084 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1085 case Comdat::SameSize: 1086 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1087 } 1088 llvm_unreachable("Invalid selection kind"); 1089 } 1090 1091 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1092 switch (GV.getUnnamedAddr()) { 1093 case GlobalValue::UnnamedAddr::None: return 0; 1094 case GlobalValue::UnnamedAddr::Local: return 2; 1095 case GlobalValue::UnnamedAddr::Global: return 1; 1096 } 1097 llvm_unreachable("Invalid unnamed_addr"); 1098 } 1099 1100 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1101 if (GenerateHash) 1102 Hasher.update(Str); 1103 return StrtabBuilder.add(Str); 1104 } 1105 1106 void ModuleBitcodeWriter::writeComdats() { 1107 SmallVector<unsigned, 64> Vals; 1108 for (const Comdat *C : VE.getComdats()) { 1109 // COMDAT: [strtab offset, strtab size, selection_kind] 1110 Vals.push_back(addToStrtab(C->getName())); 1111 Vals.push_back(C->getName().size()); 1112 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1113 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1114 Vals.clear(); 1115 } 1116 } 1117 1118 /// Write a record that will eventually hold the word offset of the 1119 /// module-level VST. For now the offset is 0, which will be backpatched 1120 /// after the real VST is written. Saves the bit offset to backpatch. 1121 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1122 // Write a placeholder value in for the offset of the real VST, 1123 // which is written after the function blocks so that it can include 1124 // the offset of each function. The placeholder offset will be 1125 // updated when the real VST is written. 1126 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1127 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1128 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1129 // hold the real VST offset. Must use fixed instead of VBR as we don't 1130 // know how many VBR chunks to reserve ahead of time. 1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1132 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1133 1134 // Emit the placeholder 1135 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1136 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1137 1138 // Compute and save the bit offset to the placeholder, which will be 1139 // patched when the real VST is written. We can simply subtract the 32-bit 1140 // fixed size from the current bit number to get the location to backpatch. 1141 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1142 } 1143 1144 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1145 1146 /// Determine the encoding to use for the given string name and length. 1147 static StringEncoding getStringEncoding(StringRef Str) { 1148 bool isChar6 = true; 1149 for (char C : Str) { 1150 if (isChar6) 1151 isChar6 = BitCodeAbbrevOp::isChar6(C); 1152 if ((unsigned char)C & 128) 1153 // don't bother scanning the rest. 1154 return SE_Fixed8; 1155 } 1156 if (isChar6) 1157 return SE_Char6; 1158 return SE_Fixed7; 1159 } 1160 1161 /// Emit top-level description of module, including target triple, inline asm, 1162 /// descriptors for global variables, and function prototype info. 1163 /// Returns the bit offset to backpatch with the location of the real VST. 1164 void ModuleBitcodeWriter::writeModuleInfo() { 1165 // Emit various pieces of data attached to a module. 1166 if (!M.getTargetTriple().empty()) 1167 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1168 0 /*TODO*/); 1169 const std::string &DL = M.getDataLayoutStr(); 1170 if (!DL.empty()) 1171 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1172 if (!M.getModuleInlineAsm().empty()) 1173 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1174 0 /*TODO*/); 1175 1176 // Emit information about sections and GC, computing how many there are. Also 1177 // compute the maximum alignment value. 1178 std::map<std::string, unsigned> SectionMap; 1179 std::map<std::string, unsigned> GCMap; 1180 unsigned MaxAlignment = 0; 1181 unsigned MaxGlobalType = 0; 1182 for (const GlobalValue &GV : M.globals()) { 1183 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1184 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1185 if (GV.hasSection()) { 1186 // Give section names unique ID's. 1187 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1188 if (!Entry) { 1189 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1190 0 /*TODO*/); 1191 Entry = SectionMap.size(); 1192 } 1193 } 1194 } 1195 for (const Function &F : M) { 1196 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1197 if (F.hasSection()) { 1198 // Give section names unique ID's. 1199 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1200 if (!Entry) { 1201 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1202 0 /*TODO*/); 1203 Entry = SectionMap.size(); 1204 } 1205 } 1206 if (F.hasGC()) { 1207 // Same for GC names. 1208 unsigned &Entry = GCMap[F.getGC()]; 1209 if (!Entry) { 1210 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1211 0 /*TODO*/); 1212 Entry = GCMap.size(); 1213 } 1214 } 1215 } 1216 1217 // Emit abbrev for globals, now that we know # sections and max alignment. 1218 unsigned SimpleGVarAbbrev = 0; 1219 if (!M.global_empty()) { 1220 // Add an abbrev for common globals with no visibility or thread localness. 1221 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1222 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1226 Log2_32_Ceil(MaxGlobalType+1))); 1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1228 //| explicitType << 1 1229 //| constant 1230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1232 if (MaxAlignment == 0) // Alignment. 1233 Abbv->Add(BitCodeAbbrevOp(0)); 1234 else { 1235 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1237 Log2_32_Ceil(MaxEncAlignment+1))); 1238 } 1239 if (SectionMap.empty()) // Section. 1240 Abbv->Add(BitCodeAbbrevOp(0)); 1241 else 1242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1243 Log2_32_Ceil(SectionMap.size()+1))); 1244 // Don't bother emitting vis + thread local. 1245 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1246 } 1247 1248 SmallVector<unsigned, 64> Vals; 1249 // Emit the module's source file name. 1250 { 1251 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1252 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1253 if (Bits == SE_Char6) 1254 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1255 else if (Bits == SE_Fixed7) 1256 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1257 1258 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1259 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1260 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1262 Abbv->Add(AbbrevOpToUse); 1263 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1264 1265 for (const auto P : M.getSourceFileName()) 1266 Vals.push_back((unsigned char)P); 1267 1268 // Emit the finished record. 1269 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1270 Vals.clear(); 1271 } 1272 1273 // Emit the global variable information. 1274 for (const GlobalVariable &GV : M.globals()) { 1275 unsigned AbbrevToUse = 0; 1276 1277 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1278 // linkage, alignment, section, visibility, threadlocal, 1279 // unnamed_addr, externally_initialized, dllstorageclass, 1280 // comdat, attributes, DSO_Local] 1281 Vals.push_back(addToStrtab(GV.getName())); 1282 Vals.push_back(GV.getName().size()); 1283 Vals.push_back(VE.getTypeID(GV.getValueType())); 1284 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1285 Vals.push_back(GV.isDeclaration() ? 0 : 1286 (VE.getValueID(GV.getInitializer()) + 1)); 1287 Vals.push_back(getEncodedLinkage(GV)); 1288 Vals.push_back(Log2_32(GV.getAlignment())+1); 1289 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1290 : 0); 1291 if (GV.isThreadLocal() || 1292 GV.getVisibility() != GlobalValue::DefaultVisibility || 1293 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1294 GV.isExternallyInitialized() || 1295 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1296 GV.hasComdat() || 1297 GV.hasAttributes() || 1298 GV.isDSOLocal() || 1299 GV.hasPartition()) { 1300 Vals.push_back(getEncodedVisibility(GV)); 1301 Vals.push_back(getEncodedThreadLocalMode(GV)); 1302 Vals.push_back(getEncodedUnnamedAddr(GV)); 1303 Vals.push_back(GV.isExternallyInitialized()); 1304 Vals.push_back(getEncodedDLLStorageClass(GV)); 1305 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1306 1307 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1308 Vals.push_back(VE.getAttributeListID(AL)); 1309 1310 Vals.push_back(GV.isDSOLocal()); 1311 Vals.push_back(addToStrtab(GV.getPartition())); 1312 Vals.push_back(GV.getPartition().size()); 1313 } else { 1314 AbbrevToUse = SimpleGVarAbbrev; 1315 } 1316 1317 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1318 Vals.clear(); 1319 } 1320 1321 // Emit the function proto information. 1322 for (const Function &F : M) { 1323 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1324 // linkage, paramattrs, alignment, section, visibility, gc, 1325 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1326 // prefixdata, personalityfn, DSO_Local, addrspace] 1327 Vals.push_back(addToStrtab(F.getName())); 1328 Vals.push_back(F.getName().size()); 1329 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1330 Vals.push_back(F.getCallingConv()); 1331 Vals.push_back(F.isDeclaration()); 1332 Vals.push_back(getEncodedLinkage(F)); 1333 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1334 Vals.push_back(Log2_32(F.getAlignment())+1); 1335 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1336 : 0); 1337 Vals.push_back(getEncodedVisibility(F)); 1338 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1339 Vals.push_back(getEncodedUnnamedAddr(F)); 1340 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1341 : 0); 1342 Vals.push_back(getEncodedDLLStorageClass(F)); 1343 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1344 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1345 : 0); 1346 Vals.push_back( 1347 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1348 1349 Vals.push_back(F.isDSOLocal()); 1350 Vals.push_back(F.getAddressSpace()); 1351 Vals.push_back(addToStrtab(F.getPartition())); 1352 Vals.push_back(F.getPartition().size()); 1353 1354 unsigned AbbrevToUse = 0; 1355 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1356 Vals.clear(); 1357 } 1358 1359 // Emit the alias information. 1360 for (const GlobalAlias &A : M.aliases()) { 1361 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1362 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1363 // DSO_Local] 1364 Vals.push_back(addToStrtab(A.getName())); 1365 Vals.push_back(A.getName().size()); 1366 Vals.push_back(VE.getTypeID(A.getValueType())); 1367 Vals.push_back(A.getType()->getAddressSpace()); 1368 Vals.push_back(VE.getValueID(A.getAliasee())); 1369 Vals.push_back(getEncodedLinkage(A)); 1370 Vals.push_back(getEncodedVisibility(A)); 1371 Vals.push_back(getEncodedDLLStorageClass(A)); 1372 Vals.push_back(getEncodedThreadLocalMode(A)); 1373 Vals.push_back(getEncodedUnnamedAddr(A)); 1374 Vals.push_back(A.isDSOLocal()); 1375 Vals.push_back(addToStrtab(A.getPartition())); 1376 Vals.push_back(A.getPartition().size()); 1377 1378 unsigned AbbrevToUse = 0; 1379 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1380 Vals.clear(); 1381 } 1382 1383 // Emit the ifunc information. 1384 for (const GlobalIFunc &I : M.ifuncs()) { 1385 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1386 // val#, linkage, visibility, DSO_Local] 1387 Vals.push_back(addToStrtab(I.getName())); 1388 Vals.push_back(I.getName().size()); 1389 Vals.push_back(VE.getTypeID(I.getValueType())); 1390 Vals.push_back(I.getType()->getAddressSpace()); 1391 Vals.push_back(VE.getValueID(I.getResolver())); 1392 Vals.push_back(getEncodedLinkage(I)); 1393 Vals.push_back(getEncodedVisibility(I)); 1394 Vals.push_back(I.isDSOLocal()); 1395 Vals.push_back(addToStrtab(I.getPartition())); 1396 Vals.push_back(I.getPartition().size()); 1397 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1398 Vals.clear(); 1399 } 1400 1401 writeValueSymbolTableForwardDecl(); 1402 } 1403 1404 static uint64_t getOptimizationFlags(const Value *V) { 1405 uint64_t Flags = 0; 1406 1407 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1408 if (OBO->hasNoSignedWrap()) 1409 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1410 if (OBO->hasNoUnsignedWrap()) 1411 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1412 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1413 if (PEO->isExact()) 1414 Flags |= 1 << bitc::PEO_EXACT; 1415 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1416 if (FPMO->hasAllowReassoc()) 1417 Flags |= bitc::AllowReassoc; 1418 if (FPMO->hasNoNaNs()) 1419 Flags |= bitc::NoNaNs; 1420 if (FPMO->hasNoInfs()) 1421 Flags |= bitc::NoInfs; 1422 if (FPMO->hasNoSignedZeros()) 1423 Flags |= bitc::NoSignedZeros; 1424 if (FPMO->hasAllowReciprocal()) 1425 Flags |= bitc::AllowReciprocal; 1426 if (FPMO->hasAllowContract()) 1427 Flags |= bitc::AllowContract; 1428 if (FPMO->hasApproxFunc()) 1429 Flags |= bitc::ApproxFunc; 1430 } 1431 1432 return Flags; 1433 } 1434 1435 void ModuleBitcodeWriter::writeValueAsMetadata( 1436 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1437 // Mimic an MDNode with a value as one operand. 1438 Value *V = MD->getValue(); 1439 Record.push_back(VE.getTypeID(V->getType())); 1440 Record.push_back(VE.getValueID(V)); 1441 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1442 Record.clear(); 1443 } 1444 1445 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1446 SmallVectorImpl<uint64_t> &Record, 1447 unsigned Abbrev) { 1448 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1449 Metadata *MD = N->getOperand(i); 1450 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1451 "Unexpected function-local metadata"); 1452 Record.push_back(VE.getMetadataOrNullID(MD)); 1453 } 1454 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1455 : bitc::METADATA_NODE, 1456 Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1461 // Assume the column is usually under 128, and always output the inlined-at 1462 // location (it's never more expensive than building an array size 1). 1463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1464 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1471 return Stream.EmitAbbrev(std::move(Abbv)); 1472 } 1473 1474 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1475 SmallVectorImpl<uint64_t> &Record, 1476 unsigned &Abbrev) { 1477 if (!Abbrev) 1478 Abbrev = createDILocationAbbrev(); 1479 1480 Record.push_back(N->isDistinct()); 1481 Record.push_back(N->getLine()); 1482 Record.push_back(N->getColumn()); 1483 Record.push_back(VE.getMetadataID(N->getScope())); 1484 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1485 Record.push_back(N->isImplicitCode()); 1486 1487 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1488 Record.clear(); 1489 } 1490 1491 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1492 // Assume the column is usually under 128, and always output the inlined-at 1493 // location (it's never more expensive than building an array size 1). 1494 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1495 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1502 return Stream.EmitAbbrev(std::move(Abbv)); 1503 } 1504 1505 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1506 SmallVectorImpl<uint64_t> &Record, 1507 unsigned &Abbrev) { 1508 if (!Abbrev) 1509 Abbrev = createGenericDINodeAbbrev(); 1510 1511 Record.push_back(N->isDistinct()); 1512 Record.push_back(N->getTag()); 1513 Record.push_back(0); // Per-tag version field; unused for now. 1514 1515 for (auto &I : N->operands()) 1516 Record.push_back(VE.getMetadataOrNullID(I)); 1517 1518 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1519 Record.clear(); 1520 } 1521 1522 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1523 SmallVectorImpl<uint64_t> &Record, 1524 unsigned Abbrev) { 1525 const uint64_t Version = 2 << 1; 1526 Record.push_back((uint64_t)N->isDistinct() | Version); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1528 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1531 1532 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1533 Record.clear(); 1534 } 1535 1536 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1537 if ((int64_t)V >= 0) 1538 Vals.push_back(V << 1); 1539 else 1540 Vals.push_back((-V << 1) | 1); 1541 } 1542 1543 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1544 // We have an arbitrary precision integer value to write whose 1545 // bit width is > 64. However, in canonical unsigned integer 1546 // format it is likely that the high bits are going to be zero. 1547 // So, we only write the number of active words. 1548 unsigned NumWords = A.getActiveWords(); 1549 const uint64_t *RawData = A.getRawData(); 1550 for (unsigned i = 0; i < NumWords; i++) 1551 emitSignedInt64(Vals, RawData[i]); 1552 } 1553 1554 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1555 SmallVectorImpl<uint64_t> &Record, 1556 unsigned Abbrev) { 1557 const uint64_t IsBigInt = 1 << 2; 1558 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1559 Record.push_back(N->getValue().getBitWidth()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1561 emitWideAPInt(Record, N->getValue()); 1562 1563 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1564 Record.clear(); 1565 } 1566 1567 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1568 SmallVectorImpl<uint64_t> &Record, 1569 unsigned Abbrev) { 1570 Record.push_back(N->isDistinct()); 1571 Record.push_back(N->getTag()); 1572 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1573 Record.push_back(N->getSizeInBits()); 1574 Record.push_back(N->getAlignInBits()); 1575 Record.push_back(N->getEncoding()); 1576 Record.push_back(N->getFlags()); 1577 1578 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1579 Record.clear(); 1580 } 1581 1582 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1583 SmallVectorImpl<uint64_t> &Record, 1584 unsigned Abbrev) { 1585 Record.push_back(N->isDistinct()); 1586 Record.push_back(N->getTag()); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1588 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1589 Record.push_back(N->getLine()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1592 Record.push_back(N->getSizeInBits()); 1593 Record.push_back(N->getAlignInBits()); 1594 Record.push_back(N->getOffsetInBits()); 1595 Record.push_back(N->getFlags()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1597 1598 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1599 // that there is no DWARF address space associated with DIDerivedType. 1600 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1601 Record.push_back(*DWARFAddressSpace + 1); 1602 else 1603 Record.push_back(0); 1604 1605 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1606 Record.clear(); 1607 } 1608 1609 void ModuleBitcodeWriter::writeDICompositeType( 1610 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1611 unsigned Abbrev) { 1612 const unsigned IsNotUsedInOldTypeRef = 0x2; 1613 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1614 Record.push_back(N->getTag()); 1615 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1617 Record.push_back(N->getLine()); 1618 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1620 Record.push_back(N->getSizeInBits()); 1621 Record.push_back(N->getAlignInBits()); 1622 Record.push_back(N->getOffsetInBits()); 1623 Record.push_back(N->getFlags()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1625 Record.push_back(N->getRuntimeLang()); 1626 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1631 1632 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDISubroutineType( 1637 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 const unsigned HasNoOldTypeRefs = 0x2; 1640 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1641 Record.push_back(N->getFlags()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1643 Record.push_back(N->getCC()); 1644 1645 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1646 Record.clear(); 1647 } 1648 1649 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1650 SmallVectorImpl<uint64_t> &Record, 1651 unsigned Abbrev) { 1652 Record.push_back(N->isDistinct()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1655 if (N->getRawChecksum()) { 1656 Record.push_back(N->getRawChecksum()->Kind); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1658 } else { 1659 // Maintain backwards compatibility with the old internal representation of 1660 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1661 Record.push_back(0); 1662 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1663 } 1664 auto Source = N->getRawSource(); 1665 if (Source) 1666 Record.push_back(VE.getMetadataOrNullID(*Source)); 1667 1668 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1669 Record.clear(); 1670 } 1671 1672 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1673 SmallVectorImpl<uint64_t> &Record, 1674 unsigned Abbrev) { 1675 assert(N->isDistinct() && "Expected distinct compile units"); 1676 Record.push_back(/* IsDistinct */ true); 1677 Record.push_back(N->getSourceLanguage()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1680 Record.push_back(N->isOptimized()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1682 Record.push_back(N->getRuntimeVersion()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1684 Record.push_back(N->getEmissionKind()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1687 Record.push_back(/* subprograms */ 0); 1688 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1690 Record.push_back(N->getDWOId()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1692 Record.push_back(N->getSplitDebugInlining()); 1693 Record.push_back(N->getDebugInfoForProfiling()); 1694 Record.push_back((unsigned)N->getNameTableKind()); 1695 Record.push_back(N->getRangesBaseAddress()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1698 1699 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1704 SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 const uint64_t HasUnitFlag = 1 << 1; 1707 const uint64_t HasSPFlagsFlag = 1 << 2; 1708 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1709 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1713 Record.push_back(N->getLine()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1715 Record.push_back(N->getScopeLine()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1717 Record.push_back(N->getSPFlags()); 1718 Record.push_back(N->getVirtualIndex()); 1719 Record.push_back(N->getFlags()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1724 Record.push_back(N->getThisAdjustment()); 1725 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1726 1727 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1728 Record.clear(); 1729 } 1730 1731 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1732 SmallVectorImpl<uint64_t> &Record, 1733 unsigned Abbrev) { 1734 Record.push_back(N->isDistinct()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1737 Record.push_back(N->getLine()); 1738 Record.push_back(N->getColumn()); 1739 1740 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1741 Record.clear(); 1742 } 1743 1744 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1745 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1746 unsigned Abbrev) { 1747 Record.push_back(N->isDistinct()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1750 Record.push_back(N->getDiscriminator()); 1751 1752 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1753 Record.clear(); 1754 } 1755 1756 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1757 SmallVectorImpl<uint64_t> &Record, 1758 unsigned Abbrev) { 1759 Record.push_back(N->isDistinct()); 1760 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1761 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1762 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1763 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1764 Record.push_back(N->getLineNo()); 1765 1766 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1767 Record.clear(); 1768 } 1769 1770 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1771 SmallVectorImpl<uint64_t> &Record, 1772 unsigned Abbrev) { 1773 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1774 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1775 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1776 1777 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1778 Record.clear(); 1779 } 1780 1781 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1782 SmallVectorImpl<uint64_t> &Record, 1783 unsigned Abbrev) { 1784 Record.push_back(N->isDistinct()); 1785 Record.push_back(N->getMacinfoType()); 1786 Record.push_back(N->getLine()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1789 1790 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1791 Record.clear(); 1792 } 1793 1794 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1795 SmallVectorImpl<uint64_t> &Record, 1796 unsigned Abbrev) { 1797 Record.push_back(N->isDistinct()); 1798 Record.push_back(N->getMacinfoType()); 1799 Record.push_back(N->getLine()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1802 1803 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1804 Record.clear(); 1805 } 1806 1807 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1808 SmallVectorImpl<uint64_t> &Record, 1809 unsigned Abbrev) { 1810 Record.push_back(N->isDistinct()); 1811 for (auto &I : N->operands()) 1812 Record.push_back(VE.getMetadataOrNullID(I)); 1813 Record.push_back(N->getLineNo()); 1814 1815 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1816 Record.clear(); 1817 } 1818 1819 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1820 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1821 unsigned Abbrev) { 1822 Record.push_back(N->isDistinct()); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1825 Record.push_back(N->isDefault()); 1826 1827 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1828 Record.clear(); 1829 } 1830 1831 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1832 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1833 unsigned Abbrev) { 1834 Record.push_back(N->isDistinct()); 1835 Record.push_back(N->getTag()); 1836 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1838 Record.push_back(N->isDefault()); 1839 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1840 1841 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1842 Record.clear(); 1843 } 1844 1845 void ModuleBitcodeWriter::writeDIGlobalVariable( 1846 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1847 unsigned Abbrev) { 1848 const uint64_t Version = 2 << 1; 1849 Record.push_back((uint64_t)N->isDistinct() | Version); 1850 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1851 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1854 Record.push_back(N->getLine()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1856 Record.push_back(N->isLocalToUnit()); 1857 Record.push_back(N->isDefinition()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1860 Record.push_back(N->getAlignInBits()); 1861 1862 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1863 Record.clear(); 1864 } 1865 1866 void ModuleBitcodeWriter::writeDILocalVariable( 1867 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1868 unsigned Abbrev) { 1869 // In order to support all possible bitcode formats in BitcodeReader we need 1870 // to distinguish the following cases: 1871 // 1) Record has no artificial tag (Record[1]), 1872 // has no obsolete inlinedAt field (Record[9]). 1873 // In this case Record size will be 8, HasAlignment flag is false. 1874 // 2) Record has artificial tag (Record[1]), 1875 // has no obsolete inlignedAt field (Record[9]). 1876 // In this case Record size will be 9, HasAlignment flag is false. 1877 // 3) Record has both artificial tag (Record[1]) and 1878 // obsolete inlignedAt field (Record[9]). 1879 // In this case Record size will be 10, HasAlignment flag is false. 1880 // 4) Record has neither artificial tag, nor inlignedAt field, but 1881 // HasAlignment flag is true and Record[8] contains alignment value. 1882 const uint64_t HasAlignmentFlag = 1 << 1; 1883 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1884 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1887 Record.push_back(N->getLine()); 1888 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1889 Record.push_back(N->getArg()); 1890 Record.push_back(N->getFlags()); 1891 Record.push_back(N->getAlignInBits()); 1892 1893 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1894 Record.clear(); 1895 } 1896 1897 void ModuleBitcodeWriter::writeDILabel( 1898 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1899 unsigned Abbrev) { 1900 Record.push_back((uint64_t)N->isDistinct()); 1901 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1903 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1904 Record.push_back(N->getLine()); 1905 1906 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1907 Record.clear(); 1908 } 1909 1910 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1911 SmallVectorImpl<uint64_t> &Record, 1912 unsigned Abbrev) { 1913 Record.reserve(N->getElements().size() + 1); 1914 const uint64_t Version = 3 << 1; 1915 Record.push_back((uint64_t)N->isDistinct() | Version); 1916 Record.append(N->elements_begin(), N->elements_end()); 1917 1918 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1919 Record.clear(); 1920 } 1921 1922 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1923 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1924 unsigned Abbrev) { 1925 Record.push_back(N->isDistinct()); 1926 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1927 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1928 1929 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1930 Record.clear(); 1931 } 1932 1933 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1934 SmallVectorImpl<uint64_t> &Record, 1935 unsigned Abbrev) { 1936 Record.push_back(N->isDistinct()); 1937 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1939 Record.push_back(N->getLine()); 1940 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1942 Record.push_back(N->getAttributes()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1944 1945 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1946 Record.clear(); 1947 } 1948 1949 void ModuleBitcodeWriter::writeDIImportedEntity( 1950 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1951 unsigned Abbrev) { 1952 Record.push_back(N->isDistinct()); 1953 Record.push_back(N->getTag()); 1954 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1955 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1956 Record.push_back(N->getLine()); 1957 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1959 1960 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1961 Record.clear(); 1962 } 1963 1964 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1965 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1966 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1969 return Stream.EmitAbbrev(std::move(Abbv)); 1970 } 1971 1972 void ModuleBitcodeWriter::writeNamedMetadata( 1973 SmallVectorImpl<uint64_t> &Record) { 1974 if (M.named_metadata_empty()) 1975 return; 1976 1977 unsigned Abbrev = createNamedMetadataAbbrev(); 1978 for (const NamedMDNode &NMD : M.named_metadata()) { 1979 // Write name. 1980 StringRef Str = NMD.getName(); 1981 Record.append(Str.bytes_begin(), Str.bytes_end()); 1982 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1983 Record.clear(); 1984 1985 // Write named metadata operands. 1986 for (const MDNode *N : NMD.operands()) 1987 Record.push_back(VE.getMetadataID(N)); 1988 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1989 Record.clear(); 1990 } 1991 } 1992 1993 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1994 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1995 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1999 return Stream.EmitAbbrev(std::move(Abbv)); 2000 } 2001 2002 /// Write out a record for MDString. 2003 /// 2004 /// All the metadata strings in a metadata block are emitted in a single 2005 /// record. The sizes and strings themselves are shoved into a blob. 2006 void ModuleBitcodeWriter::writeMetadataStrings( 2007 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2008 if (Strings.empty()) 2009 return; 2010 2011 // Start the record with the number of strings. 2012 Record.push_back(bitc::METADATA_STRINGS); 2013 Record.push_back(Strings.size()); 2014 2015 // Emit the sizes of the strings in the blob. 2016 SmallString<256> Blob; 2017 { 2018 BitstreamWriter W(Blob); 2019 for (const Metadata *MD : Strings) 2020 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2021 W.FlushToWord(); 2022 } 2023 2024 // Add the offset to the strings to the record. 2025 Record.push_back(Blob.size()); 2026 2027 // Add the strings to the blob. 2028 for (const Metadata *MD : Strings) 2029 Blob.append(cast<MDString>(MD)->getString()); 2030 2031 // Emit the final record. 2032 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2033 Record.clear(); 2034 } 2035 2036 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2037 enum MetadataAbbrev : unsigned { 2038 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2039 #include "llvm/IR/Metadata.def" 2040 LastPlusOne 2041 }; 2042 2043 void ModuleBitcodeWriter::writeMetadataRecords( 2044 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2045 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2046 if (MDs.empty()) 2047 return; 2048 2049 // Initialize MDNode abbreviations. 2050 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2051 #include "llvm/IR/Metadata.def" 2052 2053 for (const Metadata *MD : MDs) { 2054 if (IndexPos) 2055 IndexPos->push_back(Stream.GetCurrentBitNo()); 2056 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2057 assert(N->isResolved() && "Expected forward references to be resolved"); 2058 2059 switch (N->getMetadataID()) { 2060 default: 2061 llvm_unreachable("Invalid MDNode subclass"); 2062 #define HANDLE_MDNODE_LEAF(CLASS) \ 2063 case Metadata::CLASS##Kind: \ 2064 if (MDAbbrevs) \ 2065 write##CLASS(cast<CLASS>(N), Record, \ 2066 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2067 else \ 2068 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2069 continue; 2070 #include "llvm/IR/Metadata.def" 2071 } 2072 } 2073 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2074 } 2075 } 2076 2077 void ModuleBitcodeWriter::writeModuleMetadata() { 2078 if (!VE.hasMDs() && M.named_metadata_empty()) 2079 return; 2080 2081 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2082 SmallVector<uint64_t, 64> Record; 2083 2084 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2085 // block and load any metadata. 2086 std::vector<unsigned> MDAbbrevs; 2087 2088 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2089 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2090 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2091 createGenericDINodeAbbrev(); 2092 2093 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2094 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2097 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2098 2099 Abbv = std::make_shared<BitCodeAbbrev>(); 2100 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2103 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2104 2105 // Emit MDStrings together upfront. 2106 writeMetadataStrings(VE.getMDStrings(), Record); 2107 2108 // We only emit an index for the metadata record if we have more than a given 2109 // (naive) threshold of metadatas, otherwise it is not worth it. 2110 if (VE.getNonMDStrings().size() > IndexThreshold) { 2111 // Write a placeholder value in for the offset of the metadata index, 2112 // which is written after the records, so that it can include 2113 // the offset of each entry. The placeholder offset will be 2114 // updated after all records are emitted. 2115 uint64_t Vals[] = {0, 0}; 2116 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2117 } 2118 2119 // Compute and save the bit offset to the current position, which will be 2120 // patched when we emit the index later. We can simply subtract the 64-bit 2121 // fixed size from the current bit number to get the location to backpatch. 2122 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2123 2124 // This index will contain the bitpos for each individual record. 2125 std::vector<uint64_t> IndexPos; 2126 IndexPos.reserve(VE.getNonMDStrings().size()); 2127 2128 // Write all the records 2129 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2130 2131 if (VE.getNonMDStrings().size() > IndexThreshold) { 2132 // Now that we have emitted all the records we will emit the index. But 2133 // first 2134 // backpatch the forward reference so that the reader can skip the records 2135 // efficiently. 2136 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2137 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2138 2139 // Delta encode the index. 2140 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2141 for (auto &Elt : IndexPos) { 2142 auto EltDelta = Elt - PreviousValue; 2143 PreviousValue = Elt; 2144 Elt = EltDelta; 2145 } 2146 // Emit the index record. 2147 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2148 IndexPos.clear(); 2149 } 2150 2151 // Write the named metadata now. 2152 writeNamedMetadata(Record); 2153 2154 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2155 SmallVector<uint64_t, 4> Record; 2156 Record.push_back(VE.getValueID(&GO)); 2157 pushGlobalMetadataAttachment(Record, GO); 2158 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2159 }; 2160 for (const Function &F : M) 2161 if (F.isDeclaration() && F.hasMetadata()) 2162 AddDeclAttachedMetadata(F); 2163 // FIXME: Only store metadata for declarations here, and move data for global 2164 // variable definitions to a separate block (PR28134). 2165 for (const GlobalVariable &GV : M.globals()) 2166 if (GV.hasMetadata()) 2167 AddDeclAttachedMetadata(GV); 2168 2169 Stream.ExitBlock(); 2170 } 2171 2172 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2173 if (!VE.hasMDs()) 2174 return; 2175 2176 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2177 SmallVector<uint64_t, 64> Record; 2178 writeMetadataStrings(VE.getMDStrings(), Record); 2179 writeMetadataRecords(VE.getNonMDStrings(), Record); 2180 Stream.ExitBlock(); 2181 } 2182 2183 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2184 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2185 // [n x [id, mdnode]] 2186 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2187 GO.getAllMetadata(MDs); 2188 for (const auto &I : MDs) { 2189 Record.push_back(I.first); 2190 Record.push_back(VE.getMetadataID(I.second)); 2191 } 2192 } 2193 2194 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2195 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2196 2197 SmallVector<uint64_t, 64> Record; 2198 2199 if (F.hasMetadata()) { 2200 pushGlobalMetadataAttachment(Record, F); 2201 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2202 Record.clear(); 2203 } 2204 2205 // Write metadata attachments 2206 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2207 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2208 for (const BasicBlock &BB : F) 2209 for (const Instruction &I : BB) { 2210 MDs.clear(); 2211 I.getAllMetadataOtherThanDebugLoc(MDs); 2212 2213 // If no metadata, ignore instruction. 2214 if (MDs.empty()) continue; 2215 2216 Record.push_back(VE.getInstructionID(&I)); 2217 2218 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2219 Record.push_back(MDs[i].first); 2220 Record.push_back(VE.getMetadataID(MDs[i].second)); 2221 } 2222 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2223 Record.clear(); 2224 } 2225 2226 Stream.ExitBlock(); 2227 } 2228 2229 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2230 SmallVector<uint64_t, 64> Record; 2231 2232 // Write metadata kinds 2233 // METADATA_KIND - [n x [id, name]] 2234 SmallVector<StringRef, 8> Names; 2235 M.getMDKindNames(Names); 2236 2237 if (Names.empty()) return; 2238 2239 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2240 2241 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2242 Record.push_back(MDKindID); 2243 StringRef KName = Names[MDKindID]; 2244 Record.append(KName.begin(), KName.end()); 2245 2246 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2247 Record.clear(); 2248 } 2249 2250 Stream.ExitBlock(); 2251 } 2252 2253 void ModuleBitcodeWriter::writeOperandBundleTags() { 2254 // Write metadata kinds 2255 // 2256 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2257 // 2258 // OPERAND_BUNDLE_TAG - [strchr x N] 2259 2260 SmallVector<StringRef, 8> Tags; 2261 M.getOperandBundleTags(Tags); 2262 2263 if (Tags.empty()) 2264 return; 2265 2266 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2267 2268 SmallVector<uint64_t, 64> Record; 2269 2270 for (auto Tag : Tags) { 2271 Record.append(Tag.begin(), Tag.end()); 2272 2273 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2274 Record.clear(); 2275 } 2276 2277 Stream.ExitBlock(); 2278 } 2279 2280 void ModuleBitcodeWriter::writeSyncScopeNames() { 2281 SmallVector<StringRef, 8> SSNs; 2282 M.getContext().getSyncScopeNames(SSNs); 2283 if (SSNs.empty()) 2284 return; 2285 2286 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2287 2288 SmallVector<uint64_t, 64> Record; 2289 for (auto SSN : SSNs) { 2290 Record.append(SSN.begin(), SSN.end()); 2291 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2292 Record.clear(); 2293 } 2294 2295 Stream.ExitBlock(); 2296 } 2297 2298 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2299 bool isGlobal) { 2300 if (FirstVal == LastVal) return; 2301 2302 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2303 2304 unsigned AggregateAbbrev = 0; 2305 unsigned String8Abbrev = 0; 2306 unsigned CString7Abbrev = 0; 2307 unsigned CString6Abbrev = 0; 2308 // If this is a constant pool for the module, emit module-specific abbrevs. 2309 if (isGlobal) { 2310 // Abbrev for CST_CODE_AGGREGATE. 2311 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2312 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2315 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2316 2317 // Abbrev for CST_CODE_STRING. 2318 Abbv = std::make_shared<BitCodeAbbrev>(); 2319 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2322 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2323 // Abbrev for CST_CODE_CSTRING. 2324 Abbv = std::make_shared<BitCodeAbbrev>(); 2325 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2328 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2329 // Abbrev for CST_CODE_CSTRING. 2330 Abbv = std::make_shared<BitCodeAbbrev>(); 2331 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2334 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2335 } 2336 2337 SmallVector<uint64_t, 64> Record; 2338 2339 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2340 Type *LastTy = nullptr; 2341 for (unsigned i = FirstVal; i != LastVal; ++i) { 2342 const Value *V = Vals[i].first; 2343 // If we need to switch types, do so now. 2344 if (V->getType() != LastTy) { 2345 LastTy = V->getType(); 2346 Record.push_back(VE.getTypeID(LastTy)); 2347 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2348 CONSTANTS_SETTYPE_ABBREV); 2349 Record.clear(); 2350 } 2351 2352 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2353 Record.push_back(unsigned(IA->hasSideEffects()) | 2354 unsigned(IA->isAlignStack()) << 1 | 2355 unsigned(IA->getDialect()&1) << 2); 2356 2357 // Add the asm string. 2358 const std::string &AsmStr = IA->getAsmString(); 2359 Record.push_back(AsmStr.size()); 2360 Record.append(AsmStr.begin(), AsmStr.end()); 2361 2362 // Add the constraint string. 2363 const std::string &ConstraintStr = IA->getConstraintString(); 2364 Record.push_back(ConstraintStr.size()); 2365 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2366 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2367 Record.clear(); 2368 continue; 2369 } 2370 const Constant *C = cast<Constant>(V); 2371 unsigned Code = -1U; 2372 unsigned AbbrevToUse = 0; 2373 if (C->isNullValue()) { 2374 Code = bitc::CST_CODE_NULL; 2375 } else if (isa<UndefValue>(C)) { 2376 Code = bitc::CST_CODE_UNDEF; 2377 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2378 if (IV->getBitWidth() <= 64) { 2379 uint64_t V = IV->getSExtValue(); 2380 emitSignedInt64(Record, V); 2381 Code = bitc::CST_CODE_INTEGER; 2382 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2383 } else { // Wide integers, > 64 bits in size. 2384 emitWideAPInt(Record, IV->getValue()); 2385 Code = bitc::CST_CODE_WIDE_INTEGER; 2386 } 2387 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2388 Code = bitc::CST_CODE_FLOAT; 2389 Type *Ty = CFP->getType(); 2390 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2391 Ty->isDoubleTy()) { 2392 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2393 } else if (Ty->isX86_FP80Ty()) { 2394 // api needed to prevent premature destruction 2395 // bits are not in the same order as a normal i80 APInt, compensate. 2396 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2397 const uint64_t *p = api.getRawData(); 2398 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2399 Record.push_back(p[0] & 0xffffLL); 2400 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2401 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2402 const uint64_t *p = api.getRawData(); 2403 Record.push_back(p[0]); 2404 Record.push_back(p[1]); 2405 } else { 2406 assert(0 && "Unknown FP type!"); 2407 } 2408 } else if (isa<ConstantDataSequential>(C) && 2409 cast<ConstantDataSequential>(C)->isString()) { 2410 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2411 // Emit constant strings specially. 2412 unsigned NumElts = Str->getNumElements(); 2413 // If this is a null-terminated string, use the denser CSTRING encoding. 2414 if (Str->isCString()) { 2415 Code = bitc::CST_CODE_CSTRING; 2416 --NumElts; // Don't encode the null, which isn't allowed by char6. 2417 } else { 2418 Code = bitc::CST_CODE_STRING; 2419 AbbrevToUse = String8Abbrev; 2420 } 2421 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2422 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2423 for (unsigned i = 0; i != NumElts; ++i) { 2424 unsigned char V = Str->getElementAsInteger(i); 2425 Record.push_back(V); 2426 isCStr7 &= (V & 128) == 0; 2427 if (isCStrChar6) 2428 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2429 } 2430 2431 if (isCStrChar6) 2432 AbbrevToUse = CString6Abbrev; 2433 else if (isCStr7) 2434 AbbrevToUse = CString7Abbrev; 2435 } else if (const ConstantDataSequential *CDS = 2436 dyn_cast<ConstantDataSequential>(C)) { 2437 Code = bitc::CST_CODE_DATA; 2438 Type *EltTy = CDS->getElementType(); 2439 if (isa<IntegerType>(EltTy)) { 2440 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2441 Record.push_back(CDS->getElementAsInteger(i)); 2442 } else { 2443 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2444 Record.push_back( 2445 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2446 } 2447 } else if (isa<ConstantAggregate>(C)) { 2448 Code = bitc::CST_CODE_AGGREGATE; 2449 for (const Value *Op : C->operands()) 2450 Record.push_back(VE.getValueID(Op)); 2451 AbbrevToUse = AggregateAbbrev; 2452 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2453 switch (CE->getOpcode()) { 2454 default: 2455 if (Instruction::isCast(CE->getOpcode())) { 2456 Code = bitc::CST_CODE_CE_CAST; 2457 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2458 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2459 Record.push_back(VE.getValueID(C->getOperand(0))); 2460 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2461 } else { 2462 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2463 Code = bitc::CST_CODE_CE_BINOP; 2464 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2465 Record.push_back(VE.getValueID(C->getOperand(0))); 2466 Record.push_back(VE.getValueID(C->getOperand(1))); 2467 uint64_t Flags = getOptimizationFlags(CE); 2468 if (Flags != 0) 2469 Record.push_back(Flags); 2470 } 2471 break; 2472 case Instruction::FNeg: { 2473 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2474 Code = bitc::CST_CODE_CE_UNOP; 2475 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2476 Record.push_back(VE.getValueID(C->getOperand(0))); 2477 uint64_t Flags = getOptimizationFlags(CE); 2478 if (Flags != 0) 2479 Record.push_back(Flags); 2480 break; 2481 } 2482 case Instruction::GetElementPtr: { 2483 Code = bitc::CST_CODE_CE_GEP; 2484 const auto *GO = cast<GEPOperator>(C); 2485 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2486 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2487 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2488 Record.push_back((*Idx << 1) | GO->isInBounds()); 2489 } else if (GO->isInBounds()) 2490 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2491 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2492 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2493 Record.push_back(VE.getValueID(C->getOperand(i))); 2494 } 2495 break; 2496 } 2497 case Instruction::Select: 2498 Code = bitc::CST_CODE_CE_SELECT; 2499 Record.push_back(VE.getValueID(C->getOperand(0))); 2500 Record.push_back(VE.getValueID(C->getOperand(1))); 2501 Record.push_back(VE.getValueID(C->getOperand(2))); 2502 break; 2503 case Instruction::ExtractElement: 2504 Code = bitc::CST_CODE_CE_EXTRACTELT; 2505 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2506 Record.push_back(VE.getValueID(C->getOperand(0))); 2507 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2508 Record.push_back(VE.getValueID(C->getOperand(1))); 2509 break; 2510 case Instruction::InsertElement: 2511 Code = bitc::CST_CODE_CE_INSERTELT; 2512 Record.push_back(VE.getValueID(C->getOperand(0))); 2513 Record.push_back(VE.getValueID(C->getOperand(1))); 2514 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2515 Record.push_back(VE.getValueID(C->getOperand(2))); 2516 break; 2517 case Instruction::ShuffleVector: 2518 // If the return type and argument types are the same, this is a 2519 // standard shufflevector instruction. If the types are different, 2520 // then the shuffle is widening or truncating the input vectors, and 2521 // the argument type must also be encoded. 2522 if (C->getType() == C->getOperand(0)->getType()) { 2523 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2524 } else { 2525 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2526 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2527 } 2528 Record.push_back(VE.getValueID(C->getOperand(0))); 2529 Record.push_back(VE.getValueID(C->getOperand(1))); 2530 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2531 break; 2532 case Instruction::ICmp: 2533 case Instruction::FCmp: 2534 Code = bitc::CST_CODE_CE_CMP; 2535 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2536 Record.push_back(VE.getValueID(C->getOperand(0))); 2537 Record.push_back(VE.getValueID(C->getOperand(1))); 2538 Record.push_back(CE->getPredicate()); 2539 break; 2540 } 2541 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2542 Code = bitc::CST_CODE_BLOCKADDRESS; 2543 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2544 Record.push_back(VE.getValueID(BA->getFunction())); 2545 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2546 } else { 2547 #ifndef NDEBUG 2548 C->dump(); 2549 #endif 2550 llvm_unreachable("Unknown constant!"); 2551 } 2552 Stream.EmitRecord(Code, Record, AbbrevToUse); 2553 Record.clear(); 2554 } 2555 2556 Stream.ExitBlock(); 2557 } 2558 2559 void ModuleBitcodeWriter::writeModuleConstants() { 2560 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2561 2562 // Find the first constant to emit, which is the first non-globalvalue value. 2563 // We know globalvalues have been emitted by WriteModuleInfo. 2564 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2565 if (!isa<GlobalValue>(Vals[i].first)) { 2566 writeConstants(i, Vals.size(), true); 2567 return; 2568 } 2569 } 2570 } 2571 2572 /// pushValueAndType - The file has to encode both the value and type id for 2573 /// many values, because we need to know what type to create for forward 2574 /// references. However, most operands are not forward references, so this type 2575 /// field is not needed. 2576 /// 2577 /// This function adds V's value ID to Vals. If the value ID is higher than the 2578 /// instruction ID, then it is a forward reference, and it also includes the 2579 /// type ID. The value ID that is written is encoded relative to the InstID. 2580 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2581 SmallVectorImpl<unsigned> &Vals) { 2582 unsigned ValID = VE.getValueID(V); 2583 // Make encoding relative to the InstID. 2584 Vals.push_back(InstID - ValID); 2585 if (ValID >= InstID) { 2586 Vals.push_back(VE.getTypeID(V->getType())); 2587 return true; 2588 } 2589 return false; 2590 } 2591 2592 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2593 unsigned InstID) { 2594 SmallVector<unsigned, 64> Record; 2595 LLVMContext &C = CS.getContext(); 2596 2597 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2598 const auto &Bundle = CS.getOperandBundleAt(i); 2599 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2600 2601 for (auto &Input : Bundle.Inputs) 2602 pushValueAndType(Input, InstID, Record); 2603 2604 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2605 Record.clear(); 2606 } 2607 } 2608 2609 /// pushValue - Like pushValueAndType, but where the type of the value is 2610 /// omitted (perhaps it was already encoded in an earlier operand). 2611 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2612 SmallVectorImpl<unsigned> &Vals) { 2613 unsigned ValID = VE.getValueID(V); 2614 Vals.push_back(InstID - ValID); 2615 } 2616 2617 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2618 SmallVectorImpl<uint64_t> &Vals) { 2619 unsigned ValID = VE.getValueID(V); 2620 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2621 emitSignedInt64(Vals, diff); 2622 } 2623 2624 /// WriteInstruction - Emit an instruction to the specified stream. 2625 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2626 unsigned InstID, 2627 SmallVectorImpl<unsigned> &Vals) { 2628 unsigned Code = 0; 2629 unsigned AbbrevToUse = 0; 2630 VE.setInstructionID(&I); 2631 switch (I.getOpcode()) { 2632 default: 2633 if (Instruction::isCast(I.getOpcode())) { 2634 Code = bitc::FUNC_CODE_INST_CAST; 2635 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2636 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2637 Vals.push_back(VE.getTypeID(I.getType())); 2638 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2639 } else { 2640 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2641 Code = bitc::FUNC_CODE_INST_BINOP; 2642 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2643 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2644 pushValue(I.getOperand(1), InstID, Vals); 2645 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2646 uint64_t Flags = getOptimizationFlags(&I); 2647 if (Flags != 0) { 2648 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2649 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2650 Vals.push_back(Flags); 2651 } 2652 } 2653 break; 2654 case Instruction::FNeg: { 2655 Code = bitc::FUNC_CODE_INST_UNOP; 2656 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2657 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2658 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2659 uint64_t Flags = getOptimizationFlags(&I); 2660 if (Flags != 0) { 2661 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2662 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2663 Vals.push_back(Flags); 2664 } 2665 break; 2666 } 2667 case Instruction::GetElementPtr: { 2668 Code = bitc::FUNC_CODE_INST_GEP; 2669 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2670 auto &GEPInst = cast<GetElementPtrInst>(I); 2671 Vals.push_back(GEPInst.isInBounds()); 2672 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2673 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2674 pushValueAndType(I.getOperand(i), InstID, Vals); 2675 break; 2676 } 2677 case Instruction::ExtractValue: { 2678 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2679 pushValueAndType(I.getOperand(0), InstID, Vals); 2680 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2681 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2682 break; 2683 } 2684 case Instruction::InsertValue: { 2685 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2686 pushValueAndType(I.getOperand(0), InstID, Vals); 2687 pushValueAndType(I.getOperand(1), InstID, Vals); 2688 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2689 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2690 break; 2691 } 2692 case Instruction::Select: { 2693 Code = bitc::FUNC_CODE_INST_VSELECT; 2694 pushValueAndType(I.getOperand(1), InstID, Vals); 2695 pushValue(I.getOperand(2), InstID, Vals); 2696 pushValueAndType(I.getOperand(0), InstID, Vals); 2697 uint64_t Flags = getOptimizationFlags(&I); 2698 if (Flags != 0) 2699 Vals.push_back(Flags); 2700 break; 2701 } 2702 case Instruction::ExtractElement: 2703 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2704 pushValueAndType(I.getOperand(0), InstID, Vals); 2705 pushValueAndType(I.getOperand(1), InstID, Vals); 2706 break; 2707 case Instruction::InsertElement: 2708 Code = bitc::FUNC_CODE_INST_INSERTELT; 2709 pushValueAndType(I.getOperand(0), InstID, Vals); 2710 pushValue(I.getOperand(1), InstID, Vals); 2711 pushValueAndType(I.getOperand(2), InstID, Vals); 2712 break; 2713 case Instruction::ShuffleVector: 2714 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2715 pushValueAndType(I.getOperand(0), InstID, Vals); 2716 pushValue(I.getOperand(1), InstID, Vals); 2717 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2718 Vals); 2719 break; 2720 case Instruction::ICmp: 2721 case Instruction::FCmp: { 2722 // compare returning Int1Ty or vector of Int1Ty 2723 Code = bitc::FUNC_CODE_INST_CMP2; 2724 pushValueAndType(I.getOperand(0), InstID, Vals); 2725 pushValue(I.getOperand(1), InstID, Vals); 2726 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2727 uint64_t Flags = getOptimizationFlags(&I); 2728 if (Flags != 0) 2729 Vals.push_back(Flags); 2730 break; 2731 } 2732 2733 case Instruction::Ret: 2734 { 2735 Code = bitc::FUNC_CODE_INST_RET; 2736 unsigned NumOperands = I.getNumOperands(); 2737 if (NumOperands == 0) 2738 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2739 else if (NumOperands == 1) { 2740 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2741 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2742 } else { 2743 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2744 pushValueAndType(I.getOperand(i), InstID, Vals); 2745 } 2746 } 2747 break; 2748 case Instruction::Br: 2749 { 2750 Code = bitc::FUNC_CODE_INST_BR; 2751 const BranchInst &II = cast<BranchInst>(I); 2752 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2753 if (II.isConditional()) { 2754 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2755 pushValue(II.getCondition(), InstID, Vals); 2756 } 2757 } 2758 break; 2759 case Instruction::Switch: 2760 { 2761 Code = bitc::FUNC_CODE_INST_SWITCH; 2762 const SwitchInst &SI = cast<SwitchInst>(I); 2763 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2764 pushValue(SI.getCondition(), InstID, Vals); 2765 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2766 for (auto Case : SI.cases()) { 2767 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2768 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2769 } 2770 } 2771 break; 2772 case Instruction::IndirectBr: 2773 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2774 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2775 // Encode the address operand as relative, but not the basic blocks. 2776 pushValue(I.getOperand(0), InstID, Vals); 2777 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2778 Vals.push_back(VE.getValueID(I.getOperand(i))); 2779 break; 2780 2781 case Instruction::Invoke: { 2782 const InvokeInst *II = cast<InvokeInst>(&I); 2783 const Value *Callee = II->getCalledOperand(); 2784 FunctionType *FTy = II->getFunctionType(); 2785 2786 if (II->hasOperandBundles()) 2787 writeOperandBundles(*II, InstID); 2788 2789 Code = bitc::FUNC_CODE_INST_INVOKE; 2790 2791 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2792 Vals.push_back(II->getCallingConv() | 1 << 13); 2793 Vals.push_back(VE.getValueID(II->getNormalDest())); 2794 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2795 Vals.push_back(VE.getTypeID(FTy)); 2796 pushValueAndType(Callee, InstID, Vals); 2797 2798 // Emit value #'s for the fixed parameters. 2799 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2800 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2801 2802 // Emit type/value pairs for varargs params. 2803 if (FTy->isVarArg()) { 2804 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2805 i != e; ++i) 2806 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2807 } 2808 break; 2809 } 2810 case Instruction::Resume: 2811 Code = bitc::FUNC_CODE_INST_RESUME; 2812 pushValueAndType(I.getOperand(0), InstID, Vals); 2813 break; 2814 case Instruction::CleanupRet: { 2815 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2816 const auto &CRI = cast<CleanupReturnInst>(I); 2817 pushValue(CRI.getCleanupPad(), InstID, Vals); 2818 if (CRI.hasUnwindDest()) 2819 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2820 break; 2821 } 2822 case Instruction::CatchRet: { 2823 Code = bitc::FUNC_CODE_INST_CATCHRET; 2824 const auto &CRI = cast<CatchReturnInst>(I); 2825 pushValue(CRI.getCatchPad(), InstID, Vals); 2826 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2827 break; 2828 } 2829 case Instruction::CleanupPad: 2830 case Instruction::CatchPad: { 2831 const auto &FuncletPad = cast<FuncletPadInst>(I); 2832 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2833 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2834 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2835 2836 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2837 Vals.push_back(NumArgOperands); 2838 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2839 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2840 break; 2841 } 2842 case Instruction::CatchSwitch: { 2843 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2844 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2845 2846 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2847 2848 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2849 Vals.push_back(NumHandlers); 2850 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2851 Vals.push_back(VE.getValueID(CatchPadBB)); 2852 2853 if (CatchSwitch.hasUnwindDest()) 2854 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2855 break; 2856 } 2857 case Instruction::CallBr: { 2858 const CallBrInst *CBI = cast<CallBrInst>(&I); 2859 const Value *Callee = CBI->getCalledOperand(); 2860 FunctionType *FTy = CBI->getFunctionType(); 2861 2862 if (CBI->hasOperandBundles()) 2863 writeOperandBundles(*CBI, InstID); 2864 2865 Code = bitc::FUNC_CODE_INST_CALLBR; 2866 2867 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2868 2869 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2870 1 << bitc::CALL_EXPLICIT_TYPE); 2871 2872 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2873 Vals.push_back(CBI->getNumIndirectDests()); 2874 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2875 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2876 2877 Vals.push_back(VE.getTypeID(FTy)); 2878 pushValueAndType(Callee, InstID, Vals); 2879 2880 // Emit value #'s for the fixed parameters. 2881 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2882 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2883 2884 // Emit type/value pairs for varargs params. 2885 if (FTy->isVarArg()) { 2886 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2887 i != e; ++i) 2888 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2889 } 2890 break; 2891 } 2892 case Instruction::Unreachable: 2893 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2894 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2895 break; 2896 2897 case Instruction::PHI: { 2898 const PHINode &PN = cast<PHINode>(I); 2899 Code = bitc::FUNC_CODE_INST_PHI; 2900 // With the newer instruction encoding, forward references could give 2901 // negative valued IDs. This is most common for PHIs, so we use 2902 // signed VBRs. 2903 SmallVector<uint64_t, 128> Vals64; 2904 Vals64.push_back(VE.getTypeID(PN.getType())); 2905 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2906 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2907 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2908 } 2909 2910 uint64_t Flags = getOptimizationFlags(&I); 2911 if (Flags != 0) 2912 Vals64.push_back(Flags); 2913 2914 // Emit a Vals64 vector and exit. 2915 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2916 Vals64.clear(); 2917 return; 2918 } 2919 2920 case Instruction::LandingPad: { 2921 const LandingPadInst &LP = cast<LandingPadInst>(I); 2922 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2923 Vals.push_back(VE.getTypeID(LP.getType())); 2924 Vals.push_back(LP.isCleanup()); 2925 Vals.push_back(LP.getNumClauses()); 2926 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2927 if (LP.isCatch(I)) 2928 Vals.push_back(LandingPadInst::Catch); 2929 else 2930 Vals.push_back(LandingPadInst::Filter); 2931 pushValueAndType(LP.getClause(I), InstID, Vals); 2932 } 2933 break; 2934 } 2935 2936 case Instruction::Alloca: { 2937 Code = bitc::FUNC_CODE_INST_ALLOCA; 2938 const AllocaInst &AI = cast<AllocaInst>(I); 2939 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2940 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2941 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2942 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2943 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2944 "not enough bits for maximum alignment"); 2945 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2946 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2947 AlignRecord |= 1 << 6; 2948 AlignRecord |= AI.isSwiftError() << 7; 2949 Vals.push_back(AlignRecord); 2950 break; 2951 } 2952 2953 case Instruction::Load: 2954 if (cast<LoadInst>(I).isAtomic()) { 2955 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2956 pushValueAndType(I.getOperand(0), InstID, Vals); 2957 } else { 2958 Code = bitc::FUNC_CODE_INST_LOAD; 2959 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2960 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2961 } 2962 Vals.push_back(VE.getTypeID(I.getType())); 2963 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2964 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2965 if (cast<LoadInst>(I).isAtomic()) { 2966 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2967 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2968 } 2969 break; 2970 case Instruction::Store: 2971 if (cast<StoreInst>(I).isAtomic()) 2972 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2973 else 2974 Code = bitc::FUNC_CODE_INST_STORE; 2975 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2976 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2977 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2978 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2979 if (cast<StoreInst>(I).isAtomic()) { 2980 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2981 Vals.push_back( 2982 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2983 } 2984 break; 2985 case Instruction::AtomicCmpXchg: 2986 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2987 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2988 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2989 pushValue(I.getOperand(2), InstID, Vals); // newval. 2990 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2991 Vals.push_back( 2992 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2993 Vals.push_back( 2994 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2995 Vals.push_back( 2996 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2997 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2998 break; 2999 case Instruction::AtomicRMW: 3000 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3001 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3002 pushValue(I.getOperand(1), InstID, Vals); // val. 3003 Vals.push_back( 3004 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3005 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3006 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3007 Vals.push_back( 3008 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3009 break; 3010 case Instruction::Fence: 3011 Code = bitc::FUNC_CODE_INST_FENCE; 3012 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3013 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3014 break; 3015 case Instruction::Call: { 3016 const CallInst &CI = cast<CallInst>(I); 3017 FunctionType *FTy = CI.getFunctionType(); 3018 3019 if (CI.hasOperandBundles()) 3020 writeOperandBundles(CI, InstID); 3021 3022 Code = bitc::FUNC_CODE_INST_CALL; 3023 3024 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3025 3026 unsigned Flags = getOptimizationFlags(&I); 3027 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3028 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3029 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3030 1 << bitc::CALL_EXPLICIT_TYPE | 3031 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3032 unsigned(Flags != 0) << bitc::CALL_FMF); 3033 if (Flags != 0) 3034 Vals.push_back(Flags); 3035 3036 Vals.push_back(VE.getTypeID(FTy)); 3037 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3038 3039 // Emit value #'s for the fixed parameters. 3040 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3041 // Check for labels (can happen with asm labels). 3042 if (FTy->getParamType(i)->isLabelTy()) 3043 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3044 else 3045 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3046 } 3047 3048 // Emit type/value pairs for varargs params. 3049 if (FTy->isVarArg()) { 3050 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3051 i != e; ++i) 3052 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3053 } 3054 break; 3055 } 3056 case Instruction::VAArg: 3057 Code = bitc::FUNC_CODE_INST_VAARG; 3058 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3059 pushValue(I.getOperand(0), InstID, Vals); // valist. 3060 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3061 break; 3062 case Instruction::Freeze: 3063 Code = bitc::FUNC_CODE_INST_FREEZE; 3064 pushValueAndType(I.getOperand(0), InstID, Vals); 3065 break; 3066 } 3067 3068 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3069 Vals.clear(); 3070 } 3071 3072 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3073 /// to allow clients to efficiently find the function body. 3074 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3075 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3076 // Get the offset of the VST we are writing, and backpatch it into 3077 // the VST forward declaration record. 3078 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3079 // The BitcodeStartBit was the stream offset of the identification block. 3080 VSTOffset -= bitcodeStartBit(); 3081 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3082 // Note that we add 1 here because the offset is relative to one word 3083 // before the start of the identification block, which was historically 3084 // always the start of the regular bitcode header. 3085 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3086 3087 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3088 3089 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3090 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3093 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3094 3095 for (const Function &F : M) { 3096 uint64_t Record[2]; 3097 3098 if (F.isDeclaration()) 3099 continue; 3100 3101 Record[0] = VE.getValueID(&F); 3102 3103 // Save the word offset of the function (from the start of the 3104 // actual bitcode written to the stream). 3105 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3106 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3107 // Note that we add 1 here because the offset is relative to one word 3108 // before the start of the identification block, which was historically 3109 // always the start of the regular bitcode header. 3110 Record[1] = BitcodeIndex / 32 + 1; 3111 3112 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3113 } 3114 3115 Stream.ExitBlock(); 3116 } 3117 3118 /// Emit names for arguments, instructions and basic blocks in a function. 3119 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3120 const ValueSymbolTable &VST) { 3121 if (VST.empty()) 3122 return; 3123 3124 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3125 3126 // FIXME: Set up the abbrev, we know how many values there are! 3127 // FIXME: We know if the type names can use 7-bit ascii. 3128 SmallVector<uint64_t, 64> NameVals; 3129 3130 for (const ValueName &Name : VST) { 3131 // Figure out the encoding to use for the name. 3132 StringEncoding Bits = getStringEncoding(Name.getKey()); 3133 3134 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3135 NameVals.push_back(VE.getValueID(Name.getValue())); 3136 3137 // VST_CODE_ENTRY: [valueid, namechar x N] 3138 // VST_CODE_BBENTRY: [bbid, namechar x N] 3139 unsigned Code; 3140 if (isa<BasicBlock>(Name.getValue())) { 3141 Code = bitc::VST_CODE_BBENTRY; 3142 if (Bits == SE_Char6) 3143 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3144 } else { 3145 Code = bitc::VST_CODE_ENTRY; 3146 if (Bits == SE_Char6) 3147 AbbrevToUse = VST_ENTRY_6_ABBREV; 3148 else if (Bits == SE_Fixed7) 3149 AbbrevToUse = VST_ENTRY_7_ABBREV; 3150 } 3151 3152 for (const auto P : Name.getKey()) 3153 NameVals.push_back((unsigned char)P); 3154 3155 // Emit the finished record. 3156 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3157 NameVals.clear(); 3158 } 3159 3160 Stream.ExitBlock(); 3161 } 3162 3163 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3164 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3165 unsigned Code; 3166 if (isa<BasicBlock>(Order.V)) 3167 Code = bitc::USELIST_CODE_BB; 3168 else 3169 Code = bitc::USELIST_CODE_DEFAULT; 3170 3171 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3172 Record.push_back(VE.getValueID(Order.V)); 3173 Stream.EmitRecord(Code, Record); 3174 } 3175 3176 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3177 assert(VE.shouldPreserveUseListOrder() && 3178 "Expected to be preserving use-list order"); 3179 3180 auto hasMore = [&]() { 3181 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3182 }; 3183 if (!hasMore()) 3184 // Nothing to do. 3185 return; 3186 3187 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3188 while (hasMore()) { 3189 writeUseList(std::move(VE.UseListOrders.back())); 3190 VE.UseListOrders.pop_back(); 3191 } 3192 Stream.ExitBlock(); 3193 } 3194 3195 /// Emit a function body to the module stream. 3196 void ModuleBitcodeWriter::writeFunction( 3197 const Function &F, 3198 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3199 // Save the bitcode index of the start of this function block for recording 3200 // in the VST. 3201 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3202 3203 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3204 VE.incorporateFunction(F); 3205 3206 SmallVector<unsigned, 64> Vals; 3207 3208 // Emit the number of basic blocks, so the reader can create them ahead of 3209 // time. 3210 Vals.push_back(VE.getBasicBlocks().size()); 3211 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3212 Vals.clear(); 3213 3214 // If there are function-local constants, emit them now. 3215 unsigned CstStart, CstEnd; 3216 VE.getFunctionConstantRange(CstStart, CstEnd); 3217 writeConstants(CstStart, CstEnd, false); 3218 3219 // If there is function-local metadata, emit it now. 3220 writeFunctionMetadata(F); 3221 3222 // Keep a running idea of what the instruction ID is. 3223 unsigned InstID = CstEnd; 3224 3225 bool NeedsMetadataAttachment = F.hasMetadata(); 3226 3227 DILocation *LastDL = nullptr; 3228 // Finally, emit all the instructions, in order. 3229 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3230 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3231 I != E; ++I) { 3232 writeInstruction(*I, InstID, Vals); 3233 3234 if (!I->getType()->isVoidTy()) 3235 ++InstID; 3236 3237 // If the instruction has metadata, write a metadata attachment later. 3238 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3239 3240 // If the instruction has a debug location, emit it. 3241 DILocation *DL = I->getDebugLoc(); 3242 if (!DL) 3243 continue; 3244 3245 if (DL == LastDL) { 3246 // Just repeat the same debug loc as last time. 3247 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3248 continue; 3249 } 3250 3251 Vals.push_back(DL->getLine()); 3252 Vals.push_back(DL->getColumn()); 3253 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3254 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3255 Vals.push_back(DL->isImplicitCode()); 3256 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3257 Vals.clear(); 3258 3259 LastDL = DL; 3260 } 3261 3262 // Emit names for all the instructions etc. 3263 if (auto *Symtab = F.getValueSymbolTable()) 3264 writeFunctionLevelValueSymbolTable(*Symtab); 3265 3266 if (NeedsMetadataAttachment) 3267 writeFunctionMetadataAttachment(F); 3268 if (VE.shouldPreserveUseListOrder()) 3269 writeUseListBlock(&F); 3270 VE.purgeFunction(); 3271 Stream.ExitBlock(); 3272 } 3273 3274 // Emit blockinfo, which defines the standard abbreviations etc. 3275 void ModuleBitcodeWriter::writeBlockInfo() { 3276 // We only want to emit block info records for blocks that have multiple 3277 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3278 // Other blocks can define their abbrevs inline. 3279 Stream.EnterBlockInfoBlock(); 3280 3281 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3282 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3287 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3288 VST_ENTRY_8_ABBREV) 3289 llvm_unreachable("Unexpected abbrev ordering!"); 3290 } 3291 3292 { // 7-bit fixed width VST_CODE_ENTRY strings. 3293 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3294 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3298 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3299 VST_ENTRY_7_ABBREV) 3300 llvm_unreachable("Unexpected abbrev ordering!"); 3301 } 3302 { // 6-bit char6 VST_CODE_ENTRY strings. 3303 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3304 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3308 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3309 VST_ENTRY_6_ABBREV) 3310 llvm_unreachable("Unexpected abbrev ordering!"); 3311 } 3312 { // 6-bit char6 VST_CODE_BBENTRY strings. 3313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3314 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3318 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3319 VST_BBENTRY_6_ABBREV) 3320 llvm_unreachable("Unexpected abbrev ordering!"); 3321 } 3322 3323 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3324 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3325 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3327 VE.computeBitsRequiredForTypeIndicies())); 3328 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3329 CONSTANTS_SETTYPE_ABBREV) 3330 llvm_unreachable("Unexpected abbrev ordering!"); 3331 } 3332 3333 { // INTEGER abbrev for CONSTANTS_BLOCK. 3334 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3335 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3337 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3338 CONSTANTS_INTEGER_ABBREV) 3339 llvm_unreachable("Unexpected abbrev ordering!"); 3340 } 3341 3342 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3343 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3344 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3347 VE.computeBitsRequiredForTypeIndicies())); 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3349 3350 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3351 CONSTANTS_CE_CAST_Abbrev) 3352 llvm_unreachable("Unexpected abbrev ordering!"); 3353 } 3354 { // NULL abbrev for CONSTANTS_BLOCK. 3355 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3356 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3357 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3358 CONSTANTS_NULL_Abbrev) 3359 llvm_unreachable("Unexpected abbrev ordering!"); 3360 } 3361 3362 // FIXME: This should only use space for first class types! 3363 3364 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3365 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3366 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3369 VE.computeBitsRequiredForTypeIndicies())); 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3372 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3373 FUNCTION_INST_LOAD_ABBREV) 3374 llvm_unreachable("Unexpected abbrev ordering!"); 3375 } 3376 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3377 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3378 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3381 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3382 FUNCTION_INST_UNOP_ABBREV) 3383 llvm_unreachable("Unexpected abbrev ordering!"); 3384 } 3385 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3386 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3387 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3391 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3392 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3393 llvm_unreachable("Unexpected abbrev ordering!"); 3394 } 3395 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3396 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3397 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3401 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3402 FUNCTION_INST_BINOP_ABBREV) 3403 llvm_unreachable("Unexpected abbrev ordering!"); 3404 } 3405 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3406 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3407 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3412 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3413 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3414 llvm_unreachable("Unexpected abbrev ordering!"); 3415 } 3416 { // INST_CAST abbrev for FUNCTION_BLOCK. 3417 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3418 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3421 VE.computeBitsRequiredForTypeIndicies())); 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3423 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3424 FUNCTION_INST_CAST_ABBREV) 3425 llvm_unreachable("Unexpected abbrev ordering!"); 3426 } 3427 3428 { // INST_RET abbrev for FUNCTION_BLOCK. 3429 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3430 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3431 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3432 FUNCTION_INST_RET_VOID_ABBREV) 3433 llvm_unreachable("Unexpected abbrev ordering!"); 3434 } 3435 { // INST_RET abbrev for FUNCTION_BLOCK. 3436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3437 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3439 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3440 FUNCTION_INST_RET_VAL_ABBREV) 3441 llvm_unreachable("Unexpected abbrev ordering!"); 3442 } 3443 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3444 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3446 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3447 FUNCTION_INST_UNREACHABLE_ABBREV) 3448 llvm_unreachable("Unexpected abbrev ordering!"); 3449 } 3450 { 3451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3455 Log2_32_Ceil(VE.getTypes().size() + 1))); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3458 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3459 FUNCTION_INST_GEP_ABBREV) 3460 llvm_unreachable("Unexpected abbrev ordering!"); 3461 } 3462 3463 Stream.ExitBlock(); 3464 } 3465 3466 /// Write the module path strings, currently only used when generating 3467 /// a combined index file. 3468 void IndexBitcodeWriter::writeModStrings() { 3469 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3470 3471 // TODO: See which abbrev sizes we actually need to emit 3472 3473 // 8-bit fixed-width MST_ENTRY strings. 3474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3479 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3480 3481 // 7-bit fixed width MST_ENTRY strings. 3482 Abbv = std::make_shared<BitCodeAbbrev>(); 3483 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3487 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3488 3489 // 6-bit char6 MST_ENTRY strings. 3490 Abbv = std::make_shared<BitCodeAbbrev>(); 3491 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3495 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3496 3497 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3498 Abbv = std::make_shared<BitCodeAbbrev>(); 3499 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3505 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3506 3507 SmallVector<unsigned, 64> Vals; 3508 forEachModule( 3509 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3510 StringRef Key = MPSE.getKey(); 3511 const auto &Value = MPSE.getValue(); 3512 StringEncoding Bits = getStringEncoding(Key); 3513 unsigned AbbrevToUse = Abbrev8Bit; 3514 if (Bits == SE_Char6) 3515 AbbrevToUse = Abbrev6Bit; 3516 else if (Bits == SE_Fixed7) 3517 AbbrevToUse = Abbrev7Bit; 3518 3519 Vals.push_back(Value.first); 3520 Vals.append(Key.begin(), Key.end()); 3521 3522 // Emit the finished record. 3523 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3524 3525 // Emit an optional hash for the module now 3526 const auto &Hash = Value.second; 3527 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3528 Vals.assign(Hash.begin(), Hash.end()); 3529 // Emit the hash record. 3530 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3531 } 3532 3533 Vals.clear(); 3534 }); 3535 Stream.ExitBlock(); 3536 } 3537 3538 /// Write the function type metadata related records that need to appear before 3539 /// a function summary entry (whether per-module or combined). 3540 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3541 FunctionSummary *FS) { 3542 if (!FS->type_tests().empty()) 3543 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3544 3545 SmallVector<uint64_t, 64> Record; 3546 3547 auto WriteVFuncIdVec = [&](uint64_t Ty, 3548 ArrayRef<FunctionSummary::VFuncId> VFs) { 3549 if (VFs.empty()) 3550 return; 3551 Record.clear(); 3552 for (auto &VF : VFs) { 3553 Record.push_back(VF.GUID); 3554 Record.push_back(VF.Offset); 3555 } 3556 Stream.EmitRecord(Ty, Record); 3557 }; 3558 3559 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3560 FS->type_test_assume_vcalls()); 3561 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3562 FS->type_checked_load_vcalls()); 3563 3564 auto WriteConstVCallVec = [&](uint64_t Ty, 3565 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3566 for (auto &VC : VCs) { 3567 Record.clear(); 3568 Record.push_back(VC.VFunc.GUID); 3569 Record.push_back(VC.VFunc.Offset); 3570 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3571 Stream.EmitRecord(Ty, Record); 3572 } 3573 }; 3574 3575 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3576 FS->type_test_assume_const_vcalls()); 3577 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3578 FS->type_checked_load_const_vcalls()); 3579 } 3580 3581 /// Collect type IDs from type tests used by function. 3582 static void 3583 getReferencedTypeIds(FunctionSummary *FS, 3584 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3585 if (!FS->type_tests().empty()) 3586 for (auto &TT : FS->type_tests()) 3587 ReferencedTypeIds.insert(TT); 3588 3589 auto GetReferencedTypesFromVFuncIdVec = 3590 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3591 for (auto &VF : VFs) 3592 ReferencedTypeIds.insert(VF.GUID); 3593 }; 3594 3595 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3596 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3597 3598 auto GetReferencedTypesFromConstVCallVec = 3599 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3600 for (auto &VC : VCs) 3601 ReferencedTypeIds.insert(VC.VFunc.GUID); 3602 }; 3603 3604 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3605 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3606 } 3607 3608 static void writeWholeProgramDevirtResolutionByArg( 3609 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3610 const WholeProgramDevirtResolution::ByArg &ByArg) { 3611 NameVals.push_back(args.size()); 3612 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3613 3614 NameVals.push_back(ByArg.TheKind); 3615 NameVals.push_back(ByArg.Info); 3616 NameVals.push_back(ByArg.Byte); 3617 NameVals.push_back(ByArg.Bit); 3618 } 3619 3620 static void writeWholeProgramDevirtResolution( 3621 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3622 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3623 NameVals.push_back(Id); 3624 3625 NameVals.push_back(Wpd.TheKind); 3626 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3627 NameVals.push_back(Wpd.SingleImplName.size()); 3628 3629 NameVals.push_back(Wpd.ResByArg.size()); 3630 for (auto &A : Wpd.ResByArg) 3631 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3632 } 3633 3634 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3635 StringTableBuilder &StrtabBuilder, 3636 const std::string &Id, 3637 const TypeIdSummary &Summary) { 3638 NameVals.push_back(StrtabBuilder.add(Id)); 3639 NameVals.push_back(Id.size()); 3640 3641 NameVals.push_back(Summary.TTRes.TheKind); 3642 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3643 NameVals.push_back(Summary.TTRes.AlignLog2); 3644 NameVals.push_back(Summary.TTRes.SizeM1); 3645 NameVals.push_back(Summary.TTRes.BitMask); 3646 NameVals.push_back(Summary.TTRes.InlineBits); 3647 3648 for (auto &W : Summary.WPDRes) 3649 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3650 W.second); 3651 } 3652 3653 static void writeTypeIdCompatibleVtableSummaryRecord( 3654 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3655 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3656 ValueEnumerator &VE) { 3657 NameVals.push_back(StrtabBuilder.add(Id)); 3658 NameVals.push_back(Id.size()); 3659 3660 for (auto &P : Summary) { 3661 NameVals.push_back(P.AddressPointOffset); 3662 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3663 } 3664 } 3665 3666 // Helper to emit a single function summary record. 3667 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3668 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3669 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3670 const Function &F) { 3671 NameVals.push_back(ValueID); 3672 3673 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3674 writeFunctionTypeMetadataRecords(Stream, FS); 3675 3676 auto SpecialRefCnts = FS->specialRefCounts(); 3677 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3678 NameVals.push_back(FS->instCount()); 3679 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3680 NameVals.push_back(FS->refs().size()); 3681 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3682 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3683 3684 for (auto &RI : FS->refs()) 3685 NameVals.push_back(VE.getValueID(RI.getValue())); 3686 3687 bool HasProfileData = 3688 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3689 for (auto &ECI : FS->calls()) { 3690 NameVals.push_back(getValueId(ECI.first)); 3691 if (HasProfileData) 3692 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3693 else if (WriteRelBFToSummary) 3694 NameVals.push_back(ECI.second.RelBlockFreq); 3695 } 3696 3697 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3698 unsigned Code = 3699 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3700 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3701 : bitc::FS_PERMODULE)); 3702 3703 // Emit the finished record. 3704 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3705 NameVals.clear(); 3706 } 3707 3708 // Collect the global value references in the given variable's initializer, 3709 // and emit them in a summary record. 3710 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3711 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3712 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3713 auto VI = Index->getValueInfo(V.getGUID()); 3714 if (!VI || VI.getSummaryList().empty()) { 3715 // Only declarations should not have a summary (a declaration might however 3716 // have a summary if the def was in module level asm). 3717 assert(V.isDeclaration()); 3718 return; 3719 } 3720 auto *Summary = VI.getSummaryList()[0].get(); 3721 NameVals.push_back(VE.getValueID(&V)); 3722 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3723 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3724 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3725 3726 auto VTableFuncs = VS->vTableFuncs(); 3727 if (!VTableFuncs.empty()) 3728 NameVals.push_back(VS->refs().size()); 3729 3730 unsigned SizeBeforeRefs = NameVals.size(); 3731 for (auto &RI : VS->refs()) 3732 NameVals.push_back(VE.getValueID(RI.getValue())); 3733 // Sort the refs for determinism output, the vector returned by FS->refs() has 3734 // been initialized from a DenseSet. 3735 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3736 3737 if (VTableFuncs.empty()) 3738 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3739 FSModRefsAbbrev); 3740 else { 3741 // VTableFuncs pairs should already be sorted by offset. 3742 for (auto &P : VTableFuncs) { 3743 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3744 NameVals.push_back(P.VTableOffset); 3745 } 3746 3747 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3748 FSModVTableRefsAbbrev); 3749 } 3750 NameVals.clear(); 3751 } 3752 3753 /// Emit the per-module summary section alongside the rest of 3754 /// the module's bitcode. 3755 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3756 // By default we compile with ThinLTO if the module has a summary, but the 3757 // client can request full LTO with a module flag. 3758 bool IsThinLTO = true; 3759 if (auto *MD = 3760 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3761 IsThinLTO = MD->getZExtValue(); 3762 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3763 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3764 4); 3765 3766 Stream.EmitRecord( 3767 bitc::FS_VERSION, 3768 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3769 3770 // Write the index flags. 3771 uint64_t Flags = 0; 3772 // Bits 1-3 are set only in the combined index, skip them. 3773 if (Index->enableSplitLTOUnit()) 3774 Flags |= 0x8; 3775 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3776 3777 if (Index->begin() == Index->end()) { 3778 Stream.ExitBlock(); 3779 return; 3780 } 3781 3782 for (const auto &GVI : valueIds()) { 3783 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3784 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3785 } 3786 3787 // Abbrev for FS_PERMODULE_PROFILE. 3788 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3789 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3797 // numrefs x valueid, n x (valueid, hotness) 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3800 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3801 3802 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3803 Abbv = std::make_shared<BitCodeAbbrev>(); 3804 if (WriteRelBFToSummary) 3805 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3806 else 3807 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3815 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3818 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3819 3820 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3821 Abbv = std::make_shared<BitCodeAbbrev>(); 3822 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3827 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3828 3829 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3830 Abbv = std::make_shared<BitCodeAbbrev>(); 3831 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3835 // numrefs x valueid, n x (valueid , offset) 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3838 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3839 3840 // Abbrev for FS_ALIAS. 3841 Abbv = std::make_shared<BitCodeAbbrev>(); 3842 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3846 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3847 3848 // Abbrev for FS_TYPE_ID_METADATA 3849 Abbv = std::make_shared<BitCodeAbbrev>(); 3850 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3853 // n x (valueid , offset) 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3856 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3857 3858 SmallVector<uint64_t, 64> NameVals; 3859 // Iterate over the list of functions instead of the Index to 3860 // ensure the ordering is stable. 3861 for (const Function &F : M) { 3862 // Summary emission does not support anonymous functions, they have to 3863 // renamed using the anonymous function renaming pass. 3864 if (!F.hasName()) 3865 report_fatal_error("Unexpected anonymous function when writing summary"); 3866 3867 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3868 if (!VI || VI.getSummaryList().empty()) { 3869 // Only declarations should not have a summary (a declaration might 3870 // however have a summary if the def was in module level asm). 3871 assert(F.isDeclaration()); 3872 continue; 3873 } 3874 auto *Summary = VI.getSummaryList()[0].get(); 3875 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3876 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3877 } 3878 3879 // Capture references from GlobalVariable initializers, which are outside 3880 // of a function scope. 3881 for (const GlobalVariable &G : M.globals()) 3882 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3883 FSModVTableRefsAbbrev); 3884 3885 for (const GlobalAlias &A : M.aliases()) { 3886 auto *Aliasee = A.getBaseObject(); 3887 if (!Aliasee->hasName()) 3888 // Nameless function don't have an entry in the summary, skip it. 3889 continue; 3890 auto AliasId = VE.getValueID(&A); 3891 auto AliaseeId = VE.getValueID(Aliasee); 3892 NameVals.push_back(AliasId); 3893 auto *Summary = Index->getGlobalValueSummary(A); 3894 AliasSummary *AS = cast<AliasSummary>(Summary); 3895 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3896 NameVals.push_back(AliaseeId); 3897 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3898 NameVals.clear(); 3899 } 3900 3901 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3902 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3903 S.second, VE); 3904 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3905 TypeIdCompatibleVtableAbbrev); 3906 NameVals.clear(); 3907 } 3908 3909 Stream.ExitBlock(); 3910 } 3911 3912 /// Emit the combined summary section into the combined index file. 3913 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3914 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3915 Stream.EmitRecord( 3916 bitc::FS_VERSION, 3917 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3918 3919 // Write the index flags. 3920 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3921 3922 for (const auto &GVI : valueIds()) { 3923 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3924 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3925 } 3926 3927 // Abbrev for FS_COMBINED. 3928 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3929 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3939 // numrefs x valueid, n x (valueid) 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3942 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3943 3944 // Abbrev for FS_COMBINED_PROFILE. 3945 Abbv = std::make_shared<BitCodeAbbrev>(); 3946 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3956 // numrefs x valueid, n x (valueid, hotness) 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3959 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3960 3961 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3962 Abbv = std::make_shared<BitCodeAbbrev>(); 3963 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3969 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3970 3971 // Abbrev for FS_COMBINED_ALIAS. 3972 Abbv = std::make_shared<BitCodeAbbrev>(); 3973 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3978 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3979 3980 // The aliases are emitted as a post-pass, and will point to the value 3981 // id of the aliasee. Save them in a vector for post-processing. 3982 SmallVector<AliasSummary *, 64> Aliases; 3983 3984 // Save the value id for each summary for alias emission. 3985 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3986 3987 SmallVector<uint64_t, 64> NameVals; 3988 3989 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3990 // with the type ids referenced by this index file. 3991 std::set<GlobalValue::GUID> ReferencedTypeIds; 3992 3993 // For local linkage, we also emit the original name separately 3994 // immediately after the record. 3995 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3996 if (!GlobalValue::isLocalLinkage(S.linkage())) 3997 return; 3998 NameVals.push_back(S.getOriginalName()); 3999 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4000 NameVals.clear(); 4001 }; 4002 4003 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4004 forEachSummary([&](GVInfo I, bool IsAliasee) { 4005 GlobalValueSummary *S = I.second; 4006 assert(S); 4007 DefOrUseGUIDs.insert(I.first); 4008 for (const ValueInfo &VI : S->refs()) 4009 DefOrUseGUIDs.insert(VI.getGUID()); 4010 4011 auto ValueId = getValueId(I.first); 4012 assert(ValueId); 4013 SummaryToValueIdMap[S] = *ValueId; 4014 4015 // If this is invoked for an aliasee, we want to record the above 4016 // mapping, but then not emit a summary entry (if the aliasee is 4017 // to be imported, we will invoke this separately with IsAliasee=false). 4018 if (IsAliasee) 4019 return; 4020 4021 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4022 // Will process aliases as a post-pass because the reader wants all 4023 // global to be loaded first. 4024 Aliases.push_back(AS); 4025 return; 4026 } 4027 4028 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4029 NameVals.push_back(*ValueId); 4030 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4031 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4032 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4033 for (auto &RI : VS->refs()) { 4034 auto RefValueId = getValueId(RI.getGUID()); 4035 if (!RefValueId) 4036 continue; 4037 NameVals.push_back(*RefValueId); 4038 } 4039 4040 // Emit the finished record. 4041 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4042 FSModRefsAbbrev); 4043 NameVals.clear(); 4044 MaybeEmitOriginalName(*S); 4045 return; 4046 } 4047 4048 auto *FS = cast<FunctionSummary>(S); 4049 writeFunctionTypeMetadataRecords(Stream, FS); 4050 getReferencedTypeIds(FS, ReferencedTypeIds); 4051 4052 NameVals.push_back(*ValueId); 4053 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4054 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4055 NameVals.push_back(FS->instCount()); 4056 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4057 NameVals.push_back(FS->entryCount()); 4058 4059 // Fill in below 4060 NameVals.push_back(0); // numrefs 4061 NameVals.push_back(0); // rorefcnt 4062 NameVals.push_back(0); // worefcnt 4063 4064 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4065 for (auto &RI : FS->refs()) { 4066 auto RefValueId = getValueId(RI.getGUID()); 4067 if (!RefValueId) 4068 continue; 4069 NameVals.push_back(*RefValueId); 4070 if (RI.isReadOnly()) 4071 RORefCnt++; 4072 else if (RI.isWriteOnly()) 4073 WORefCnt++; 4074 Count++; 4075 } 4076 NameVals[6] = Count; 4077 NameVals[7] = RORefCnt; 4078 NameVals[8] = WORefCnt; 4079 4080 bool HasProfileData = false; 4081 for (auto &EI : FS->calls()) { 4082 HasProfileData |= 4083 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4084 if (HasProfileData) 4085 break; 4086 } 4087 4088 for (auto &EI : FS->calls()) { 4089 // If this GUID doesn't have a value id, it doesn't have a function 4090 // summary and we don't need to record any calls to it. 4091 GlobalValue::GUID GUID = EI.first.getGUID(); 4092 auto CallValueId = getValueId(GUID); 4093 if (!CallValueId) { 4094 // For SamplePGO, the indirect call targets for local functions will 4095 // have its original name annotated in profile. We try to find the 4096 // corresponding PGOFuncName as the GUID. 4097 GUID = Index.getGUIDFromOriginalID(GUID); 4098 if (GUID == 0) 4099 continue; 4100 CallValueId = getValueId(GUID); 4101 if (!CallValueId) 4102 continue; 4103 // The mapping from OriginalId to GUID may return a GUID 4104 // that corresponds to a static variable. Filter it out here. 4105 // This can happen when 4106 // 1) There is a call to a library function which does not have 4107 // a CallValidId; 4108 // 2) There is a static variable with the OriginalGUID identical 4109 // to the GUID of the library function in 1); 4110 // When this happens, the logic for SamplePGO kicks in and 4111 // the static variable in 2) will be found, which needs to be 4112 // filtered out. 4113 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4114 if (GVSum && 4115 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4116 continue; 4117 } 4118 NameVals.push_back(*CallValueId); 4119 if (HasProfileData) 4120 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4121 } 4122 4123 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4124 unsigned Code = 4125 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4126 4127 // Emit the finished record. 4128 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4129 NameVals.clear(); 4130 MaybeEmitOriginalName(*S); 4131 }); 4132 4133 for (auto *AS : Aliases) { 4134 auto AliasValueId = SummaryToValueIdMap[AS]; 4135 assert(AliasValueId); 4136 NameVals.push_back(AliasValueId); 4137 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4138 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4139 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4140 assert(AliaseeValueId); 4141 NameVals.push_back(AliaseeValueId); 4142 4143 // Emit the finished record. 4144 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4145 NameVals.clear(); 4146 MaybeEmitOriginalName(*AS); 4147 4148 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4149 getReferencedTypeIds(FS, ReferencedTypeIds); 4150 } 4151 4152 if (!Index.cfiFunctionDefs().empty()) { 4153 for (auto &S : Index.cfiFunctionDefs()) { 4154 if (DefOrUseGUIDs.count( 4155 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4156 NameVals.push_back(StrtabBuilder.add(S)); 4157 NameVals.push_back(S.size()); 4158 } 4159 } 4160 if (!NameVals.empty()) { 4161 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4162 NameVals.clear(); 4163 } 4164 } 4165 4166 if (!Index.cfiFunctionDecls().empty()) { 4167 for (auto &S : Index.cfiFunctionDecls()) { 4168 if (DefOrUseGUIDs.count( 4169 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4170 NameVals.push_back(StrtabBuilder.add(S)); 4171 NameVals.push_back(S.size()); 4172 } 4173 } 4174 if (!NameVals.empty()) { 4175 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4176 NameVals.clear(); 4177 } 4178 } 4179 4180 // Walk the GUIDs that were referenced, and write the 4181 // corresponding type id records. 4182 for (auto &T : ReferencedTypeIds) { 4183 auto TidIter = Index.typeIds().equal_range(T); 4184 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4185 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4186 It->second.second); 4187 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4188 NameVals.clear(); 4189 } 4190 } 4191 4192 Stream.ExitBlock(); 4193 } 4194 4195 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4196 /// current llvm version, and a record for the epoch number. 4197 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4198 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4199 4200 // Write the "user readable" string identifying the bitcode producer 4201 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4202 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4205 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4206 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4207 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4208 4209 // Write the epoch version 4210 Abbv = std::make_shared<BitCodeAbbrev>(); 4211 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4213 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4214 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4215 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4216 Stream.ExitBlock(); 4217 } 4218 4219 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4220 // Emit the module's hash. 4221 // MODULE_CODE_HASH: [5*i32] 4222 if (GenerateHash) { 4223 uint32_t Vals[5]; 4224 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4225 Buffer.size() - BlockStartPos)); 4226 StringRef Hash = Hasher.result(); 4227 for (int Pos = 0; Pos < 20; Pos += 4) { 4228 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4229 } 4230 4231 // Emit the finished record. 4232 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4233 4234 if (ModHash) 4235 // Save the written hash value. 4236 llvm::copy(Vals, std::begin(*ModHash)); 4237 } 4238 } 4239 4240 void ModuleBitcodeWriter::write() { 4241 writeIdentificationBlock(Stream); 4242 4243 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4244 size_t BlockStartPos = Buffer.size(); 4245 4246 writeModuleVersion(); 4247 4248 // Emit blockinfo, which defines the standard abbreviations etc. 4249 writeBlockInfo(); 4250 4251 // Emit information describing all of the types in the module. 4252 writeTypeTable(); 4253 4254 // Emit information about attribute groups. 4255 writeAttributeGroupTable(); 4256 4257 // Emit information about parameter attributes. 4258 writeAttributeTable(); 4259 4260 writeComdats(); 4261 4262 // Emit top-level description of module, including target triple, inline asm, 4263 // descriptors for global variables, and function prototype info. 4264 writeModuleInfo(); 4265 4266 // Emit constants. 4267 writeModuleConstants(); 4268 4269 // Emit metadata kind names. 4270 writeModuleMetadataKinds(); 4271 4272 // Emit metadata. 4273 writeModuleMetadata(); 4274 4275 // Emit module-level use-lists. 4276 if (VE.shouldPreserveUseListOrder()) 4277 writeUseListBlock(nullptr); 4278 4279 writeOperandBundleTags(); 4280 writeSyncScopeNames(); 4281 4282 // Emit function bodies. 4283 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4284 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4285 if (!F->isDeclaration()) 4286 writeFunction(*F, FunctionToBitcodeIndex); 4287 4288 // Need to write after the above call to WriteFunction which populates 4289 // the summary information in the index. 4290 if (Index) 4291 writePerModuleGlobalValueSummary(); 4292 4293 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4294 4295 writeModuleHash(BlockStartPos); 4296 4297 Stream.ExitBlock(); 4298 } 4299 4300 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4301 uint32_t &Position) { 4302 support::endian::write32le(&Buffer[Position], Value); 4303 Position += 4; 4304 } 4305 4306 /// If generating a bc file on darwin, we have to emit a 4307 /// header and trailer to make it compatible with the system archiver. To do 4308 /// this we emit the following header, and then emit a trailer that pads the 4309 /// file out to be a multiple of 16 bytes. 4310 /// 4311 /// struct bc_header { 4312 /// uint32_t Magic; // 0x0B17C0DE 4313 /// uint32_t Version; // Version, currently always 0. 4314 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4315 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4316 /// uint32_t CPUType; // CPU specifier. 4317 /// ... potentially more later ... 4318 /// }; 4319 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4320 const Triple &TT) { 4321 unsigned CPUType = ~0U; 4322 4323 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4324 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4325 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4326 // specific constants here because they are implicitly part of the Darwin ABI. 4327 enum { 4328 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4329 DARWIN_CPU_TYPE_X86 = 7, 4330 DARWIN_CPU_TYPE_ARM = 12, 4331 DARWIN_CPU_TYPE_POWERPC = 18 4332 }; 4333 4334 Triple::ArchType Arch = TT.getArch(); 4335 if (Arch == Triple::x86_64) 4336 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4337 else if (Arch == Triple::x86) 4338 CPUType = DARWIN_CPU_TYPE_X86; 4339 else if (Arch == Triple::ppc) 4340 CPUType = DARWIN_CPU_TYPE_POWERPC; 4341 else if (Arch == Triple::ppc64) 4342 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4343 else if (Arch == Triple::arm || Arch == Triple::thumb) 4344 CPUType = DARWIN_CPU_TYPE_ARM; 4345 4346 // Traditional Bitcode starts after header. 4347 assert(Buffer.size() >= BWH_HeaderSize && 4348 "Expected header size to be reserved"); 4349 unsigned BCOffset = BWH_HeaderSize; 4350 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4351 4352 // Write the magic and version. 4353 unsigned Position = 0; 4354 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4355 writeInt32ToBuffer(0, Buffer, Position); // Version. 4356 writeInt32ToBuffer(BCOffset, Buffer, Position); 4357 writeInt32ToBuffer(BCSize, Buffer, Position); 4358 writeInt32ToBuffer(CPUType, Buffer, Position); 4359 4360 // If the file is not a multiple of 16 bytes, insert dummy padding. 4361 while (Buffer.size() & 15) 4362 Buffer.push_back(0); 4363 } 4364 4365 /// Helper to write the header common to all bitcode files. 4366 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4367 // Emit the file header. 4368 Stream.Emit((unsigned)'B', 8); 4369 Stream.Emit((unsigned)'C', 8); 4370 Stream.Emit(0x0, 4); 4371 Stream.Emit(0xC, 4); 4372 Stream.Emit(0xE, 4); 4373 Stream.Emit(0xD, 4); 4374 } 4375 4376 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4377 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4378 writeBitcodeHeader(*Stream); 4379 } 4380 4381 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4382 4383 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4384 Stream->EnterSubblock(Block, 3); 4385 4386 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4387 Abbv->Add(BitCodeAbbrevOp(Record)); 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4389 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4390 4391 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4392 4393 Stream->ExitBlock(); 4394 } 4395 4396 void BitcodeWriter::writeSymtab() { 4397 assert(!WroteStrtab && !WroteSymtab); 4398 4399 // If any module has module-level inline asm, we will require a registered asm 4400 // parser for the target so that we can create an accurate symbol table for 4401 // the module. 4402 for (Module *M : Mods) { 4403 if (M->getModuleInlineAsm().empty()) 4404 continue; 4405 4406 std::string Err; 4407 const Triple TT(M->getTargetTriple()); 4408 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4409 if (!T || !T->hasMCAsmParser()) 4410 return; 4411 } 4412 4413 WroteSymtab = true; 4414 SmallVector<char, 0> Symtab; 4415 // The irsymtab::build function may be unable to create a symbol table if the 4416 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4417 // table is not required for correctness, but we still want to be able to 4418 // write malformed modules to bitcode files, so swallow the error. 4419 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4420 consumeError(std::move(E)); 4421 return; 4422 } 4423 4424 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4425 {Symtab.data(), Symtab.size()}); 4426 } 4427 4428 void BitcodeWriter::writeStrtab() { 4429 assert(!WroteStrtab); 4430 4431 std::vector<char> Strtab; 4432 StrtabBuilder.finalizeInOrder(); 4433 Strtab.resize(StrtabBuilder.getSize()); 4434 StrtabBuilder.write((uint8_t *)Strtab.data()); 4435 4436 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4437 {Strtab.data(), Strtab.size()}); 4438 4439 WroteStrtab = true; 4440 } 4441 4442 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4443 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4444 WroteStrtab = true; 4445 } 4446 4447 void BitcodeWriter::writeModule(const Module &M, 4448 bool ShouldPreserveUseListOrder, 4449 const ModuleSummaryIndex *Index, 4450 bool GenerateHash, ModuleHash *ModHash) { 4451 assert(!WroteStrtab); 4452 4453 // The Mods vector is used by irsymtab::build, which requires non-const 4454 // Modules in case it needs to materialize metadata. But the bitcode writer 4455 // requires that the module is materialized, so we can cast to non-const here, 4456 // after checking that it is in fact materialized. 4457 assert(M.isMaterialized()); 4458 Mods.push_back(const_cast<Module *>(&M)); 4459 4460 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4461 ShouldPreserveUseListOrder, Index, 4462 GenerateHash, ModHash); 4463 ModuleWriter.write(); 4464 } 4465 4466 void BitcodeWriter::writeIndex( 4467 const ModuleSummaryIndex *Index, 4468 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4469 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4470 ModuleToSummariesForIndex); 4471 IndexWriter.write(); 4472 } 4473 4474 /// Write the specified module to the specified output stream. 4475 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4476 bool ShouldPreserveUseListOrder, 4477 const ModuleSummaryIndex *Index, 4478 bool GenerateHash, ModuleHash *ModHash) { 4479 SmallVector<char, 0> Buffer; 4480 Buffer.reserve(256*1024); 4481 4482 // If this is darwin or another generic macho target, reserve space for the 4483 // header. 4484 Triple TT(M.getTargetTriple()); 4485 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4486 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4487 4488 BitcodeWriter Writer(Buffer); 4489 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4490 ModHash); 4491 Writer.writeSymtab(); 4492 Writer.writeStrtab(); 4493 4494 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4495 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4496 4497 // Write the generated bitstream to "Out". 4498 Out.write((char*)&Buffer.front(), Buffer.size()); 4499 } 4500 4501 void IndexBitcodeWriter::write() { 4502 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4503 4504 writeModuleVersion(); 4505 4506 // Write the module paths in the combined index. 4507 writeModStrings(); 4508 4509 // Write the summary combined index records. 4510 writeCombinedGlobalValueSummary(); 4511 4512 Stream.ExitBlock(); 4513 } 4514 4515 // Write the specified module summary index to the given raw output stream, 4516 // where it will be written in a new bitcode block. This is used when 4517 // writing the combined index file for ThinLTO. When writing a subset of the 4518 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4519 void llvm::WriteIndexToFile( 4520 const ModuleSummaryIndex &Index, raw_ostream &Out, 4521 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4522 SmallVector<char, 0> Buffer; 4523 Buffer.reserve(256 * 1024); 4524 4525 BitcodeWriter Writer(Buffer); 4526 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4527 Writer.writeStrtab(); 4528 4529 Out.write((char *)&Buffer.front(), Buffer.size()); 4530 } 4531 4532 namespace { 4533 4534 /// Class to manage the bitcode writing for a thin link bitcode file. 4535 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4536 /// ModHash is for use in ThinLTO incremental build, generated while writing 4537 /// the module bitcode file. 4538 const ModuleHash *ModHash; 4539 4540 public: 4541 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4542 BitstreamWriter &Stream, 4543 const ModuleSummaryIndex &Index, 4544 const ModuleHash &ModHash) 4545 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4546 /*ShouldPreserveUseListOrder=*/false, &Index), 4547 ModHash(&ModHash) {} 4548 4549 void write(); 4550 4551 private: 4552 void writeSimplifiedModuleInfo(); 4553 }; 4554 4555 } // end anonymous namespace 4556 4557 // This function writes a simpilified module info for thin link bitcode file. 4558 // It only contains the source file name along with the name(the offset and 4559 // size in strtab) and linkage for global values. For the global value info 4560 // entry, in order to keep linkage at offset 5, there are three zeros used 4561 // as padding. 4562 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4563 SmallVector<unsigned, 64> Vals; 4564 // Emit the module's source file name. 4565 { 4566 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4567 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4568 if (Bits == SE_Char6) 4569 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4570 else if (Bits == SE_Fixed7) 4571 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4572 4573 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4574 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4575 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4577 Abbv->Add(AbbrevOpToUse); 4578 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4579 4580 for (const auto P : M.getSourceFileName()) 4581 Vals.push_back((unsigned char)P); 4582 4583 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4584 Vals.clear(); 4585 } 4586 4587 // Emit the global variable information. 4588 for (const GlobalVariable &GV : M.globals()) { 4589 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4590 Vals.push_back(StrtabBuilder.add(GV.getName())); 4591 Vals.push_back(GV.getName().size()); 4592 Vals.push_back(0); 4593 Vals.push_back(0); 4594 Vals.push_back(0); 4595 Vals.push_back(getEncodedLinkage(GV)); 4596 4597 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4598 Vals.clear(); 4599 } 4600 4601 // Emit the function proto information. 4602 for (const Function &F : M) { 4603 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4604 Vals.push_back(StrtabBuilder.add(F.getName())); 4605 Vals.push_back(F.getName().size()); 4606 Vals.push_back(0); 4607 Vals.push_back(0); 4608 Vals.push_back(0); 4609 Vals.push_back(getEncodedLinkage(F)); 4610 4611 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4612 Vals.clear(); 4613 } 4614 4615 // Emit the alias information. 4616 for (const GlobalAlias &A : M.aliases()) { 4617 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4618 Vals.push_back(StrtabBuilder.add(A.getName())); 4619 Vals.push_back(A.getName().size()); 4620 Vals.push_back(0); 4621 Vals.push_back(0); 4622 Vals.push_back(0); 4623 Vals.push_back(getEncodedLinkage(A)); 4624 4625 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4626 Vals.clear(); 4627 } 4628 4629 // Emit the ifunc information. 4630 for (const GlobalIFunc &I : M.ifuncs()) { 4631 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4632 Vals.push_back(StrtabBuilder.add(I.getName())); 4633 Vals.push_back(I.getName().size()); 4634 Vals.push_back(0); 4635 Vals.push_back(0); 4636 Vals.push_back(0); 4637 Vals.push_back(getEncodedLinkage(I)); 4638 4639 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4640 Vals.clear(); 4641 } 4642 } 4643 4644 void ThinLinkBitcodeWriter::write() { 4645 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4646 4647 writeModuleVersion(); 4648 4649 writeSimplifiedModuleInfo(); 4650 4651 writePerModuleGlobalValueSummary(); 4652 4653 // Write module hash. 4654 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4655 4656 Stream.ExitBlock(); 4657 } 4658 4659 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4660 const ModuleSummaryIndex &Index, 4661 const ModuleHash &ModHash) { 4662 assert(!WroteStrtab); 4663 4664 // The Mods vector is used by irsymtab::build, which requires non-const 4665 // Modules in case it needs to materialize metadata. But the bitcode writer 4666 // requires that the module is materialized, so we can cast to non-const here, 4667 // after checking that it is in fact materialized. 4668 assert(M.isMaterialized()); 4669 Mods.push_back(const_cast<Module *>(&M)); 4670 4671 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4672 ModHash); 4673 ThinLinkWriter.write(); 4674 } 4675 4676 // Write the specified thin link bitcode file to the given raw output stream, 4677 // where it will be written in a new bitcode block. This is used when 4678 // writing the per-module index file for ThinLTO. 4679 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4680 const ModuleSummaryIndex &Index, 4681 const ModuleHash &ModHash) { 4682 SmallVector<char, 0> Buffer; 4683 Buffer.reserve(256 * 1024); 4684 4685 BitcodeWriter Writer(Buffer); 4686 Writer.writeThinLinkBitcode(M, Index, ModHash); 4687 Writer.writeSymtab(); 4688 Writer.writeStrtab(); 4689 4690 Out.write((char *)&Buffer.front(), Buffer.size()); 4691 } 4692 4693 static const char *getSectionNameForBitcode(const Triple &T) { 4694 switch (T.getObjectFormat()) { 4695 case Triple::MachO: 4696 return "__LLVM,__bitcode"; 4697 case Triple::COFF: 4698 case Triple::ELF: 4699 case Triple::Wasm: 4700 case Triple::UnknownObjectFormat: 4701 return ".llvmbc"; 4702 case Triple::XCOFF: 4703 llvm_unreachable("XCOFF is not yet implemented"); 4704 break; 4705 } 4706 llvm_unreachable("Unimplemented ObjectFormatType"); 4707 } 4708 4709 static const char *getSectionNameForCommandline(const Triple &T) { 4710 switch (T.getObjectFormat()) { 4711 case Triple::MachO: 4712 return "__LLVM,__cmdline"; 4713 case Triple::COFF: 4714 case Triple::ELF: 4715 case Triple::Wasm: 4716 case Triple::UnknownObjectFormat: 4717 return ".llvmcmd"; 4718 case Triple::XCOFF: 4719 llvm_unreachable("XCOFF is not yet implemented"); 4720 break; 4721 } 4722 llvm_unreachable("Unimplemented ObjectFormatType"); 4723 } 4724 4725 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4726 bool EmbedBitcode, bool EmbedMarker, 4727 const std::vector<uint8_t> *CmdArgs) { 4728 // Save llvm.compiler.used and remove it. 4729 SmallVector<Constant *, 2> UsedArray; 4730 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4731 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4732 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4733 for (auto *GV : UsedGlobals) { 4734 if (GV->getName() != "llvm.embedded.module" && 4735 GV->getName() != "llvm.cmdline") 4736 UsedArray.push_back( 4737 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4738 } 4739 if (Used) 4740 Used->eraseFromParent(); 4741 4742 // Embed the bitcode for the llvm module. 4743 std::string Data; 4744 ArrayRef<uint8_t> ModuleData; 4745 Triple T(M.getTargetTriple()); 4746 // Create a constant that contains the bitcode. 4747 // In case of embedding a marker, ignore the input Buf and use the empty 4748 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4749 if (EmbedBitcode) { 4750 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4751 (const unsigned char *)Buf.getBufferEnd())) { 4752 // If the input is LLVM Assembly, bitcode is produced by serializing 4753 // the module. Use-lists order need to be preserved in this case. 4754 llvm::raw_string_ostream OS(Data); 4755 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4756 ModuleData = 4757 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4758 } else 4759 // If the input is LLVM bitcode, write the input byte stream directly. 4760 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4761 Buf.getBufferSize()); 4762 } 4763 llvm::Constant *ModuleConstant = 4764 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4765 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4766 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4767 ModuleConstant); 4768 GV->setSection(getSectionNameForBitcode(T)); 4769 UsedArray.push_back( 4770 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4771 if (llvm::GlobalVariable *Old = 4772 M.getGlobalVariable("llvm.embedded.module", true)) { 4773 assert(Old->hasOneUse() && 4774 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4775 GV->takeName(Old); 4776 Old->eraseFromParent(); 4777 } else { 4778 GV->setName("llvm.embedded.module"); 4779 } 4780 4781 // Skip if only bitcode needs to be embedded. 4782 if (EmbedMarker) { 4783 // Embed command-line options. 4784 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4785 CmdArgs->size()); 4786 llvm::Constant *CmdConstant = 4787 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4788 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4789 llvm::GlobalValue::PrivateLinkage, 4790 CmdConstant); 4791 GV->setSection(getSectionNameForCommandline(T)); 4792 UsedArray.push_back( 4793 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4794 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4795 assert(Old->hasOneUse() && 4796 "llvm.cmdline can only be used once in llvm.compiler.used"); 4797 GV->takeName(Old); 4798 Old->eraseFromParent(); 4799 } else { 4800 GV->setName("llvm.cmdline"); 4801 } 4802 } 4803 4804 if (UsedArray.empty()) 4805 return; 4806 4807 // Recreate llvm.compiler.used. 4808 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4809 auto *NewUsed = new GlobalVariable( 4810 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4811 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4812 NewUsed->setSection("llvm.metadata"); 4813 } 4814