1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/Program.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 CurVersion = 0, 45 46 // VALUE_SYMTAB_BLOCK abbrev id's. 47 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 VST_ENTRY_7_ABBREV, 49 VST_ENTRY_6_ABBREV, 50 VST_BBENTRY_6_ABBREV, 51 52 // CONSTANTS_BLOCK abbrev id's. 53 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 CONSTANTS_INTEGER_ABBREV, 55 CONSTANTS_CE_CAST_Abbrev, 56 CONSTANTS_NULL_Abbrev, 57 58 // FUNCTION_BLOCK abbrev id's. 59 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 FUNCTION_INST_BINOP_ABBREV, 61 FUNCTION_INST_BINOP_FLAGS_ABBREV, 62 FUNCTION_INST_CAST_ABBREV, 63 FUNCTION_INST_RET_VOID_ABBREV, 64 FUNCTION_INST_RET_VAL_ABBREV, 65 FUNCTION_INST_UNREACHABLE_ABBREV 66 }; 67 68 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 69 switch (Opcode) { 70 default: llvm_unreachable("Unknown cast instruction!"); 71 case Instruction::Trunc : return bitc::CAST_TRUNC; 72 case Instruction::ZExt : return bitc::CAST_ZEXT; 73 case Instruction::SExt : return bitc::CAST_SEXT; 74 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 75 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 76 case Instruction::UIToFP : return bitc::CAST_UITOFP; 77 case Instruction::SIToFP : return bitc::CAST_SITOFP; 78 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 79 case Instruction::FPExt : return bitc::CAST_FPEXT; 80 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 81 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 82 case Instruction::BitCast : return bitc::CAST_BITCAST; 83 } 84 } 85 86 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 87 switch (Opcode) { 88 default: llvm_unreachable("Unknown binary instruction!"); 89 case Instruction::Add: 90 case Instruction::FAdd: return bitc::BINOP_ADD; 91 case Instruction::Sub: 92 case Instruction::FSub: return bitc::BINOP_SUB; 93 case Instruction::Mul: 94 case Instruction::FMul: return bitc::BINOP_MUL; 95 case Instruction::UDiv: return bitc::BINOP_UDIV; 96 case Instruction::FDiv: 97 case Instruction::SDiv: return bitc::BINOP_SDIV; 98 case Instruction::URem: return bitc::BINOP_UREM; 99 case Instruction::FRem: 100 case Instruction::SRem: return bitc::BINOP_SREM; 101 case Instruction::Shl: return bitc::BINOP_SHL; 102 case Instruction::LShr: return bitc::BINOP_LSHR; 103 case Instruction::AShr: return bitc::BINOP_ASHR; 104 case Instruction::And: return bitc::BINOP_AND; 105 case Instruction::Or: return bitc::BINOP_OR; 106 case Instruction::Xor: return bitc::BINOP_XOR; 107 } 108 } 109 110 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 111 switch (Op) { 112 default: llvm_unreachable("Unknown RMW operation!"); 113 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 114 case AtomicRMWInst::Add: return bitc::RMW_ADD; 115 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 116 case AtomicRMWInst::And: return bitc::RMW_AND; 117 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 118 case AtomicRMWInst::Or: return bitc::RMW_OR; 119 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 120 case AtomicRMWInst::Max: return bitc::RMW_MAX; 121 case AtomicRMWInst::Min: return bitc::RMW_MIN; 122 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 123 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 124 } 125 } 126 127 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 128 switch (Ordering) { 129 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 130 case Unordered: return bitc::ORDERING_UNORDERED; 131 case Monotonic: return bitc::ORDERING_MONOTONIC; 132 case Acquire: return bitc::ORDERING_ACQUIRE; 133 case Release: return bitc::ORDERING_RELEASE; 134 case AcquireRelease: return bitc::ORDERING_ACQREL; 135 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 136 } 137 llvm_unreachable("Invalid ordering"); 138 } 139 140 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 141 switch (SynchScope) { 142 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 143 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 144 } 145 llvm_unreachable("Invalid synch scope"); 146 } 147 148 static void WriteStringRecord(unsigned Code, StringRef Str, 149 unsigned AbbrevToUse, BitstreamWriter &Stream) { 150 SmallVector<unsigned, 64> Vals; 151 152 // Code: [strchar x N] 153 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 154 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 155 AbbrevToUse = 0; 156 Vals.push_back(Str[i]); 157 } 158 159 // Emit the finished record. 160 Stream.EmitRecord(Code, Vals, AbbrevToUse); 161 } 162 163 // Emit information about parameter attributes. 164 static void WriteAttributeTable(const ValueEnumerator &VE, 165 BitstreamWriter &Stream) { 166 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 167 if (Attrs.empty()) return; 168 169 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 170 171 SmallVector<uint64_t, 64> Record; 172 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 173 const AttrListPtr &A = Attrs[i]; 174 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 175 const AttributeWithIndex &PAWI = A.getSlot(i); 176 Record.push_back(PAWI.Index); 177 178 // FIXME: remove in LLVM 3.0 179 // Store the alignment in the bitcode as a 16-bit raw value instead of a 180 // 5-bit log2 encoded value. Shift the bits above the alignment up by 181 // 11 bits. 182 uint64_t FauxAttr = PAWI.Attrs.Raw() & 0xffff; 183 if (PAWI.Attrs & Attribute::Alignment) 184 FauxAttr |= (1ull<<16)<< 185 (((PAWI.Attrs & Attribute::Alignment).Raw()-1) >> 16); 186 FauxAttr |= (PAWI.Attrs.Raw() & (0x3FFull << 21)) << 11; 187 188 Record.push_back(FauxAttr); 189 } 190 191 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 192 Record.clear(); 193 } 194 195 Stream.ExitBlock(); 196 } 197 198 /// WriteTypeTable - Write out the type table for a module. 199 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 200 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 201 202 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 203 SmallVector<uint64_t, 64> TypeVals; 204 205 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 206 207 // Abbrev for TYPE_CODE_POINTER. 208 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 209 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 211 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 212 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 213 214 // Abbrev for TYPE_CODE_FUNCTION. 215 Abbv = new BitCodeAbbrev(); 216 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 220 221 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 222 223 // Abbrev for TYPE_CODE_STRUCT_ANON. 224 Abbv = new BitCodeAbbrev(); 225 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 229 230 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 231 232 // Abbrev for TYPE_CODE_STRUCT_NAME. 233 Abbv = new BitCodeAbbrev(); 234 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 237 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 238 239 // Abbrev for TYPE_CODE_STRUCT_NAMED. 240 Abbv = new BitCodeAbbrev(); 241 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 245 246 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 247 248 // Abbrev for TYPE_CODE_ARRAY. 249 Abbv = new BitCodeAbbrev(); 250 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 253 254 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 255 256 // Emit an entry count so the reader can reserve space. 257 TypeVals.push_back(TypeList.size()); 258 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 259 TypeVals.clear(); 260 261 // Loop over all of the types, emitting each in turn. 262 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 263 Type *T = TypeList[i]; 264 int AbbrevToUse = 0; 265 unsigned Code = 0; 266 267 switch (T->getTypeID()) { 268 default: llvm_unreachable("Unknown type!"); 269 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 270 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 271 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 272 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 273 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 274 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 275 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 276 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 277 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 278 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 279 case Type::IntegerTyID: 280 // INTEGER: [width] 281 Code = bitc::TYPE_CODE_INTEGER; 282 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 283 break; 284 case Type::PointerTyID: { 285 PointerType *PTy = cast<PointerType>(T); 286 // POINTER: [pointee type, address space] 287 Code = bitc::TYPE_CODE_POINTER; 288 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 289 unsigned AddressSpace = PTy->getAddressSpace(); 290 TypeVals.push_back(AddressSpace); 291 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 292 break; 293 } 294 case Type::FunctionTyID: { 295 FunctionType *FT = cast<FunctionType>(T); 296 // FUNCTION: [isvararg, retty, paramty x N] 297 Code = bitc::TYPE_CODE_FUNCTION; 298 TypeVals.push_back(FT->isVarArg()); 299 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 300 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 301 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 302 AbbrevToUse = FunctionAbbrev; 303 break; 304 } 305 case Type::StructTyID: { 306 StructType *ST = cast<StructType>(T); 307 // STRUCT: [ispacked, eltty x N] 308 TypeVals.push_back(ST->isPacked()); 309 // Output all of the element types. 310 for (StructType::element_iterator I = ST->element_begin(), 311 E = ST->element_end(); I != E; ++I) 312 TypeVals.push_back(VE.getTypeID(*I)); 313 314 if (ST->isLiteral()) { 315 Code = bitc::TYPE_CODE_STRUCT_ANON; 316 AbbrevToUse = StructAnonAbbrev; 317 } else { 318 if (ST->isOpaque()) { 319 Code = bitc::TYPE_CODE_OPAQUE; 320 } else { 321 Code = bitc::TYPE_CODE_STRUCT_NAMED; 322 AbbrevToUse = StructNamedAbbrev; 323 } 324 325 // Emit the name if it is present. 326 if (!ST->getName().empty()) 327 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 328 StructNameAbbrev, Stream); 329 } 330 break; 331 } 332 case Type::ArrayTyID: { 333 ArrayType *AT = cast<ArrayType>(T); 334 // ARRAY: [numelts, eltty] 335 Code = bitc::TYPE_CODE_ARRAY; 336 TypeVals.push_back(AT->getNumElements()); 337 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 338 AbbrevToUse = ArrayAbbrev; 339 break; 340 } 341 case Type::VectorTyID: { 342 VectorType *VT = cast<VectorType>(T); 343 // VECTOR [numelts, eltty] 344 Code = bitc::TYPE_CODE_VECTOR; 345 TypeVals.push_back(VT->getNumElements()); 346 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 347 break; 348 } 349 } 350 351 // Emit the finished record. 352 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 353 TypeVals.clear(); 354 } 355 356 Stream.ExitBlock(); 357 } 358 359 static unsigned getEncodedLinkage(const GlobalValue *GV) { 360 switch (GV->getLinkage()) { 361 case GlobalValue::ExternalLinkage: return 0; 362 case GlobalValue::WeakAnyLinkage: return 1; 363 case GlobalValue::AppendingLinkage: return 2; 364 case GlobalValue::InternalLinkage: return 3; 365 case GlobalValue::LinkOnceAnyLinkage: return 4; 366 case GlobalValue::DLLImportLinkage: return 5; 367 case GlobalValue::DLLExportLinkage: return 6; 368 case GlobalValue::ExternalWeakLinkage: return 7; 369 case GlobalValue::CommonLinkage: return 8; 370 case GlobalValue::PrivateLinkage: return 9; 371 case GlobalValue::WeakODRLinkage: return 10; 372 case GlobalValue::LinkOnceODRLinkage: return 11; 373 case GlobalValue::AvailableExternallyLinkage: return 12; 374 case GlobalValue::LinkerPrivateLinkage: return 13; 375 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 376 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 377 } 378 llvm_unreachable("Invalid linkage"); 379 } 380 381 static unsigned getEncodedVisibility(const GlobalValue *GV) { 382 switch (GV->getVisibility()) { 383 case GlobalValue::DefaultVisibility: return 0; 384 case GlobalValue::HiddenVisibility: return 1; 385 case GlobalValue::ProtectedVisibility: return 2; 386 } 387 llvm_unreachable("Invalid visibility"); 388 } 389 390 // Emit top-level description of module, including target triple, inline asm, 391 // descriptors for global variables, and function prototype info. 392 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 393 BitstreamWriter &Stream) { 394 // Emit the list of dependent libraries for the Module. 395 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 396 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 397 398 // Emit various pieces of data attached to a module. 399 if (!M->getTargetTriple().empty()) 400 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 401 0/*TODO*/, Stream); 402 if (!M->getDataLayout().empty()) 403 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 404 0/*TODO*/, Stream); 405 if (!M->getModuleInlineAsm().empty()) 406 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 407 0/*TODO*/, Stream); 408 409 // Emit information about sections and GC, computing how many there are. Also 410 // compute the maximum alignment value. 411 std::map<std::string, unsigned> SectionMap; 412 std::map<std::string, unsigned> GCMap; 413 unsigned MaxAlignment = 0; 414 unsigned MaxGlobalType = 0; 415 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 416 GV != E; ++GV) { 417 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 418 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 419 if (GV->hasSection()) { 420 // Give section names unique ID's. 421 unsigned &Entry = SectionMap[GV->getSection()]; 422 if (!Entry) { 423 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 424 0/*TODO*/, Stream); 425 Entry = SectionMap.size(); 426 } 427 } 428 } 429 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 430 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 431 if (F->hasSection()) { 432 // Give section names unique ID's. 433 unsigned &Entry = SectionMap[F->getSection()]; 434 if (!Entry) { 435 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 436 0/*TODO*/, Stream); 437 Entry = SectionMap.size(); 438 } 439 } 440 if (F->hasGC()) { 441 // Same for GC names. 442 unsigned &Entry = GCMap[F->getGC()]; 443 if (!Entry) { 444 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 445 0/*TODO*/, Stream); 446 Entry = GCMap.size(); 447 } 448 } 449 } 450 451 // Emit abbrev for globals, now that we know # sections and max alignment. 452 unsigned SimpleGVarAbbrev = 0; 453 if (!M->global_empty()) { 454 // Add an abbrev for common globals with no visibility or thread localness. 455 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 456 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 458 Log2_32_Ceil(MaxGlobalType+1))); 459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 462 if (MaxAlignment == 0) // Alignment. 463 Abbv->Add(BitCodeAbbrevOp(0)); 464 else { 465 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 467 Log2_32_Ceil(MaxEncAlignment+1))); 468 } 469 if (SectionMap.empty()) // Section. 470 Abbv->Add(BitCodeAbbrevOp(0)); 471 else 472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 473 Log2_32_Ceil(SectionMap.size()+1))); 474 // Don't bother emitting vis + thread local. 475 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 476 } 477 478 // Emit the global variable information. 479 SmallVector<unsigned, 64> Vals; 480 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 481 GV != E; ++GV) { 482 unsigned AbbrevToUse = 0; 483 484 // GLOBALVAR: [type, isconst, initid, 485 // linkage, alignment, section, visibility, threadlocal, 486 // unnamed_addr] 487 Vals.push_back(VE.getTypeID(GV->getType())); 488 Vals.push_back(GV->isConstant()); 489 Vals.push_back(GV->isDeclaration() ? 0 : 490 (VE.getValueID(GV->getInitializer()) + 1)); 491 Vals.push_back(getEncodedLinkage(GV)); 492 Vals.push_back(Log2_32(GV->getAlignment())+1); 493 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 494 if (GV->isThreadLocal() || 495 GV->getVisibility() != GlobalValue::DefaultVisibility || 496 GV->hasUnnamedAddr()) { 497 Vals.push_back(getEncodedVisibility(GV)); 498 Vals.push_back(GV->isThreadLocal()); 499 Vals.push_back(GV->hasUnnamedAddr()); 500 } else { 501 AbbrevToUse = SimpleGVarAbbrev; 502 } 503 504 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 505 Vals.clear(); 506 } 507 508 // Emit the function proto information. 509 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 510 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 511 // section, visibility, gc, unnamed_addr] 512 Vals.push_back(VE.getTypeID(F->getType())); 513 Vals.push_back(F->getCallingConv()); 514 Vals.push_back(F->isDeclaration()); 515 Vals.push_back(getEncodedLinkage(F)); 516 Vals.push_back(VE.getAttributeID(F->getAttributes())); 517 Vals.push_back(Log2_32(F->getAlignment())+1); 518 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 519 Vals.push_back(getEncodedVisibility(F)); 520 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 521 Vals.push_back(F->hasUnnamedAddr()); 522 523 unsigned AbbrevToUse = 0; 524 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 525 Vals.clear(); 526 } 527 528 // Emit the alias information. 529 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 530 AI != E; ++AI) { 531 // ALIAS: [alias type, aliasee val#, linkage, visibility] 532 Vals.push_back(VE.getTypeID(AI->getType())); 533 Vals.push_back(VE.getValueID(AI->getAliasee())); 534 Vals.push_back(getEncodedLinkage(AI)); 535 Vals.push_back(getEncodedVisibility(AI)); 536 unsigned AbbrevToUse = 0; 537 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 538 Vals.clear(); 539 } 540 } 541 542 static uint64_t GetOptimizationFlags(const Value *V) { 543 uint64_t Flags = 0; 544 545 if (const OverflowingBinaryOperator *OBO = 546 dyn_cast<OverflowingBinaryOperator>(V)) { 547 if (OBO->hasNoSignedWrap()) 548 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 549 if (OBO->hasNoUnsignedWrap()) 550 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 551 } else if (const PossiblyExactOperator *PEO = 552 dyn_cast<PossiblyExactOperator>(V)) { 553 if (PEO->isExact()) 554 Flags |= 1 << bitc::PEO_EXACT; 555 } 556 557 return Flags; 558 } 559 560 static void WriteMDNode(const MDNode *N, 561 const ValueEnumerator &VE, 562 BitstreamWriter &Stream, 563 SmallVector<uint64_t, 64> &Record) { 564 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 565 if (N->getOperand(i)) { 566 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 567 Record.push_back(VE.getValueID(N->getOperand(i))); 568 } else { 569 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 570 Record.push_back(0); 571 } 572 } 573 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 574 bitc::METADATA_NODE; 575 Stream.EmitRecord(MDCode, Record, 0); 576 Record.clear(); 577 } 578 579 static void WriteModuleMetadata(const Module *M, 580 const ValueEnumerator &VE, 581 BitstreamWriter &Stream) { 582 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 583 bool StartedMetadataBlock = false; 584 unsigned MDSAbbrev = 0; 585 SmallVector<uint64_t, 64> Record; 586 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 587 588 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 589 if (!N->isFunctionLocal() || !N->getFunction()) { 590 if (!StartedMetadataBlock) { 591 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 592 StartedMetadataBlock = true; 593 } 594 WriteMDNode(N, VE, Stream, Record); 595 } 596 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 597 if (!StartedMetadataBlock) { 598 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 599 600 // Abbrev for METADATA_STRING. 601 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 602 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 605 MDSAbbrev = Stream.EmitAbbrev(Abbv); 606 StartedMetadataBlock = true; 607 } 608 609 // Code: [strchar x N] 610 Record.append(MDS->begin(), MDS->end()); 611 612 // Emit the finished record. 613 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 614 Record.clear(); 615 } 616 } 617 618 // Write named metadata. 619 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 620 E = M->named_metadata_end(); I != E; ++I) { 621 const NamedMDNode *NMD = I; 622 if (!StartedMetadataBlock) { 623 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 624 StartedMetadataBlock = true; 625 } 626 627 // Write name. 628 StringRef Str = NMD->getName(); 629 for (unsigned i = 0, e = Str.size(); i != e; ++i) 630 Record.push_back(Str[i]); 631 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 632 Record.clear(); 633 634 // Write named metadata operands. 635 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 636 Record.push_back(VE.getValueID(NMD->getOperand(i))); 637 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 638 Record.clear(); 639 } 640 641 if (StartedMetadataBlock) 642 Stream.ExitBlock(); 643 } 644 645 static void WriteFunctionLocalMetadata(const Function &F, 646 const ValueEnumerator &VE, 647 BitstreamWriter &Stream) { 648 bool StartedMetadataBlock = false; 649 SmallVector<uint64_t, 64> Record; 650 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 651 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 652 if (const MDNode *N = Vals[i]) 653 if (N->isFunctionLocal() && N->getFunction() == &F) { 654 if (!StartedMetadataBlock) { 655 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 656 StartedMetadataBlock = true; 657 } 658 WriteMDNode(N, VE, Stream, Record); 659 } 660 661 if (StartedMetadataBlock) 662 Stream.ExitBlock(); 663 } 664 665 static void WriteMetadataAttachment(const Function &F, 666 const ValueEnumerator &VE, 667 BitstreamWriter &Stream) { 668 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 669 670 SmallVector<uint64_t, 64> Record; 671 672 // Write metadata attachments 673 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 674 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 675 676 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 677 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 678 I != E; ++I) { 679 MDs.clear(); 680 I->getAllMetadataOtherThanDebugLoc(MDs); 681 682 // If no metadata, ignore instruction. 683 if (MDs.empty()) continue; 684 685 Record.push_back(VE.getInstructionID(I)); 686 687 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 688 Record.push_back(MDs[i].first); 689 Record.push_back(VE.getValueID(MDs[i].second)); 690 } 691 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 692 Record.clear(); 693 } 694 695 Stream.ExitBlock(); 696 } 697 698 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 699 SmallVector<uint64_t, 64> Record; 700 701 // Write metadata kinds 702 // METADATA_KIND - [n x [id, name]] 703 SmallVector<StringRef, 4> Names; 704 M->getMDKindNames(Names); 705 706 if (Names.empty()) return; 707 708 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 709 710 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 711 Record.push_back(MDKindID); 712 StringRef KName = Names[MDKindID]; 713 Record.append(KName.begin(), KName.end()); 714 715 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 716 Record.clear(); 717 } 718 719 Stream.ExitBlock(); 720 } 721 722 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 723 const ValueEnumerator &VE, 724 BitstreamWriter &Stream, bool isGlobal) { 725 if (FirstVal == LastVal) return; 726 727 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 728 729 unsigned AggregateAbbrev = 0; 730 unsigned String8Abbrev = 0; 731 unsigned CString7Abbrev = 0; 732 unsigned CString6Abbrev = 0; 733 // If this is a constant pool for the module, emit module-specific abbrevs. 734 if (isGlobal) { 735 // Abbrev for CST_CODE_AGGREGATE. 736 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 737 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 740 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 741 742 // Abbrev for CST_CODE_STRING. 743 Abbv = new BitCodeAbbrev(); 744 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 747 String8Abbrev = Stream.EmitAbbrev(Abbv); 748 // Abbrev for CST_CODE_CSTRING. 749 Abbv = new BitCodeAbbrev(); 750 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 753 CString7Abbrev = Stream.EmitAbbrev(Abbv); 754 // Abbrev for CST_CODE_CSTRING. 755 Abbv = new BitCodeAbbrev(); 756 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 759 CString6Abbrev = Stream.EmitAbbrev(Abbv); 760 } 761 762 SmallVector<uint64_t, 64> Record; 763 764 const ValueEnumerator::ValueList &Vals = VE.getValues(); 765 Type *LastTy = 0; 766 for (unsigned i = FirstVal; i != LastVal; ++i) { 767 const Value *V = Vals[i].first; 768 // If we need to switch types, do so now. 769 if (V->getType() != LastTy) { 770 LastTy = V->getType(); 771 Record.push_back(VE.getTypeID(LastTy)); 772 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 773 CONSTANTS_SETTYPE_ABBREV); 774 Record.clear(); 775 } 776 777 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 778 Record.push_back(unsigned(IA->hasSideEffects()) | 779 unsigned(IA->isAlignStack()) << 1); 780 781 // Add the asm string. 782 const std::string &AsmStr = IA->getAsmString(); 783 Record.push_back(AsmStr.size()); 784 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 785 Record.push_back(AsmStr[i]); 786 787 // Add the constraint string. 788 const std::string &ConstraintStr = IA->getConstraintString(); 789 Record.push_back(ConstraintStr.size()); 790 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 791 Record.push_back(ConstraintStr[i]); 792 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 793 Record.clear(); 794 continue; 795 } 796 const Constant *C = cast<Constant>(V); 797 unsigned Code = -1U; 798 unsigned AbbrevToUse = 0; 799 if (C->isNullValue()) { 800 Code = bitc::CST_CODE_NULL; 801 } else if (isa<UndefValue>(C)) { 802 Code = bitc::CST_CODE_UNDEF; 803 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 804 if (IV->getBitWidth() <= 64) { 805 uint64_t V = IV->getSExtValue(); 806 if ((int64_t)V >= 0) 807 Record.push_back(V << 1); 808 else 809 Record.push_back((-V << 1) | 1); 810 Code = bitc::CST_CODE_INTEGER; 811 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 812 } else { // Wide integers, > 64 bits in size. 813 // We have an arbitrary precision integer value to write whose 814 // bit width is > 64. However, in canonical unsigned integer 815 // format it is likely that the high bits are going to be zero. 816 // So, we only write the number of active words. 817 unsigned NWords = IV->getValue().getActiveWords(); 818 const uint64_t *RawWords = IV->getValue().getRawData(); 819 for (unsigned i = 0; i != NWords; ++i) { 820 int64_t V = RawWords[i]; 821 if (V >= 0) 822 Record.push_back(V << 1); 823 else 824 Record.push_back((-V << 1) | 1); 825 } 826 Code = bitc::CST_CODE_WIDE_INTEGER; 827 } 828 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 829 Code = bitc::CST_CODE_FLOAT; 830 Type *Ty = CFP->getType(); 831 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 832 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 833 } else if (Ty->isX86_FP80Ty()) { 834 // api needed to prevent premature destruction 835 // bits are not in the same order as a normal i80 APInt, compensate. 836 APInt api = CFP->getValueAPF().bitcastToAPInt(); 837 const uint64_t *p = api.getRawData(); 838 Record.push_back((p[1] << 48) | (p[0] >> 16)); 839 Record.push_back(p[0] & 0xffffLL); 840 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 841 APInt api = CFP->getValueAPF().bitcastToAPInt(); 842 const uint64_t *p = api.getRawData(); 843 Record.push_back(p[0]); 844 Record.push_back(p[1]); 845 } else { 846 assert (0 && "Unknown FP type!"); 847 } 848 } else if (isa<ConstantDataSequential>(C) && 849 cast<ConstantDataSequential>(C)->isString()) { 850 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 851 // Emit constant strings specially. 852 unsigned NumElts = Str->getNumElements(); 853 // If this is a null-terminated string, use the denser CSTRING encoding. 854 if (Str->isCString()) { 855 Code = bitc::CST_CODE_CSTRING; 856 --NumElts; // Don't encode the null, which isn't allowed by char6. 857 } else { 858 Code = bitc::CST_CODE_STRING; 859 AbbrevToUse = String8Abbrev; 860 } 861 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 862 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 863 for (unsigned i = 0; i != NumElts; ++i) { 864 unsigned char V = Str->getElementAsInteger(i); 865 Record.push_back(V); 866 isCStr7 &= (V & 128) == 0; 867 if (isCStrChar6) 868 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 869 } 870 871 if (isCStrChar6) 872 AbbrevToUse = CString6Abbrev; 873 else if (isCStr7) 874 AbbrevToUse = CString7Abbrev; 875 } else if (const ConstantDataSequential *CDS = 876 dyn_cast<ConstantDataSequential>(C)) { 877 Code = bitc::CST_CODE_DATA; 878 Type *EltTy = CDS->getType()->getElementType(); 879 if (isa<IntegerType>(EltTy)) { 880 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 881 Record.push_back(CDS->getElementAsInteger(i)); 882 } else if (EltTy->isFloatTy()) { 883 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 884 union { float F; uint32_t I; }; 885 F = CDS->getElementAsFloat(i); 886 Record.push_back(I); 887 } 888 } else { 889 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 890 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 891 union { double F; uint64_t I; }; 892 F = CDS->getElementAsDouble(i); 893 Record.push_back(I); 894 } 895 } 896 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 897 isa<ConstantVector>(C)) { 898 Code = bitc::CST_CODE_AGGREGATE; 899 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 900 Record.push_back(VE.getValueID(C->getOperand(i))); 901 AbbrevToUse = AggregateAbbrev; 902 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 903 switch (CE->getOpcode()) { 904 default: 905 if (Instruction::isCast(CE->getOpcode())) { 906 Code = bitc::CST_CODE_CE_CAST; 907 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 908 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 909 Record.push_back(VE.getValueID(C->getOperand(0))); 910 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 911 } else { 912 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 913 Code = bitc::CST_CODE_CE_BINOP; 914 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 915 Record.push_back(VE.getValueID(C->getOperand(0))); 916 Record.push_back(VE.getValueID(C->getOperand(1))); 917 uint64_t Flags = GetOptimizationFlags(CE); 918 if (Flags != 0) 919 Record.push_back(Flags); 920 } 921 break; 922 case Instruction::GetElementPtr: 923 Code = bitc::CST_CODE_CE_GEP; 924 if (cast<GEPOperator>(C)->isInBounds()) 925 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 926 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 927 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 928 Record.push_back(VE.getValueID(C->getOperand(i))); 929 } 930 break; 931 case Instruction::Select: 932 Code = bitc::CST_CODE_CE_SELECT; 933 Record.push_back(VE.getValueID(C->getOperand(0))); 934 Record.push_back(VE.getValueID(C->getOperand(1))); 935 Record.push_back(VE.getValueID(C->getOperand(2))); 936 break; 937 case Instruction::ExtractElement: 938 Code = bitc::CST_CODE_CE_EXTRACTELT; 939 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 940 Record.push_back(VE.getValueID(C->getOperand(0))); 941 Record.push_back(VE.getValueID(C->getOperand(1))); 942 break; 943 case Instruction::InsertElement: 944 Code = bitc::CST_CODE_CE_INSERTELT; 945 Record.push_back(VE.getValueID(C->getOperand(0))); 946 Record.push_back(VE.getValueID(C->getOperand(1))); 947 Record.push_back(VE.getValueID(C->getOperand(2))); 948 break; 949 case Instruction::ShuffleVector: 950 // If the return type and argument types are the same, this is a 951 // standard shufflevector instruction. If the types are different, 952 // then the shuffle is widening or truncating the input vectors, and 953 // the argument type must also be encoded. 954 if (C->getType() == C->getOperand(0)->getType()) { 955 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 956 } else { 957 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 958 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 959 } 960 Record.push_back(VE.getValueID(C->getOperand(0))); 961 Record.push_back(VE.getValueID(C->getOperand(1))); 962 Record.push_back(VE.getValueID(C->getOperand(2))); 963 break; 964 case Instruction::ICmp: 965 case Instruction::FCmp: 966 Code = bitc::CST_CODE_CE_CMP; 967 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 968 Record.push_back(VE.getValueID(C->getOperand(0))); 969 Record.push_back(VE.getValueID(C->getOperand(1))); 970 Record.push_back(CE->getPredicate()); 971 break; 972 } 973 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 974 Code = bitc::CST_CODE_BLOCKADDRESS; 975 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 976 Record.push_back(VE.getValueID(BA->getFunction())); 977 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 978 } else { 979 #ifndef NDEBUG 980 C->dump(); 981 #endif 982 llvm_unreachable("Unknown constant!"); 983 } 984 Stream.EmitRecord(Code, Record, AbbrevToUse); 985 Record.clear(); 986 } 987 988 Stream.ExitBlock(); 989 } 990 991 static void WriteModuleConstants(const ValueEnumerator &VE, 992 BitstreamWriter &Stream) { 993 const ValueEnumerator::ValueList &Vals = VE.getValues(); 994 995 // Find the first constant to emit, which is the first non-globalvalue value. 996 // We know globalvalues have been emitted by WriteModuleInfo. 997 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 998 if (!isa<GlobalValue>(Vals[i].first)) { 999 WriteConstants(i, Vals.size(), VE, Stream, true); 1000 return; 1001 } 1002 } 1003 } 1004 1005 /// PushValueAndType - The file has to encode both the value and type id for 1006 /// many values, because we need to know what type to create for forward 1007 /// references. However, most operands are not forward references, so this type 1008 /// field is not needed. 1009 /// 1010 /// This function adds V's value ID to Vals. If the value ID is higher than the 1011 /// instruction ID, then it is a forward reference, and it also includes the 1012 /// type ID. 1013 static bool PushValueAndType(const Value *V, unsigned InstID, 1014 SmallVector<unsigned, 64> &Vals, 1015 ValueEnumerator &VE) { 1016 unsigned ValID = VE.getValueID(V); 1017 Vals.push_back(ValID); 1018 if (ValID >= InstID) { 1019 Vals.push_back(VE.getTypeID(V->getType())); 1020 return true; 1021 } 1022 return false; 1023 } 1024 1025 /// WriteInstruction - Emit an instruction to the specified stream. 1026 static void WriteInstruction(const Instruction &I, unsigned InstID, 1027 ValueEnumerator &VE, BitstreamWriter &Stream, 1028 SmallVector<unsigned, 64> &Vals) { 1029 unsigned Code = 0; 1030 unsigned AbbrevToUse = 0; 1031 VE.setInstructionID(&I); 1032 switch (I.getOpcode()) { 1033 default: 1034 if (Instruction::isCast(I.getOpcode())) { 1035 Code = bitc::FUNC_CODE_INST_CAST; 1036 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1037 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1038 Vals.push_back(VE.getTypeID(I.getType())); 1039 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1040 } else { 1041 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1042 Code = bitc::FUNC_CODE_INST_BINOP; 1043 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1044 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1045 Vals.push_back(VE.getValueID(I.getOperand(1))); 1046 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1047 uint64_t Flags = GetOptimizationFlags(&I); 1048 if (Flags != 0) { 1049 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1050 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1051 Vals.push_back(Flags); 1052 } 1053 } 1054 break; 1055 1056 case Instruction::GetElementPtr: 1057 Code = bitc::FUNC_CODE_INST_GEP; 1058 if (cast<GEPOperator>(&I)->isInBounds()) 1059 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1060 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1061 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1062 break; 1063 case Instruction::ExtractValue: { 1064 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1065 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1066 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1067 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1068 Vals.push_back(*i); 1069 break; 1070 } 1071 case Instruction::InsertValue: { 1072 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1073 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1074 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1075 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1076 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1077 Vals.push_back(*i); 1078 break; 1079 } 1080 case Instruction::Select: 1081 Code = bitc::FUNC_CODE_INST_VSELECT; 1082 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1083 Vals.push_back(VE.getValueID(I.getOperand(2))); 1084 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1085 break; 1086 case Instruction::ExtractElement: 1087 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1088 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1089 Vals.push_back(VE.getValueID(I.getOperand(1))); 1090 break; 1091 case Instruction::InsertElement: 1092 Code = bitc::FUNC_CODE_INST_INSERTELT; 1093 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1094 Vals.push_back(VE.getValueID(I.getOperand(1))); 1095 Vals.push_back(VE.getValueID(I.getOperand(2))); 1096 break; 1097 case Instruction::ShuffleVector: 1098 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1099 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1100 Vals.push_back(VE.getValueID(I.getOperand(1))); 1101 Vals.push_back(VE.getValueID(I.getOperand(2))); 1102 break; 1103 case Instruction::ICmp: 1104 case Instruction::FCmp: 1105 // compare returning Int1Ty or vector of Int1Ty 1106 Code = bitc::FUNC_CODE_INST_CMP2; 1107 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1108 Vals.push_back(VE.getValueID(I.getOperand(1))); 1109 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1110 break; 1111 1112 case Instruction::Ret: 1113 { 1114 Code = bitc::FUNC_CODE_INST_RET; 1115 unsigned NumOperands = I.getNumOperands(); 1116 if (NumOperands == 0) 1117 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1118 else if (NumOperands == 1) { 1119 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1120 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1121 } else { 1122 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1123 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1124 } 1125 } 1126 break; 1127 case Instruction::Br: 1128 { 1129 Code = bitc::FUNC_CODE_INST_BR; 1130 BranchInst &II = cast<BranchInst>(I); 1131 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1132 if (II.isConditional()) { 1133 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1134 Vals.push_back(VE.getValueID(II.getCondition())); 1135 } 1136 } 1137 break; 1138 case Instruction::Switch: 1139 Code = bitc::FUNC_CODE_INST_SWITCH; 1140 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1141 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1142 Vals.push_back(VE.getValueID(I.getOperand(i))); 1143 break; 1144 case Instruction::IndirectBr: 1145 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1146 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1147 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1148 Vals.push_back(VE.getValueID(I.getOperand(i))); 1149 break; 1150 1151 case Instruction::Invoke: { 1152 const InvokeInst *II = cast<InvokeInst>(&I); 1153 const Value *Callee(II->getCalledValue()); 1154 PointerType *PTy = cast<PointerType>(Callee->getType()); 1155 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1156 Code = bitc::FUNC_CODE_INST_INVOKE; 1157 1158 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1159 Vals.push_back(II->getCallingConv()); 1160 Vals.push_back(VE.getValueID(II->getNormalDest())); 1161 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1162 PushValueAndType(Callee, InstID, Vals, VE); 1163 1164 // Emit value #'s for the fixed parameters. 1165 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1166 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1167 1168 // Emit type/value pairs for varargs params. 1169 if (FTy->isVarArg()) { 1170 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1171 i != e; ++i) 1172 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1173 } 1174 break; 1175 } 1176 case Instruction::Resume: 1177 Code = bitc::FUNC_CODE_INST_RESUME; 1178 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1179 break; 1180 case Instruction::Unwind: 1181 Code = bitc::FUNC_CODE_INST_UNWIND; 1182 break; 1183 case Instruction::Unreachable: 1184 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1185 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1186 break; 1187 1188 case Instruction::PHI: { 1189 const PHINode &PN = cast<PHINode>(I); 1190 Code = bitc::FUNC_CODE_INST_PHI; 1191 Vals.push_back(VE.getTypeID(PN.getType())); 1192 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1193 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1194 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1195 } 1196 break; 1197 } 1198 1199 case Instruction::LandingPad: { 1200 const LandingPadInst &LP = cast<LandingPadInst>(I); 1201 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1202 Vals.push_back(VE.getTypeID(LP.getType())); 1203 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1204 Vals.push_back(LP.isCleanup()); 1205 Vals.push_back(LP.getNumClauses()); 1206 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1207 if (LP.isCatch(I)) 1208 Vals.push_back(LandingPadInst::Catch); 1209 else 1210 Vals.push_back(LandingPadInst::Filter); 1211 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1212 } 1213 break; 1214 } 1215 1216 case Instruction::Alloca: 1217 Code = bitc::FUNC_CODE_INST_ALLOCA; 1218 Vals.push_back(VE.getTypeID(I.getType())); 1219 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1220 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1221 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1222 break; 1223 1224 case Instruction::Load: 1225 if (cast<LoadInst>(I).isAtomic()) { 1226 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1227 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1228 } else { 1229 Code = bitc::FUNC_CODE_INST_LOAD; 1230 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1231 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1232 } 1233 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1234 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1235 if (cast<LoadInst>(I).isAtomic()) { 1236 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1237 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1238 } 1239 break; 1240 case Instruction::Store: 1241 if (cast<StoreInst>(I).isAtomic()) 1242 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1243 else 1244 Code = bitc::FUNC_CODE_INST_STORE; 1245 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1246 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1247 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1248 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1249 if (cast<StoreInst>(I).isAtomic()) { 1250 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1251 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1252 } 1253 break; 1254 case Instruction::AtomicCmpXchg: 1255 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1256 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1257 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1258 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1259 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1260 Vals.push_back(GetEncodedOrdering( 1261 cast<AtomicCmpXchgInst>(I).getOrdering())); 1262 Vals.push_back(GetEncodedSynchScope( 1263 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1264 break; 1265 case Instruction::AtomicRMW: 1266 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1267 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1268 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1269 Vals.push_back(GetEncodedRMWOperation( 1270 cast<AtomicRMWInst>(I).getOperation())); 1271 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1272 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1273 Vals.push_back(GetEncodedSynchScope( 1274 cast<AtomicRMWInst>(I).getSynchScope())); 1275 break; 1276 case Instruction::Fence: 1277 Code = bitc::FUNC_CODE_INST_FENCE; 1278 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1279 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1280 break; 1281 case Instruction::Call: { 1282 const CallInst &CI = cast<CallInst>(I); 1283 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1284 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1285 1286 Code = bitc::FUNC_CODE_INST_CALL; 1287 1288 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1289 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1290 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1291 1292 // Emit value #'s for the fixed parameters. 1293 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1294 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1295 1296 // Emit type/value pairs for varargs params. 1297 if (FTy->isVarArg()) { 1298 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1299 i != e; ++i) 1300 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1301 } 1302 break; 1303 } 1304 case Instruction::VAArg: 1305 Code = bitc::FUNC_CODE_INST_VAARG; 1306 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1307 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1308 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1309 break; 1310 } 1311 1312 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1313 Vals.clear(); 1314 } 1315 1316 // Emit names for globals/functions etc. 1317 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1318 const ValueEnumerator &VE, 1319 BitstreamWriter &Stream) { 1320 if (VST.empty()) return; 1321 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1322 1323 // FIXME: Set up the abbrev, we know how many values there are! 1324 // FIXME: We know if the type names can use 7-bit ascii. 1325 SmallVector<unsigned, 64> NameVals; 1326 1327 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1328 SI != SE; ++SI) { 1329 1330 const ValueName &Name = *SI; 1331 1332 // Figure out the encoding to use for the name. 1333 bool is7Bit = true; 1334 bool isChar6 = true; 1335 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1336 C != E; ++C) { 1337 if (isChar6) 1338 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1339 if ((unsigned char)*C & 128) { 1340 is7Bit = false; 1341 break; // don't bother scanning the rest. 1342 } 1343 } 1344 1345 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1346 1347 // VST_ENTRY: [valueid, namechar x N] 1348 // VST_BBENTRY: [bbid, namechar x N] 1349 unsigned Code; 1350 if (isa<BasicBlock>(SI->getValue())) { 1351 Code = bitc::VST_CODE_BBENTRY; 1352 if (isChar6) 1353 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1354 } else { 1355 Code = bitc::VST_CODE_ENTRY; 1356 if (isChar6) 1357 AbbrevToUse = VST_ENTRY_6_ABBREV; 1358 else if (is7Bit) 1359 AbbrevToUse = VST_ENTRY_7_ABBREV; 1360 } 1361 1362 NameVals.push_back(VE.getValueID(SI->getValue())); 1363 for (const char *P = Name.getKeyData(), 1364 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1365 NameVals.push_back((unsigned char)*P); 1366 1367 // Emit the finished record. 1368 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1369 NameVals.clear(); 1370 } 1371 Stream.ExitBlock(); 1372 } 1373 1374 /// WriteFunction - Emit a function body to the module stream. 1375 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1376 BitstreamWriter &Stream) { 1377 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1378 VE.incorporateFunction(F); 1379 1380 SmallVector<unsigned, 64> Vals; 1381 1382 // Emit the number of basic blocks, so the reader can create them ahead of 1383 // time. 1384 Vals.push_back(VE.getBasicBlocks().size()); 1385 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1386 Vals.clear(); 1387 1388 // If there are function-local constants, emit them now. 1389 unsigned CstStart, CstEnd; 1390 VE.getFunctionConstantRange(CstStart, CstEnd); 1391 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1392 1393 // If there is function-local metadata, emit it now. 1394 WriteFunctionLocalMetadata(F, VE, Stream); 1395 1396 // Keep a running idea of what the instruction ID is. 1397 unsigned InstID = CstEnd; 1398 1399 bool NeedsMetadataAttachment = false; 1400 1401 DebugLoc LastDL; 1402 1403 // Finally, emit all the instructions, in order. 1404 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1405 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1406 I != E; ++I) { 1407 WriteInstruction(*I, InstID, VE, Stream, Vals); 1408 1409 if (!I->getType()->isVoidTy()) 1410 ++InstID; 1411 1412 // If the instruction has metadata, write a metadata attachment later. 1413 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1414 1415 // If the instruction has a debug location, emit it. 1416 DebugLoc DL = I->getDebugLoc(); 1417 if (DL.isUnknown()) { 1418 // nothing todo. 1419 } else if (DL == LastDL) { 1420 // Just repeat the same debug loc as last time. 1421 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1422 } else { 1423 MDNode *Scope, *IA; 1424 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1425 1426 Vals.push_back(DL.getLine()); 1427 Vals.push_back(DL.getCol()); 1428 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1429 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1430 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1431 Vals.clear(); 1432 1433 LastDL = DL; 1434 } 1435 } 1436 1437 // Emit names for all the instructions etc. 1438 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1439 1440 if (NeedsMetadataAttachment) 1441 WriteMetadataAttachment(F, VE, Stream); 1442 VE.purgeFunction(); 1443 Stream.ExitBlock(); 1444 } 1445 1446 // Emit blockinfo, which defines the standard abbreviations etc. 1447 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1448 // We only want to emit block info records for blocks that have multiple 1449 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1450 // blocks can defined their abbrevs inline. 1451 Stream.EnterBlockInfoBlock(2); 1452 1453 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1454 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1459 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1460 Abbv) != VST_ENTRY_8_ABBREV) 1461 llvm_unreachable("Unexpected abbrev ordering!"); 1462 } 1463 1464 { // 7-bit fixed width VST_ENTRY strings. 1465 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1466 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1470 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1471 Abbv) != VST_ENTRY_7_ABBREV) 1472 llvm_unreachable("Unexpected abbrev ordering!"); 1473 } 1474 { // 6-bit char6 VST_ENTRY strings. 1475 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1476 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1480 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1481 Abbv) != VST_ENTRY_6_ABBREV) 1482 llvm_unreachable("Unexpected abbrev ordering!"); 1483 } 1484 { // 6-bit char6 VST_BBENTRY strings. 1485 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1486 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1490 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1491 Abbv) != VST_BBENTRY_6_ABBREV) 1492 llvm_unreachable("Unexpected abbrev ordering!"); 1493 } 1494 1495 1496 1497 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1498 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1499 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1501 Log2_32_Ceil(VE.getTypes().size()+1))); 1502 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1503 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1504 llvm_unreachable("Unexpected abbrev ordering!"); 1505 } 1506 1507 { // INTEGER abbrev for CONSTANTS_BLOCK. 1508 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1509 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1511 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1512 Abbv) != CONSTANTS_INTEGER_ABBREV) 1513 llvm_unreachable("Unexpected abbrev ordering!"); 1514 } 1515 1516 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1517 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1518 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1521 Log2_32_Ceil(VE.getTypes().size()+1))); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1523 1524 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1525 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1526 llvm_unreachable("Unexpected abbrev ordering!"); 1527 } 1528 { // NULL abbrev for CONSTANTS_BLOCK. 1529 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1530 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1531 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1532 Abbv) != CONSTANTS_NULL_Abbrev) 1533 llvm_unreachable("Unexpected abbrev ordering!"); 1534 } 1535 1536 // FIXME: This should only use space for first class types! 1537 1538 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1539 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1540 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1544 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1545 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1546 llvm_unreachable("Unexpected abbrev ordering!"); 1547 } 1548 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1549 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1550 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1554 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1555 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1556 llvm_unreachable("Unexpected abbrev ordering!"); 1557 } 1558 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1559 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1560 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1565 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1566 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1567 llvm_unreachable("Unexpected abbrev ordering!"); 1568 } 1569 { // INST_CAST abbrev for FUNCTION_BLOCK. 1570 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1571 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1574 Log2_32_Ceil(VE.getTypes().size()+1))); 1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1576 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1577 Abbv) != FUNCTION_INST_CAST_ABBREV) 1578 llvm_unreachable("Unexpected abbrev ordering!"); 1579 } 1580 1581 { // INST_RET abbrev for FUNCTION_BLOCK. 1582 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1583 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1584 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1585 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1586 llvm_unreachable("Unexpected abbrev ordering!"); 1587 } 1588 { // INST_RET abbrev for FUNCTION_BLOCK. 1589 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1590 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1592 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1593 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1594 llvm_unreachable("Unexpected abbrev ordering!"); 1595 } 1596 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1597 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1598 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1599 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1600 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1601 llvm_unreachable("Unexpected abbrev ordering!"); 1602 } 1603 1604 Stream.ExitBlock(); 1605 } 1606 1607 // Sort the Users based on the order in which the reader parses the bitcode 1608 // file. 1609 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1610 // TODO: Implement. 1611 return true; 1612 } 1613 1614 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1615 BitstreamWriter &Stream) { 1616 1617 // One or zero uses can't get out of order. 1618 if (V->use_empty() || V->hasNUses(1)) 1619 return; 1620 1621 // Make a copy of the in-memory use-list for sorting. 1622 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1623 SmallVector<const User*, 8> UseList; 1624 UseList.reserve(UseListSize); 1625 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1626 I != E; ++I) { 1627 const User *U = *I; 1628 UseList.push_back(U); 1629 } 1630 1631 // Sort the copy based on the order read by the BitcodeReader. 1632 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1633 1634 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1635 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1636 1637 // TODO: Emit the USELIST_CODE_ENTRYs. 1638 } 1639 1640 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1641 BitstreamWriter &Stream) { 1642 VE.incorporateFunction(*F); 1643 1644 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1645 AI != AE; ++AI) 1646 WriteUseList(AI, VE, Stream); 1647 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1648 ++BB) { 1649 WriteUseList(BB, VE, Stream); 1650 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1651 ++II) { 1652 WriteUseList(II, VE, Stream); 1653 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1654 OI != E; ++OI) { 1655 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1656 isa<InlineAsm>(*OI)) 1657 WriteUseList(*OI, VE, Stream); 1658 } 1659 } 1660 } 1661 VE.purgeFunction(); 1662 } 1663 1664 // Emit use-lists. 1665 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1666 BitstreamWriter &Stream) { 1667 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1668 1669 // XXX: this modifies the module, but in a way that should never change the 1670 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1671 // contain entries in the use_list that do not exist in the Module and are 1672 // not stored in the .bc file. 1673 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1674 I != E; ++I) 1675 I->removeDeadConstantUsers(); 1676 1677 // Write the global variables. 1678 for (Module::const_global_iterator GI = M->global_begin(), 1679 GE = M->global_end(); GI != GE; ++GI) { 1680 WriteUseList(GI, VE, Stream); 1681 1682 // Write the global variable initializers. 1683 if (GI->hasInitializer()) 1684 WriteUseList(GI->getInitializer(), VE, Stream); 1685 } 1686 1687 // Write the functions. 1688 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1689 WriteUseList(FI, VE, Stream); 1690 if (!FI->isDeclaration()) 1691 WriteFunctionUseList(FI, VE, Stream); 1692 } 1693 1694 // Write the aliases. 1695 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1696 AI != AE; ++AI) { 1697 WriteUseList(AI, VE, Stream); 1698 WriteUseList(AI->getAliasee(), VE, Stream); 1699 } 1700 1701 Stream.ExitBlock(); 1702 } 1703 1704 /// WriteModule - Emit the specified module to the bitstream. 1705 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1706 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1707 1708 // Emit the version number if it is non-zero. 1709 if (CurVersion) { 1710 SmallVector<unsigned, 1> Vals; 1711 Vals.push_back(CurVersion); 1712 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1713 } 1714 1715 // Analyze the module, enumerating globals, functions, etc. 1716 ValueEnumerator VE(M); 1717 1718 // Emit blockinfo, which defines the standard abbreviations etc. 1719 WriteBlockInfo(VE, Stream); 1720 1721 // Emit information about parameter attributes. 1722 WriteAttributeTable(VE, Stream); 1723 1724 // Emit information describing all of the types in the module. 1725 WriteTypeTable(VE, Stream); 1726 1727 // Emit top-level description of module, including target triple, inline asm, 1728 // descriptors for global variables, and function prototype info. 1729 WriteModuleInfo(M, VE, Stream); 1730 1731 // Emit constants. 1732 WriteModuleConstants(VE, Stream); 1733 1734 // Emit metadata. 1735 WriteModuleMetadata(M, VE, Stream); 1736 1737 // Emit function bodies. 1738 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1739 if (!F->isDeclaration()) 1740 WriteFunction(*F, VE, Stream); 1741 1742 // Emit metadata. 1743 WriteModuleMetadataStore(M, Stream); 1744 1745 // Emit names for globals/functions etc. 1746 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1747 1748 // Emit use-lists. 1749 if (EnablePreserveUseListOrdering) 1750 WriteModuleUseLists(M, VE, Stream); 1751 1752 Stream.ExitBlock(); 1753 } 1754 1755 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1756 /// header and trailer to make it compatible with the system archiver. To do 1757 /// this we emit the following header, and then emit a trailer that pads the 1758 /// file out to be a multiple of 16 bytes. 1759 /// 1760 /// struct bc_header { 1761 /// uint32_t Magic; // 0x0B17C0DE 1762 /// uint32_t Version; // Version, currently always 0. 1763 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1764 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1765 /// uint32_t CPUType; // CPU specifier. 1766 /// ... potentially more later ... 1767 /// }; 1768 enum { 1769 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1770 DarwinBCHeaderSize = 5*4 1771 }; 1772 1773 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) { 1774 unsigned CPUType = ~0U; 1775 1776 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1777 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1778 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1779 // specific constants here because they are implicitly part of the Darwin ABI. 1780 enum { 1781 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1782 DARWIN_CPU_TYPE_X86 = 7, 1783 DARWIN_CPU_TYPE_ARM = 12, 1784 DARWIN_CPU_TYPE_POWERPC = 18 1785 }; 1786 1787 Triple::ArchType Arch = TT.getArch(); 1788 if (Arch == Triple::x86_64) 1789 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1790 else if (Arch == Triple::x86) 1791 CPUType = DARWIN_CPU_TYPE_X86; 1792 else if (Arch == Triple::ppc) 1793 CPUType = DARWIN_CPU_TYPE_POWERPC; 1794 else if (Arch == Triple::ppc64) 1795 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1796 else if (Arch == Triple::arm || Arch == Triple::thumb) 1797 CPUType = DARWIN_CPU_TYPE_ARM; 1798 1799 // Traditional Bitcode starts after header. 1800 unsigned BCOffset = DarwinBCHeaderSize; 1801 1802 Stream.Emit(0x0B17C0DE, 32); 1803 Stream.Emit(0 , 32); // Version. 1804 Stream.Emit(BCOffset , 32); 1805 Stream.Emit(0 , 32); // Filled in later. 1806 Stream.Emit(CPUType , 32); 1807 } 1808 1809 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1810 /// finalize the header. 1811 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1812 // Update the size field in the header. 1813 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1814 1815 // If the file is not a multiple of 16 bytes, insert dummy padding. 1816 while (BufferSize & 15) { 1817 Stream.Emit(0, 8); 1818 ++BufferSize; 1819 } 1820 } 1821 1822 1823 /// WriteBitcodeToFile - Write the specified module to the specified output 1824 /// stream. 1825 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1826 std::vector<unsigned char> Buffer; 1827 BitstreamWriter Stream(Buffer); 1828 1829 Buffer.reserve(256*1024); 1830 1831 WriteBitcodeToStream( M, Stream ); 1832 1833 // Write the generated bitstream to "Out". 1834 Out.write((char*)&Buffer.front(), Buffer.size()); 1835 } 1836 1837 /// WriteBitcodeToStream - Write the specified module to the specified output 1838 /// stream. 1839 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1840 // If this is darwin or another generic macho target, emit a file header and 1841 // trailer if needed. 1842 Triple TT(M->getTargetTriple()); 1843 if (TT.isOSDarwin()) 1844 EmitDarwinBCHeader(Stream, TT); 1845 1846 // Emit the file header. 1847 Stream.Emit((unsigned)'B', 8); 1848 Stream.Emit((unsigned)'C', 8); 1849 Stream.Emit(0x0, 4); 1850 Stream.Emit(0xC, 4); 1851 Stream.Emit(0xE, 4); 1852 Stream.Emit(0xD, 4); 1853 1854 // Emit the module. 1855 WriteModule(M, Stream); 1856 1857 if (TT.isOSDarwin()) 1858 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1859 } 1860