1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/Program.h"
30 #include <cctype>
31 #include <map>
32 using namespace llvm;
33 
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38 
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44 
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50 
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60 
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62   switch (Opcode) {
63   default: llvm_unreachable("Unknown cast instruction!");
64   case Instruction::Trunc   : return bitc::CAST_TRUNC;
65   case Instruction::ZExt    : return bitc::CAST_ZEXT;
66   case Instruction::SExt    : return bitc::CAST_SEXT;
67   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72   case Instruction::FPExt   : return bitc::CAST_FPEXT;
73   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75   case Instruction::BitCast : return bitc::CAST_BITCAST;
76   }
77 }
78 
79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80   switch (Opcode) {
81   default: llvm_unreachable("Unknown binary instruction!");
82   case Instruction::Add:
83   case Instruction::FAdd: return bitc::BINOP_ADD;
84   case Instruction::Sub:
85   case Instruction::FSub: return bitc::BINOP_SUB;
86   case Instruction::Mul:
87   case Instruction::FMul: return bitc::BINOP_MUL;
88   case Instruction::UDiv: return bitc::BINOP_UDIV;
89   case Instruction::FDiv:
90   case Instruction::SDiv: return bitc::BINOP_SDIV;
91   case Instruction::URem: return bitc::BINOP_UREM;
92   case Instruction::FRem:
93   case Instruction::SRem: return bitc::BINOP_SREM;
94   case Instruction::Shl:  return bitc::BINOP_SHL;
95   case Instruction::LShr: return bitc::BINOP_LSHR;
96   case Instruction::AShr: return bitc::BINOP_ASHR;
97   case Instruction::And:  return bitc::BINOP_AND;
98   case Instruction::Or:   return bitc::BINOP_OR;
99   case Instruction::Xor:  return bitc::BINOP_XOR;
100   }
101 }
102 
103 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
104   switch (Op) {
105   default: llvm_unreachable("Unknown RMW operation!");
106   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
107   case AtomicRMWInst::Add: return bitc::RMW_ADD;
108   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
109   case AtomicRMWInst::And: return bitc::RMW_AND;
110   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
111   case AtomicRMWInst::Or: return bitc::RMW_OR;
112   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
113   case AtomicRMWInst::Max: return bitc::RMW_MAX;
114   case AtomicRMWInst::Min: return bitc::RMW_MIN;
115   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
116   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
117   }
118 }
119 
120 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
121   switch (Ordering) {
122   default: llvm_unreachable("Unknown atomic ordering");
123   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
124   case Unordered: return bitc::ORDERING_UNORDERED;
125   case Monotonic: return bitc::ORDERING_MONOTONIC;
126   case Acquire: return bitc::ORDERING_ACQUIRE;
127   case Release: return bitc::ORDERING_RELEASE;
128   case AcquireRelease: return bitc::ORDERING_ACQREL;
129   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
130   }
131 }
132 
133 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
134   switch (SynchScope) {
135   default: llvm_unreachable("Unknown synchronization scope");
136   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
137   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
138   }
139 }
140 
141 static void WriteStringRecord(unsigned Code, StringRef Str,
142                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
143   SmallVector<unsigned, 64> Vals;
144 
145   // Code: [strchar x N]
146   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
147     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
148       AbbrevToUse = 0;
149     Vals.push_back(Str[i]);
150   }
151 
152   // Emit the finished record.
153   Stream.EmitRecord(Code, Vals, AbbrevToUse);
154 }
155 
156 // Emit information about parameter attributes.
157 static void WriteAttributeTable(const ValueEnumerator &VE,
158                                 BitstreamWriter &Stream) {
159   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
160   if (Attrs.empty()) return;
161 
162   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
163 
164   SmallVector<uint64_t, 64> Record;
165   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
166     const AttrListPtr &A = Attrs[i];
167     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
168       const AttributeWithIndex &PAWI = A.getSlot(i);
169       Record.push_back(PAWI.Index);
170 
171       // FIXME: remove in LLVM 3.0
172       // Store the alignment in the bitcode as a 16-bit raw value instead of a
173       // 5-bit log2 encoded value. Shift the bits above the alignment up by
174       // 11 bits.
175       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
176       if (PAWI.Attrs & Attribute::Alignment)
177         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
178       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
179 
180       Record.push_back(FauxAttr);
181     }
182 
183     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
184     Record.clear();
185   }
186 
187   Stream.ExitBlock();
188 }
189 
190 /// WriteTypeTable - Write out the type table for a module.
191 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
192   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
193 
194   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
195   SmallVector<uint64_t, 64> TypeVals;
196 
197   // Abbrev for TYPE_CODE_POINTER.
198   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
199   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
200   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
201                             Log2_32_Ceil(VE.getTypes().size()+1)));
202   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
203   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
204 
205   // Abbrev for TYPE_CODE_FUNCTION.
206   Abbv = new BitCodeAbbrev();
207   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
208   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
209   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
210   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
211                             Log2_32_Ceil(VE.getTypes().size()+1)));
212   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
213 
214   // Abbrev for TYPE_CODE_STRUCT_ANON.
215   Abbv = new BitCodeAbbrev();
216   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
217   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
218   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
219   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
220                             Log2_32_Ceil(VE.getTypes().size()+1)));
221   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
222 
223   // Abbrev for TYPE_CODE_STRUCT_NAME.
224   Abbv = new BitCodeAbbrev();
225   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
226   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
227   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
228   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
229 
230   // Abbrev for TYPE_CODE_STRUCT_NAMED.
231   Abbv = new BitCodeAbbrev();
232   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
233   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
235   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
236                             Log2_32_Ceil(VE.getTypes().size()+1)));
237   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
238 
239   // Abbrev for TYPE_CODE_ARRAY.
240   Abbv = new BitCodeAbbrev();
241   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
242   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
243   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
244                             Log2_32_Ceil(VE.getTypes().size()+1)));
245   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
246 
247   // Emit an entry count so the reader can reserve space.
248   TypeVals.push_back(TypeList.size());
249   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
250   TypeVals.clear();
251 
252   // Loop over all of the types, emitting each in turn.
253   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
254     Type *T = TypeList[i];
255     int AbbrevToUse = 0;
256     unsigned Code = 0;
257 
258     switch (T->getTypeID()) {
259     default: llvm_unreachable("Unknown type!");
260     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
261     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
262     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
263     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
264     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
265     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
266     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
267     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
268     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
269     case Type::IntegerTyID:
270       // INTEGER: [width]
271       Code = bitc::TYPE_CODE_INTEGER;
272       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
273       break;
274     case Type::PointerTyID: {
275       PointerType *PTy = cast<PointerType>(T);
276       // POINTER: [pointee type, address space]
277       Code = bitc::TYPE_CODE_POINTER;
278       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
279       unsigned AddressSpace = PTy->getAddressSpace();
280       TypeVals.push_back(AddressSpace);
281       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
282       break;
283     }
284     case Type::FunctionTyID: {
285       FunctionType *FT = cast<FunctionType>(T);
286       // FUNCTION: [isvararg, retty, paramty x N]
287       Code = bitc::TYPE_CODE_FUNCTION;
288       TypeVals.push_back(FT->isVarArg());
289       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
290       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
291         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
292       AbbrevToUse = FunctionAbbrev;
293       break;
294     }
295     case Type::StructTyID: {
296       StructType *ST = cast<StructType>(T);
297       // STRUCT: [ispacked, eltty x N]
298       TypeVals.push_back(ST->isPacked());
299       // Output all of the element types.
300       for (StructType::element_iterator I = ST->element_begin(),
301            E = ST->element_end(); I != E; ++I)
302         TypeVals.push_back(VE.getTypeID(*I));
303 
304       if (ST->isLiteral()) {
305         Code = bitc::TYPE_CODE_STRUCT_ANON;
306         AbbrevToUse = StructAnonAbbrev;
307       } else {
308         if (ST->isOpaque()) {
309           Code = bitc::TYPE_CODE_OPAQUE;
310         } else {
311           Code = bitc::TYPE_CODE_STRUCT_NAMED;
312           AbbrevToUse = StructNamedAbbrev;
313         }
314 
315         // Emit the name if it is present.
316         if (!ST->getName().empty())
317           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
318                             StructNameAbbrev, Stream);
319       }
320       break;
321     }
322     case Type::ArrayTyID: {
323       ArrayType *AT = cast<ArrayType>(T);
324       // ARRAY: [numelts, eltty]
325       Code = bitc::TYPE_CODE_ARRAY;
326       TypeVals.push_back(AT->getNumElements());
327       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
328       AbbrevToUse = ArrayAbbrev;
329       break;
330     }
331     case Type::VectorTyID: {
332       VectorType *VT = cast<VectorType>(T);
333       // VECTOR [numelts, eltty]
334       Code = bitc::TYPE_CODE_VECTOR;
335       TypeVals.push_back(VT->getNumElements());
336       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
337       break;
338     }
339     }
340 
341     // Emit the finished record.
342     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
343     TypeVals.clear();
344   }
345 
346   Stream.ExitBlock();
347 }
348 
349 static unsigned getEncodedLinkage(const GlobalValue *GV) {
350   switch (GV->getLinkage()) {
351   default: llvm_unreachable("Invalid linkage!");
352   case GlobalValue::ExternalLinkage:                 return 0;
353   case GlobalValue::WeakAnyLinkage:                  return 1;
354   case GlobalValue::AppendingLinkage:                return 2;
355   case GlobalValue::InternalLinkage:                 return 3;
356   case GlobalValue::LinkOnceAnyLinkage:              return 4;
357   case GlobalValue::DLLImportLinkage:                return 5;
358   case GlobalValue::DLLExportLinkage:                return 6;
359   case GlobalValue::ExternalWeakLinkage:             return 7;
360   case GlobalValue::CommonLinkage:                   return 8;
361   case GlobalValue::PrivateLinkage:                  return 9;
362   case GlobalValue::WeakODRLinkage:                  return 10;
363   case GlobalValue::LinkOnceODRLinkage:              return 11;
364   case GlobalValue::AvailableExternallyLinkage:      return 12;
365   case GlobalValue::LinkerPrivateLinkage:            return 13;
366   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
367   case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
368   }
369 }
370 
371 static unsigned getEncodedVisibility(const GlobalValue *GV) {
372   switch (GV->getVisibility()) {
373   default: llvm_unreachable("Invalid visibility!");
374   case GlobalValue::DefaultVisibility:   return 0;
375   case GlobalValue::HiddenVisibility:    return 1;
376   case GlobalValue::ProtectedVisibility: return 2;
377   }
378 }
379 
380 // Emit top-level description of module, including target triple, inline asm,
381 // descriptors for global variables, and function prototype info.
382 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
383                             BitstreamWriter &Stream) {
384   // Emit the list of dependent libraries for the Module.
385   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
386     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
387 
388   // Emit various pieces of data attached to a module.
389   if (!M->getTargetTriple().empty())
390     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
391                       0/*TODO*/, Stream);
392   if (!M->getDataLayout().empty())
393     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
394                       0/*TODO*/, Stream);
395   if (!M->getModuleInlineAsm().empty())
396     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
397                       0/*TODO*/, Stream);
398 
399   // Emit information about sections and GC, computing how many there are. Also
400   // compute the maximum alignment value.
401   std::map<std::string, unsigned> SectionMap;
402   std::map<std::string, unsigned> GCMap;
403   unsigned MaxAlignment = 0;
404   unsigned MaxGlobalType = 0;
405   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
406        GV != E; ++GV) {
407     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
408     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
409     if (GV->hasSection()) {
410       // Give section names unique ID's.
411       unsigned &Entry = SectionMap[GV->getSection()];
412       if (!Entry) {
413         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
414                           0/*TODO*/, Stream);
415         Entry = SectionMap.size();
416       }
417     }
418   }
419   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
420     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
421     if (F->hasSection()) {
422       // Give section names unique ID's.
423       unsigned &Entry = SectionMap[F->getSection()];
424       if (!Entry) {
425         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
426                           0/*TODO*/, Stream);
427         Entry = SectionMap.size();
428       }
429     }
430     if (F->hasGC()) {
431       // Same for GC names.
432       unsigned &Entry = GCMap[F->getGC()];
433       if (!Entry) {
434         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
435                           0/*TODO*/, Stream);
436         Entry = GCMap.size();
437       }
438     }
439   }
440 
441   // Emit abbrev for globals, now that we know # sections and max alignment.
442   unsigned SimpleGVarAbbrev = 0;
443   if (!M->global_empty()) {
444     // Add an abbrev for common globals with no visibility or thread localness.
445     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
446     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
447     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
448                               Log2_32_Ceil(MaxGlobalType+1)));
449     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
450     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
451     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
452     if (MaxAlignment == 0)                                      // Alignment.
453       Abbv->Add(BitCodeAbbrevOp(0));
454     else {
455       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
456       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
457                                Log2_32_Ceil(MaxEncAlignment+1)));
458     }
459     if (SectionMap.empty())                                    // Section.
460       Abbv->Add(BitCodeAbbrevOp(0));
461     else
462       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
463                                Log2_32_Ceil(SectionMap.size()+1)));
464     // Don't bother emitting vis + thread local.
465     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
466   }
467 
468   // Emit the global variable information.
469   SmallVector<unsigned, 64> Vals;
470   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
471        GV != E; ++GV) {
472     unsigned AbbrevToUse = 0;
473 
474     // GLOBALVAR: [type, isconst, initid,
475     //             linkage, alignment, section, visibility, threadlocal,
476     //             unnamed_addr]
477     Vals.push_back(VE.getTypeID(GV->getType()));
478     Vals.push_back(GV->isConstant());
479     Vals.push_back(GV->isDeclaration() ? 0 :
480                    (VE.getValueID(GV->getInitializer()) + 1));
481     Vals.push_back(getEncodedLinkage(GV));
482     Vals.push_back(Log2_32(GV->getAlignment())+1);
483     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
484     if (GV->isThreadLocal() ||
485         GV->getVisibility() != GlobalValue::DefaultVisibility ||
486         GV->hasUnnamedAddr()) {
487       Vals.push_back(getEncodedVisibility(GV));
488       Vals.push_back(GV->isThreadLocal());
489       Vals.push_back(GV->hasUnnamedAddr());
490     } else {
491       AbbrevToUse = SimpleGVarAbbrev;
492     }
493 
494     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
495     Vals.clear();
496   }
497 
498   // Emit the function proto information.
499   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
500     // FUNCTION:  [type, callingconv, isproto, paramattr,
501     //             linkage, alignment, section, visibility, gc, unnamed_addr]
502     Vals.push_back(VE.getTypeID(F->getType()));
503     Vals.push_back(F->getCallingConv());
504     Vals.push_back(F->isDeclaration());
505     Vals.push_back(getEncodedLinkage(F));
506     Vals.push_back(VE.getAttributeID(F->getAttributes()));
507     Vals.push_back(Log2_32(F->getAlignment())+1);
508     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
509     Vals.push_back(getEncodedVisibility(F));
510     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
511     Vals.push_back(F->hasUnnamedAddr());
512 
513     unsigned AbbrevToUse = 0;
514     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
515     Vals.clear();
516   }
517 
518   // Emit the alias information.
519   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
520        AI != E; ++AI) {
521     Vals.push_back(VE.getTypeID(AI->getType()));
522     Vals.push_back(VE.getValueID(AI->getAliasee()));
523     Vals.push_back(getEncodedLinkage(AI));
524     Vals.push_back(getEncodedVisibility(AI));
525     unsigned AbbrevToUse = 0;
526     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
527     Vals.clear();
528   }
529 }
530 
531 static uint64_t GetOptimizationFlags(const Value *V) {
532   uint64_t Flags = 0;
533 
534   if (const OverflowingBinaryOperator *OBO =
535         dyn_cast<OverflowingBinaryOperator>(V)) {
536     if (OBO->hasNoSignedWrap())
537       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
538     if (OBO->hasNoUnsignedWrap())
539       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
540   } else if (const PossiblyExactOperator *PEO =
541                dyn_cast<PossiblyExactOperator>(V)) {
542     if (PEO->isExact())
543       Flags |= 1 << bitc::PEO_EXACT;
544   }
545 
546   return Flags;
547 }
548 
549 static void WriteMDNode(const MDNode *N,
550                         const ValueEnumerator &VE,
551                         BitstreamWriter &Stream,
552                         SmallVector<uint64_t, 64> &Record) {
553   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
554     if (N->getOperand(i)) {
555       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
556       Record.push_back(VE.getValueID(N->getOperand(i)));
557     } else {
558       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
559       Record.push_back(0);
560     }
561   }
562   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
563                                            bitc::METADATA_NODE;
564   Stream.EmitRecord(MDCode, Record, 0);
565   Record.clear();
566 }
567 
568 static void WriteModuleMetadata(const Module *M,
569                                 const ValueEnumerator &VE,
570                                 BitstreamWriter &Stream) {
571   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
572   bool StartedMetadataBlock = false;
573   unsigned MDSAbbrev = 0;
574   SmallVector<uint64_t, 64> Record;
575   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
576 
577     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
578       if (!N->isFunctionLocal() || !N->getFunction()) {
579         if (!StartedMetadataBlock) {
580           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
581           StartedMetadataBlock = true;
582         }
583         WriteMDNode(N, VE, Stream, Record);
584       }
585     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
586       if (!StartedMetadataBlock)  {
587         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
588 
589         // Abbrev for METADATA_STRING.
590         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
591         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
592         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
593         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
594         MDSAbbrev = Stream.EmitAbbrev(Abbv);
595         StartedMetadataBlock = true;
596       }
597 
598       // Code: [strchar x N]
599       Record.append(MDS->begin(), MDS->end());
600 
601       // Emit the finished record.
602       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
603       Record.clear();
604     }
605   }
606 
607   // Write named metadata.
608   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
609        E = M->named_metadata_end(); I != E; ++I) {
610     const NamedMDNode *NMD = I;
611     if (!StartedMetadataBlock)  {
612       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
613       StartedMetadataBlock = true;
614     }
615 
616     // Write name.
617     StringRef Str = NMD->getName();
618     for (unsigned i = 0, e = Str.size(); i != e; ++i)
619       Record.push_back(Str[i]);
620     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
621     Record.clear();
622 
623     // Write named metadata operands.
624     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
625       Record.push_back(VE.getValueID(NMD->getOperand(i)));
626     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
627     Record.clear();
628   }
629 
630   if (StartedMetadataBlock)
631     Stream.ExitBlock();
632 }
633 
634 static void WriteFunctionLocalMetadata(const Function &F,
635                                        const ValueEnumerator &VE,
636                                        BitstreamWriter &Stream) {
637   bool StartedMetadataBlock = false;
638   SmallVector<uint64_t, 64> Record;
639   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
640   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
641     if (const MDNode *N = Vals[i])
642       if (N->isFunctionLocal() && N->getFunction() == &F) {
643         if (!StartedMetadataBlock) {
644           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
645           StartedMetadataBlock = true;
646         }
647         WriteMDNode(N, VE, Stream, Record);
648       }
649 
650   if (StartedMetadataBlock)
651     Stream.ExitBlock();
652 }
653 
654 static void WriteMetadataAttachment(const Function &F,
655                                     const ValueEnumerator &VE,
656                                     BitstreamWriter &Stream) {
657   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
658 
659   SmallVector<uint64_t, 64> Record;
660 
661   // Write metadata attachments
662   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
663   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
664 
665   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
666     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
667          I != E; ++I) {
668       MDs.clear();
669       I->getAllMetadataOtherThanDebugLoc(MDs);
670 
671       // If no metadata, ignore instruction.
672       if (MDs.empty()) continue;
673 
674       Record.push_back(VE.getInstructionID(I));
675 
676       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
677         Record.push_back(MDs[i].first);
678         Record.push_back(VE.getValueID(MDs[i].second));
679       }
680       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
681       Record.clear();
682     }
683 
684   Stream.ExitBlock();
685 }
686 
687 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
688   SmallVector<uint64_t, 64> Record;
689 
690   // Write metadata kinds
691   // METADATA_KIND - [n x [id, name]]
692   SmallVector<StringRef, 4> Names;
693   M->getMDKindNames(Names);
694 
695   if (Names.empty()) return;
696 
697   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
698 
699   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
700     Record.push_back(MDKindID);
701     StringRef KName = Names[MDKindID];
702     Record.append(KName.begin(), KName.end());
703 
704     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
705     Record.clear();
706   }
707 
708   Stream.ExitBlock();
709 }
710 
711 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
712                            const ValueEnumerator &VE,
713                            BitstreamWriter &Stream, bool isGlobal) {
714   if (FirstVal == LastVal) return;
715 
716   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
717 
718   unsigned AggregateAbbrev = 0;
719   unsigned String8Abbrev = 0;
720   unsigned CString7Abbrev = 0;
721   unsigned CString6Abbrev = 0;
722   // If this is a constant pool for the module, emit module-specific abbrevs.
723   if (isGlobal) {
724     // Abbrev for CST_CODE_AGGREGATE.
725     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
726     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
727     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
728     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
729     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
730 
731     // Abbrev for CST_CODE_STRING.
732     Abbv = new BitCodeAbbrev();
733     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
734     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
736     String8Abbrev = Stream.EmitAbbrev(Abbv);
737     // Abbrev for CST_CODE_CSTRING.
738     Abbv = new BitCodeAbbrev();
739     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
740     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
741     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
742     CString7Abbrev = Stream.EmitAbbrev(Abbv);
743     // Abbrev for CST_CODE_CSTRING.
744     Abbv = new BitCodeAbbrev();
745     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
746     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
747     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
748     CString6Abbrev = Stream.EmitAbbrev(Abbv);
749   }
750 
751   SmallVector<uint64_t, 64> Record;
752 
753   const ValueEnumerator::ValueList &Vals = VE.getValues();
754   Type *LastTy = 0;
755   for (unsigned i = FirstVal; i != LastVal; ++i) {
756     const Value *V = Vals[i].first;
757     // If we need to switch types, do so now.
758     if (V->getType() != LastTy) {
759       LastTy = V->getType();
760       Record.push_back(VE.getTypeID(LastTy));
761       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
762                         CONSTANTS_SETTYPE_ABBREV);
763       Record.clear();
764     }
765 
766     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
767       Record.push_back(unsigned(IA->hasSideEffects()) |
768                        unsigned(IA->isAlignStack()) << 1);
769 
770       // Add the asm string.
771       const std::string &AsmStr = IA->getAsmString();
772       Record.push_back(AsmStr.size());
773       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
774         Record.push_back(AsmStr[i]);
775 
776       // Add the constraint string.
777       const std::string &ConstraintStr = IA->getConstraintString();
778       Record.push_back(ConstraintStr.size());
779       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
780         Record.push_back(ConstraintStr[i]);
781       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
782       Record.clear();
783       continue;
784     }
785     const Constant *C = cast<Constant>(V);
786     unsigned Code = -1U;
787     unsigned AbbrevToUse = 0;
788     if (C->isNullValue()) {
789       Code = bitc::CST_CODE_NULL;
790     } else if (isa<UndefValue>(C)) {
791       Code = bitc::CST_CODE_UNDEF;
792     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
793       if (IV->getBitWidth() <= 64) {
794         uint64_t V = IV->getSExtValue();
795         if ((int64_t)V >= 0)
796           Record.push_back(V << 1);
797         else
798           Record.push_back((-V << 1) | 1);
799         Code = bitc::CST_CODE_INTEGER;
800         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
801       } else {                             // Wide integers, > 64 bits in size.
802         // We have an arbitrary precision integer value to write whose
803         // bit width is > 64. However, in canonical unsigned integer
804         // format it is likely that the high bits are going to be zero.
805         // So, we only write the number of active words.
806         unsigned NWords = IV->getValue().getActiveWords();
807         const uint64_t *RawWords = IV->getValue().getRawData();
808         for (unsigned i = 0; i != NWords; ++i) {
809           int64_t V = RawWords[i];
810           if (V >= 0)
811             Record.push_back(V << 1);
812           else
813             Record.push_back((-V << 1) | 1);
814         }
815         Code = bitc::CST_CODE_WIDE_INTEGER;
816       }
817     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
818       Code = bitc::CST_CODE_FLOAT;
819       Type *Ty = CFP->getType();
820       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
821         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
822       } else if (Ty->isX86_FP80Ty()) {
823         // api needed to prevent premature destruction
824         // bits are not in the same order as a normal i80 APInt, compensate.
825         APInt api = CFP->getValueAPF().bitcastToAPInt();
826         const uint64_t *p = api.getRawData();
827         Record.push_back((p[1] << 48) | (p[0] >> 16));
828         Record.push_back(p[0] & 0xffffLL);
829       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
830         APInt api = CFP->getValueAPF().bitcastToAPInt();
831         const uint64_t *p = api.getRawData();
832         Record.push_back(p[0]);
833         Record.push_back(p[1]);
834       } else {
835         assert (0 && "Unknown FP type!");
836       }
837     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
838       const ConstantArray *CA = cast<ConstantArray>(C);
839       // Emit constant strings specially.
840       unsigned NumOps = CA->getNumOperands();
841       // If this is a null-terminated string, use the denser CSTRING encoding.
842       if (CA->getOperand(NumOps-1)->isNullValue()) {
843         Code = bitc::CST_CODE_CSTRING;
844         --NumOps;  // Don't encode the null, which isn't allowed by char6.
845       } else {
846         Code = bitc::CST_CODE_STRING;
847         AbbrevToUse = String8Abbrev;
848       }
849       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
850       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
851       for (unsigned i = 0; i != NumOps; ++i) {
852         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
853         Record.push_back(V);
854         isCStr7 &= (V & 128) == 0;
855         if (isCStrChar6)
856           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
857       }
858 
859       if (isCStrChar6)
860         AbbrevToUse = CString6Abbrev;
861       else if (isCStr7)
862         AbbrevToUse = CString7Abbrev;
863     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
864                isa<ConstantVector>(V)) {
865       Code = bitc::CST_CODE_AGGREGATE;
866       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
867         Record.push_back(VE.getValueID(C->getOperand(i)));
868       AbbrevToUse = AggregateAbbrev;
869     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
870       switch (CE->getOpcode()) {
871       default:
872         if (Instruction::isCast(CE->getOpcode())) {
873           Code = bitc::CST_CODE_CE_CAST;
874           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
875           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
876           Record.push_back(VE.getValueID(C->getOperand(0)));
877           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
878         } else {
879           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
880           Code = bitc::CST_CODE_CE_BINOP;
881           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
882           Record.push_back(VE.getValueID(C->getOperand(0)));
883           Record.push_back(VE.getValueID(C->getOperand(1)));
884           uint64_t Flags = GetOptimizationFlags(CE);
885           if (Flags != 0)
886             Record.push_back(Flags);
887         }
888         break;
889       case Instruction::GetElementPtr:
890         Code = bitc::CST_CODE_CE_GEP;
891         if (cast<GEPOperator>(C)->isInBounds())
892           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
893         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
894           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
895           Record.push_back(VE.getValueID(C->getOperand(i)));
896         }
897         break;
898       case Instruction::Select:
899         Code = bitc::CST_CODE_CE_SELECT;
900         Record.push_back(VE.getValueID(C->getOperand(0)));
901         Record.push_back(VE.getValueID(C->getOperand(1)));
902         Record.push_back(VE.getValueID(C->getOperand(2)));
903         break;
904       case Instruction::ExtractElement:
905         Code = bitc::CST_CODE_CE_EXTRACTELT;
906         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
907         Record.push_back(VE.getValueID(C->getOperand(0)));
908         Record.push_back(VE.getValueID(C->getOperand(1)));
909         break;
910       case Instruction::InsertElement:
911         Code = bitc::CST_CODE_CE_INSERTELT;
912         Record.push_back(VE.getValueID(C->getOperand(0)));
913         Record.push_back(VE.getValueID(C->getOperand(1)));
914         Record.push_back(VE.getValueID(C->getOperand(2)));
915         break;
916       case Instruction::ShuffleVector:
917         // If the return type and argument types are the same, this is a
918         // standard shufflevector instruction.  If the types are different,
919         // then the shuffle is widening or truncating the input vectors, and
920         // the argument type must also be encoded.
921         if (C->getType() == C->getOperand(0)->getType()) {
922           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
923         } else {
924           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
925           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
926         }
927         Record.push_back(VE.getValueID(C->getOperand(0)));
928         Record.push_back(VE.getValueID(C->getOperand(1)));
929         Record.push_back(VE.getValueID(C->getOperand(2)));
930         break;
931       case Instruction::ICmp:
932       case Instruction::FCmp:
933         Code = bitc::CST_CODE_CE_CMP;
934         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
935         Record.push_back(VE.getValueID(C->getOperand(0)));
936         Record.push_back(VE.getValueID(C->getOperand(1)));
937         Record.push_back(CE->getPredicate());
938         break;
939       }
940     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
941       Code = bitc::CST_CODE_BLOCKADDRESS;
942       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
943       Record.push_back(VE.getValueID(BA->getFunction()));
944       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
945     } else {
946 #ifndef NDEBUG
947       C->dump();
948 #endif
949       llvm_unreachable("Unknown constant!");
950     }
951     Stream.EmitRecord(Code, Record, AbbrevToUse);
952     Record.clear();
953   }
954 
955   Stream.ExitBlock();
956 }
957 
958 static void WriteModuleConstants(const ValueEnumerator &VE,
959                                  BitstreamWriter &Stream) {
960   const ValueEnumerator::ValueList &Vals = VE.getValues();
961 
962   // Find the first constant to emit, which is the first non-globalvalue value.
963   // We know globalvalues have been emitted by WriteModuleInfo.
964   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
965     if (!isa<GlobalValue>(Vals[i].first)) {
966       WriteConstants(i, Vals.size(), VE, Stream, true);
967       return;
968     }
969   }
970 }
971 
972 /// PushValueAndType - The file has to encode both the value and type id for
973 /// many values, because we need to know what type to create for forward
974 /// references.  However, most operands are not forward references, so this type
975 /// field is not needed.
976 ///
977 /// This function adds V's value ID to Vals.  If the value ID is higher than the
978 /// instruction ID, then it is a forward reference, and it also includes the
979 /// type ID.
980 static bool PushValueAndType(const Value *V, unsigned InstID,
981                              SmallVector<unsigned, 64> &Vals,
982                              ValueEnumerator &VE) {
983   unsigned ValID = VE.getValueID(V);
984   Vals.push_back(ValID);
985   if (ValID >= InstID) {
986     Vals.push_back(VE.getTypeID(V->getType()));
987     return true;
988   }
989   return false;
990 }
991 
992 /// WriteInstruction - Emit an instruction to the specified stream.
993 static void WriteInstruction(const Instruction &I, unsigned InstID,
994                              ValueEnumerator &VE, BitstreamWriter &Stream,
995                              SmallVector<unsigned, 64> &Vals) {
996   unsigned Code = 0;
997   unsigned AbbrevToUse = 0;
998   VE.setInstructionID(&I);
999   switch (I.getOpcode()) {
1000   default:
1001     if (Instruction::isCast(I.getOpcode())) {
1002       Code = bitc::FUNC_CODE_INST_CAST;
1003       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1004         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1005       Vals.push_back(VE.getTypeID(I.getType()));
1006       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1007     } else {
1008       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1009       Code = bitc::FUNC_CODE_INST_BINOP;
1010       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1011         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1012       Vals.push_back(VE.getValueID(I.getOperand(1)));
1013       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1014       uint64_t Flags = GetOptimizationFlags(&I);
1015       if (Flags != 0) {
1016         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1017           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1018         Vals.push_back(Flags);
1019       }
1020     }
1021     break;
1022 
1023   case Instruction::GetElementPtr:
1024     Code = bitc::FUNC_CODE_INST_GEP;
1025     if (cast<GEPOperator>(&I)->isInBounds())
1026       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1027     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1028       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1029     break;
1030   case Instruction::ExtractValue: {
1031     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1032     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1033     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1034     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1035       Vals.push_back(*i);
1036     break;
1037   }
1038   case Instruction::InsertValue: {
1039     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1040     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1041     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1042     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1043     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1044       Vals.push_back(*i);
1045     break;
1046   }
1047   case Instruction::Select:
1048     Code = bitc::FUNC_CODE_INST_VSELECT;
1049     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1050     Vals.push_back(VE.getValueID(I.getOperand(2)));
1051     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1052     break;
1053   case Instruction::ExtractElement:
1054     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1055     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1056     Vals.push_back(VE.getValueID(I.getOperand(1)));
1057     break;
1058   case Instruction::InsertElement:
1059     Code = bitc::FUNC_CODE_INST_INSERTELT;
1060     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1061     Vals.push_back(VE.getValueID(I.getOperand(1)));
1062     Vals.push_back(VE.getValueID(I.getOperand(2)));
1063     break;
1064   case Instruction::ShuffleVector:
1065     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1066     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1067     Vals.push_back(VE.getValueID(I.getOperand(1)));
1068     Vals.push_back(VE.getValueID(I.getOperand(2)));
1069     break;
1070   case Instruction::ICmp:
1071   case Instruction::FCmp:
1072     // compare returning Int1Ty or vector of Int1Ty
1073     Code = bitc::FUNC_CODE_INST_CMP2;
1074     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1075     Vals.push_back(VE.getValueID(I.getOperand(1)));
1076     Vals.push_back(cast<CmpInst>(I).getPredicate());
1077     break;
1078 
1079   case Instruction::Ret:
1080     {
1081       Code = bitc::FUNC_CODE_INST_RET;
1082       unsigned NumOperands = I.getNumOperands();
1083       if (NumOperands == 0)
1084         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1085       else if (NumOperands == 1) {
1086         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1087           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1088       } else {
1089         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1090           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1091       }
1092     }
1093     break;
1094   case Instruction::Br:
1095     {
1096       Code = bitc::FUNC_CODE_INST_BR;
1097       BranchInst &II = cast<BranchInst>(I);
1098       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1099       if (II.isConditional()) {
1100         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1101         Vals.push_back(VE.getValueID(II.getCondition()));
1102       }
1103     }
1104     break;
1105   case Instruction::Switch:
1106     Code = bitc::FUNC_CODE_INST_SWITCH;
1107     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1108     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1109       Vals.push_back(VE.getValueID(I.getOperand(i)));
1110     break;
1111   case Instruction::IndirectBr:
1112     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1113     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1114     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1115       Vals.push_back(VE.getValueID(I.getOperand(i)));
1116     break;
1117 
1118   case Instruction::Invoke: {
1119     const InvokeInst *II = cast<InvokeInst>(&I);
1120     const Value *Callee(II->getCalledValue());
1121     PointerType *PTy = cast<PointerType>(Callee->getType());
1122     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1123     Code = bitc::FUNC_CODE_INST_INVOKE;
1124 
1125     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1126     Vals.push_back(II->getCallingConv());
1127     Vals.push_back(VE.getValueID(II->getNormalDest()));
1128     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1129     PushValueAndType(Callee, InstID, Vals, VE);
1130 
1131     // Emit value #'s for the fixed parameters.
1132     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1133       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1134 
1135     // Emit type/value pairs for varargs params.
1136     if (FTy->isVarArg()) {
1137       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1138            i != e; ++i)
1139         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1140     }
1141     break;
1142   }
1143   case Instruction::Resume:
1144     Code = bitc::FUNC_CODE_INST_RESUME;
1145     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1146     break;
1147   case Instruction::Unwind:
1148     Code = bitc::FUNC_CODE_INST_UNWIND;
1149     break;
1150   case Instruction::Unreachable:
1151     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1152     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1153     break;
1154 
1155   case Instruction::PHI: {
1156     const PHINode &PN = cast<PHINode>(I);
1157     Code = bitc::FUNC_CODE_INST_PHI;
1158     Vals.push_back(VE.getTypeID(PN.getType()));
1159     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1160       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1161       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1162     }
1163     break;
1164   }
1165 
1166   case Instruction::LandingPad: {
1167     const LandingPadInst &LP = cast<LandingPadInst>(I);
1168     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1169     Vals.push_back(VE.getTypeID(LP.getType()));
1170     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1171     Vals.push_back(LP.isCleanup());
1172     Vals.push_back(LP.getNumClauses());
1173     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1174       if (LP.isCatch(I))
1175         Vals.push_back(LandingPadInst::Catch);
1176       else
1177         Vals.push_back(LandingPadInst::Filter);
1178       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1179     }
1180     break;
1181   }
1182 
1183   case Instruction::Alloca:
1184     Code = bitc::FUNC_CODE_INST_ALLOCA;
1185     Vals.push_back(VE.getTypeID(I.getType()));
1186     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1187     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1188     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1189     break;
1190 
1191   case Instruction::Load:
1192     if (cast<LoadInst>(I).isAtomic()) {
1193       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1194       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1195     } else {
1196       Code = bitc::FUNC_CODE_INST_LOAD;
1197       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1198         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1199     }
1200     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1201     Vals.push_back(cast<LoadInst>(I).isVolatile());
1202     if (cast<LoadInst>(I).isAtomic()) {
1203       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1204       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1205     }
1206     break;
1207   case Instruction::Store:
1208     if (cast<StoreInst>(I).isAtomic())
1209       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1210     else
1211       Code = bitc::FUNC_CODE_INST_STORE;
1212     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1213     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1214     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1215     Vals.push_back(cast<StoreInst>(I).isVolatile());
1216     if (cast<StoreInst>(I).isAtomic()) {
1217       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1218       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1219     }
1220     break;
1221   case Instruction::AtomicCmpXchg:
1222     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1223     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1224     Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1225     Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1226     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1227     Vals.push_back(GetEncodedOrdering(
1228                      cast<AtomicCmpXchgInst>(I).getOrdering()));
1229     Vals.push_back(GetEncodedSynchScope(
1230                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1231     break;
1232   case Instruction::AtomicRMW:
1233     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1234     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1235     Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1236     Vals.push_back(GetEncodedRMWOperation(
1237                      cast<AtomicRMWInst>(I).getOperation()));
1238     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1239     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1240     Vals.push_back(GetEncodedSynchScope(
1241                      cast<AtomicRMWInst>(I).getSynchScope()));
1242     break;
1243   case Instruction::Fence:
1244     Code = bitc::FUNC_CODE_INST_FENCE;
1245     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1246     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1247     break;
1248   case Instruction::Call: {
1249     const CallInst &CI = cast<CallInst>(I);
1250     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1251     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1252 
1253     Code = bitc::FUNC_CODE_INST_CALL;
1254 
1255     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1256     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1257     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1258 
1259     // Emit value #'s for the fixed parameters.
1260     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1261       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1262 
1263     // Emit type/value pairs for varargs params.
1264     if (FTy->isVarArg()) {
1265       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1266            i != e; ++i)
1267         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1268     }
1269     break;
1270   }
1271   case Instruction::VAArg:
1272     Code = bitc::FUNC_CODE_INST_VAARG;
1273     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1274     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1275     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1276     break;
1277   }
1278 
1279   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1280   Vals.clear();
1281 }
1282 
1283 // Emit names for globals/functions etc.
1284 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1285                                   const ValueEnumerator &VE,
1286                                   BitstreamWriter &Stream) {
1287   if (VST.empty()) return;
1288   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1289 
1290   // FIXME: Set up the abbrev, we know how many values there are!
1291   // FIXME: We know if the type names can use 7-bit ascii.
1292   SmallVector<unsigned, 64> NameVals;
1293 
1294   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1295        SI != SE; ++SI) {
1296 
1297     const ValueName &Name = *SI;
1298 
1299     // Figure out the encoding to use for the name.
1300     bool is7Bit = true;
1301     bool isChar6 = true;
1302     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1303          C != E; ++C) {
1304       if (isChar6)
1305         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1306       if ((unsigned char)*C & 128) {
1307         is7Bit = false;
1308         break;  // don't bother scanning the rest.
1309       }
1310     }
1311 
1312     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1313 
1314     // VST_ENTRY:   [valueid, namechar x N]
1315     // VST_BBENTRY: [bbid, namechar x N]
1316     unsigned Code;
1317     if (isa<BasicBlock>(SI->getValue())) {
1318       Code = bitc::VST_CODE_BBENTRY;
1319       if (isChar6)
1320         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1321     } else {
1322       Code = bitc::VST_CODE_ENTRY;
1323       if (isChar6)
1324         AbbrevToUse = VST_ENTRY_6_ABBREV;
1325       else if (is7Bit)
1326         AbbrevToUse = VST_ENTRY_7_ABBREV;
1327     }
1328 
1329     NameVals.push_back(VE.getValueID(SI->getValue()));
1330     for (const char *P = Name.getKeyData(),
1331          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1332       NameVals.push_back((unsigned char)*P);
1333 
1334     // Emit the finished record.
1335     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1336     NameVals.clear();
1337   }
1338   Stream.ExitBlock();
1339 }
1340 
1341 /// WriteFunction - Emit a function body to the module stream.
1342 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1343                           BitstreamWriter &Stream) {
1344   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1345   VE.incorporateFunction(F);
1346 
1347   SmallVector<unsigned, 64> Vals;
1348 
1349   // Emit the number of basic blocks, so the reader can create them ahead of
1350   // time.
1351   Vals.push_back(VE.getBasicBlocks().size());
1352   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1353   Vals.clear();
1354 
1355   // If there are function-local constants, emit them now.
1356   unsigned CstStart, CstEnd;
1357   VE.getFunctionConstantRange(CstStart, CstEnd);
1358   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1359 
1360   // If there is function-local metadata, emit it now.
1361   WriteFunctionLocalMetadata(F, VE, Stream);
1362 
1363   // Keep a running idea of what the instruction ID is.
1364   unsigned InstID = CstEnd;
1365 
1366   bool NeedsMetadataAttachment = false;
1367 
1368   DebugLoc LastDL;
1369 
1370   // Finally, emit all the instructions, in order.
1371   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1372     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1373          I != E; ++I) {
1374       WriteInstruction(*I, InstID, VE, Stream, Vals);
1375 
1376       if (!I->getType()->isVoidTy())
1377         ++InstID;
1378 
1379       // If the instruction has metadata, write a metadata attachment later.
1380       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1381 
1382       // If the instruction has a debug location, emit it.
1383       DebugLoc DL = I->getDebugLoc();
1384       if (DL.isUnknown()) {
1385         // nothing todo.
1386       } else if (DL == LastDL) {
1387         // Just repeat the same debug loc as last time.
1388         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1389       } else {
1390         MDNode *Scope, *IA;
1391         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1392 
1393         Vals.push_back(DL.getLine());
1394         Vals.push_back(DL.getCol());
1395         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1396         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1397         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1398         Vals.clear();
1399 
1400         LastDL = DL;
1401       }
1402     }
1403 
1404   // Emit names for all the instructions etc.
1405   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1406 
1407   if (NeedsMetadataAttachment)
1408     WriteMetadataAttachment(F, VE, Stream);
1409   VE.purgeFunction();
1410   Stream.ExitBlock();
1411 }
1412 
1413 // Emit blockinfo, which defines the standard abbreviations etc.
1414 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1415   // We only want to emit block info records for blocks that have multiple
1416   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1417   // blocks can defined their abbrevs inline.
1418   Stream.EnterBlockInfoBlock(2);
1419 
1420   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1421     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1422     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1423     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1424     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1425     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1426     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1427                                    Abbv) != VST_ENTRY_8_ABBREV)
1428       llvm_unreachable("Unexpected abbrev ordering!");
1429   }
1430 
1431   { // 7-bit fixed width VST_ENTRY strings.
1432     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1433     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1436     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1437     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1438                                    Abbv) != VST_ENTRY_7_ABBREV)
1439       llvm_unreachable("Unexpected abbrev ordering!");
1440   }
1441   { // 6-bit char6 VST_ENTRY strings.
1442     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1443     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1444     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1445     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1446     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1447     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1448                                    Abbv) != VST_ENTRY_6_ABBREV)
1449       llvm_unreachable("Unexpected abbrev ordering!");
1450   }
1451   { // 6-bit char6 VST_BBENTRY strings.
1452     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1453     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1455     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1456     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1457     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1458                                    Abbv) != VST_BBENTRY_6_ABBREV)
1459       llvm_unreachable("Unexpected abbrev ordering!");
1460   }
1461 
1462 
1463 
1464   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1465     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1466     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1467     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1468                               Log2_32_Ceil(VE.getTypes().size()+1)));
1469     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1470                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1471       llvm_unreachable("Unexpected abbrev ordering!");
1472   }
1473 
1474   { // INTEGER abbrev for CONSTANTS_BLOCK.
1475     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1476     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1477     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1478     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1479                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1480       llvm_unreachable("Unexpected abbrev ordering!");
1481   }
1482 
1483   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1484     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1485     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1486     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1488                               Log2_32_Ceil(VE.getTypes().size()+1)));
1489     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1490 
1491     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1492                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1493       llvm_unreachable("Unexpected abbrev ordering!");
1494   }
1495   { // NULL abbrev for CONSTANTS_BLOCK.
1496     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1497     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1498     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1499                                    Abbv) != CONSTANTS_NULL_Abbrev)
1500       llvm_unreachable("Unexpected abbrev ordering!");
1501   }
1502 
1503   // FIXME: This should only use space for first class types!
1504 
1505   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1506     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1507     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1509     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1510     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1511     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1512                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1513       llvm_unreachable("Unexpected abbrev ordering!");
1514   }
1515   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1516     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1517     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1518     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1519     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1520     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1521     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1522                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1523       llvm_unreachable("Unexpected abbrev ordering!");
1524   }
1525   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1526     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1527     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1528     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1529     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1530     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1531     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1532     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1533                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1534       llvm_unreachable("Unexpected abbrev ordering!");
1535   }
1536   { // INST_CAST abbrev for FUNCTION_BLOCK.
1537     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1538     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1539     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1540     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1541                               Log2_32_Ceil(VE.getTypes().size()+1)));
1542     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1543     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1544                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1545       llvm_unreachable("Unexpected abbrev ordering!");
1546   }
1547 
1548   { // INST_RET abbrev for FUNCTION_BLOCK.
1549     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1550     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1551     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1552                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1553       llvm_unreachable("Unexpected abbrev ordering!");
1554   }
1555   { // INST_RET abbrev for FUNCTION_BLOCK.
1556     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1557     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1558     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1559     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1560                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1561       llvm_unreachable("Unexpected abbrev ordering!");
1562   }
1563   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1564     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1565     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1566     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1567                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1568       llvm_unreachable("Unexpected abbrev ordering!");
1569   }
1570 
1571   Stream.ExitBlock();
1572 }
1573 
1574 
1575 /// WriteModule - Emit the specified module to the bitstream.
1576 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1577   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1578 
1579   // Emit the version number if it is non-zero.
1580   if (CurVersion) {
1581     SmallVector<unsigned, 1> Vals;
1582     Vals.push_back(CurVersion);
1583     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1584   }
1585 
1586   // Analyze the module, enumerating globals, functions, etc.
1587   ValueEnumerator VE(M);
1588 
1589   // Emit blockinfo, which defines the standard abbreviations etc.
1590   WriteBlockInfo(VE, Stream);
1591 
1592   // Emit information about parameter attributes.
1593   WriteAttributeTable(VE, Stream);
1594 
1595   // Emit information describing all of the types in the module.
1596   WriteTypeTable(VE, Stream);
1597 
1598   // Emit top-level description of module, including target triple, inline asm,
1599   // descriptors for global variables, and function prototype info.
1600   WriteModuleInfo(M, VE, Stream);
1601 
1602   // Emit constants.
1603   WriteModuleConstants(VE, Stream);
1604 
1605   // Emit metadata.
1606   WriteModuleMetadata(M, VE, Stream);
1607 
1608   // Emit function bodies.
1609   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1610     if (!F->isDeclaration())
1611       WriteFunction(*F, VE, Stream);
1612 
1613   // Emit metadata.
1614   WriteModuleMetadataStore(M, Stream);
1615 
1616   // Emit names for globals/functions etc.
1617   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1618 
1619   Stream.ExitBlock();
1620 }
1621 
1622 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1623 /// header and trailer to make it compatible with the system archiver.  To do
1624 /// this we emit the following header, and then emit a trailer that pads the
1625 /// file out to be a multiple of 16 bytes.
1626 ///
1627 /// struct bc_header {
1628 ///   uint32_t Magic;         // 0x0B17C0DE
1629 ///   uint32_t Version;       // Version, currently always 0.
1630 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1631 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1632 ///   uint32_t CPUType;       // CPU specifier.
1633 ///   ... potentially more later ...
1634 /// };
1635 enum {
1636   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1637   DarwinBCHeaderSize = 5*4
1638 };
1639 
1640 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) {
1641   unsigned CPUType = ~0U;
1642 
1643   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1644   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1645   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1646   // specific constants here because they are implicitly part of the Darwin ABI.
1647   enum {
1648     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1649     DARWIN_CPU_TYPE_X86        = 7,
1650     DARWIN_CPU_TYPE_ARM        = 12,
1651     DARWIN_CPU_TYPE_POWERPC    = 18
1652   };
1653 
1654   Triple::ArchType Arch = TT.getArch();
1655   if (Arch == Triple::x86_64)
1656     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1657   else if (Arch == Triple::x86)
1658     CPUType = DARWIN_CPU_TYPE_X86;
1659   else if (Arch == Triple::ppc)
1660     CPUType = DARWIN_CPU_TYPE_POWERPC;
1661   else if (Arch == Triple::ppc64)
1662     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1663   else if (Arch == Triple::arm || Arch == Triple::thumb)
1664     CPUType = DARWIN_CPU_TYPE_ARM;
1665 
1666   // Traditional Bitcode starts after header.
1667   unsigned BCOffset = DarwinBCHeaderSize;
1668 
1669   Stream.Emit(0x0B17C0DE, 32);
1670   Stream.Emit(0         , 32);  // Version.
1671   Stream.Emit(BCOffset  , 32);
1672   Stream.Emit(0         , 32);  // Filled in later.
1673   Stream.Emit(CPUType   , 32);
1674 }
1675 
1676 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1677 /// finalize the header.
1678 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1679   // Update the size field in the header.
1680   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1681 
1682   // If the file is not a multiple of 16 bytes, insert dummy padding.
1683   while (BufferSize & 15) {
1684     Stream.Emit(0, 8);
1685     ++BufferSize;
1686   }
1687 }
1688 
1689 
1690 /// WriteBitcodeToFile - Write the specified module to the specified output
1691 /// stream.
1692 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1693   std::vector<unsigned char> Buffer;
1694   BitstreamWriter Stream(Buffer);
1695 
1696   Buffer.reserve(256*1024);
1697 
1698   WriteBitcodeToStream( M, Stream );
1699 
1700   // Write the generated bitstream to "Out".
1701   Out.write((char*)&Buffer.front(), Buffer.size());
1702 }
1703 
1704 /// WriteBitcodeToStream - Write the specified module to the specified output
1705 /// stream.
1706 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1707   // If this is darwin or another generic macho target, emit a file header and
1708   // trailer if needed.
1709   Triple TT(M->getTargetTriple());
1710   if (TT.isOSDarwin())
1711     EmitDarwinBCHeader(Stream, TT);
1712 
1713   // Emit the file header.
1714   Stream.Emit((unsigned)'B', 8);
1715   Stream.Emit((unsigned)'C', 8);
1716   Stream.Emit(0x0, 4);
1717   Stream.Emit(0xC, 4);
1718   Stream.Emit(0xE, 4);
1719   Stream.Emit(0xD, 4);
1720 
1721   // Emit the module.
1722   WriteModule(M, Stream);
1723 
1724   if (TT.isOSDarwin())
1725     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1726 }
1727