1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/Program.h" 30 #include <cctype> 31 #include <map> 32 using namespace llvm; 33 34 /// These are manifest constants used by the bitcode writer. They do not need to 35 /// be kept in sync with the reader, but need to be consistent within this file. 36 enum { 37 CurVersion = 0, 38 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 } 77 } 78 79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 80 switch (Opcode) { 81 default: llvm_unreachable("Unknown binary instruction!"); 82 case Instruction::Add: 83 case Instruction::FAdd: return bitc::BINOP_ADD; 84 case Instruction::Sub: 85 case Instruction::FSub: return bitc::BINOP_SUB; 86 case Instruction::Mul: 87 case Instruction::FMul: return bitc::BINOP_MUL; 88 case Instruction::UDiv: return bitc::BINOP_UDIV; 89 case Instruction::FDiv: 90 case Instruction::SDiv: return bitc::BINOP_SDIV; 91 case Instruction::URem: return bitc::BINOP_UREM; 92 case Instruction::FRem: 93 case Instruction::SRem: return bitc::BINOP_SREM; 94 case Instruction::Shl: return bitc::BINOP_SHL; 95 case Instruction::LShr: return bitc::BINOP_LSHR; 96 case Instruction::AShr: return bitc::BINOP_ASHR; 97 case Instruction::And: return bitc::BINOP_AND; 98 case Instruction::Or: return bitc::BINOP_OR; 99 case Instruction::Xor: return bitc::BINOP_XOR; 100 } 101 } 102 103 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 104 switch (Op) { 105 default: llvm_unreachable("Unknown RMW operation!"); 106 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 107 case AtomicRMWInst::Add: return bitc::RMW_ADD; 108 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 109 case AtomicRMWInst::And: return bitc::RMW_AND; 110 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 111 case AtomicRMWInst::Or: return bitc::RMW_OR; 112 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 113 case AtomicRMWInst::Max: return bitc::RMW_MAX; 114 case AtomicRMWInst::Min: return bitc::RMW_MIN; 115 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 116 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 117 } 118 } 119 120 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 121 switch (Ordering) { 122 default: llvm_unreachable("Unknown atomic ordering"); 123 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 124 case Unordered: return bitc::ORDERING_UNORDERED; 125 case Monotonic: return bitc::ORDERING_MONOTONIC; 126 case Acquire: return bitc::ORDERING_ACQUIRE; 127 case Release: return bitc::ORDERING_RELEASE; 128 case AcquireRelease: return bitc::ORDERING_ACQREL; 129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 130 } 131 } 132 133 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 134 switch (SynchScope) { 135 default: llvm_unreachable("Unknown synchronization scope"); 136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 138 } 139 } 140 141 static void WriteStringRecord(unsigned Code, StringRef Str, 142 unsigned AbbrevToUse, BitstreamWriter &Stream) { 143 SmallVector<unsigned, 64> Vals; 144 145 // Code: [strchar x N] 146 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 147 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 148 AbbrevToUse = 0; 149 Vals.push_back(Str[i]); 150 } 151 152 // Emit the finished record. 153 Stream.EmitRecord(Code, Vals, AbbrevToUse); 154 } 155 156 // Emit information about parameter attributes. 157 static void WriteAttributeTable(const ValueEnumerator &VE, 158 BitstreamWriter &Stream) { 159 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 160 if (Attrs.empty()) return; 161 162 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 163 164 SmallVector<uint64_t, 64> Record; 165 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 166 const AttrListPtr &A = Attrs[i]; 167 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 168 const AttributeWithIndex &PAWI = A.getSlot(i); 169 Record.push_back(PAWI.Index); 170 171 // FIXME: remove in LLVM 3.0 172 // Store the alignment in the bitcode as a 16-bit raw value instead of a 173 // 5-bit log2 encoded value. Shift the bits above the alignment up by 174 // 11 bits. 175 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 176 if (PAWI.Attrs & Attribute::Alignment) 177 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 178 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 179 180 Record.push_back(FauxAttr); 181 } 182 183 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 184 Record.clear(); 185 } 186 187 Stream.ExitBlock(); 188 } 189 190 /// WriteTypeTable - Write out the type table for a module. 191 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 192 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 193 194 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 195 SmallVector<uint64_t, 64> TypeVals; 196 197 // Abbrev for TYPE_CODE_POINTER. 198 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 199 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 201 Log2_32_Ceil(VE.getTypes().size()+1))); 202 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 203 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 204 205 // Abbrev for TYPE_CODE_FUNCTION. 206 Abbv = new BitCodeAbbrev(); 207 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 211 Log2_32_Ceil(VE.getTypes().size()+1))); 212 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 213 214 // Abbrev for TYPE_CODE_STRUCT_ANON. 215 Abbv = new BitCodeAbbrev(); 216 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 220 Log2_32_Ceil(VE.getTypes().size()+1))); 221 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 222 223 // Abbrev for TYPE_CODE_STRUCT_NAME. 224 Abbv = new BitCodeAbbrev(); 225 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 228 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 229 230 // Abbrev for TYPE_CODE_STRUCT_NAMED. 231 Abbv = new BitCodeAbbrev(); 232 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 236 Log2_32_Ceil(VE.getTypes().size()+1))); 237 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 238 239 // Abbrev for TYPE_CODE_ARRAY. 240 Abbv = new BitCodeAbbrev(); 241 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 244 Log2_32_Ceil(VE.getTypes().size()+1))); 245 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 246 247 // Emit an entry count so the reader can reserve space. 248 TypeVals.push_back(TypeList.size()); 249 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 250 TypeVals.clear(); 251 252 // Loop over all of the types, emitting each in turn. 253 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 254 Type *T = TypeList[i]; 255 int AbbrevToUse = 0; 256 unsigned Code = 0; 257 258 switch (T->getTypeID()) { 259 default: llvm_unreachable("Unknown type!"); 260 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 261 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 262 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 263 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 264 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 265 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 266 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 267 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 268 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 269 case Type::IntegerTyID: 270 // INTEGER: [width] 271 Code = bitc::TYPE_CODE_INTEGER; 272 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 273 break; 274 case Type::PointerTyID: { 275 PointerType *PTy = cast<PointerType>(T); 276 // POINTER: [pointee type, address space] 277 Code = bitc::TYPE_CODE_POINTER; 278 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 279 unsigned AddressSpace = PTy->getAddressSpace(); 280 TypeVals.push_back(AddressSpace); 281 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 282 break; 283 } 284 case Type::FunctionTyID: { 285 FunctionType *FT = cast<FunctionType>(T); 286 // FUNCTION: [isvararg, retty, paramty x N] 287 Code = bitc::TYPE_CODE_FUNCTION; 288 TypeVals.push_back(FT->isVarArg()); 289 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 291 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 292 AbbrevToUse = FunctionAbbrev; 293 break; 294 } 295 case Type::StructTyID: { 296 StructType *ST = cast<StructType>(T); 297 // STRUCT: [ispacked, eltty x N] 298 TypeVals.push_back(ST->isPacked()); 299 // Output all of the element types. 300 for (StructType::element_iterator I = ST->element_begin(), 301 E = ST->element_end(); I != E; ++I) 302 TypeVals.push_back(VE.getTypeID(*I)); 303 304 if (ST->isLiteral()) { 305 Code = bitc::TYPE_CODE_STRUCT_ANON; 306 AbbrevToUse = StructAnonAbbrev; 307 } else { 308 if (ST->isOpaque()) { 309 Code = bitc::TYPE_CODE_OPAQUE; 310 } else { 311 Code = bitc::TYPE_CODE_STRUCT_NAMED; 312 AbbrevToUse = StructNamedAbbrev; 313 } 314 315 // Emit the name if it is present. 316 if (!ST->getName().empty()) 317 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 318 StructNameAbbrev, Stream); 319 } 320 break; 321 } 322 case Type::ArrayTyID: { 323 ArrayType *AT = cast<ArrayType>(T); 324 // ARRAY: [numelts, eltty] 325 Code = bitc::TYPE_CODE_ARRAY; 326 TypeVals.push_back(AT->getNumElements()); 327 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 328 AbbrevToUse = ArrayAbbrev; 329 break; 330 } 331 case Type::VectorTyID: { 332 VectorType *VT = cast<VectorType>(T); 333 // VECTOR [numelts, eltty] 334 Code = bitc::TYPE_CODE_VECTOR; 335 TypeVals.push_back(VT->getNumElements()); 336 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 337 break; 338 } 339 } 340 341 // Emit the finished record. 342 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 343 TypeVals.clear(); 344 } 345 346 Stream.ExitBlock(); 347 } 348 349 static unsigned getEncodedLinkage(const GlobalValue *GV) { 350 switch (GV->getLinkage()) { 351 default: llvm_unreachable("Invalid linkage!"); 352 case GlobalValue::ExternalLinkage: return 0; 353 case GlobalValue::WeakAnyLinkage: return 1; 354 case GlobalValue::AppendingLinkage: return 2; 355 case GlobalValue::InternalLinkage: return 3; 356 case GlobalValue::LinkOnceAnyLinkage: return 4; 357 case GlobalValue::DLLImportLinkage: return 5; 358 case GlobalValue::DLLExportLinkage: return 6; 359 case GlobalValue::ExternalWeakLinkage: return 7; 360 case GlobalValue::CommonLinkage: return 8; 361 case GlobalValue::PrivateLinkage: return 9; 362 case GlobalValue::WeakODRLinkage: return 10; 363 case GlobalValue::LinkOnceODRLinkage: return 11; 364 case GlobalValue::AvailableExternallyLinkage: return 12; 365 case GlobalValue::LinkerPrivateLinkage: return 13; 366 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 367 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 368 } 369 } 370 371 static unsigned getEncodedVisibility(const GlobalValue *GV) { 372 switch (GV->getVisibility()) { 373 default: llvm_unreachable("Invalid visibility!"); 374 case GlobalValue::DefaultVisibility: return 0; 375 case GlobalValue::HiddenVisibility: return 1; 376 case GlobalValue::ProtectedVisibility: return 2; 377 } 378 } 379 380 // Emit top-level description of module, including target triple, inline asm, 381 // descriptors for global variables, and function prototype info. 382 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 383 BitstreamWriter &Stream) { 384 // Emit the list of dependent libraries for the Module. 385 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 386 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 387 388 // Emit various pieces of data attached to a module. 389 if (!M->getTargetTriple().empty()) 390 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 391 0/*TODO*/, Stream); 392 if (!M->getDataLayout().empty()) 393 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 394 0/*TODO*/, Stream); 395 if (!M->getModuleInlineAsm().empty()) 396 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 397 0/*TODO*/, Stream); 398 399 // Emit information about sections and GC, computing how many there are. Also 400 // compute the maximum alignment value. 401 std::map<std::string, unsigned> SectionMap; 402 std::map<std::string, unsigned> GCMap; 403 unsigned MaxAlignment = 0; 404 unsigned MaxGlobalType = 0; 405 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 406 GV != E; ++GV) { 407 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 408 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 409 if (GV->hasSection()) { 410 // Give section names unique ID's. 411 unsigned &Entry = SectionMap[GV->getSection()]; 412 if (!Entry) { 413 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 414 0/*TODO*/, Stream); 415 Entry = SectionMap.size(); 416 } 417 } 418 } 419 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 420 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 421 if (F->hasSection()) { 422 // Give section names unique ID's. 423 unsigned &Entry = SectionMap[F->getSection()]; 424 if (!Entry) { 425 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 426 0/*TODO*/, Stream); 427 Entry = SectionMap.size(); 428 } 429 } 430 if (F->hasGC()) { 431 // Same for GC names. 432 unsigned &Entry = GCMap[F->getGC()]; 433 if (!Entry) { 434 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 435 0/*TODO*/, Stream); 436 Entry = GCMap.size(); 437 } 438 } 439 } 440 441 // Emit abbrev for globals, now that we know # sections and max alignment. 442 unsigned SimpleGVarAbbrev = 0; 443 if (!M->global_empty()) { 444 // Add an abbrev for common globals with no visibility or thread localness. 445 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 446 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 448 Log2_32_Ceil(MaxGlobalType+1))); 449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 452 if (MaxAlignment == 0) // Alignment. 453 Abbv->Add(BitCodeAbbrevOp(0)); 454 else { 455 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 457 Log2_32_Ceil(MaxEncAlignment+1))); 458 } 459 if (SectionMap.empty()) // Section. 460 Abbv->Add(BitCodeAbbrevOp(0)); 461 else 462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 463 Log2_32_Ceil(SectionMap.size()+1))); 464 // Don't bother emitting vis + thread local. 465 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 466 } 467 468 // Emit the global variable information. 469 SmallVector<unsigned, 64> Vals; 470 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 471 GV != E; ++GV) { 472 unsigned AbbrevToUse = 0; 473 474 // GLOBALVAR: [type, isconst, initid, 475 // linkage, alignment, section, visibility, threadlocal, 476 // unnamed_addr] 477 Vals.push_back(VE.getTypeID(GV->getType())); 478 Vals.push_back(GV->isConstant()); 479 Vals.push_back(GV->isDeclaration() ? 0 : 480 (VE.getValueID(GV->getInitializer()) + 1)); 481 Vals.push_back(getEncodedLinkage(GV)); 482 Vals.push_back(Log2_32(GV->getAlignment())+1); 483 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 484 if (GV->isThreadLocal() || 485 GV->getVisibility() != GlobalValue::DefaultVisibility || 486 GV->hasUnnamedAddr()) { 487 Vals.push_back(getEncodedVisibility(GV)); 488 Vals.push_back(GV->isThreadLocal()); 489 Vals.push_back(GV->hasUnnamedAddr()); 490 } else { 491 AbbrevToUse = SimpleGVarAbbrev; 492 } 493 494 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 495 Vals.clear(); 496 } 497 498 // Emit the function proto information. 499 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 500 // FUNCTION: [type, callingconv, isproto, paramattr, 501 // linkage, alignment, section, visibility, gc, unnamed_addr] 502 Vals.push_back(VE.getTypeID(F->getType())); 503 Vals.push_back(F->getCallingConv()); 504 Vals.push_back(F->isDeclaration()); 505 Vals.push_back(getEncodedLinkage(F)); 506 Vals.push_back(VE.getAttributeID(F->getAttributes())); 507 Vals.push_back(Log2_32(F->getAlignment())+1); 508 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 509 Vals.push_back(getEncodedVisibility(F)); 510 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 511 Vals.push_back(F->hasUnnamedAddr()); 512 513 unsigned AbbrevToUse = 0; 514 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 515 Vals.clear(); 516 } 517 518 // Emit the alias information. 519 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 520 AI != E; ++AI) { 521 Vals.push_back(VE.getTypeID(AI->getType())); 522 Vals.push_back(VE.getValueID(AI->getAliasee())); 523 Vals.push_back(getEncodedLinkage(AI)); 524 Vals.push_back(getEncodedVisibility(AI)); 525 unsigned AbbrevToUse = 0; 526 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 527 Vals.clear(); 528 } 529 } 530 531 static uint64_t GetOptimizationFlags(const Value *V) { 532 uint64_t Flags = 0; 533 534 if (const OverflowingBinaryOperator *OBO = 535 dyn_cast<OverflowingBinaryOperator>(V)) { 536 if (OBO->hasNoSignedWrap()) 537 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 538 if (OBO->hasNoUnsignedWrap()) 539 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 540 } else if (const PossiblyExactOperator *PEO = 541 dyn_cast<PossiblyExactOperator>(V)) { 542 if (PEO->isExact()) 543 Flags |= 1 << bitc::PEO_EXACT; 544 } 545 546 return Flags; 547 } 548 549 static void WriteMDNode(const MDNode *N, 550 const ValueEnumerator &VE, 551 BitstreamWriter &Stream, 552 SmallVector<uint64_t, 64> &Record) { 553 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 554 if (N->getOperand(i)) { 555 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 556 Record.push_back(VE.getValueID(N->getOperand(i))); 557 } else { 558 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 559 Record.push_back(0); 560 } 561 } 562 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 563 bitc::METADATA_NODE; 564 Stream.EmitRecord(MDCode, Record, 0); 565 Record.clear(); 566 } 567 568 static void WriteModuleMetadata(const Module *M, 569 const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 572 bool StartedMetadataBlock = false; 573 unsigned MDSAbbrev = 0; 574 SmallVector<uint64_t, 64> Record; 575 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 576 577 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 578 if (!N->isFunctionLocal() || !N->getFunction()) { 579 if (!StartedMetadataBlock) { 580 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 581 StartedMetadataBlock = true; 582 } 583 WriteMDNode(N, VE, Stream, Record); 584 } 585 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 586 if (!StartedMetadataBlock) { 587 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 588 589 // Abbrev for METADATA_STRING. 590 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 591 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 594 MDSAbbrev = Stream.EmitAbbrev(Abbv); 595 StartedMetadataBlock = true; 596 } 597 598 // Code: [strchar x N] 599 Record.append(MDS->begin(), MDS->end()); 600 601 // Emit the finished record. 602 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 603 Record.clear(); 604 } 605 } 606 607 // Write named metadata. 608 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 609 E = M->named_metadata_end(); I != E; ++I) { 610 const NamedMDNode *NMD = I; 611 if (!StartedMetadataBlock) { 612 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 613 StartedMetadataBlock = true; 614 } 615 616 // Write name. 617 StringRef Str = NMD->getName(); 618 for (unsigned i = 0, e = Str.size(); i != e; ++i) 619 Record.push_back(Str[i]); 620 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 621 Record.clear(); 622 623 // Write named metadata operands. 624 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 625 Record.push_back(VE.getValueID(NMD->getOperand(i))); 626 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 627 Record.clear(); 628 } 629 630 if (StartedMetadataBlock) 631 Stream.ExitBlock(); 632 } 633 634 static void WriteFunctionLocalMetadata(const Function &F, 635 const ValueEnumerator &VE, 636 BitstreamWriter &Stream) { 637 bool StartedMetadataBlock = false; 638 SmallVector<uint64_t, 64> Record; 639 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 640 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 641 if (const MDNode *N = Vals[i]) 642 if (N->isFunctionLocal() && N->getFunction() == &F) { 643 if (!StartedMetadataBlock) { 644 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 645 StartedMetadataBlock = true; 646 } 647 WriteMDNode(N, VE, Stream, Record); 648 } 649 650 if (StartedMetadataBlock) 651 Stream.ExitBlock(); 652 } 653 654 static void WriteMetadataAttachment(const Function &F, 655 const ValueEnumerator &VE, 656 BitstreamWriter &Stream) { 657 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 658 659 SmallVector<uint64_t, 64> Record; 660 661 // Write metadata attachments 662 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 663 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 664 665 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 666 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 667 I != E; ++I) { 668 MDs.clear(); 669 I->getAllMetadataOtherThanDebugLoc(MDs); 670 671 // If no metadata, ignore instruction. 672 if (MDs.empty()) continue; 673 674 Record.push_back(VE.getInstructionID(I)); 675 676 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 677 Record.push_back(MDs[i].first); 678 Record.push_back(VE.getValueID(MDs[i].second)); 679 } 680 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 681 Record.clear(); 682 } 683 684 Stream.ExitBlock(); 685 } 686 687 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 688 SmallVector<uint64_t, 64> Record; 689 690 // Write metadata kinds 691 // METADATA_KIND - [n x [id, name]] 692 SmallVector<StringRef, 4> Names; 693 M->getMDKindNames(Names); 694 695 if (Names.empty()) return; 696 697 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 698 699 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 700 Record.push_back(MDKindID); 701 StringRef KName = Names[MDKindID]; 702 Record.append(KName.begin(), KName.end()); 703 704 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 705 Record.clear(); 706 } 707 708 Stream.ExitBlock(); 709 } 710 711 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 712 const ValueEnumerator &VE, 713 BitstreamWriter &Stream, bool isGlobal) { 714 if (FirstVal == LastVal) return; 715 716 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 717 718 unsigned AggregateAbbrev = 0; 719 unsigned String8Abbrev = 0; 720 unsigned CString7Abbrev = 0; 721 unsigned CString6Abbrev = 0; 722 // If this is a constant pool for the module, emit module-specific abbrevs. 723 if (isGlobal) { 724 // Abbrev for CST_CODE_AGGREGATE. 725 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 726 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 729 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 730 731 // Abbrev for CST_CODE_STRING. 732 Abbv = new BitCodeAbbrev(); 733 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 736 String8Abbrev = Stream.EmitAbbrev(Abbv); 737 // Abbrev for CST_CODE_CSTRING. 738 Abbv = new BitCodeAbbrev(); 739 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 742 CString7Abbrev = Stream.EmitAbbrev(Abbv); 743 // Abbrev for CST_CODE_CSTRING. 744 Abbv = new BitCodeAbbrev(); 745 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 748 CString6Abbrev = Stream.EmitAbbrev(Abbv); 749 } 750 751 SmallVector<uint64_t, 64> Record; 752 753 const ValueEnumerator::ValueList &Vals = VE.getValues(); 754 Type *LastTy = 0; 755 for (unsigned i = FirstVal; i != LastVal; ++i) { 756 const Value *V = Vals[i].first; 757 // If we need to switch types, do so now. 758 if (V->getType() != LastTy) { 759 LastTy = V->getType(); 760 Record.push_back(VE.getTypeID(LastTy)); 761 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 762 CONSTANTS_SETTYPE_ABBREV); 763 Record.clear(); 764 } 765 766 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 767 Record.push_back(unsigned(IA->hasSideEffects()) | 768 unsigned(IA->isAlignStack()) << 1); 769 770 // Add the asm string. 771 const std::string &AsmStr = IA->getAsmString(); 772 Record.push_back(AsmStr.size()); 773 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 774 Record.push_back(AsmStr[i]); 775 776 // Add the constraint string. 777 const std::string &ConstraintStr = IA->getConstraintString(); 778 Record.push_back(ConstraintStr.size()); 779 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 780 Record.push_back(ConstraintStr[i]); 781 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 782 Record.clear(); 783 continue; 784 } 785 const Constant *C = cast<Constant>(V); 786 unsigned Code = -1U; 787 unsigned AbbrevToUse = 0; 788 if (C->isNullValue()) { 789 Code = bitc::CST_CODE_NULL; 790 } else if (isa<UndefValue>(C)) { 791 Code = bitc::CST_CODE_UNDEF; 792 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 793 if (IV->getBitWidth() <= 64) { 794 uint64_t V = IV->getSExtValue(); 795 if ((int64_t)V >= 0) 796 Record.push_back(V << 1); 797 else 798 Record.push_back((-V << 1) | 1); 799 Code = bitc::CST_CODE_INTEGER; 800 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 801 } else { // Wide integers, > 64 bits in size. 802 // We have an arbitrary precision integer value to write whose 803 // bit width is > 64. However, in canonical unsigned integer 804 // format it is likely that the high bits are going to be zero. 805 // So, we only write the number of active words. 806 unsigned NWords = IV->getValue().getActiveWords(); 807 const uint64_t *RawWords = IV->getValue().getRawData(); 808 for (unsigned i = 0; i != NWords; ++i) { 809 int64_t V = RawWords[i]; 810 if (V >= 0) 811 Record.push_back(V << 1); 812 else 813 Record.push_back((-V << 1) | 1); 814 } 815 Code = bitc::CST_CODE_WIDE_INTEGER; 816 } 817 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 818 Code = bitc::CST_CODE_FLOAT; 819 Type *Ty = CFP->getType(); 820 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 821 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 822 } else if (Ty->isX86_FP80Ty()) { 823 // api needed to prevent premature destruction 824 // bits are not in the same order as a normal i80 APInt, compensate. 825 APInt api = CFP->getValueAPF().bitcastToAPInt(); 826 const uint64_t *p = api.getRawData(); 827 Record.push_back((p[1] << 48) | (p[0] >> 16)); 828 Record.push_back(p[0] & 0xffffLL); 829 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 830 APInt api = CFP->getValueAPF().bitcastToAPInt(); 831 const uint64_t *p = api.getRawData(); 832 Record.push_back(p[0]); 833 Record.push_back(p[1]); 834 } else { 835 assert (0 && "Unknown FP type!"); 836 } 837 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 838 const ConstantArray *CA = cast<ConstantArray>(C); 839 // Emit constant strings specially. 840 unsigned NumOps = CA->getNumOperands(); 841 // If this is a null-terminated string, use the denser CSTRING encoding. 842 if (CA->getOperand(NumOps-1)->isNullValue()) { 843 Code = bitc::CST_CODE_CSTRING; 844 --NumOps; // Don't encode the null, which isn't allowed by char6. 845 } else { 846 Code = bitc::CST_CODE_STRING; 847 AbbrevToUse = String8Abbrev; 848 } 849 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 850 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 851 for (unsigned i = 0; i != NumOps; ++i) { 852 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 853 Record.push_back(V); 854 isCStr7 &= (V & 128) == 0; 855 if (isCStrChar6) 856 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 857 } 858 859 if (isCStrChar6) 860 AbbrevToUse = CString6Abbrev; 861 else if (isCStr7) 862 AbbrevToUse = CString7Abbrev; 863 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 864 isa<ConstantVector>(V)) { 865 Code = bitc::CST_CODE_AGGREGATE; 866 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 867 Record.push_back(VE.getValueID(C->getOperand(i))); 868 AbbrevToUse = AggregateAbbrev; 869 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 870 switch (CE->getOpcode()) { 871 default: 872 if (Instruction::isCast(CE->getOpcode())) { 873 Code = bitc::CST_CODE_CE_CAST; 874 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 875 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 876 Record.push_back(VE.getValueID(C->getOperand(0))); 877 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 878 } else { 879 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 880 Code = bitc::CST_CODE_CE_BINOP; 881 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 882 Record.push_back(VE.getValueID(C->getOperand(0))); 883 Record.push_back(VE.getValueID(C->getOperand(1))); 884 uint64_t Flags = GetOptimizationFlags(CE); 885 if (Flags != 0) 886 Record.push_back(Flags); 887 } 888 break; 889 case Instruction::GetElementPtr: 890 Code = bitc::CST_CODE_CE_GEP; 891 if (cast<GEPOperator>(C)->isInBounds()) 892 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 893 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 894 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 895 Record.push_back(VE.getValueID(C->getOperand(i))); 896 } 897 break; 898 case Instruction::Select: 899 Code = bitc::CST_CODE_CE_SELECT; 900 Record.push_back(VE.getValueID(C->getOperand(0))); 901 Record.push_back(VE.getValueID(C->getOperand(1))); 902 Record.push_back(VE.getValueID(C->getOperand(2))); 903 break; 904 case Instruction::ExtractElement: 905 Code = bitc::CST_CODE_CE_EXTRACTELT; 906 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 907 Record.push_back(VE.getValueID(C->getOperand(0))); 908 Record.push_back(VE.getValueID(C->getOperand(1))); 909 break; 910 case Instruction::InsertElement: 911 Code = bitc::CST_CODE_CE_INSERTELT; 912 Record.push_back(VE.getValueID(C->getOperand(0))); 913 Record.push_back(VE.getValueID(C->getOperand(1))); 914 Record.push_back(VE.getValueID(C->getOperand(2))); 915 break; 916 case Instruction::ShuffleVector: 917 // If the return type and argument types are the same, this is a 918 // standard shufflevector instruction. If the types are different, 919 // then the shuffle is widening or truncating the input vectors, and 920 // the argument type must also be encoded. 921 if (C->getType() == C->getOperand(0)->getType()) { 922 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 923 } else { 924 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 925 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 926 } 927 Record.push_back(VE.getValueID(C->getOperand(0))); 928 Record.push_back(VE.getValueID(C->getOperand(1))); 929 Record.push_back(VE.getValueID(C->getOperand(2))); 930 break; 931 case Instruction::ICmp: 932 case Instruction::FCmp: 933 Code = bitc::CST_CODE_CE_CMP; 934 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 935 Record.push_back(VE.getValueID(C->getOperand(0))); 936 Record.push_back(VE.getValueID(C->getOperand(1))); 937 Record.push_back(CE->getPredicate()); 938 break; 939 } 940 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 941 Code = bitc::CST_CODE_BLOCKADDRESS; 942 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 943 Record.push_back(VE.getValueID(BA->getFunction())); 944 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 945 } else { 946 #ifndef NDEBUG 947 C->dump(); 948 #endif 949 llvm_unreachable("Unknown constant!"); 950 } 951 Stream.EmitRecord(Code, Record, AbbrevToUse); 952 Record.clear(); 953 } 954 955 Stream.ExitBlock(); 956 } 957 958 static void WriteModuleConstants(const ValueEnumerator &VE, 959 BitstreamWriter &Stream) { 960 const ValueEnumerator::ValueList &Vals = VE.getValues(); 961 962 // Find the first constant to emit, which is the first non-globalvalue value. 963 // We know globalvalues have been emitted by WriteModuleInfo. 964 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 965 if (!isa<GlobalValue>(Vals[i].first)) { 966 WriteConstants(i, Vals.size(), VE, Stream, true); 967 return; 968 } 969 } 970 } 971 972 /// PushValueAndType - The file has to encode both the value and type id for 973 /// many values, because we need to know what type to create for forward 974 /// references. However, most operands are not forward references, so this type 975 /// field is not needed. 976 /// 977 /// This function adds V's value ID to Vals. If the value ID is higher than the 978 /// instruction ID, then it is a forward reference, and it also includes the 979 /// type ID. 980 static bool PushValueAndType(const Value *V, unsigned InstID, 981 SmallVector<unsigned, 64> &Vals, 982 ValueEnumerator &VE) { 983 unsigned ValID = VE.getValueID(V); 984 Vals.push_back(ValID); 985 if (ValID >= InstID) { 986 Vals.push_back(VE.getTypeID(V->getType())); 987 return true; 988 } 989 return false; 990 } 991 992 /// WriteInstruction - Emit an instruction to the specified stream. 993 static void WriteInstruction(const Instruction &I, unsigned InstID, 994 ValueEnumerator &VE, BitstreamWriter &Stream, 995 SmallVector<unsigned, 64> &Vals) { 996 unsigned Code = 0; 997 unsigned AbbrevToUse = 0; 998 VE.setInstructionID(&I); 999 switch (I.getOpcode()) { 1000 default: 1001 if (Instruction::isCast(I.getOpcode())) { 1002 Code = bitc::FUNC_CODE_INST_CAST; 1003 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1004 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1005 Vals.push_back(VE.getTypeID(I.getType())); 1006 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1007 } else { 1008 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1009 Code = bitc::FUNC_CODE_INST_BINOP; 1010 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1011 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1012 Vals.push_back(VE.getValueID(I.getOperand(1))); 1013 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1014 uint64_t Flags = GetOptimizationFlags(&I); 1015 if (Flags != 0) { 1016 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1017 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1018 Vals.push_back(Flags); 1019 } 1020 } 1021 break; 1022 1023 case Instruction::GetElementPtr: 1024 Code = bitc::FUNC_CODE_INST_GEP; 1025 if (cast<GEPOperator>(&I)->isInBounds()) 1026 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1027 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1028 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1029 break; 1030 case Instruction::ExtractValue: { 1031 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1032 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1033 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1034 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1035 Vals.push_back(*i); 1036 break; 1037 } 1038 case Instruction::InsertValue: { 1039 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1040 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1041 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1042 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1043 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1044 Vals.push_back(*i); 1045 break; 1046 } 1047 case Instruction::Select: 1048 Code = bitc::FUNC_CODE_INST_VSELECT; 1049 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1050 Vals.push_back(VE.getValueID(I.getOperand(2))); 1051 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1052 break; 1053 case Instruction::ExtractElement: 1054 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1055 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1056 Vals.push_back(VE.getValueID(I.getOperand(1))); 1057 break; 1058 case Instruction::InsertElement: 1059 Code = bitc::FUNC_CODE_INST_INSERTELT; 1060 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1061 Vals.push_back(VE.getValueID(I.getOperand(1))); 1062 Vals.push_back(VE.getValueID(I.getOperand(2))); 1063 break; 1064 case Instruction::ShuffleVector: 1065 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1066 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1067 Vals.push_back(VE.getValueID(I.getOperand(1))); 1068 Vals.push_back(VE.getValueID(I.getOperand(2))); 1069 break; 1070 case Instruction::ICmp: 1071 case Instruction::FCmp: 1072 // compare returning Int1Ty or vector of Int1Ty 1073 Code = bitc::FUNC_CODE_INST_CMP2; 1074 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1075 Vals.push_back(VE.getValueID(I.getOperand(1))); 1076 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1077 break; 1078 1079 case Instruction::Ret: 1080 { 1081 Code = bitc::FUNC_CODE_INST_RET; 1082 unsigned NumOperands = I.getNumOperands(); 1083 if (NumOperands == 0) 1084 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1085 else if (NumOperands == 1) { 1086 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1087 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1088 } else { 1089 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1090 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1091 } 1092 } 1093 break; 1094 case Instruction::Br: 1095 { 1096 Code = bitc::FUNC_CODE_INST_BR; 1097 BranchInst &II = cast<BranchInst>(I); 1098 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1099 if (II.isConditional()) { 1100 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1101 Vals.push_back(VE.getValueID(II.getCondition())); 1102 } 1103 } 1104 break; 1105 case Instruction::Switch: 1106 Code = bitc::FUNC_CODE_INST_SWITCH; 1107 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1108 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1109 Vals.push_back(VE.getValueID(I.getOperand(i))); 1110 break; 1111 case Instruction::IndirectBr: 1112 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1113 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1114 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1115 Vals.push_back(VE.getValueID(I.getOperand(i))); 1116 break; 1117 1118 case Instruction::Invoke: { 1119 const InvokeInst *II = cast<InvokeInst>(&I); 1120 const Value *Callee(II->getCalledValue()); 1121 PointerType *PTy = cast<PointerType>(Callee->getType()); 1122 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1123 Code = bitc::FUNC_CODE_INST_INVOKE; 1124 1125 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1126 Vals.push_back(II->getCallingConv()); 1127 Vals.push_back(VE.getValueID(II->getNormalDest())); 1128 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1129 PushValueAndType(Callee, InstID, Vals, VE); 1130 1131 // Emit value #'s for the fixed parameters. 1132 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1133 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1134 1135 // Emit type/value pairs for varargs params. 1136 if (FTy->isVarArg()) { 1137 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1138 i != e; ++i) 1139 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1140 } 1141 break; 1142 } 1143 case Instruction::Resume: 1144 Code = bitc::FUNC_CODE_INST_RESUME; 1145 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1146 break; 1147 case Instruction::Unwind: 1148 Code = bitc::FUNC_CODE_INST_UNWIND; 1149 break; 1150 case Instruction::Unreachable: 1151 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1152 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1153 break; 1154 1155 case Instruction::PHI: { 1156 const PHINode &PN = cast<PHINode>(I); 1157 Code = bitc::FUNC_CODE_INST_PHI; 1158 Vals.push_back(VE.getTypeID(PN.getType())); 1159 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1160 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1161 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1162 } 1163 break; 1164 } 1165 1166 case Instruction::LandingPad: { 1167 const LandingPadInst &LP = cast<LandingPadInst>(I); 1168 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1169 Vals.push_back(VE.getTypeID(LP.getType())); 1170 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1171 Vals.push_back(LP.isCleanup()); 1172 Vals.push_back(LP.getNumClauses()); 1173 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1174 if (LP.isCatch(I)) 1175 Vals.push_back(LandingPadInst::Catch); 1176 else 1177 Vals.push_back(LandingPadInst::Filter); 1178 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1179 } 1180 break; 1181 } 1182 1183 case Instruction::Alloca: 1184 Code = bitc::FUNC_CODE_INST_ALLOCA; 1185 Vals.push_back(VE.getTypeID(I.getType())); 1186 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1187 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1188 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1189 break; 1190 1191 case Instruction::Load: 1192 if (cast<LoadInst>(I).isAtomic()) { 1193 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1194 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1195 } else { 1196 Code = bitc::FUNC_CODE_INST_LOAD; 1197 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1198 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1199 } 1200 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1201 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1202 if (cast<LoadInst>(I).isAtomic()) { 1203 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1204 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1205 } 1206 break; 1207 case Instruction::Store: 1208 if (cast<StoreInst>(I).isAtomic()) 1209 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1210 else 1211 Code = bitc::FUNC_CODE_INST_STORE; 1212 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1213 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1214 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1215 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1216 if (cast<StoreInst>(I).isAtomic()) { 1217 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1218 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1219 } 1220 break; 1221 case Instruction::AtomicCmpXchg: 1222 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1223 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1224 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1225 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1226 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1227 Vals.push_back(GetEncodedOrdering( 1228 cast<AtomicCmpXchgInst>(I).getOrdering())); 1229 Vals.push_back(GetEncodedSynchScope( 1230 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1231 break; 1232 case Instruction::AtomicRMW: 1233 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1234 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1235 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1236 Vals.push_back(GetEncodedRMWOperation( 1237 cast<AtomicRMWInst>(I).getOperation())); 1238 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1239 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1240 Vals.push_back(GetEncodedSynchScope( 1241 cast<AtomicRMWInst>(I).getSynchScope())); 1242 break; 1243 case Instruction::Fence: 1244 Code = bitc::FUNC_CODE_INST_FENCE; 1245 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1246 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1247 break; 1248 case Instruction::Call: { 1249 const CallInst &CI = cast<CallInst>(I); 1250 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1251 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1252 1253 Code = bitc::FUNC_CODE_INST_CALL; 1254 1255 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1256 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1257 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1258 1259 // Emit value #'s for the fixed parameters. 1260 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1261 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1262 1263 // Emit type/value pairs for varargs params. 1264 if (FTy->isVarArg()) { 1265 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1266 i != e; ++i) 1267 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1268 } 1269 break; 1270 } 1271 case Instruction::VAArg: 1272 Code = bitc::FUNC_CODE_INST_VAARG; 1273 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1274 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1275 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1276 break; 1277 } 1278 1279 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1280 Vals.clear(); 1281 } 1282 1283 // Emit names for globals/functions etc. 1284 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1285 const ValueEnumerator &VE, 1286 BitstreamWriter &Stream) { 1287 if (VST.empty()) return; 1288 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1289 1290 // FIXME: Set up the abbrev, we know how many values there are! 1291 // FIXME: We know if the type names can use 7-bit ascii. 1292 SmallVector<unsigned, 64> NameVals; 1293 1294 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1295 SI != SE; ++SI) { 1296 1297 const ValueName &Name = *SI; 1298 1299 // Figure out the encoding to use for the name. 1300 bool is7Bit = true; 1301 bool isChar6 = true; 1302 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1303 C != E; ++C) { 1304 if (isChar6) 1305 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1306 if ((unsigned char)*C & 128) { 1307 is7Bit = false; 1308 break; // don't bother scanning the rest. 1309 } 1310 } 1311 1312 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1313 1314 // VST_ENTRY: [valueid, namechar x N] 1315 // VST_BBENTRY: [bbid, namechar x N] 1316 unsigned Code; 1317 if (isa<BasicBlock>(SI->getValue())) { 1318 Code = bitc::VST_CODE_BBENTRY; 1319 if (isChar6) 1320 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1321 } else { 1322 Code = bitc::VST_CODE_ENTRY; 1323 if (isChar6) 1324 AbbrevToUse = VST_ENTRY_6_ABBREV; 1325 else if (is7Bit) 1326 AbbrevToUse = VST_ENTRY_7_ABBREV; 1327 } 1328 1329 NameVals.push_back(VE.getValueID(SI->getValue())); 1330 for (const char *P = Name.getKeyData(), 1331 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1332 NameVals.push_back((unsigned char)*P); 1333 1334 // Emit the finished record. 1335 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1336 NameVals.clear(); 1337 } 1338 Stream.ExitBlock(); 1339 } 1340 1341 /// WriteFunction - Emit a function body to the module stream. 1342 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1343 BitstreamWriter &Stream) { 1344 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1345 VE.incorporateFunction(F); 1346 1347 SmallVector<unsigned, 64> Vals; 1348 1349 // Emit the number of basic blocks, so the reader can create them ahead of 1350 // time. 1351 Vals.push_back(VE.getBasicBlocks().size()); 1352 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1353 Vals.clear(); 1354 1355 // If there are function-local constants, emit them now. 1356 unsigned CstStart, CstEnd; 1357 VE.getFunctionConstantRange(CstStart, CstEnd); 1358 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1359 1360 // If there is function-local metadata, emit it now. 1361 WriteFunctionLocalMetadata(F, VE, Stream); 1362 1363 // Keep a running idea of what the instruction ID is. 1364 unsigned InstID = CstEnd; 1365 1366 bool NeedsMetadataAttachment = false; 1367 1368 DebugLoc LastDL; 1369 1370 // Finally, emit all the instructions, in order. 1371 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1372 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1373 I != E; ++I) { 1374 WriteInstruction(*I, InstID, VE, Stream, Vals); 1375 1376 if (!I->getType()->isVoidTy()) 1377 ++InstID; 1378 1379 // If the instruction has metadata, write a metadata attachment later. 1380 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1381 1382 // If the instruction has a debug location, emit it. 1383 DebugLoc DL = I->getDebugLoc(); 1384 if (DL.isUnknown()) { 1385 // nothing todo. 1386 } else if (DL == LastDL) { 1387 // Just repeat the same debug loc as last time. 1388 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1389 } else { 1390 MDNode *Scope, *IA; 1391 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1392 1393 Vals.push_back(DL.getLine()); 1394 Vals.push_back(DL.getCol()); 1395 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1396 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1397 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1398 Vals.clear(); 1399 1400 LastDL = DL; 1401 } 1402 } 1403 1404 // Emit names for all the instructions etc. 1405 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1406 1407 if (NeedsMetadataAttachment) 1408 WriteMetadataAttachment(F, VE, Stream); 1409 VE.purgeFunction(); 1410 Stream.ExitBlock(); 1411 } 1412 1413 // Emit blockinfo, which defines the standard abbreviations etc. 1414 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1415 // We only want to emit block info records for blocks that have multiple 1416 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1417 // blocks can defined their abbrevs inline. 1418 Stream.EnterBlockInfoBlock(2); 1419 1420 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1421 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1426 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1427 Abbv) != VST_ENTRY_8_ABBREV) 1428 llvm_unreachable("Unexpected abbrev ordering!"); 1429 } 1430 1431 { // 7-bit fixed width VST_ENTRY strings. 1432 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1433 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1437 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1438 Abbv) != VST_ENTRY_7_ABBREV) 1439 llvm_unreachable("Unexpected abbrev ordering!"); 1440 } 1441 { // 6-bit char6 VST_ENTRY strings. 1442 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1443 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1447 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1448 Abbv) != VST_ENTRY_6_ABBREV) 1449 llvm_unreachable("Unexpected abbrev ordering!"); 1450 } 1451 { // 6-bit char6 VST_BBENTRY strings. 1452 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1453 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1457 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1458 Abbv) != VST_BBENTRY_6_ABBREV) 1459 llvm_unreachable("Unexpected abbrev ordering!"); 1460 } 1461 1462 1463 1464 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1465 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1466 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1468 Log2_32_Ceil(VE.getTypes().size()+1))); 1469 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1470 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1471 llvm_unreachable("Unexpected abbrev ordering!"); 1472 } 1473 1474 { // INTEGER abbrev for CONSTANTS_BLOCK. 1475 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1476 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1478 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1479 Abbv) != CONSTANTS_INTEGER_ABBREV) 1480 llvm_unreachable("Unexpected abbrev ordering!"); 1481 } 1482 1483 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1484 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1485 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1488 Log2_32_Ceil(VE.getTypes().size()+1))); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1490 1491 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1492 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1493 llvm_unreachable("Unexpected abbrev ordering!"); 1494 } 1495 { // NULL abbrev for CONSTANTS_BLOCK. 1496 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1497 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1498 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1499 Abbv) != CONSTANTS_NULL_Abbrev) 1500 llvm_unreachable("Unexpected abbrev ordering!"); 1501 } 1502 1503 // FIXME: This should only use space for first class types! 1504 1505 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1506 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1507 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1511 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1512 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1513 llvm_unreachable("Unexpected abbrev ordering!"); 1514 } 1515 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1516 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1517 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1521 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1522 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1523 llvm_unreachable("Unexpected abbrev ordering!"); 1524 } 1525 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1526 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1527 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1532 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1533 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1534 llvm_unreachable("Unexpected abbrev ordering!"); 1535 } 1536 { // INST_CAST abbrev for FUNCTION_BLOCK. 1537 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1538 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1541 Log2_32_Ceil(VE.getTypes().size()+1))); 1542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1543 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1544 Abbv) != FUNCTION_INST_CAST_ABBREV) 1545 llvm_unreachable("Unexpected abbrev ordering!"); 1546 } 1547 1548 { // INST_RET abbrev for FUNCTION_BLOCK. 1549 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1550 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1551 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1552 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1553 llvm_unreachable("Unexpected abbrev ordering!"); 1554 } 1555 { // INST_RET abbrev for FUNCTION_BLOCK. 1556 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1557 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1559 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1560 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1561 llvm_unreachable("Unexpected abbrev ordering!"); 1562 } 1563 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1564 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1565 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1566 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1567 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1568 llvm_unreachable("Unexpected abbrev ordering!"); 1569 } 1570 1571 Stream.ExitBlock(); 1572 } 1573 1574 1575 /// WriteModule - Emit the specified module to the bitstream. 1576 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1577 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1578 1579 // Emit the version number if it is non-zero. 1580 if (CurVersion) { 1581 SmallVector<unsigned, 1> Vals; 1582 Vals.push_back(CurVersion); 1583 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1584 } 1585 1586 // Analyze the module, enumerating globals, functions, etc. 1587 ValueEnumerator VE(M); 1588 1589 // Emit blockinfo, which defines the standard abbreviations etc. 1590 WriteBlockInfo(VE, Stream); 1591 1592 // Emit information about parameter attributes. 1593 WriteAttributeTable(VE, Stream); 1594 1595 // Emit information describing all of the types in the module. 1596 WriteTypeTable(VE, Stream); 1597 1598 // Emit top-level description of module, including target triple, inline asm, 1599 // descriptors for global variables, and function prototype info. 1600 WriteModuleInfo(M, VE, Stream); 1601 1602 // Emit constants. 1603 WriteModuleConstants(VE, Stream); 1604 1605 // Emit metadata. 1606 WriteModuleMetadata(M, VE, Stream); 1607 1608 // Emit function bodies. 1609 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1610 if (!F->isDeclaration()) 1611 WriteFunction(*F, VE, Stream); 1612 1613 // Emit metadata. 1614 WriteModuleMetadataStore(M, Stream); 1615 1616 // Emit names for globals/functions etc. 1617 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1618 1619 Stream.ExitBlock(); 1620 } 1621 1622 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1623 /// header and trailer to make it compatible with the system archiver. To do 1624 /// this we emit the following header, and then emit a trailer that pads the 1625 /// file out to be a multiple of 16 bytes. 1626 /// 1627 /// struct bc_header { 1628 /// uint32_t Magic; // 0x0B17C0DE 1629 /// uint32_t Version; // Version, currently always 0. 1630 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1631 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1632 /// uint32_t CPUType; // CPU specifier. 1633 /// ... potentially more later ... 1634 /// }; 1635 enum { 1636 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1637 DarwinBCHeaderSize = 5*4 1638 }; 1639 1640 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) { 1641 unsigned CPUType = ~0U; 1642 1643 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1644 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1645 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1646 // specific constants here because they are implicitly part of the Darwin ABI. 1647 enum { 1648 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1649 DARWIN_CPU_TYPE_X86 = 7, 1650 DARWIN_CPU_TYPE_ARM = 12, 1651 DARWIN_CPU_TYPE_POWERPC = 18 1652 }; 1653 1654 Triple::ArchType Arch = TT.getArch(); 1655 if (Arch == Triple::x86_64) 1656 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1657 else if (Arch == Triple::x86) 1658 CPUType = DARWIN_CPU_TYPE_X86; 1659 else if (Arch == Triple::ppc) 1660 CPUType = DARWIN_CPU_TYPE_POWERPC; 1661 else if (Arch == Triple::ppc64) 1662 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1663 else if (Arch == Triple::arm || Arch == Triple::thumb) 1664 CPUType = DARWIN_CPU_TYPE_ARM; 1665 1666 // Traditional Bitcode starts after header. 1667 unsigned BCOffset = DarwinBCHeaderSize; 1668 1669 Stream.Emit(0x0B17C0DE, 32); 1670 Stream.Emit(0 , 32); // Version. 1671 Stream.Emit(BCOffset , 32); 1672 Stream.Emit(0 , 32); // Filled in later. 1673 Stream.Emit(CPUType , 32); 1674 } 1675 1676 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1677 /// finalize the header. 1678 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1679 // Update the size field in the header. 1680 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1681 1682 // If the file is not a multiple of 16 bytes, insert dummy padding. 1683 while (BufferSize & 15) { 1684 Stream.Emit(0, 8); 1685 ++BufferSize; 1686 } 1687 } 1688 1689 1690 /// WriteBitcodeToFile - Write the specified module to the specified output 1691 /// stream. 1692 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1693 std::vector<unsigned char> Buffer; 1694 BitstreamWriter Stream(Buffer); 1695 1696 Buffer.reserve(256*1024); 1697 1698 WriteBitcodeToStream( M, Stream ); 1699 1700 // Write the generated bitstream to "Out". 1701 Out.write((char*)&Buffer.front(), Buffer.size()); 1702 } 1703 1704 /// WriteBitcodeToStream - Write the specified module to the specified output 1705 /// stream. 1706 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1707 // If this is darwin or another generic macho target, emit a file header and 1708 // trailer if needed. 1709 Triple TT(M->getTargetTriple()); 1710 if (TT.isOSDarwin()) 1711 EmitDarwinBCHeader(Stream, TT); 1712 1713 // Emit the file header. 1714 Stream.Emit((unsigned)'B', 8); 1715 Stream.Emit((unsigned)'C', 8); 1716 Stream.Emit(0x0, 4); 1717 Stream.Emit(0xC, 4); 1718 Stream.Emit(0xE, 4); 1719 Stream.Emit(0xD, 4); 1720 1721 // Emit the module. 1722 WriteModule(M, Stream); 1723 1724 if (TT.isOSDarwin()) 1725 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1726 } 1727