1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/UseListOrder.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Program.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cctype> 33 #include <map> 34 using namespace llvm; 35 36 /// These are manifest constants used by the bitcode writer. They do not need to 37 /// be kept in sync with the reader, but need to be consistent within this file. 38 enum { 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 105 switch (Op) { 106 default: llvm_unreachable("Unknown RMW operation!"); 107 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 108 case AtomicRMWInst::Add: return bitc::RMW_ADD; 109 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 110 case AtomicRMWInst::And: return bitc::RMW_AND; 111 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 112 case AtomicRMWInst::Or: return bitc::RMW_OR; 113 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 114 case AtomicRMWInst::Max: return bitc::RMW_MAX; 115 case AtomicRMWInst::Min: return bitc::RMW_MIN; 116 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 117 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 118 } 119 } 120 121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 122 switch (Ordering) { 123 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 124 case Unordered: return bitc::ORDERING_UNORDERED; 125 case Monotonic: return bitc::ORDERING_MONOTONIC; 126 case Acquire: return bitc::ORDERING_ACQUIRE; 127 case Release: return bitc::ORDERING_RELEASE; 128 case AcquireRelease: return bitc::ORDERING_ACQREL; 129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 130 } 131 llvm_unreachable("Invalid ordering"); 132 } 133 134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 135 switch (SynchScope) { 136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 138 } 139 llvm_unreachable("Invalid synch scope"); 140 } 141 142 static void WriteStringRecord(unsigned Code, StringRef Str, 143 unsigned AbbrevToUse, BitstreamWriter &Stream) { 144 SmallVector<unsigned, 64> Vals; 145 146 // Code: [strchar x N] 147 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 148 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 149 AbbrevToUse = 0; 150 Vals.push_back(Str[i]); 151 } 152 153 // Emit the finished record. 154 Stream.EmitRecord(Code, Vals, AbbrevToUse); 155 } 156 157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 158 switch (Kind) { 159 case Attribute::Alignment: 160 return bitc::ATTR_KIND_ALIGNMENT; 161 case Attribute::AlwaysInline: 162 return bitc::ATTR_KIND_ALWAYS_INLINE; 163 case Attribute::Builtin: 164 return bitc::ATTR_KIND_BUILTIN; 165 case Attribute::ByVal: 166 return bitc::ATTR_KIND_BY_VAL; 167 case Attribute::InAlloca: 168 return bitc::ATTR_KIND_IN_ALLOCA; 169 case Attribute::Cold: 170 return bitc::ATTR_KIND_COLD; 171 case Attribute::InlineHint: 172 return bitc::ATTR_KIND_INLINE_HINT; 173 case Attribute::InReg: 174 return bitc::ATTR_KIND_IN_REG; 175 case Attribute::JumpTable: 176 return bitc::ATTR_KIND_JUMP_TABLE; 177 case Attribute::MinSize: 178 return bitc::ATTR_KIND_MIN_SIZE; 179 case Attribute::Naked: 180 return bitc::ATTR_KIND_NAKED; 181 case Attribute::Nest: 182 return bitc::ATTR_KIND_NEST; 183 case Attribute::NoAlias: 184 return bitc::ATTR_KIND_NO_ALIAS; 185 case Attribute::NoBuiltin: 186 return bitc::ATTR_KIND_NO_BUILTIN; 187 case Attribute::NoCapture: 188 return bitc::ATTR_KIND_NO_CAPTURE; 189 case Attribute::NoDuplicate: 190 return bitc::ATTR_KIND_NO_DUPLICATE; 191 case Attribute::NoImplicitFloat: 192 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 193 case Attribute::NoInline: 194 return bitc::ATTR_KIND_NO_INLINE; 195 case Attribute::NonLazyBind: 196 return bitc::ATTR_KIND_NON_LAZY_BIND; 197 case Attribute::NonNull: 198 return bitc::ATTR_KIND_NON_NULL; 199 case Attribute::Dereferenceable: 200 return bitc::ATTR_KIND_DEREFERENCEABLE; 201 case Attribute::NoRedZone: 202 return bitc::ATTR_KIND_NO_RED_ZONE; 203 case Attribute::NoReturn: 204 return bitc::ATTR_KIND_NO_RETURN; 205 case Attribute::NoUnwind: 206 return bitc::ATTR_KIND_NO_UNWIND; 207 case Attribute::OptimizeForSize: 208 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 209 case Attribute::OptimizeNone: 210 return bitc::ATTR_KIND_OPTIMIZE_NONE; 211 case Attribute::ReadNone: 212 return bitc::ATTR_KIND_READ_NONE; 213 case Attribute::ReadOnly: 214 return bitc::ATTR_KIND_READ_ONLY; 215 case Attribute::Returned: 216 return bitc::ATTR_KIND_RETURNED; 217 case Attribute::ReturnsTwice: 218 return bitc::ATTR_KIND_RETURNS_TWICE; 219 case Attribute::SExt: 220 return bitc::ATTR_KIND_S_EXT; 221 case Attribute::StackAlignment: 222 return bitc::ATTR_KIND_STACK_ALIGNMENT; 223 case Attribute::StackProtect: 224 return bitc::ATTR_KIND_STACK_PROTECT; 225 case Attribute::StackProtectReq: 226 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 227 case Attribute::StackProtectStrong: 228 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 229 case Attribute::StructRet: 230 return bitc::ATTR_KIND_STRUCT_RET; 231 case Attribute::SanitizeAddress: 232 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 233 case Attribute::SanitizeThread: 234 return bitc::ATTR_KIND_SANITIZE_THREAD; 235 case Attribute::SanitizeMemory: 236 return bitc::ATTR_KIND_SANITIZE_MEMORY; 237 case Attribute::UWTable: 238 return bitc::ATTR_KIND_UW_TABLE; 239 case Attribute::ZExt: 240 return bitc::ATTR_KIND_Z_EXT; 241 case Attribute::EndAttrKinds: 242 llvm_unreachable("Can not encode end-attribute kinds marker."); 243 case Attribute::None: 244 llvm_unreachable("Can not encode none-attribute."); 245 } 246 247 llvm_unreachable("Trying to encode unknown attribute"); 248 } 249 250 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 251 BitstreamWriter &Stream) { 252 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 253 if (AttrGrps.empty()) return; 254 255 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 256 257 SmallVector<uint64_t, 64> Record; 258 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 259 AttributeSet AS = AttrGrps[i]; 260 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 261 AttributeSet A = AS.getSlotAttributes(i); 262 263 Record.push_back(VE.getAttributeGroupID(A)); 264 Record.push_back(AS.getSlotIndex(i)); 265 266 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 267 I != E; ++I) { 268 Attribute Attr = *I; 269 if (Attr.isEnumAttribute()) { 270 Record.push_back(0); 271 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 272 } else if (Attr.isIntAttribute()) { 273 Record.push_back(1); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 Record.push_back(Attr.getValueAsInt()); 276 } else { 277 StringRef Kind = Attr.getKindAsString(); 278 StringRef Val = Attr.getValueAsString(); 279 280 Record.push_back(Val.empty() ? 3 : 4); 281 Record.append(Kind.begin(), Kind.end()); 282 Record.push_back(0); 283 if (!Val.empty()) { 284 Record.append(Val.begin(), Val.end()); 285 Record.push_back(0); 286 } 287 } 288 } 289 290 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 291 Record.clear(); 292 } 293 } 294 295 Stream.ExitBlock(); 296 } 297 298 static void WriteAttributeTable(const ValueEnumerator &VE, 299 BitstreamWriter &Stream) { 300 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 301 if (Attrs.empty()) return; 302 303 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 304 305 SmallVector<uint64_t, 64> Record; 306 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 307 const AttributeSet &A = Attrs[i]; 308 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 309 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 310 311 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 312 Record.clear(); 313 } 314 315 Stream.ExitBlock(); 316 } 317 318 /// WriteTypeTable - Write out the type table for a module. 319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 320 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 321 322 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 323 SmallVector<uint64_t, 64> TypeVals; 324 325 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 326 327 // Abbrev for TYPE_CODE_POINTER. 328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 329 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 331 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 332 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 333 334 // Abbrev for TYPE_CODE_FUNCTION. 335 Abbv = new BitCodeAbbrev(); 336 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 340 341 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 342 343 // Abbrev for TYPE_CODE_STRUCT_ANON. 344 Abbv = new BitCodeAbbrev(); 345 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 349 350 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 351 352 // Abbrev for TYPE_CODE_STRUCT_NAME. 353 Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 357 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_STRUCT_NAMED. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_ARRAY. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Emit an entry count so the reader can reserve space. 377 TypeVals.push_back(TypeList.size()); 378 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 379 TypeVals.clear(); 380 381 // Loop over all of the types, emitting each in turn. 382 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 383 Type *T = TypeList[i]; 384 int AbbrevToUse = 0; 385 unsigned Code = 0; 386 387 switch (T->getTypeID()) { 388 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 389 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 390 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 391 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 392 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 393 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 394 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 395 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 396 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 397 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 398 case Type::IntegerTyID: 399 // INTEGER: [width] 400 Code = bitc::TYPE_CODE_INTEGER; 401 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 402 break; 403 case Type::PointerTyID: { 404 PointerType *PTy = cast<PointerType>(T); 405 // POINTER: [pointee type, address space] 406 Code = bitc::TYPE_CODE_POINTER; 407 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 408 unsigned AddressSpace = PTy->getAddressSpace(); 409 TypeVals.push_back(AddressSpace); 410 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 411 break; 412 } 413 case Type::FunctionTyID: { 414 FunctionType *FT = cast<FunctionType>(T); 415 // FUNCTION: [isvararg, retty, paramty x N] 416 Code = bitc::TYPE_CODE_FUNCTION; 417 TypeVals.push_back(FT->isVarArg()); 418 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 419 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 420 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 421 AbbrevToUse = FunctionAbbrev; 422 break; 423 } 424 case Type::StructTyID: { 425 StructType *ST = cast<StructType>(T); 426 // STRUCT: [ispacked, eltty x N] 427 TypeVals.push_back(ST->isPacked()); 428 // Output all of the element types. 429 for (StructType::element_iterator I = ST->element_begin(), 430 E = ST->element_end(); I != E; ++I) 431 TypeVals.push_back(VE.getTypeID(*I)); 432 433 if (ST->isLiteral()) { 434 Code = bitc::TYPE_CODE_STRUCT_ANON; 435 AbbrevToUse = StructAnonAbbrev; 436 } else { 437 if (ST->isOpaque()) { 438 Code = bitc::TYPE_CODE_OPAQUE; 439 } else { 440 Code = bitc::TYPE_CODE_STRUCT_NAMED; 441 AbbrevToUse = StructNamedAbbrev; 442 } 443 444 // Emit the name if it is present. 445 if (!ST->getName().empty()) 446 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 447 StructNameAbbrev, Stream); 448 } 449 break; 450 } 451 case Type::ArrayTyID: { 452 ArrayType *AT = cast<ArrayType>(T); 453 // ARRAY: [numelts, eltty] 454 Code = bitc::TYPE_CODE_ARRAY; 455 TypeVals.push_back(AT->getNumElements()); 456 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 457 AbbrevToUse = ArrayAbbrev; 458 break; 459 } 460 case Type::VectorTyID: { 461 VectorType *VT = cast<VectorType>(T); 462 // VECTOR [numelts, eltty] 463 Code = bitc::TYPE_CODE_VECTOR; 464 TypeVals.push_back(VT->getNumElements()); 465 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 466 break; 467 } 468 } 469 470 // Emit the finished record. 471 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 472 TypeVals.clear(); 473 } 474 475 Stream.ExitBlock(); 476 } 477 478 static unsigned getEncodedLinkage(const GlobalValue &GV) { 479 switch (GV.getLinkage()) { 480 case GlobalValue::ExternalLinkage: 481 return 0; 482 case GlobalValue::WeakAnyLinkage: 483 return 16; 484 case GlobalValue::AppendingLinkage: 485 return 2; 486 case GlobalValue::InternalLinkage: 487 return 3; 488 case GlobalValue::LinkOnceAnyLinkage: 489 return 18; 490 case GlobalValue::ExternalWeakLinkage: 491 return 7; 492 case GlobalValue::CommonLinkage: 493 return 8; 494 case GlobalValue::PrivateLinkage: 495 return 9; 496 case GlobalValue::WeakODRLinkage: 497 return 17; 498 case GlobalValue::LinkOnceODRLinkage: 499 return 19; 500 case GlobalValue::AvailableExternallyLinkage: 501 return 12; 502 } 503 llvm_unreachable("Invalid linkage"); 504 } 505 506 static unsigned getEncodedVisibility(const GlobalValue &GV) { 507 switch (GV.getVisibility()) { 508 case GlobalValue::DefaultVisibility: return 0; 509 case GlobalValue::HiddenVisibility: return 1; 510 case GlobalValue::ProtectedVisibility: return 2; 511 } 512 llvm_unreachable("Invalid visibility"); 513 } 514 515 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 516 switch (GV.getDLLStorageClass()) { 517 case GlobalValue::DefaultStorageClass: return 0; 518 case GlobalValue::DLLImportStorageClass: return 1; 519 case GlobalValue::DLLExportStorageClass: return 2; 520 } 521 llvm_unreachable("Invalid DLL storage class"); 522 } 523 524 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 525 switch (GV.getThreadLocalMode()) { 526 case GlobalVariable::NotThreadLocal: return 0; 527 case GlobalVariable::GeneralDynamicTLSModel: return 1; 528 case GlobalVariable::LocalDynamicTLSModel: return 2; 529 case GlobalVariable::InitialExecTLSModel: return 3; 530 case GlobalVariable::LocalExecTLSModel: return 4; 531 } 532 llvm_unreachable("Invalid TLS model"); 533 } 534 535 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 536 switch (C.getSelectionKind()) { 537 case Comdat::Any: 538 return bitc::COMDAT_SELECTION_KIND_ANY; 539 case Comdat::ExactMatch: 540 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 541 case Comdat::Largest: 542 return bitc::COMDAT_SELECTION_KIND_LARGEST; 543 case Comdat::NoDuplicates: 544 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 545 case Comdat::SameSize: 546 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 547 } 548 llvm_unreachable("Invalid selection kind"); 549 } 550 551 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 552 SmallVector<uint16_t, 64> Vals; 553 for (const Comdat *C : VE.getComdats()) { 554 // COMDAT: [selection_kind, name] 555 Vals.push_back(getEncodedComdatSelectionKind(*C)); 556 size_t Size = C->getName().size(); 557 assert(isUInt<16>(Size)); 558 Vals.push_back(Size); 559 for (char Chr : C->getName()) 560 Vals.push_back((unsigned char)Chr); 561 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 562 Vals.clear(); 563 } 564 } 565 566 // Emit top-level description of module, including target triple, inline asm, 567 // descriptors for global variables, and function prototype info. 568 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 569 BitstreamWriter &Stream) { 570 // Emit various pieces of data attached to a module. 571 if (!M->getTargetTriple().empty()) 572 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 573 0/*TODO*/, Stream); 574 const std::string &DL = M->getDataLayoutStr(); 575 if (!DL.empty()) 576 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 577 if (!M->getModuleInlineAsm().empty()) 578 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 579 0/*TODO*/, Stream); 580 581 // Emit information about sections and GC, computing how many there are. Also 582 // compute the maximum alignment value. 583 std::map<std::string, unsigned> SectionMap; 584 std::map<std::string, unsigned> GCMap; 585 unsigned MaxAlignment = 0; 586 unsigned MaxGlobalType = 0; 587 for (const GlobalValue &GV : M->globals()) { 588 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 589 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 590 if (GV.hasSection()) { 591 // Give section names unique ID's. 592 unsigned &Entry = SectionMap[GV.getSection()]; 593 if (!Entry) { 594 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 595 0/*TODO*/, Stream); 596 Entry = SectionMap.size(); 597 } 598 } 599 } 600 for (const Function &F : *M) { 601 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 602 if (F.hasSection()) { 603 // Give section names unique ID's. 604 unsigned &Entry = SectionMap[F.getSection()]; 605 if (!Entry) { 606 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 607 0/*TODO*/, Stream); 608 Entry = SectionMap.size(); 609 } 610 } 611 if (F.hasGC()) { 612 // Same for GC names. 613 unsigned &Entry = GCMap[F.getGC()]; 614 if (!Entry) { 615 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 616 0/*TODO*/, Stream); 617 Entry = GCMap.size(); 618 } 619 } 620 } 621 622 // Emit abbrev for globals, now that we know # sections and max alignment. 623 unsigned SimpleGVarAbbrev = 0; 624 if (!M->global_empty()) { 625 // Add an abbrev for common globals with no visibility or thread localness. 626 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 627 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 629 Log2_32_Ceil(MaxGlobalType+1))); 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 633 if (MaxAlignment == 0) // Alignment. 634 Abbv->Add(BitCodeAbbrevOp(0)); 635 else { 636 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 638 Log2_32_Ceil(MaxEncAlignment+1))); 639 } 640 if (SectionMap.empty()) // Section. 641 Abbv->Add(BitCodeAbbrevOp(0)); 642 else 643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 644 Log2_32_Ceil(SectionMap.size()+1))); 645 // Don't bother emitting vis + thread local. 646 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 647 } 648 649 // Emit the global variable information. 650 SmallVector<unsigned, 64> Vals; 651 for (const GlobalVariable &GV : M->globals()) { 652 unsigned AbbrevToUse = 0; 653 654 // GLOBALVAR: [type, isconst, initid, 655 // linkage, alignment, section, visibility, threadlocal, 656 // unnamed_addr, externally_initialized, dllstorageclass] 657 Vals.push_back(VE.getTypeID(GV.getType())); 658 Vals.push_back(GV.isConstant()); 659 Vals.push_back(GV.isDeclaration() ? 0 : 660 (VE.getValueID(GV.getInitializer()) + 1)); 661 Vals.push_back(getEncodedLinkage(GV)); 662 Vals.push_back(Log2_32(GV.getAlignment())+1); 663 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 664 if (GV.isThreadLocal() || 665 GV.getVisibility() != GlobalValue::DefaultVisibility || 666 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 667 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 668 GV.hasComdat()) { 669 Vals.push_back(getEncodedVisibility(GV)); 670 Vals.push_back(getEncodedThreadLocalMode(GV)); 671 Vals.push_back(GV.hasUnnamedAddr()); 672 Vals.push_back(GV.isExternallyInitialized()); 673 Vals.push_back(getEncodedDLLStorageClass(GV)); 674 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 675 } else { 676 AbbrevToUse = SimpleGVarAbbrev; 677 } 678 679 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 680 Vals.clear(); 681 } 682 683 // Emit the function proto information. 684 for (const Function &F : *M) { 685 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 686 // section, visibility, gc, unnamed_addr, prologuedata, 687 // dllstorageclass, comdat, prefixdata] 688 Vals.push_back(VE.getTypeID(F.getType())); 689 Vals.push_back(F.getCallingConv()); 690 Vals.push_back(F.isDeclaration()); 691 Vals.push_back(getEncodedLinkage(F)); 692 Vals.push_back(VE.getAttributeID(F.getAttributes())); 693 Vals.push_back(Log2_32(F.getAlignment())+1); 694 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 695 Vals.push_back(getEncodedVisibility(F)); 696 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 697 Vals.push_back(F.hasUnnamedAddr()); 698 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 699 : 0); 700 Vals.push_back(getEncodedDLLStorageClass(F)); 701 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 702 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 703 : 0); 704 705 unsigned AbbrevToUse = 0; 706 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 707 Vals.clear(); 708 } 709 710 // Emit the alias information. 711 for (const GlobalAlias &A : M->aliases()) { 712 // ALIAS: [alias type, aliasee val#, linkage, visibility] 713 Vals.push_back(VE.getTypeID(A.getType())); 714 Vals.push_back(VE.getValueID(A.getAliasee())); 715 Vals.push_back(getEncodedLinkage(A)); 716 Vals.push_back(getEncodedVisibility(A)); 717 Vals.push_back(getEncodedDLLStorageClass(A)); 718 Vals.push_back(getEncodedThreadLocalMode(A)); 719 Vals.push_back(A.hasUnnamedAddr()); 720 unsigned AbbrevToUse = 0; 721 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 722 Vals.clear(); 723 } 724 } 725 726 static uint64_t GetOptimizationFlags(const Value *V) { 727 uint64_t Flags = 0; 728 729 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 730 if (OBO->hasNoSignedWrap()) 731 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 732 if (OBO->hasNoUnsignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 734 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 735 if (PEO->isExact()) 736 Flags |= 1 << bitc::PEO_EXACT; 737 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 738 if (FPMO->hasUnsafeAlgebra()) 739 Flags |= FastMathFlags::UnsafeAlgebra; 740 if (FPMO->hasNoNaNs()) 741 Flags |= FastMathFlags::NoNaNs; 742 if (FPMO->hasNoInfs()) 743 Flags |= FastMathFlags::NoInfs; 744 if (FPMO->hasNoSignedZeros()) 745 Flags |= FastMathFlags::NoSignedZeros; 746 if (FPMO->hasAllowReciprocal()) 747 Flags |= FastMathFlags::AllowReciprocal; 748 } 749 750 return Flags; 751 } 752 753 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 754 const ValueEnumerator &VE, 755 BitstreamWriter &Stream, 756 SmallVectorImpl<uint64_t> &Record) { 757 // Mimic an MDNode with a value as one operand. 758 Value *V = MD->getValue(); 759 Record.push_back(VE.getTypeID(V->getType())); 760 Record.push_back(VE.getValueID(V)); 761 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 762 Record.clear(); 763 } 764 765 static void WriteMDNode(const MDNode *N, 766 const ValueEnumerator &VE, 767 BitstreamWriter &Stream, 768 SmallVectorImpl<uint64_t> &Record) { 769 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 770 Metadata *MD = N->getOperand(i); 771 assert(!(MD && isa<LocalAsMetadata>(MD)) && 772 "Unexpected function-local metadata"); 773 Record.push_back(VE.getMetadataOrNullID(MD)); 774 } 775 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 776 : bitc::METADATA_NODE, 777 Record); 778 Record.clear(); 779 } 780 781 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 782 BitstreamWriter &Stream, 783 SmallVectorImpl<uint64_t> &Record, 784 unsigned Abbrev) { 785 Record.push_back(N->isDistinct()); 786 Record.push_back(N->getLine()); 787 Record.push_back(N->getColumn()); 788 Record.push_back(VE.getMetadataID(N->getScope())); 789 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 790 791 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 792 Record.clear(); 793 } 794 795 static void WriteModuleMetadata(const Module *M, 796 const ValueEnumerator &VE, 797 BitstreamWriter &Stream) { 798 const auto &MDs = VE.getMDs(); 799 if (MDs.empty() && M->named_metadata_empty()) 800 return; 801 802 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 803 804 unsigned MDSAbbrev = 0; 805 if (VE.hasMDString()) { 806 // Abbrev for METADATA_STRING. 807 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 808 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 811 MDSAbbrev = Stream.EmitAbbrev(Abbv); 812 } 813 814 unsigned LocAbbrev = 0; 815 if (VE.hasMDLocation()) { 816 // Abbrev for METADATA_LOCATION. 817 // 818 // Assume the column is usually under 128, and always output the inlined-at 819 // location (it's never more expensive than building an array size 1). 820 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 827 LocAbbrev = Stream.EmitAbbrev(Abbv); 828 } 829 830 unsigned NameAbbrev = 0; 831 if (!M->named_metadata_empty()) { 832 // Abbrev for METADATA_NAME. 833 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 834 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 837 NameAbbrev = Stream.EmitAbbrev(Abbv); 838 } 839 840 SmallVector<uint64_t, 64> Record; 841 for (const Metadata *MD : MDs) { 842 if (const MDLocation *Loc = dyn_cast<MDLocation>(MD)) { 843 WriteMDLocation(Loc, VE, Stream, Record, LocAbbrev); 844 continue; 845 } 846 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 847 WriteMDNode(N, VE, Stream, Record); 848 continue; 849 } 850 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 851 WriteValueAsMetadata(MDC, VE, Stream, Record); 852 continue; 853 } 854 const MDString *MDS = cast<MDString>(MD); 855 // Code: [strchar x N] 856 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 857 858 // Emit the finished record. 859 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 860 Record.clear(); 861 } 862 863 // Write named metadata. 864 for (const NamedMDNode &NMD : M->named_metadata()) { 865 // Write name. 866 StringRef Str = NMD.getName(); 867 Record.append(Str.bytes_begin(), Str.bytes_end()); 868 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 869 Record.clear(); 870 871 // Write named metadata operands. 872 for (const MDNode *N : NMD.operands()) 873 Record.push_back(VE.getMetadataID(N)); 874 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 875 Record.clear(); 876 } 877 878 Stream.ExitBlock(); 879 } 880 881 static void WriteFunctionLocalMetadata(const Function &F, 882 const ValueEnumerator &VE, 883 BitstreamWriter &Stream) { 884 bool StartedMetadataBlock = false; 885 SmallVector<uint64_t, 64> Record; 886 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 887 VE.getFunctionLocalMDs(); 888 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 889 assert(MDs[i] && "Expected valid function-local metadata"); 890 if (!StartedMetadataBlock) { 891 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 892 StartedMetadataBlock = true; 893 } 894 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 895 } 896 897 if (StartedMetadataBlock) 898 Stream.ExitBlock(); 899 } 900 901 static void WriteMetadataAttachment(const Function &F, 902 const ValueEnumerator &VE, 903 BitstreamWriter &Stream) { 904 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 905 906 SmallVector<uint64_t, 64> Record; 907 908 // Write metadata attachments 909 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 910 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 911 912 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 913 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 914 I != E; ++I) { 915 MDs.clear(); 916 I->getAllMetadataOtherThanDebugLoc(MDs); 917 918 // If no metadata, ignore instruction. 919 if (MDs.empty()) continue; 920 921 Record.push_back(VE.getInstructionID(I)); 922 923 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 924 Record.push_back(MDs[i].first); 925 Record.push_back(VE.getMetadataID(MDs[i].second)); 926 } 927 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 928 Record.clear(); 929 } 930 931 Stream.ExitBlock(); 932 } 933 934 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 935 SmallVector<uint64_t, 64> Record; 936 937 // Write metadata kinds 938 // METADATA_KIND - [n x [id, name]] 939 SmallVector<StringRef, 8> Names; 940 M->getMDKindNames(Names); 941 942 if (Names.empty()) return; 943 944 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 945 946 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 947 Record.push_back(MDKindID); 948 StringRef KName = Names[MDKindID]; 949 Record.append(KName.begin(), KName.end()); 950 951 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 952 Record.clear(); 953 } 954 955 Stream.ExitBlock(); 956 } 957 958 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 959 if ((int64_t)V >= 0) 960 Vals.push_back(V << 1); 961 else 962 Vals.push_back((-V << 1) | 1); 963 } 964 965 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 966 const ValueEnumerator &VE, 967 BitstreamWriter &Stream, bool isGlobal) { 968 if (FirstVal == LastVal) return; 969 970 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 971 972 unsigned AggregateAbbrev = 0; 973 unsigned String8Abbrev = 0; 974 unsigned CString7Abbrev = 0; 975 unsigned CString6Abbrev = 0; 976 // If this is a constant pool for the module, emit module-specific abbrevs. 977 if (isGlobal) { 978 // Abbrev for CST_CODE_AGGREGATE. 979 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 980 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 983 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 984 985 // Abbrev for CST_CODE_STRING. 986 Abbv = new BitCodeAbbrev(); 987 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 990 String8Abbrev = Stream.EmitAbbrev(Abbv); 991 // Abbrev for CST_CODE_CSTRING. 992 Abbv = new BitCodeAbbrev(); 993 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 996 CString7Abbrev = Stream.EmitAbbrev(Abbv); 997 // Abbrev for CST_CODE_CSTRING. 998 Abbv = new BitCodeAbbrev(); 999 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1002 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1003 } 1004 1005 SmallVector<uint64_t, 64> Record; 1006 1007 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1008 Type *LastTy = nullptr; 1009 for (unsigned i = FirstVal; i != LastVal; ++i) { 1010 const Value *V = Vals[i].first; 1011 // If we need to switch types, do so now. 1012 if (V->getType() != LastTy) { 1013 LastTy = V->getType(); 1014 Record.push_back(VE.getTypeID(LastTy)); 1015 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1016 CONSTANTS_SETTYPE_ABBREV); 1017 Record.clear(); 1018 } 1019 1020 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1021 Record.push_back(unsigned(IA->hasSideEffects()) | 1022 unsigned(IA->isAlignStack()) << 1 | 1023 unsigned(IA->getDialect()&1) << 2); 1024 1025 // Add the asm string. 1026 const std::string &AsmStr = IA->getAsmString(); 1027 Record.push_back(AsmStr.size()); 1028 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1029 Record.push_back(AsmStr[i]); 1030 1031 // Add the constraint string. 1032 const std::string &ConstraintStr = IA->getConstraintString(); 1033 Record.push_back(ConstraintStr.size()); 1034 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1035 Record.push_back(ConstraintStr[i]); 1036 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1037 Record.clear(); 1038 continue; 1039 } 1040 const Constant *C = cast<Constant>(V); 1041 unsigned Code = -1U; 1042 unsigned AbbrevToUse = 0; 1043 if (C->isNullValue()) { 1044 Code = bitc::CST_CODE_NULL; 1045 } else if (isa<UndefValue>(C)) { 1046 Code = bitc::CST_CODE_UNDEF; 1047 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1048 if (IV->getBitWidth() <= 64) { 1049 uint64_t V = IV->getSExtValue(); 1050 emitSignedInt64(Record, V); 1051 Code = bitc::CST_CODE_INTEGER; 1052 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1053 } else { // Wide integers, > 64 bits in size. 1054 // We have an arbitrary precision integer value to write whose 1055 // bit width is > 64. However, in canonical unsigned integer 1056 // format it is likely that the high bits are going to be zero. 1057 // So, we only write the number of active words. 1058 unsigned NWords = IV->getValue().getActiveWords(); 1059 const uint64_t *RawWords = IV->getValue().getRawData(); 1060 for (unsigned i = 0; i != NWords; ++i) { 1061 emitSignedInt64(Record, RawWords[i]); 1062 } 1063 Code = bitc::CST_CODE_WIDE_INTEGER; 1064 } 1065 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1066 Code = bitc::CST_CODE_FLOAT; 1067 Type *Ty = CFP->getType(); 1068 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1069 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1070 } else if (Ty->isX86_FP80Ty()) { 1071 // api needed to prevent premature destruction 1072 // bits are not in the same order as a normal i80 APInt, compensate. 1073 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1074 const uint64_t *p = api.getRawData(); 1075 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1076 Record.push_back(p[0] & 0xffffLL); 1077 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1078 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1079 const uint64_t *p = api.getRawData(); 1080 Record.push_back(p[0]); 1081 Record.push_back(p[1]); 1082 } else { 1083 assert (0 && "Unknown FP type!"); 1084 } 1085 } else if (isa<ConstantDataSequential>(C) && 1086 cast<ConstantDataSequential>(C)->isString()) { 1087 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1088 // Emit constant strings specially. 1089 unsigned NumElts = Str->getNumElements(); 1090 // If this is a null-terminated string, use the denser CSTRING encoding. 1091 if (Str->isCString()) { 1092 Code = bitc::CST_CODE_CSTRING; 1093 --NumElts; // Don't encode the null, which isn't allowed by char6. 1094 } else { 1095 Code = bitc::CST_CODE_STRING; 1096 AbbrevToUse = String8Abbrev; 1097 } 1098 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1099 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1100 for (unsigned i = 0; i != NumElts; ++i) { 1101 unsigned char V = Str->getElementAsInteger(i); 1102 Record.push_back(V); 1103 isCStr7 &= (V & 128) == 0; 1104 if (isCStrChar6) 1105 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1106 } 1107 1108 if (isCStrChar6) 1109 AbbrevToUse = CString6Abbrev; 1110 else if (isCStr7) 1111 AbbrevToUse = CString7Abbrev; 1112 } else if (const ConstantDataSequential *CDS = 1113 dyn_cast<ConstantDataSequential>(C)) { 1114 Code = bitc::CST_CODE_DATA; 1115 Type *EltTy = CDS->getType()->getElementType(); 1116 if (isa<IntegerType>(EltTy)) { 1117 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1118 Record.push_back(CDS->getElementAsInteger(i)); 1119 } else if (EltTy->isFloatTy()) { 1120 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1121 union { float F; uint32_t I; }; 1122 F = CDS->getElementAsFloat(i); 1123 Record.push_back(I); 1124 } 1125 } else { 1126 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1127 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1128 union { double F; uint64_t I; }; 1129 F = CDS->getElementAsDouble(i); 1130 Record.push_back(I); 1131 } 1132 } 1133 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1134 isa<ConstantVector>(C)) { 1135 Code = bitc::CST_CODE_AGGREGATE; 1136 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1137 Record.push_back(VE.getValueID(C->getOperand(i))); 1138 AbbrevToUse = AggregateAbbrev; 1139 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1140 switch (CE->getOpcode()) { 1141 default: 1142 if (Instruction::isCast(CE->getOpcode())) { 1143 Code = bitc::CST_CODE_CE_CAST; 1144 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1145 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1146 Record.push_back(VE.getValueID(C->getOperand(0))); 1147 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1148 } else { 1149 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1150 Code = bitc::CST_CODE_CE_BINOP; 1151 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1152 Record.push_back(VE.getValueID(C->getOperand(0))); 1153 Record.push_back(VE.getValueID(C->getOperand(1))); 1154 uint64_t Flags = GetOptimizationFlags(CE); 1155 if (Flags != 0) 1156 Record.push_back(Flags); 1157 } 1158 break; 1159 case Instruction::GetElementPtr: 1160 Code = bitc::CST_CODE_CE_GEP; 1161 if (cast<GEPOperator>(C)->isInBounds()) 1162 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1163 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1164 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1165 Record.push_back(VE.getValueID(C->getOperand(i))); 1166 } 1167 break; 1168 case Instruction::Select: 1169 Code = bitc::CST_CODE_CE_SELECT; 1170 Record.push_back(VE.getValueID(C->getOperand(0))); 1171 Record.push_back(VE.getValueID(C->getOperand(1))); 1172 Record.push_back(VE.getValueID(C->getOperand(2))); 1173 break; 1174 case Instruction::ExtractElement: 1175 Code = bitc::CST_CODE_CE_EXTRACTELT; 1176 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1177 Record.push_back(VE.getValueID(C->getOperand(0))); 1178 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1179 Record.push_back(VE.getValueID(C->getOperand(1))); 1180 break; 1181 case Instruction::InsertElement: 1182 Code = bitc::CST_CODE_CE_INSERTELT; 1183 Record.push_back(VE.getValueID(C->getOperand(0))); 1184 Record.push_back(VE.getValueID(C->getOperand(1))); 1185 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1186 Record.push_back(VE.getValueID(C->getOperand(2))); 1187 break; 1188 case Instruction::ShuffleVector: 1189 // If the return type and argument types are the same, this is a 1190 // standard shufflevector instruction. If the types are different, 1191 // then the shuffle is widening or truncating the input vectors, and 1192 // the argument type must also be encoded. 1193 if (C->getType() == C->getOperand(0)->getType()) { 1194 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1195 } else { 1196 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1197 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1198 } 1199 Record.push_back(VE.getValueID(C->getOperand(0))); 1200 Record.push_back(VE.getValueID(C->getOperand(1))); 1201 Record.push_back(VE.getValueID(C->getOperand(2))); 1202 break; 1203 case Instruction::ICmp: 1204 case Instruction::FCmp: 1205 Code = bitc::CST_CODE_CE_CMP; 1206 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1207 Record.push_back(VE.getValueID(C->getOperand(0))); 1208 Record.push_back(VE.getValueID(C->getOperand(1))); 1209 Record.push_back(CE->getPredicate()); 1210 break; 1211 } 1212 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1213 Code = bitc::CST_CODE_BLOCKADDRESS; 1214 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1215 Record.push_back(VE.getValueID(BA->getFunction())); 1216 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1217 } else { 1218 #ifndef NDEBUG 1219 C->dump(); 1220 #endif 1221 llvm_unreachable("Unknown constant!"); 1222 } 1223 Stream.EmitRecord(Code, Record, AbbrevToUse); 1224 Record.clear(); 1225 } 1226 1227 Stream.ExitBlock(); 1228 } 1229 1230 static void WriteModuleConstants(const ValueEnumerator &VE, 1231 BitstreamWriter &Stream) { 1232 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1233 1234 // Find the first constant to emit, which is the first non-globalvalue value. 1235 // We know globalvalues have been emitted by WriteModuleInfo. 1236 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1237 if (!isa<GlobalValue>(Vals[i].first)) { 1238 WriteConstants(i, Vals.size(), VE, Stream, true); 1239 return; 1240 } 1241 } 1242 } 1243 1244 /// PushValueAndType - The file has to encode both the value and type id for 1245 /// many values, because we need to know what type to create for forward 1246 /// references. However, most operands are not forward references, so this type 1247 /// field is not needed. 1248 /// 1249 /// This function adds V's value ID to Vals. If the value ID is higher than the 1250 /// instruction ID, then it is a forward reference, and it also includes the 1251 /// type ID. The value ID that is written is encoded relative to the InstID. 1252 static bool PushValueAndType(const Value *V, unsigned InstID, 1253 SmallVectorImpl<unsigned> &Vals, 1254 ValueEnumerator &VE) { 1255 unsigned ValID = VE.getValueID(V); 1256 // Make encoding relative to the InstID. 1257 Vals.push_back(InstID - ValID); 1258 if (ValID >= InstID) { 1259 Vals.push_back(VE.getTypeID(V->getType())); 1260 return true; 1261 } 1262 return false; 1263 } 1264 1265 /// pushValue - Like PushValueAndType, but where the type of the value is 1266 /// omitted (perhaps it was already encoded in an earlier operand). 1267 static void pushValue(const Value *V, unsigned InstID, 1268 SmallVectorImpl<unsigned> &Vals, 1269 ValueEnumerator &VE) { 1270 unsigned ValID = VE.getValueID(V); 1271 Vals.push_back(InstID - ValID); 1272 } 1273 1274 static void pushValueSigned(const Value *V, unsigned InstID, 1275 SmallVectorImpl<uint64_t> &Vals, 1276 ValueEnumerator &VE) { 1277 unsigned ValID = VE.getValueID(V); 1278 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1279 emitSignedInt64(Vals, diff); 1280 } 1281 1282 /// WriteInstruction - Emit an instruction to the specified stream. 1283 static void WriteInstruction(const Instruction &I, unsigned InstID, 1284 ValueEnumerator &VE, BitstreamWriter &Stream, 1285 SmallVectorImpl<unsigned> &Vals) { 1286 unsigned Code = 0; 1287 unsigned AbbrevToUse = 0; 1288 VE.setInstructionID(&I); 1289 switch (I.getOpcode()) { 1290 default: 1291 if (Instruction::isCast(I.getOpcode())) { 1292 Code = bitc::FUNC_CODE_INST_CAST; 1293 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1294 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1295 Vals.push_back(VE.getTypeID(I.getType())); 1296 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1297 } else { 1298 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1299 Code = bitc::FUNC_CODE_INST_BINOP; 1300 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1301 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1302 pushValue(I.getOperand(1), InstID, Vals, VE); 1303 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1304 uint64_t Flags = GetOptimizationFlags(&I); 1305 if (Flags != 0) { 1306 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1307 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1308 Vals.push_back(Flags); 1309 } 1310 } 1311 break; 1312 1313 case Instruction::GetElementPtr: 1314 Code = bitc::FUNC_CODE_INST_GEP; 1315 if (cast<GEPOperator>(&I)->isInBounds()) 1316 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1317 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1318 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1319 break; 1320 case Instruction::ExtractValue: { 1321 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1322 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1323 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1324 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1325 Vals.push_back(*i); 1326 break; 1327 } 1328 case Instruction::InsertValue: { 1329 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1330 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1331 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1332 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1333 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1334 Vals.push_back(*i); 1335 break; 1336 } 1337 case Instruction::Select: 1338 Code = bitc::FUNC_CODE_INST_VSELECT; 1339 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1340 pushValue(I.getOperand(2), InstID, Vals, VE); 1341 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1342 break; 1343 case Instruction::ExtractElement: 1344 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1345 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1346 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1347 break; 1348 case Instruction::InsertElement: 1349 Code = bitc::FUNC_CODE_INST_INSERTELT; 1350 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1351 pushValue(I.getOperand(1), InstID, Vals, VE); 1352 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1353 break; 1354 case Instruction::ShuffleVector: 1355 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1356 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1357 pushValue(I.getOperand(1), InstID, Vals, VE); 1358 pushValue(I.getOperand(2), InstID, Vals, VE); 1359 break; 1360 case Instruction::ICmp: 1361 case Instruction::FCmp: 1362 // compare returning Int1Ty or vector of Int1Ty 1363 Code = bitc::FUNC_CODE_INST_CMP2; 1364 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1365 pushValue(I.getOperand(1), InstID, Vals, VE); 1366 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1367 break; 1368 1369 case Instruction::Ret: 1370 { 1371 Code = bitc::FUNC_CODE_INST_RET; 1372 unsigned NumOperands = I.getNumOperands(); 1373 if (NumOperands == 0) 1374 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1375 else if (NumOperands == 1) { 1376 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1377 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1378 } else { 1379 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1380 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1381 } 1382 } 1383 break; 1384 case Instruction::Br: 1385 { 1386 Code = bitc::FUNC_CODE_INST_BR; 1387 const BranchInst &II = cast<BranchInst>(I); 1388 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1389 if (II.isConditional()) { 1390 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1391 pushValue(II.getCondition(), InstID, Vals, VE); 1392 } 1393 } 1394 break; 1395 case Instruction::Switch: 1396 { 1397 Code = bitc::FUNC_CODE_INST_SWITCH; 1398 const SwitchInst &SI = cast<SwitchInst>(I); 1399 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1400 pushValue(SI.getCondition(), InstID, Vals, VE); 1401 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1402 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1403 i != e; ++i) { 1404 Vals.push_back(VE.getValueID(i.getCaseValue())); 1405 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1406 } 1407 } 1408 break; 1409 case Instruction::IndirectBr: 1410 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1411 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1412 // Encode the address operand as relative, but not the basic blocks. 1413 pushValue(I.getOperand(0), InstID, Vals, VE); 1414 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1415 Vals.push_back(VE.getValueID(I.getOperand(i))); 1416 break; 1417 1418 case Instruction::Invoke: { 1419 const InvokeInst *II = cast<InvokeInst>(&I); 1420 const Value *Callee(II->getCalledValue()); 1421 PointerType *PTy = cast<PointerType>(Callee->getType()); 1422 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1423 Code = bitc::FUNC_CODE_INST_INVOKE; 1424 1425 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1426 Vals.push_back(II->getCallingConv()); 1427 Vals.push_back(VE.getValueID(II->getNormalDest())); 1428 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1429 PushValueAndType(Callee, InstID, Vals, VE); 1430 1431 // Emit value #'s for the fixed parameters. 1432 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1433 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1434 1435 // Emit type/value pairs for varargs params. 1436 if (FTy->isVarArg()) { 1437 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1438 i != e; ++i) 1439 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1440 } 1441 break; 1442 } 1443 case Instruction::Resume: 1444 Code = bitc::FUNC_CODE_INST_RESUME; 1445 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1446 break; 1447 case Instruction::Unreachable: 1448 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1449 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1450 break; 1451 1452 case Instruction::PHI: { 1453 const PHINode &PN = cast<PHINode>(I); 1454 Code = bitc::FUNC_CODE_INST_PHI; 1455 // With the newer instruction encoding, forward references could give 1456 // negative valued IDs. This is most common for PHIs, so we use 1457 // signed VBRs. 1458 SmallVector<uint64_t, 128> Vals64; 1459 Vals64.push_back(VE.getTypeID(PN.getType())); 1460 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1461 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1462 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1463 } 1464 // Emit a Vals64 vector and exit. 1465 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1466 Vals64.clear(); 1467 return; 1468 } 1469 1470 case Instruction::LandingPad: { 1471 const LandingPadInst &LP = cast<LandingPadInst>(I); 1472 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1473 Vals.push_back(VE.getTypeID(LP.getType())); 1474 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1475 Vals.push_back(LP.isCleanup()); 1476 Vals.push_back(LP.getNumClauses()); 1477 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1478 if (LP.isCatch(I)) 1479 Vals.push_back(LandingPadInst::Catch); 1480 else 1481 Vals.push_back(LandingPadInst::Filter); 1482 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1483 } 1484 break; 1485 } 1486 1487 case Instruction::Alloca: { 1488 Code = bitc::FUNC_CODE_INST_ALLOCA; 1489 Vals.push_back(VE.getTypeID(I.getType())); 1490 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1491 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1492 const AllocaInst &AI = cast<AllocaInst>(I); 1493 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1494 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1495 "not enough bits for maximum alignment"); 1496 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1497 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1498 Vals.push_back(AlignRecord); 1499 break; 1500 } 1501 1502 case Instruction::Load: 1503 if (cast<LoadInst>(I).isAtomic()) { 1504 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1505 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1506 } else { 1507 Code = bitc::FUNC_CODE_INST_LOAD; 1508 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1509 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1510 } 1511 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1512 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1513 if (cast<LoadInst>(I).isAtomic()) { 1514 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1515 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1516 } 1517 break; 1518 case Instruction::Store: 1519 if (cast<StoreInst>(I).isAtomic()) 1520 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1521 else 1522 Code = bitc::FUNC_CODE_INST_STORE; 1523 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1524 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1525 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1526 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1527 if (cast<StoreInst>(I).isAtomic()) { 1528 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1529 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1530 } 1531 break; 1532 case Instruction::AtomicCmpXchg: 1533 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1534 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1535 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1536 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1537 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1538 Vals.push_back(GetEncodedOrdering( 1539 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1540 Vals.push_back(GetEncodedSynchScope( 1541 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1542 Vals.push_back(GetEncodedOrdering( 1543 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1544 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1545 break; 1546 case Instruction::AtomicRMW: 1547 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1548 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1549 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1550 Vals.push_back(GetEncodedRMWOperation( 1551 cast<AtomicRMWInst>(I).getOperation())); 1552 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1553 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1554 Vals.push_back(GetEncodedSynchScope( 1555 cast<AtomicRMWInst>(I).getSynchScope())); 1556 break; 1557 case Instruction::Fence: 1558 Code = bitc::FUNC_CODE_INST_FENCE; 1559 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1560 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1561 break; 1562 case Instruction::Call: { 1563 const CallInst &CI = cast<CallInst>(I); 1564 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1565 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1566 1567 Code = bitc::FUNC_CODE_INST_CALL; 1568 1569 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1570 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1571 unsigned(CI.isMustTailCall()) << 14); 1572 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1573 1574 // Emit value #'s for the fixed parameters. 1575 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1576 // Check for labels (can happen with asm labels). 1577 if (FTy->getParamType(i)->isLabelTy()) 1578 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1579 else 1580 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1581 } 1582 1583 // Emit type/value pairs for varargs params. 1584 if (FTy->isVarArg()) { 1585 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1586 i != e; ++i) 1587 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1588 } 1589 break; 1590 } 1591 case Instruction::VAArg: 1592 Code = bitc::FUNC_CODE_INST_VAARG; 1593 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1594 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1595 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1596 break; 1597 } 1598 1599 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1600 Vals.clear(); 1601 } 1602 1603 // Emit names for globals/functions etc. 1604 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1605 const ValueEnumerator &VE, 1606 BitstreamWriter &Stream) { 1607 if (VST.empty()) return; 1608 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1609 1610 // FIXME: Set up the abbrev, we know how many values there are! 1611 // FIXME: We know if the type names can use 7-bit ascii. 1612 SmallVector<unsigned, 64> NameVals; 1613 1614 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1615 SI != SE; ++SI) { 1616 1617 const ValueName &Name = *SI; 1618 1619 // Figure out the encoding to use for the name. 1620 bool is7Bit = true; 1621 bool isChar6 = true; 1622 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1623 C != E; ++C) { 1624 if (isChar6) 1625 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1626 if ((unsigned char)*C & 128) { 1627 is7Bit = false; 1628 break; // don't bother scanning the rest. 1629 } 1630 } 1631 1632 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1633 1634 // VST_ENTRY: [valueid, namechar x N] 1635 // VST_BBENTRY: [bbid, namechar x N] 1636 unsigned Code; 1637 if (isa<BasicBlock>(SI->getValue())) { 1638 Code = bitc::VST_CODE_BBENTRY; 1639 if (isChar6) 1640 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1641 } else { 1642 Code = bitc::VST_CODE_ENTRY; 1643 if (isChar6) 1644 AbbrevToUse = VST_ENTRY_6_ABBREV; 1645 else if (is7Bit) 1646 AbbrevToUse = VST_ENTRY_7_ABBREV; 1647 } 1648 1649 NameVals.push_back(VE.getValueID(SI->getValue())); 1650 for (const char *P = Name.getKeyData(), 1651 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1652 NameVals.push_back((unsigned char)*P); 1653 1654 // Emit the finished record. 1655 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1656 NameVals.clear(); 1657 } 1658 Stream.ExitBlock(); 1659 } 1660 1661 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1662 BitstreamWriter &Stream) { 1663 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1664 unsigned Code; 1665 if (isa<BasicBlock>(Order.V)) 1666 Code = bitc::USELIST_CODE_BB; 1667 else 1668 Code = bitc::USELIST_CODE_DEFAULT; 1669 1670 SmallVector<uint64_t, 64> Record; 1671 for (unsigned I : Order.Shuffle) 1672 Record.push_back(I); 1673 Record.push_back(VE.getValueID(Order.V)); 1674 Stream.EmitRecord(Code, Record); 1675 } 1676 1677 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1678 BitstreamWriter &Stream) { 1679 auto hasMore = [&]() { 1680 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1681 }; 1682 if (!hasMore()) 1683 // Nothing to do. 1684 return; 1685 1686 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1687 while (hasMore()) { 1688 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1689 VE.UseListOrders.pop_back(); 1690 } 1691 Stream.ExitBlock(); 1692 } 1693 1694 /// WriteFunction - Emit a function body to the module stream. 1695 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1696 BitstreamWriter &Stream) { 1697 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1698 VE.incorporateFunction(F); 1699 1700 SmallVector<unsigned, 64> Vals; 1701 1702 // Emit the number of basic blocks, so the reader can create them ahead of 1703 // time. 1704 Vals.push_back(VE.getBasicBlocks().size()); 1705 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1706 Vals.clear(); 1707 1708 // If there are function-local constants, emit them now. 1709 unsigned CstStart, CstEnd; 1710 VE.getFunctionConstantRange(CstStart, CstEnd); 1711 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1712 1713 // If there is function-local metadata, emit it now. 1714 WriteFunctionLocalMetadata(F, VE, Stream); 1715 1716 // Keep a running idea of what the instruction ID is. 1717 unsigned InstID = CstEnd; 1718 1719 bool NeedsMetadataAttachment = false; 1720 1721 DebugLoc LastDL; 1722 1723 // Finally, emit all the instructions, in order. 1724 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1725 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1726 I != E; ++I) { 1727 WriteInstruction(*I, InstID, VE, Stream, Vals); 1728 1729 if (!I->getType()->isVoidTy()) 1730 ++InstID; 1731 1732 // If the instruction has metadata, write a metadata attachment later. 1733 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1734 1735 // If the instruction has a debug location, emit it. 1736 DebugLoc DL = I->getDebugLoc(); 1737 if (DL.isUnknown()) { 1738 // nothing todo. 1739 } else if (DL == LastDL) { 1740 // Just repeat the same debug loc as last time. 1741 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1742 } else { 1743 MDNode *Scope, *IA; 1744 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1745 assert(Scope && "Expected valid scope"); 1746 1747 Vals.push_back(DL.getLine()); 1748 Vals.push_back(DL.getCol()); 1749 Vals.push_back(VE.getMetadataOrNullID(Scope)); 1750 Vals.push_back(VE.getMetadataOrNullID(IA)); 1751 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1752 Vals.clear(); 1753 1754 LastDL = DL; 1755 } 1756 } 1757 1758 // Emit names for all the instructions etc. 1759 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1760 1761 if (NeedsMetadataAttachment) 1762 WriteMetadataAttachment(F, VE, Stream); 1763 if (shouldPreserveBitcodeUseListOrder()) 1764 WriteUseListBlock(&F, VE, Stream); 1765 VE.purgeFunction(); 1766 Stream.ExitBlock(); 1767 } 1768 1769 // Emit blockinfo, which defines the standard abbreviations etc. 1770 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1771 // We only want to emit block info records for blocks that have multiple 1772 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1773 // Other blocks can define their abbrevs inline. 1774 Stream.EnterBlockInfoBlock(2); 1775 1776 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1777 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1782 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1783 Abbv) != VST_ENTRY_8_ABBREV) 1784 llvm_unreachable("Unexpected abbrev ordering!"); 1785 } 1786 1787 { // 7-bit fixed width VST_ENTRY strings. 1788 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1789 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1793 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1794 Abbv) != VST_ENTRY_7_ABBREV) 1795 llvm_unreachable("Unexpected abbrev ordering!"); 1796 } 1797 { // 6-bit char6 VST_ENTRY strings. 1798 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1799 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1803 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1804 Abbv) != VST_ENTRY_6_ABBREV) 1805 llvm_unreachable("Unexpected abbrev ordering!"); 1806 } 1807 { // 6-bit char6 VST_BBENTRY strings. 1808 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1809 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1813 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1814 Abbv) != VST_BBENTRY_6_ABBREV) 1815 llvm_unreachable("Unexpected abbrev ordering!"); 1816 } 1817 1818 1819 1820 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1821 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1822 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1824 Log2_32_Ceil(VE.getTypes().size()+1))); 1825 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1826 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1827 llvm_unreachable("Unexpected abbrev ordering!"); 1828 } 1829 1830 { // INTEGER abbrev for CONSTANTS_BLOCK. 1831 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1832 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1834 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1835 Abbv) != CONSTANTS_INTEGER_ABBREV) 1836 llvm_unreachable("Unexpected abbrev ordering!"); 1837 } 1838 1839 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1840 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1841 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1844 Log2_32_Ceil(VE.getTypes().size()+1))); 1845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1846 1847 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1848 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1849 llvm_unreachable("Unexpected abbrev ordering!"); 1850 } 1851 { // NULL abbrev for CONSTANTS_BLOCK. 1852 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1853 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1854 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1855 Abbv) != CONSTANTS_NULL_Abbrev) 1856 llvm_unreachable("Unexpected abbrev ordering!"); 1857 } 1858 1859 // FIXME: This should only use space for first class types! 1860 1861 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1862 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1863 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1867 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1868 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1869 llvm_unreachable("Unexpected abbrev ordering!"); 1870 } 1871 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1872 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1877 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1878 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1879 llvm_unreachable("Unexpected abbrev ordering!"); 1880 } 1881 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1882 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1883 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1888 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1889 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1890 llvm_unreachable("Unexpected abbrev ordering!"); 1891 } 1892 { // INST_CAST abbrev for FUNCTION_BLOCK. 1893 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1894 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1897 Log2_32_Ceil(VE.getTypes().size()+1))); 1898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1899 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1900 Abbv) != FUNCTION_INST_CAST_ABBREV) 1901 llvm_unreachable("Unexpected abbrev ordering!"); 1902 } 1903 1904 { // INST_RET abbrev for FUNCTION_BLOCK. 1905 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1906 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1907 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1908 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1909 llvm_unreachable("Unexpected abbrev ordering!"); 1910 } 1911 { // INST_RET abbrev for FUNCTION_BLOCK. 1912 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1913 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1915 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1916 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1917 llvm_unreachable("Unexpected abbrev ordering!"); 1918 } 1919 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1920 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1921 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1922 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1923 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1924 llvm_unreachable("Unexpected abbrev ordering!"); 1925 } 1926 1927 Stream.ExitBlock(); 1928 } 1929 1930 /// WriteModule - Emit the specified module to the bitstream. 1931 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1932 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1933 1934 SmallVector<unsigned, 1> Vals; 1935 unsigned CurVersion = 1; 1936 Vals.push_back(CurVersion); 1937 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1938 1939 // Analyze the module, enumerating globals, functions, etc. 1940 ValueEnumerator VE(*M); 1941 1942 // Emit blockinfo, which defines the standard abbreviations etc. 1943 WriteBlockInfo(VE, Stream); 1944 1945 // Emit information about attribute groups. 1946 WriteAttributeGroupTable(VE, Stream); 1947 1948 // Emit information about parameter attributes. 1949 WriteAttributeTable(VE, Stream); 1950 1951 // Emit information describing all of the types in the module. 1952 WriteTypeTable(VE, Stream); 1953 1954 writeComdats(VE, Stream); 1955 1956 // Emit top-level description of module, including target triple, inline asm, 1957 // descriptors for global variables, and function prototype info. 1958 WriteModuleInfo(M, VE, Stream); 1959 1960 // Emit constants. 1961 WriteModuleConstants(VE, Stream); 1962 1963 // Emit metadata. 1964 WriteModuleMetadata(M, VE, Stream); 1965 1966 // Emit metadata. 1967 WriteModuleMetadataStore(M, Stream); 1968 1969 // Emit names for globals/functions etc. 1970 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1971 1972 // Emit module-level use-lists. 1973 if (shouldPreserveBitcodeUseListOrder()) 1974 WriteUseListBlock(nullptr, VE, Stream); 1975 1976 // Emit function bodies. 1977 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1978 if (!F->isDeclaration()) 1979 WriteFunction(*F, VE, Stream); 1980 1981 Stream.ExitBlock(); 1982 } 1983 1984 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1985 /// header and trailer to make it compatible with the system archiver. To do 1986 /// this we emit the following header, and then emit a trailer that pads the 1987 /// file out to be a multiple of 16 bytes. 1988 /// 1989 /// struct bc_header { 1990 /// uint32_t Magic; // 0x0B17C0DE 1991 /// uint32_t Version; // Version, currently always 0. 1992 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1993 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1994 /// uint32_t CPUType; // CPU specifier. 1995 /// ... potentially more later ... 1996 /// }; 1997 enum { 1998 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1999 DarwinBCHeaderSize = 5*4 2000 }; 2001 2002 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2003 uint32_t &Position) { 2004 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2005 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2006 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2007 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2008 Position += 4; 2009 } 2010 2011 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2012 const Triple &TT) { 2013 unsigned CPUType = ~0U; 2014 2015 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2016 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2017 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2018 // specific constants here because they are implicitly part of the Darwin ABI. 2019 enum { 2020 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2021 DARWIN_CPU_TYPE_X86 = 7, 2022 DARWIN_CPU_TYPE_ARM = 12, 2023 DARWIN_CPU_TYPE_POWERPC = 18 2024 }; 2025 2026 Triple::ArchType Arch = TT.getArch(); 2027 if (Arch == Triple::x86_64) 2028 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2029 else if (Arch == Triple::x86) 2030 CPUType = DARWIN_CPU_TYPE_X86; 2031 else if (Arch == Triple::ppc) 2032 CPUType = DARWIN_CPU_TYPE_POWERPC; 2033 else if (Arch == Triple::ppc64) 2034 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2035 else if (Arch == Triple::arm || Arch == Triple::thumb) 2036 CPUType = DARWIN_CPU_TYPE_ARM; 2037 2038 // Traditional Bitcode starts after header. 2039 assert(Buffer.size() >= DarwinBCHeaderSize && 2040 "Expected header size to be reserved"); 2041 unsigned BCOffset = DarwinBCHeaderSize; 2042 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2043 2044 // Write the magic and version. 2045 unsigned Position = 0; 2046 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2047 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2048 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2049 WriteInt32ToBuffer(BCSize , Buffer, Position); 2050 WriteInt32ToBuffer(CPUType , Buffer, Position); 2051 2052 // If the file is not a multiple of 16 bytes, insert dummy padding. 2053 while (Buffer.size() & 15) 2054 Buffer.push_back(0); 2055 } 2056 2057 /// WriteBitcodeToFile - Write the specified module to the specified output 2058 /// stream. 2059 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2060 SmallVector<char, 0> Buffer; 2061 Buffer.reserve(256*1024); 2062 2063 // If this is darwin or another generic macho target, reserve space for the 2064 // header. 2065 Triple TT(M->getTargetTriple()); 2066 if (TT.isOSDarwin()) 2067 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2068 2069 // Emit the module into the buffer. 2070 { 2071 BitstreamWriter Stream(Buffer); 2072 2073 // Emit the file header. 2074 Stream.Emit((unsigned)'B', 8); 2075 Stream.Emit((unsigned)'C', 8); 2076 Stream.Emit(0x0, 4); 2077 Stream.Emit(0xC, 4); 2078 Stream.Emit(0xE, 4); 2079 Stream.Emit(0xD, 4); 2080 2081 // Emit the module. 2082 WriteModule(M, Stream); 2083 } 2084 2085 if (TT.isOSDarwin()) 2086 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2087 2088 // Write the generated bitstream to "Out". 2089 Out.write((char*)&Buffer.front(), Buffer.size()); 2090 } 2091