1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/Bitcode/ReaderWriter.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/UseListOrder.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Program.h"
34 #include "llvm/Support/SHA1.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cctype>
37 #include <map>
38 using namespace llvm;
39 
40 /// These are manifest constants used by the bitcode writer. They do not need to
41 /// be kept in sync with the reader, but need to be consistent within this file.
42 enum {
43   // VALUE_SYMTAB_BLOCK abbrev id's.
44   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   VST_ENTRY_7_ABBREV,
46   VST_ENTRY_6_ABBREV,
47   VST_BBENTRY_6_ABBREV,
48 
49   // CONSTANTS_BLOCK abbrev id's.
50   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   CONSTANTS_INTEGER_ABBREV,
52   CONSTANTS_CE_CAST_Abbrev,
53   CONSTANTS_NULL_Abbrev,
54 
55   // FUNCTION_BLOCK abbrev id's.
56   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
57   FUNCTION_INST_BINOP_ABBREV,
58   FUNCTION_INST_BINOP_FLAGS_ABBREV,
59   FUNCTION_INST_CAST_ABBREV,
60   FUNCTION_INST_RET_VOID_ABBREV,
61   FUNCTION_INST_RET_VAL_ABBREV,
62   FUNCTION_INST_UNREACHABLE_ABBREV,
63   FUNCTION_INST_GEP_ABBREV,
64 };
65 
66 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
67 /// file type. Owns the BitstreamWriter, and includes the main entry point for
68 /// writing.
69 class BitcodeWriter {
70 protected:
71   /// Pointer to the buffer allocated by caller for bitcode writing.
72   const SmallVectorImpl<char> &Buffer;
73 
74   /// The stream created and owned by the BitodeWriter.
75   BitstreamWriter Stream;
76 
77   /// Saves the offset of the VSTOffset record that must eventually be
78   /// backpatched with the offset of the actual VST.
79   uint64_t VSTOffsetPlaceholder = 0;
80 
81 public:
82   /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord,
83   /// writing to the provided \p Buffer.
84   BitcodeWriter(SmallVectorImpl<char> &Buffer)
85       : Buffer(Buffer), Stream(Buffer) {}
86 
87   virtual ~BitcodeWriter() = default;
88 
89   /// Main entry point to write the bitcode file, which writes the bitcode
90   /// header and will then invoke the virtual writeBlocks() method.
91   void write();
92 
93 private:
94   /// Derived classes must implement this to write the corresponding blocks for
95   /// that bitcode file type.
96   virtual void writeBlocks() = 0;
97 
98 protected:
99   bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
100   void writeValueSymbolTableForwardDecl();
101   void writeBitcodeHeader();
102 };
103 
104 /// Class to manage the bitcode writing for a module.
105 class ModuleBitcodeWriter : public BitcodeWriter {
106   /// The Module to write to bitcode.
107   const Module &M;
108 
109   /// Enumerates ids for all values in the module.
110   ValueEnumerator VE;
111 
112   /// Optional per-module index to write for ThinLTO.
113   const ModuleSummaryIndex *Index;
114 
115   /// True if a module hash record should be written.
116   bool GenerateHash;
117 
118   /// The start bit of the module block, for use in generating a module hash
119   uint64_t BitcodeStartBit = 0;
120 
121 public:
122   /// Constructs a ModuleBitcodeWriter object for the given Module,
123   /// writing to the provided \p Buffer.
124   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
125                       bool ShouldPreserveUseListOrder,
126                       const ModuleSummaryIndex *Index, bool GenerateHash)
127       : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder),
128         Index(Index), GenerateHash(GenerateHash) {
129     // Save the start bit of the actual bitcode, in case there is space
130     // saved at the start for the darwin header above. The reader stream
131     // will start at the bitcode, and we need the offset of the VST
132     // to line up.
133     BitcodeStartBit = Stream.GetCurrentBitNo();
134   }
135 
136 private:
137   /// Main entry point for writing a module to bitcode, invoked by
138   /// BitcodeWriter::write() after it writes the header.
139   void writeBlocks() override;
140 
141   /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
142   /// current llvm version, and a record for the epoch number.
143   void writeIdentificationBlock();
144 
145   /// Emit the current module to the bitstream.
146   void writeModule();
147 
148   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
149 
150   void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse);
151   void writeAttributeGroupTable();
152   void writeAttributeTable();
153   void writeTypeTable();
154   void writeComdats();
155   void writeModuleInfo();
156   void writeValueAsMetadata(const ValueAsMetadata *MD,
157                             SmallVectorImpl<uint64_t> &Record);
158   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
159                     unsigned Abbrev);
160   unsigned createDILocationAbbrev();
161   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
162                        unsigned &Abbrev);
163   unsigned createGenericDINodeAbbrev();
164   void writeGenericDINode(const GenericDINode *N,
165                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
166   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
167                        unsigned Abbrev);
168   void writeDIEnumerator(const DIEnumerator *N,
169                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
170   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
171                         unsigned Abbrev);
172   void writeDIDerivedType(const DIDerivedType *N,
173                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
174   void writeDICompositeType(const DICompositeType *N,
175                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
176   void writeDISubroutineType(const DISubroutineType *N,
177                              SmallVectorImpl<uint64_t> &Record,
178                              unsigned Abbrev);
179   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
180                    unsigned Abbrev);
181   void writeDICompileUnit(const DICompileUnit *N,
182                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
183   void writeDISubprogram(const DISubprogram *N,
184                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
185   void writeDILexicalBlock(const DILexicalBlock *N,
186                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
187   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
188                                SmallVectorImpl<uint64_t> &Record,
189                                unsigned Abbrev);
190   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
191                         unsigned Abbrev);
192   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
193                     unsigned Abbrev);
194   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
195                         unsigned Abbrev);
196   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
197                      unsigned Abbrev);
198   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
199                                     SmallVectorImpl<uint64_t> &Record,
200                                     unsigned Abbrev);
201   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
202                                      SmallVectorImpl<uint64_t> &Record,
203                                      unsigned Abbrev);
204   void writeDIGlobalVariable(const DIGlobalVariable *N,
205                              SmallVectorImpl<uint64_t> &Record,
206                              unsigned Abbrev);
207   void writeDILocalVariable(const DILocalVariable *N,
208                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
209   void writeDIExpression(const DIExpression *N,
210                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
211   void writeDIObjCProperty(const DIObjCProperty *N,
212                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
213   void writeDIImportedEntity(const DIImportedEntity *N,
214                              SmallVectorImpl<uint64_t> &Record,
215                              unsigned Abbrev);
216   unsigned createNamedMetadataAbbrev();
217   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
218   unsigned createMetadataStringsAbbrev();
219   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
220                             SmallVectorImpl<uint64_t> &Record);
221   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
222                             SmallVectorImpl<uint64_t> &Record);
223   void writeModuleMetadata();
224   void writeFunctionMetadata(const Function &F);
225   void writeMetadataAttachment(const Function &F);
226   void writeModuleMetadataStore();
227   void writeOperandBundleTags();
228   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
229   void writeModuleConstants();
230   bool pushValueAndType(const Value *V, unsigned InstID,
231                         SmallVectorImpl<unsigned> &Vals);
232   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
233   void pushValue(const Value *V, unsigned InstID,
234                  SmallVectorImpl<unsigned> &Vals);
235   void pushValueSigned(const Value *V, unsigned InstID,
236                        SmallVectorImpl<uint64_t> &Vals);
237   void writeInstruction(const Instruction &I, unsigned InstID,
238                         SmallVectorImpl<unsigned> &Vals);
239   void writeValueSymbolTable(
240       const ValueSymbolTable &VST, bool IsModuleLevel = false,
241       DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
242   void writeUseList(UseListOrder &&Order);
243   void writeUseListBlock(const Function *F);
244   void
245   writeFunction(const Function &F,
246                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
247   void writeBlockInfo();
248   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
249                                            GlobalValueSummary *Summary,
250                                            unsigned ValueID,
251                                            unsigned FSCallsAbbrev,
252                                            unsigned FSCallsProfileAbbrev,
253                                            const Function &F);
254   void writeModuleLevelReferences(const GlobalVariable &V,
255                                   SmallVector<uint64_t, 64> &NameVals,
256                                   unsigned FSModRefsAbbrev);
257   void writePerModuleGlobalValueSummary();
258   void writeModuleHash(size_t BlockStartPos);
259 };
260 
261 /// Class to manage the bitcode writing for a combined index.
262 class IndexBitcodeWriter : public BitcodeWriter {
263   /// The combined index to write to bitcode.
264   const ModuleSummaryIndex &Index;
265 
266   /// When writing a subset of the index for distributed backends, client
267   /// provides a map of modules to the corresponding GUIDs/summaries to write.
268   std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
269 
270   /// Map that holds the correspondence between the GUID used in the combined
271   /// index and a value id generated by this class to use in references.
272   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
273 
274   /// Tracks the last value id recorded in the GUIDToValueMap.
275   unsigned GlobalValueId = 0;
276 
277 public:
278   /// Constructs a IndexBitcodeWriter object for the given combined index,
279   /// writing to the provided \p Buffer. When writing a subset of the index
280   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
281   IndexBitcodeWriter(SmallVectorImpl<char> &Buffer,
282                      const ModuleSummaryIndex &Index,
283                      std::map<std::string, GVSummaryMapTy>
284                          *ModuleToSummariesForIndex = nullptr)
285       : BitcodeWriter(Buffer), Index(Index),
286         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
287     // Assign unique value ids to all summaries to be written, for use
288     // in writing out the call graph edges. Save the mapping from GUID
289     // to the new global value id to use when writing those edges, which
290     // are currently saved in the index in terms of GUID.
291     for (const auto &I : *this)
292       GUIDToValueIdMap[I.first] = ++GlobalValueId;
293   }
294 
295   /// The below iterator returns the GUID and associated summary.
296   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
297 
298   /// Iterator over the value GUID and summaries to be written to bitcode,
299   /// hides the details of whether they are being pulled from the entire
300   /// index or just those in a provided ModuleToSummariesForIndex map.
301   class iterator
302       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
303                                           GVInfo> {
304     /// Enables access to parent class.
305     const IndexBitcodeWriter &Writer;
306 
307     // Iterators used when writing only those summaries in a provided
308     // ModuleToSummariesForIndex map:
309 
310     /// Points to the last element in outer ModuleToSummariesForIndex map.
311     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack;
312     /// Iterator on outer ModuleToSummariesForIndex map.
313     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter;
314     /// Iterator on an inner global variable summary map.
315     GVSummaryMapTy::iterator ModuleGVSummariesIter;
316 
317     // Iterators used when writing all summaries in the index:
318 
319     /// Points to the last element in the Index outer GlobalValueMap.
320     const_gvsummary_iterator IndexSummariesBack;
321     /// Iterator on outer GlobalValueMap.
322     const_gvsummary_iterator IndexSummariesIter;
323     /// Iterator on an inner GlobalValueSummaryList.
324     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
325 
326   public:
327     /// Construct iterator from parent \p Writer and indicate if we are
328     /// constructing the end iterator.
329     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
330       // Set up the appropriate set of iterators given whether we are writing
331       // the full index or just a subset.
332       // Can't setup the Back or inner iterators if the corresponding map
333       // is empty. This will be handled specially in operator== as well.
334       if (Writer.ModuleToSummariesForIndex &&
335           !Writer.ModuleToSummariesForIndex->empty()) {
336         ModuleSummariesIter = Writer.ModuleToSummariesForIndex->begin();
337         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
338              std::next(ModuleSummariesBack) !=
339              Writer.ModuleToSummariesForIndex->end();
340              ModuleSummariesBack++)
341           ;
342         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
343                                          : ModuleSummariesBack->second.end();
344       } else if (!Writer.ModuleToSummariesForIndex &&
345                  Writer.Index.begin() != Writer.Index.end()) {
346         IndexSummariesIter = Writer.Index.begin();
347         for (IndexSummariesBack = Writer.Index.begin();
348              std::next(IndexSummariesBack) != Writer.Index.end();
349              IndexSummariesBack++)
350           ;
351         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
352                                         : IndexSummariesBack->second.end();
353       }
354     }
355 
356     /// Increment the appropriate set of iterators.
357     iterator &operator++() {
358       // First the inner iterator is incremented, then if it is at the end
359       // and there are more outer iterations to go, the inner is reset to
360       // the start of the next inner list.
361       if (Writer.ModuleToSummariesForIndex) {
362         ++ModuleGVSummariesIter;
363         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
364             ModuleSummariesIter != ModuleSummariesBack) {
365           ++ModuleSummariesIter;
366           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
367         }
368       } else {
369         ++IndexGVSummariesIter;
370         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
371             IndexSummariesIter != IndexSummariesBack) {
372           ++IndexSummariesIter;
373           IndexGVSummariesIter = IndexSummariesIter->second.begin();
374         }
375       }
376       return *this;
377     }
378 
379     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
380     /// outer and inner iterator positions.
381     GVInfo operator*() {
382       if (Writer.ModuleToSummariesForIndex)
383         return std::make_pair(ModuleGVSummariesIter->first,
384                               ModuleGVSummariesIter->second);
385       return std::make_pair(IndexSummariesIter->first,
386                             IndexGVSummariesIter->get());
387     }
388 
389     /// Checks if the iterators are equal, with special handling for empty
390     /// indexes.
391     bool operator==(const iterator &RHS) const {
392       if (Writer.ModuleToSummariesForIndex) {
393         // First ensure that both are writing the same subset.
394         if (Writer.ModuleToSummariesForIndex !=
395             RHS.Writer.ModuleToSummariesForIndex)
396           return false;
397         // Already determined above that maps are the same, so if one is
398         // empty, they both are.
399         if (Writer.ModuleToSummariesForIndex->empty())
400           return true;
401         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
402       }
403       // First ensure RHS also writing the full index, and that both are
404       // writing the same full index.
405       if (RHS.Writer.ModuleToSummariesForIndex ||
406           &Writer.Index != &RHS.Writer.Index)
407         return false;
408       // Already determined above that maps are the same, so if one is
409       // empty, they both are.
410       if (Writer.Index.begin() == Writer.Index.end())
411         return true;
412       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
413     }
414   };
415 
416   /// Obtain the start iterator over the summaries to be written.
417   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
418   /// Obtain the end iterator over the summaries to be written.
419   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
420 
421 private:
422   /// Main entry point for writing a combined index to bitcode, invoked by
423   /// BitcodeWriter::write() after it writes the header.
424   void writeBlocks() override;
425 
426   void writeIndex();
427   void writeModStrings();
428   void writeCombinedValueSymbolTable();
429   void writeCombinedGlobalValueSummary();
430 
431   /// Indicates whether the provided \p ModulePath should be written into
432   /// the module string table, e.g. if full index written or if it is in
433   /// the provided subset.
434   bool doIncludeModule(StringRef ModulePath) {
435     return !ModuleToSummariesForIndex ||
436            ModuleToSummariesForIndex->count(ModulePath);
437   }
438 
439   bool hasValueId(GlobalValue::GUID ValGUID) {
440     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
441     return VMI != GUIDToValueIdMap.end();
442   }
443   unsigned getValueId(GlobalValue::GUID ValGUID) {
444     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
445     // If this GUID doesn't have an entry, assign one.
446     if (VMI == GUIDToValueIdMap.end()) {
447       GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
448       return GlobalValueId;
449     } else {
450       return VMI->second;
451     }
452   }
453   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
454 };
455 
456 static unsigned getEncodedCastOpcode(unsigned Opcode) {
457   switch (Opcode) {
458   default: llvm_unreachable("Unknown cast instruction!");
459   case Instruction::Trunc   : return bitc::CAST_TRUNC;
460   case Instruction::ZExt    : return bitc::CAST_ZEXT;
461   case Instruction::SExt    : return bitc::CAST_SEXT;
462   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
463   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
464   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
465   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
466   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
467   case Instruction::FPExt   : return bitc::CAST_FPEXT;
468   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
469   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
470   case Instruction::BitCast : return bitc::CAST_BITCAST;
471   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
472   }
473 }
474 
475 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
476   switch (Opcode) {
477   default: llvm_unreachable("Unknown binary instruction!");
478   case Instruction::Add:
479   case Instruction::FAdd: return bitc::BINOP_ADD;
480   case Instruction::Sub:
481   case Instruction::FSub: return bitc::BINOP_SUB;
482   case Instruction::Mul:
483   case Instruction::FMul: return bitc::BINOP_MUL;
484   case Instruction::UDiv: return bitc::BINOP_UDIV;
485   case Instruction::FDiv:
486   case Instruction::SDiv: return bitc::BINOP_SDIV;
487   case Instruction::URem: return bitc::BINOP_UREM;
488   case Instruction::FRem:
489   case Instruction::SRem: return bitc::BINOP_SREM;
490   case Instruction::Shl:  return bitc::BINOP_SHL;
491   case Instruction::LShr: return bitc::BINOP_LSHR;
492   case Instruction::AShr: return bitc::BINOP_ASHR;
493   case Instruction::And:  return bitc::BINOP_AND;
494   case Instruction::Or:   return bitc::BINOP_OR;
495   case Instruction::Xor:  return bitc::BINOP_XOR;
496   }
497 }
498 
499 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
500   switch (Op) {
501   default: llvm_unreachable("Unknown RMW operation!");
502   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
503   case AtomicRMWInst::Add: return bitc::RMW_ADD;
504   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
505   case AtomicRMWInst::And: return bitc::RMW_AND;
506   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
507   case AtomicRMWInst::Or: return bitc::RMW_OR;
508   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
509   case AtomicRMWInst::Max: return bitc::RMW_MAX;
510   case AtomicRMWInst::Min: return bitc::RMW_MIN;
511   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
512   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
513   }
514 }
515 
516 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
517   switch (Ordering) {
518   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
519   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
520   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
521   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
522   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
523   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
524   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
525   }
526   llvm_unreachable("Invalid ordering");
527 }
528 
529 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
530   switch (SynchScope) {
531   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
532   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
533   }
534   llvm_unreachable("Invalid synch scope");
535 }
536 
537 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str,
538                                             unsigned AbbrevToUse) {
539   SmallVector<unsigned, 64> Vals;
540 
541   // Code: [strchar x N]
542   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
543     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
544       AbbrevToUse = 0;
545     Vals.push_back(Str[i]);
546   }
547 
548   // Emit the finished record.
549   Stream.EmitRecord(Code, Vals, AbbrevToUse);
550 }
551 
552 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
553   switch (Kind) {
554   case Attribute::Alignment:
555     return bitc::ATTR_KIND_ALIGNMENT;
556   case Attribute::AllocSize:
557     return bitc::ATTR_KIND_ALLOC_SIZE;
558   case Attribute::AlwaysInline:
559     return bitc::ATTR_KIND_ALWAYS_INLINE;
560   case Attribute::ArgMemOnly:
561     return bitc::ATTR_KIND_ARGMEMONLY;
562   case Attribute::Builtin:
563     return bitc::ATTR_KIND_BUILTIN;
564   case Attribute::ByVal:
565     return bitc::ATTR_KIND_BY_VAL;
566   case Attribute::Convergent:
567     return bitc::ATTR_KIND_CONVERGENT;
568   case Attribute::InAlloca:
569     return bitc::ATTR_KIND_IN_ALLOCA;
570   case Attribute::Cold:
571     return bitc::ATTR_KIND_COLD;
572   case Attribute::InaccessibleMemOnly:
573     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
574   case Attribute::InaccessibleMemOrArgMemOnly:
575     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
576   case Attribute::InlineHint:
577     return bitc::ATTR_KIND_INLINE_HINT;
578   case Attribute::InReg:
579     return bitc::ATTR_KIND_IN_REG;
580   case Attribute::JumpTable:
581     return bitc::ATTR_KIND_JUMP_TABLE;
582   case Attribute::MinSize:
583     return bitc::ATTR_KIND_MIN_SIZE;
584   case Attribute::Naked:
585     return bitc::ATTR_KIND_NAKED;
586   case Attribute::Nest:
587     return bitc::ATTR_KIND_NEST;
588   case Attribute::NoAlias:
589     return bitc::ATTR_KIND_NO_ALIAS;
590   case Attribute::NoBuiltin:
591     return bitc::ATTR_KIND_NO_BUILTIN;
592   case Attribute::NoCapture:
593     return bitc::ATTR_KIND_NO_CAPTURE;
594   case Attribute::NoDuplicate:
595     return bitc::ATTR_KIND_NO_DUPLICATE;
596   case Attribute::NoImplicitFloat:
597     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
598   case Attribute::NoInline:
599     return bitc::ATTR_KIND_NO_INLINE;
600   case Attribute::NoRecurse:
601     return bitc::ATTR_KIND_NO_RECURSE;
602   case Attribute::NonLazyBind:
603     return bitc::ATTR_KIND_NON_LAZY_BIND;
604   case Attribute::NonNull:
605     return bitc::ATTR_KIND_NON_NULL;
606   case Attribute::Dereferenceable:
607     return bitc::ATTR_KIND_DEREFERENCEABLE;
608   case Attribute::DereferenceableOrNull:
609     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
610   case Attribute::NoRedZone:
611     return bitc::ATTR_KIND_NO_RED_ZONE;
612   case Attribute::NoReturn:
613     return bitc::ATTR_KIND_NO_RETURN;
614   case Attribute::NoUnwind:
615     return bitc::ATTR_KIND_NO_UNWIND;
616   case Attribute::OptimizeForSize:
617     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
618   case Attribute::OptimizeNone:
619     return bitc::ATTR_KIND_OPTIMIZE_NONE;
620   case Attribute::ReadNone:
621     return bitc::ATTR_KIND_READ_NONE;
622   case Attribute::ReadOnly:
623     return bitc::ATTR_KIND_READ_ONLY;
624   case Attribute::Returned:
625     return bitc::ATTR_KIND_RETURNED;
626   case Attribute::ReturnsTwice:
627     return bitc::ATTR_KIND_RETURNS_TWICE;
628   case Attribute::SExt:
629     return bitc::ATTR_KIND_S_EXT;
630   case Attribute::StackAlignment:
631     return bitc::ATTR_KIND_STACK_ALIGNMENT;
632   case Attribute::StackProtect:
633     return bitc::ATTR_KIND_STACK_PROTECT;
634   case Attribute::StackProtectReq:
635     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
636   case Attribute::StackProtectStrong:
637     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
638   case Attribute::SafeStack:
639     return bitc::ATTR_KIND_SAFESTACK;
640   case Attribute::StructRet:
641     return bitc::ATTR_KIND_STRUCT_RET;
642   case Attribute::SanitizeAddress:
643     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
644   case Attribute::SanitizeThread:
645     return bitc::ATTR_KIND_SANITIZE_THREAD;
646   case Attribute::SanitizeMemory:
647     return bitc::ATTR_KIND_SANITIZE_MEMORY;
648   case Attribute::SwiftError:
649     return bitc::ATTR_KIND_SWIFT_ERROR;
650   case Attribute::SwiftSelf:
651     return bitc::ATTR_KIND_SWIFT_SELF;
652   case Attribute::UWTable:
653     return bitc::ATTR_KIND_UW_TABLE;
654   case Attribute::ZExt:
655     return bitc::ATTR_KIND_Z_EXT;
656   case Attribute::EndAttrKinds:
657     llvm_unreachable("Can not encode end-attribute kinds marker.");
658   case Attribute::None:
659     llvm_unreachable("Can not encode none-attribute.");
660   }
661 
662   llvm_unreachable("Trying to encode unknown attribute");
663 }
664 
665 void ModuleBitcodeWriter::writeAttributeGroupTable() {
666   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
667   if (AttrGrps.empty()) return;
668 
669   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
670 
671   SmallVector<uint64_t, 64> Record;
672   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
673     AttributeSet AS = AttrGrps[i];
674     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
675       AttributeSet A = AS.getSlotAttributes(i);
676 
677       Record.push_back(VE.getAttributeGroupID(A));
678       Record.push_back(AS.getSlotIndex(i));
679 
680       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
681            I != E; ++I) {
682         Attribute Attr = *I;
683         if (Attr.isEnumAttribute()) {
684           Record.push_back(0);
685           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
686         } else if (Attr.isIntAttribute()) {
687           Record.push_back(1);
688           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
689           Record.push_back(Attr.getValueAsInt());
690         } else {
691           StringRef Kind = Attr.getKindAsString();
692           StringRef Val = Attr.getValueAsString();
693 
694           Record.push_back(Val.empty() ? 3 : 4);
695           Record.append(Kind.begin(), Kind.end());
696           Record.push_back(0);
697           if (!Val.empty()) {
698             Record.append(Val.begin(), Val.end());
699             Record.push_back(0);
700           }
701         }
702       }
703 
704       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
705       Record.clear();
706     }
707   }
708 
709   Stream.ExitBlock();
710 }
711 
712 void ModuleBitcodeWriter::writeAttributeTable() {
713   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
714   if (Attrs.empty()) return;
715 
716   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
717 
718   SmallVector<uint64_t, 64> Record;
719   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
720     const AttributeSet &A = Attrs[i];
721     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
722       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
723 
724     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
725     Record.clear();
726   }
727 
728   Stream.ExitBlock();
729 }
730 
731 /// WriteTypeTable - Write out the type table for a module.
732 void ModuleBitcodeWriter::writeTypeTable() {
733   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
734 
735   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
736   SmallVector<uint64_t, 64> TypeVals;
737 
738   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
739 
740   // Abbrev for TYPE_CODE_POINTER.
741   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
742   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
743   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
744   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
745   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
746 
747   // Abbrev for TYPE_CODE_FUNCTION.
748   Abbv = new BitCodeAbbrev();
749   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
750   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
751   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
752   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
753 
754   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
755 
756   // Abbrev for TYPE_CODE_STRUCT_ANON.
757   Abbv = new BitCodeAbbrev();
758   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
759   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
760   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
761   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
762 
763   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
764 
765   // Abbrev for TYPE_CODE_STRUCT_NAME.
766   Abbv = new BitCodeAbbrev();
767   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
768   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
769   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
770   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
771 
772   // Abbrev for TYPE_CODE_STRUCT_NAMED.
773   Abbv = new BitCodeAbbrev();
774   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
775   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
776   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
777   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
778 
779   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
780 
781   // Abbrev for TYPE_CODE_ARRAY.
782   Abbv = new BitCodeAbbrev();
783   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
784   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
785   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
786 
787   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
788 
789   // Emit an entry count so the reader can reserve space.
790   TypeVals.push_back(TypeList.size());
791   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
792   TypeVals.clear();
793 
794   // Loop over all of the types, emitting each in turn.
795   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
796     Type *T = TypeList[i];
797     int AbbrevToUse = 0;
798     unsigned Code = 0;
799 
800     switch (T->getTypeID()) {
801     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
802     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
803     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
804     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
805     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
806     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
807     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
808     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
809     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
810     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
811     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
812     case Type::IntegerTyID:
813       // INTEGER: [width]
814       Code = bitc::TYPE_CODE_INTEGER;
815       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
816       break;
817     case Type::PointerTyID: {
818       PointerType *PTy = cast<PointerType>(T);
819       // POINTER: [pointee type, address space]
820       Code = bitc::TYPE_CODE_POINTER;
821       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
822       unsigned AddressSpace = PTy->getAddressSpace();
823       TypeVals.push_back(AddressSpace);
824       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
825       break;
826     }
827     case Type::FunctionTyID: {
828       FunctionType *FT = cast<FunctionType>(T);
829       // FUNCTION: [isvararg, retty, paramty x N]
830       Code = bitc::TYPE_CODE_FUNCTION;
831       TypeVals.push_back(FT->isVarArg());
832       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
833       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
834         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
835       AbbrevToUse = FunctionAbbrev;
836       break;
837     }
838     case Type::StructTyID: {
839       StructType *ST = cast<StructType>(T);
840       // STRUCT: [ispacked, eltty x N]
841       TypeVals.push_back(ST->isPacked());
842       // Output all of the element types.
843       for (StructType::element_iterator I = ST->element_begin(),
844            E = ST->element_end(); I != E; ++I)
845         TypeVals.push_back(VE.getTypeID(*I));
846 
847       if (ST->isLiteral()) {
848         Code = bitc::TYPE_CODE_STRUCT_ANON;
849         AbbrevToUse = StructAnonAbbrev;
850       } else {
851         if (ST->isOpaque()) {
852           Code = bitc::TYPE_CODE_OPAQUE;
853         } else {
854           Code = bitc::TYPE_CODE_STRUCT_NAMED;
855           AbbrevToUse = StructNamedAbbrev;
856         }
857 
858         // Emit the name if it is present.
859         if (!ST->getName().empty())
860           writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
861                             StructNameAbbrev);
862       }
863       break;
864     }
865     case Type::ArrayTyID: {
866       ArrayType *AT = cast<ArrayType>(T);
867       // ARRAY: [numelts, eltty]
868       Code = bitc::TYPE_CODE_ARRAY;
869       TypeVals.push_back(AT->getNumElements());
870       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
871       AbbrevToUse = ArrayAbbrev;
872       break;
873     }
874     case Type::VectorTyID: {
875       VectorType *VT = cast<VectorType>(T);
876       // VECTOR [numelts, eltty]
877       Code = bitc::TYPE_CODE_VECTOR;
878       TypeVals.push_back(VT->getNumElements());
879       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
880       break;
881     }
882     }
883 
884     // Emit the finished record.
885     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
886     TypeVals.clear();
887   }
888 
889   Stream.ExitBlock();
890 }
891 
892 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
893   switch (Linkage) {
894   case GlobalValue::ExternalLinkage:
895     return 0;
896   case GlobalValue::WeakAnyLinkage:
897     return 16;
898   case GlobalValue::AppendingLinkage:
899     return 2;
900   case GlobalValue::InternalLinkage:
901     return 3;
902   case GlobalValue::LinkOnceAnyLinkage:
903     return 18;
904   case GlobalValue::ExternalWeakLinkage:
905     return 7;
906   case GlobalValue::CommonLinkage:
907     return 8;
908   case GlobalValue::PrivateLinkage:
909     return 9;
910   case GlobalValue::WeakODRLinkage:
911     return 17;
912   case GlobalValue::LinkOnceODRLinkage:
913     return 19;
914   case GlobalValue::AvailableExternallyLinkage:
915     return 12;
916   }
917   llvm_unreachable("Invalid linkage");
918 }
919 
920 static unsigned getEncodedLinkage(const GlobalValue &GV) {
921   return getEncodedLinkage(GV.getLinkage());
922 }
923 
924 // Decode the flags for GlobalValue in the summary
925 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
926   uint64_t RawFlags = 0;
927 
928   RawFlags |= Flags.HasSection; // bool
929 
930   // Linkage don't need to be remapped at that time for the summary. Any future
931   // change to the getEncodedLinkage() function will need to be taken into
932   // account here as well.
933   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
934 
935   return RawFlags;
936 }
937 
938 static unsigned getEncodedVisibility(const GlobalValue &GV) {
939   switch (GV.getVisibility()) {
940   case GlobalValue::DefaultVisibility:   return 0;
941   case GlobalValue::HiddenVisibility:    return 1;
942   case GlobalValue::ProtectedVisibility: return 2;
943   }
944   llvm_unreachable("Invalid visibility");
945 }
946 
947 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
948   switch (GV.getDLLStorageClass()) {
949   case GlobalValue::DefaultStorageClass:   return 0;
950   case GlobalValue::DLLImportStorageClass: return 1;
951   case GlobalValue::DLLExportStorageClass: return 2;
952   }
953   llvm_unreachable("Invalid DLL storage class");
954 }
955 
956 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
957   switch (GV.getThreadLocalMode()) {
958     case GlobalVariable::NotThreadLocal:         return 0;
959     case GlobalVariable::GeneralDynamicTLSModel: return 1;
960     case GlobalVariable::LocalDynamicTLSModel:   return 2;
961     case GlobalVariable::InitialExecTLSModel:    return 3;
962     case GlobalVariable::LocalExecTLSModel:      return 4;
963   }
964   llvm_unreachable("Invalid TLS model");
965 }
966 
967 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
968   switch (C.getSelectionKind()) {
969   case Comdat::Any:
970     return bitc::COMDAT_SELECTION_KIND_ANY;
971   case Comdat::ExactMatch:
972     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
973   case Comdat::Largest:
974     return bitc::COMDAT_SELECTION_KIND_LARGEST;
975   case Comdat::NoDuplicates:
976     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
977   case Comdat::SameSize:
978     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
979   }
980   llvm_unreachable("Invalid selection kind");
981 }
982 
983 void ModuleBitcodeWriter::writeComdats() {
984   SmallVector<unsigned, 64> Vals;
985   for (const Comdat *C : VE.getComdats()) {
986     // COMDAT: [selection_kind, name]
987     Vals.push_back(getEncodedComdatSelectionKind(*C));
988     size_t Size = C->getName().size();
989     assert(isUInt<32>(Size));
990     Vals.push_back(Size);
991     for (char Chr : C->getName())
992       Vals.push_back((unsigned char)Chr);
993     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
994     Vals.clear();
995   }
996 }
997 
998 /// Write a record that will eventually hold the word offset of the
999 /// module-level VST. For now the offset is 0, which will be backpatched
1000 /// after the real VST is written. Saves the bit offset to backpatch.
1001 void BitcodeWriter::writeValueSymbolTableForwardDecl() {
1002   // Write a placeholder value in for the offset of the real VST,
1003   // which is written after the function blocks so that it can include
1004   // the offset of each function. The placeholder offset will be
1005   // updated when the real VST is written.
1006   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1007   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1008   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1009   // hold the real VST offset. Must use fixed instead of VBR as we don't
1010   // know how many VBR chunks to reserve ahead of time.
1011   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1012   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
1013 
1014   // Emit the placeholder
1015   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1016   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1017 
1018   // Compute and save the bit offset to the placeholder, which will be
1019   // patched when the real VST is written. We can simply subtract the 32-bit
1020   // fixed size from the current bit number to get the location to backpatch.
1021   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1022 }
1023 
1024 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1025 
1026 /// Determine the encoding to use for the given string name and length.
1027 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1028   bool isChar6 = true;
1029   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1030     if (isChar6)
1031       isChar6 = BitCodeAbbrevOp::isChar6(*C);
1032     if ((unsigned char)*C & 128)
1033       // don't bother scanning the rest.
1034       return SE_Fixed8;
1035   }
1036   if (isChar6)
1037     return SE_Char6;
1038   else
1039     return SE_Fixed7;
1040 }
1041 
1042 /// Emit top-level description of module, including target triple, inline asm,
1043 /// descriptors for global variables, and function prototype info.
1044 /// Returns the bit offset to backpatch with the location of the real VST.
1045 void ModuleBitcodeWriter::writeModuleInfo() {
1046   // Emit various pieces of data attached to a module.
1047   if (!M.getTargetTriple().empty())
1048     writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1049                       0 /*TODO*/);
1050   const std::string &DL = M.getDataLayoutStr();
1051   if (!DL.empty())
1052     writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1053   if (!M.getModuleInlineAsm().empty())
1054     writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1055                       0 /*TODO*/);
1056 
1057   // Emit information about sections and GC, computing how many there are. Also
1058   // compute the maximum alignment value.
1059   std::map<std::string, unsigned> SectionMap;
1060   std::map<std::string, unsigned> GCMap;
1061   unsigned MaxAlignment = 0;
1062   unsigned MaxGlobalType = 0;
1063   for (const GlobalValue &GV : M.globals()) {
1064     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1065     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1066     if (GV.hasSection()) {
1067       // Give section names unique ID's.
1068       unsigned &Entry = SectionMap[GV.getSection()];
1069       if (!Entry) {
1070         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1071                           0 /*TODO*/);
1072         Entry = SectionMap.size();
1073       }
1074     }
1075   }
1076   for (const Function &F : M) {
1077     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1078     if (F.hasSection()) {
1079       // Give section names unique ID's.
1080       unsigned &Entry = SectionMap[F.getSection()];
1081       if (!Entry) {
1082         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1083                           0 /*TODO*/);
1084         Entry = SectionMap.size();
1085       }
1086     }
1087     if (F.hasGC()) {
1088       // Same for GC names.
1089       unsigned &Entry = GCMap[F.getGC()];
1090       if (!Entry) {
1091         writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/);
1092         Entry = GCMap.size();
1093       }
1094     }
1095   }
1096 
1097   // Emit abbrev for globals, now that we know # sections and max alignment.
1098   unsigned SimpleGVarAbbrev = 0;
1099   if (!M.global_empty()) {
1100     // Add an abbrev for common globals with no visibility or thread localness.
1101     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1102     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1103     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1104                               Log2_32_Ceil(MaxGlobalType+1)));
1105     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1106                                                            //| explicitType << 1
1107                                                            //| constant
1108     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1109     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1110     if (MaxAlignment == 0)                                 // Alignment.
1111       Abbv->Add(BitCodeAbbrevOp(0));
1112     else {
1113       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1114       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1115                                Log2_32_Ceil(MaxEncAlignment+1)));
1116     }
1117     if (SectionMap.empty())                                    // Section.
1118       Abbv->Add(BitCodeAbbrevOp(0));
1119     else
1120       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1121                                Log2_32_Ceil(SectionMap.size()+1)));
1122     // Don't bother emitting vis + thread local.
1123     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
1124   }
1125 
1126   // Emit the global variable information.
1127   SmallVector<unsigned, 64> Vals;
1128   for (const GlobalVariable &GV : M.globals()) {
1129     unsigned AbbrevToUse = 0;
1130 
1131     // GLOBALVAR: [type, isconst, initid,
1132     //             linkage, alignment, section, visibility, threadlocal,
1133     //             unnamed_addr, externally_initialized, dllstorageclass,
1134     //             comdat]
1135     Vals.push_back(VE.getTypeID(GV.getValueType()));
1136     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1137     Vals.push_back(GV.isDeclaration() ? 0 :
1138                    (VE.getValueID(GV.getInitializer()) + 1));
1139     Vals.push_back(getEncodedLinkage(GV));
1140     Vals.push_back(Log2_32(GV.getAlignment())+1);
1141     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1142     if (GV.isThreadLocal() ||
1143         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1144         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
1145         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1146         GV.hasComdat()) {
1147       Vals.push_back(getEncodedVisibility(GV));
1148       Vals.push_back(getEncodedThreadLocalMode(GV));
1149       Vals.push_back(GV.hasUnnamedAddr());
1150       Vals.push_back(GV.isExternallyInitialized());
1151       Vals.push_back(getEncodedDLLStorageClass(GV));
1152       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1153     } else {
1154       AbbrevToUse = SimpleGVarAbbrev;
1155     }
1156 
1157     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1158     Vals.clear();
1159   }
1160 
1161   // Emit the function proto information.
1162   for (const Function &F : M) {
1163     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1164     //             section, visibility, gc, unnamed_addr, prologuedata,
1165     //             dllstorageclass, comdat, prefixdata, personalityfn]
1166     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1167     Vals.push_back(F.getCallingConv());
1168     Vals.push_back(F.isDeclaration());
1169     Vals.push_back(getEncodedLinkage(F));
1170     Vals.push_back(VE.getAttributeID(F.getAttributes()));
1171     Vals.push_back(Log2_32(F.getAlignment())+1);
1172     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1173     Vals.push_back(getEncodedVisibility(F));
1174     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1175     Vals.push_back(F.hasUnnamedAddr());
1176     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1177                                        : 0);
1178     Vals.push_back(getEncodedDLLStorageClass(F));
1179     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1180     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1181                                      : 0);
1182     Vals.push_back(
1183         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1184 
1185     unsigned AbbrevToUse = 0;
1186     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1187     Vals.clear();
1188   }
1189 
1190   // Emit the alias information.
1191   for (const GlobalAlias &A : M.aliases()) {
1192     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1193     Vals.push_back(VE.getTypeID(A.getValueType()));
1194     Vals.push_back(A.getType()->getAddressSpace());
1195     Vals.push_back(VE.getValueID(A.getAliasee()));
1196     Vals.push_back(getEncodedLinkage(A));
1197     Vals.push_back(getEncodedVisibility(A));
1198     Vals.push_back(getEncodedDLLStorageClass(A));
1199     Vals.push_back(getEncodedThreadLocalMode(A));
1200     Vals.push_back(A.hasUnnamedAddr());
1201     unsigned AbbrevToUse = 0;
1202     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1203     Vals.clear();
1204   }
1205 
1206   // Emit the ifunc information.
1207   for (const GlobalIFunc &I : M.ifuncs()) {
1208     // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
1209     Vals.push_back(VE.getTypeID(I.getValueType()));
1210     Vals.push_back(I.getType()->getAddressSpace());
1211     Vals.push_back(VE.getValueID(I.getResolver()));
1212     Vals.push_back(getEncodedLinkage(I));
1213     Vals.push_back(getEncodedVisibility(I));
1214     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1215     Vals.clear();
1216   }
1217 
1218   // Emit the module's source file name.
1219   {
1220     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1221                                             M.getSourceFileName().size());
1222     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1223     if (Bits == SE_Char6)
1224       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1225     else if (Bits == SE_Fixed7)
1226       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1227 
1228     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1229     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1230     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1231     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1232     Abbv->Add(AbbrevOpToUse);
1233     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
1234 
1235     for (const auto P : M.getSourceFileName())
1236       Vals.push_back((unsigned char)P);
1237 
1238     // Emit the finished record.
1239     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1240     Vals.clear();
1241   }
1242 
1243   // If we have a VST, write the VSTOFFSET record placeholder.
1244   if (M.getValueSymbolTable().empty())
1245     return;
1246   writeValueSymbolTableForwardDecl();
1247 }
1248 
1249 static uint64_t getOptimizationFlags(const Value *V) {
1250   uint64_t Flags = 0;
1251 
1252   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1253     if (OBO->hasNoSignedWrap())
1254       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1255     if (OBO->hasNoUnsignedWrap())
1256       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1257   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1258     if (PEO->isExact())
1259       Flags |= 1 << bitc::PEO_EXACT;
1260   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1261     if (FPMO->hasUnsafeAlgebra())
1262       Flags |= FastMathFlags::UnsafeAlgebra;
1263     if (FPMO->hasNoNaNs())
1264       Flags |= FastMathFlags::NoNaNs;
1265     if (FPMO->hasNoInfs())
1266       Flags |= FastMathFlags::NoInfs;
1267     if (FPMO->hasNoSignedZeros())
1268       Flags |= FastMathFlags::NoSignedZeros;
1269     if (FPMO->hasAllowReciprocal())
1270       Flags |= FastMathFlags::AllowReciprocal;
1271   }
1272 
1273   return Flags;
1274 }
1275 
1276 void ModuleBitcodeWriter::writeValueAsMetadata(
1277     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1278   // Mimic an MDNode with a value as one operand.
1279   Value *V = MD->getValue();
1280   Record.push_back(VE.getTypeID(V->getType()));
1281   Record.push_back(VE.getValueID(V));
1282   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1283   Record.clear();
1284 }
1285 
1286 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1287                                        SmallVectorImpl<uint64_t> &Record,
1288                                        unsigned Abbrev) {
1289   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1290     Metadata *MD = N->getOperand(i);
1291     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1292            "Unexpected function-local metadata");
1293     Record.push_back(VE.getMetadataOrNullID(MD));
1294   }
1295   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1296                                     : bitc::METADATA_NODE,
1297                     Record, Abbrev);
1298   Record.clear();
1299 }
1300 
1301 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1302   // Assume the column is usually under 128, and always output the inlined-at
1303   // location (it's never more expensive than building an array size 1).
1304   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1305   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1306   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1307   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1308   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1309   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1310   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1311   return Stream.EmitAbbrev(Abbv);
1312 }
1313 
1314 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1315                                           SmallVectorImpl<uint64_t> &Record,
1316                                           unsigned &Abbrev) {
1317   if (!Abbrev)
1318     Abbrev = createDILocationAbbrev();
1319 
1320   Record.push_back(N->isDistinct());
1321   Record.push_back(N->getLine());
1322   Record.push_back(N->getColumn());
1323   Record.push_back(VE.getMetadataID(N->getScope()));
1324   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1325 
1326   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1327   Record.clear();
1328 }
1329 
1330 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1331   // Assume the column is usually under 128, and always output the inlined-at
1332   // location (it's never more expensive than building an array size 1).
1333   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1334   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1335   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1336   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1341   return Stream.EmitAbbrev(Abbv);
1342 }
1343 
1344 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1345                                              SmallVectorImpl<uint64_t> &Record,
1346                                              unsigned &Abbrev) {
1347   if (!Abbrev)
1348     Abbrev = createGenericDINodeAbbrev();
1349 
1350   Record.push_back(N->isDistinct());
1351   Record.push_back(N->getTag());
1352   Record.push_back(0); // Per-tag version field; unused for now.
1353 
1354   for (auto &I : N->operands())
1355     Record.push_back(VE.getMetadataOrNullID(I));
1356 
1357   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1358   Record.clear();
1359 }
1360 
1361 static uint64_t rotateSign(int64_t I) {
1362   uint64_t U = I;
1363   return I < 0 ? ~(U << 1) : U << 1;
1364 }
1365 
1366 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1367                                           SmallVectorImpl<uint64_t> &Record,
1368                                           unsigned Abbrev) {
1369   Record.push_back(N->isDistinct());
1370   Record.push_back(N->getCount());
1371   Record.push_back(rotateSign(N->getLowerBound()));
1372 
1373   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1374   Record.clear();
1375 }
1376 
1377 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1378                                             SmallVectorImpl<uint64_t> &Record,
1379                                             unsigned Abbrev) {
1380   Record.push_back(N->isDistinct());
1381   Record.push_back(rotateSign(N->getValue()));
1382   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1383 
1384   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1385   Record.clear();
1386 }
1387 
1388 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1389                                            SmallVectorImpl<uint64_t> &Record,
1390                                            unsigned Abbrev) {
1391   Record.push_back(N->isDistinct());
1392   Record.push_back(N->getTag());
1393   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1394   Record.push_back(N->getSizeInBits());
1395   Record.push_back(N->getAlignInBits());
1396   Record.push_back(N->getEncoding());
1397 
1398   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1399   Record.clear();
1400 }
1401 
1402 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1403                                              SmallVectorImpl<uint64_t> &Record,
1404                                              unsigned Abbrev) {
1405   Record.push_back(N->isDistinct());
1406   Record.push_back(N->getTag());
1407   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1408   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1409   Record.push_back(N->getLine());
1410   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1411   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1412   Record.push_back(N->getSizeInBits());
1413   Record.push_back(N->getAlignInBits());
1414   Record.push_back(N->getOffsetInBits());
1415   Record.push_back(N->getFlags());
1416   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1417 
1418   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1419   Record.clear();
1420 }
1421 
1422 void ModuleBitcodeWriter::writeDICompositeType(
1423     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1424     unsigned Abbrev) {
1425   const unsigned IsNotUsedInOldTypeRef = 0x2;
1426   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1427   Record.push_back(N->getTag());
1428   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1429   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1430   Record.push_back(N->getLine());
1431   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1432   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1433   Record.push_back(N->getSizeInBits());
1434   Record.push_back(N->getAlignInBits());
1435   Record.push_back(N->getOffsetInBits());
1436   Record.push_back(N->getFlags());
1437   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1438   Record.push_back(N->getRuntimeLang());
1439   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1440   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1441   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1442 
1443   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1444   Record.clear();
1445 }
1446 
1447 void ModuleBitcodeWriter::writeDISubroutineType(
1448     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1449     unsigned Abbrev) {
1450   const unsigned HasNoOldTypeRefs = 0x2;
1451   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1452   Record.push_back(N->getFlags());
1453   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1454 
1455   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1456   Record.clear();
1457 }
1458 
1459 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1460                                       SmallVectorImpl<uint64_t> &Record,
1461                                       unsigned Abbrev) {
1462   Record.push_back(N->isDistinct());
1463   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1464   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1465 
1466   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1467   Record.clear();
1468 }
1469 
1470 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1471                                              SmallVectorImpl<uint64_t> &Record,
1472                                              unsigned Abbrev) {
1473   assert(N->isDistinct() && "Expected distinct compile units");
1474   Record.push_back(/* IsDistinct */ true);
1475   Record.push_back(N->getSourceLanguage());
1476   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1477   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1478   Record.push_back(N->isOptimized());
1479   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1480   Record.push_back(N->getRuntimeVersion());
1481   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1482   Record.push_back(N->getEmissionKind());
1483   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1484   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1485   Record.push_back(/* subprograms */ 0);
1486   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1487   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1488   Record.push_back(N->getDWOId());
1489   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1490 
1491   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1492   Record.clear();
1493 }
1494 
1495 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1496                                             SmallVectorImpl<uint64_t> &Record,
1497                                             unsigned Abbrev) {
1498   uint64_t HasUnitFlag = 1 << 1;
1499   Record.push_back(N->isDistinct() | HasUnitFlag);
1500   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1501   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1502   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1503   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1504   Record.push_back(N->getLine());
1505   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1506   Record.push_back(N->isLocalToUnit());
1507   Record.push_back(N->isDefinition());
1508   Record.push_back(N->getScopeLine());
1509   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1510   Record.push_back(N->getVirtuality());
1511   Record.push_back(N->getVirtualIndex());
1512   Record.push_back(N->getFlags());
1513   Record.push_back(N->isOptimized());
1514   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1515   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1516   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1517   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1518 
1519   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1520   Record.clear();
1521 }
1522 
1523 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1524                                               SmallVectorImpl<uint64_t> &Record,
1525                                               unsigned Abbrev) {
1526   Record.push_back(N->isDistinct());
1527   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1528   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1529   Record.push_back(N->getLine());
1530   Record.push_back(N->getColumn());
1531 
1532   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1533   Record.clear();
1534 }
1535 
1536 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1537     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1538     unsigned Abbrev) {
1539   Record.push_back(N->isDistinct());
1540   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1541   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1542   Record.push_back(N->getDiscriminator());
1543 
1544   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1545   Record.clear();
1546 }
1547 
1548 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1549                                            SmallVectorImpl<uint64_t> &Record,
1550                                            unsigned Abbrev) {
1551   Record.push_back(N->isDistinct());
1552   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1553   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1554   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1555   Record.push_back(N->getLine());
1556 
1557   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1558   Record.clear();
1559 }
1560 
1561 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1562                                        SmallVectorImpl<uint64_t> &Record,
1563                                        unsigned Abbrev) {
1564   Record.push_back(N->isDistinct());
1565   Record.push_back(N->getMacinfoType());
1566   Record.push_back(N->getLine());
1567   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1568   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1569 
1570   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1571   Record.clear();
1572 }
1573 
1574 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1575                                            SmallVectorImpl<uint64_t> &Record,
1576                                            unsigned Abbrev) {
1577   Record.push_back(N->isDistinct());
1578   Record.push_back(N->getMacinfoType());
1579   Record.push_back(N->getLine());
1580   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1581   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1582 
1583   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1584   Record.clear();
1585 }
1586 
1587 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1588                                         SmallVectorImpl<uint64_t> &Record,
1589                                         unsigned Abbrev) {
1590   Record.push_back(N->isDistinct());
1591   for (auto &I : N->operands())
1592     Record.push_back(VE.getMetadataOrNullID(I));
1593 
1594   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1595   Record.clear();
1596 }
1597 
1598 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1599     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1600     unsigned Abbrev) {
1601   Record.push_back(N->isDistinct());
1602   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1603   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1604 
1605   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1606   Record.clear();
1607 }
1608 
1609 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1610     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1611     unsigned Abbrev) {
1612   Record.push_back(N->isDistinct());
1613   Record.push_back(N->getTag());
1614   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1615   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1616   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1617 
1618   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1619   Record.clear();
1620 }
1621 
1622 void ModuleBitcodeWriter::writeDIGlobalVariable(
1623     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1624     unsigned Abbrev) {
1625   Record.push_back(N->isDistinct());
1626   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1627   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1628   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1629   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1630   Record.push_back(N->getLine());
1631   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1632   Record.push_back(N->isLocalToUnit());
1633   Record.push_back(N->isDefinition());
1634   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1635   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1636 
1637   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1638   Record.clear();
1639 }
1640 
1641 void ModuleBitcodeWriter::writeDILocalVariable(
1642     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1643     unsigned Abbrev) {
1644   Record.push_back(N->isDistinct());
1645   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1646   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1647   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1648   Record.push_back(N->getLine());
1649   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1650   Record.push_back(N->getArg());
1651   Record.push_back(N->getFlags());
1652 
1653   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1654   Record.clear();
1655 }
1656 
1657 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1658                                             SmallVectorImpl<uint64_t> &Record,
1659                                             unsigned Abbrev) {
1660   Record.reserve(N->getElements().size() + 1);
1661 
1662   Record.push_back(N->isDistinct());
1663   Record.append(N->elements_begin(), N->elements_end());
1664 
1665   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1666   Record.clear();
1667 }
1668 
1669 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1670                                               SmallVectorImpl<uint64_t> &Record,
1671                                               unsigned Abbrev) {
1672   Record.push_back(N->isDistinct());
1673   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1674   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1675   Record.push_back(N->getLine());
1676   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1677   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1678   Record.push_back(N->getAttributes());
1679   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1680 
1681   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1682   Record.clear();
1683 }
1684 
1685 void ModuleBitcodeWriter::writeDIImportedEntity(
1686     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1687     unsigned Abbrev) {
1688   Record.push_back(N->isDistinct());
1689   Record.push_back(N->getTag());
1690   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1691   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1692   Record.push_back(N->getLine());
1693   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1694 
1695   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1696   Record.clear();
1697 }
1698 
1699 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1700   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1701   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1702   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1703   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1704   return Stream.EmitAbbrev(Abbv);
1705 }
1706 
1707 void ModuleBitcodeWriter::writeNamedMetadata(
1708     SmallVectorImpl<uint64_t> &Record) {
1709   if (M.named_metadata_empty())
1710     return;
1711 
1712   unsigned Abbrev = createNamedMetadataAbbrev();
1713   for (const NamedMDNode &NMD : M.named_metadata()) {
1714     // Write name.
1715     StringRef Str = NMD.getName();
1716     Record.append(Str.bytes_begin(), Str.bytes_end());
1717     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1718     Record.clear();
1719 
1720     // Write named metadata operands.
1721     for (const MDNode *N : NMD.operands())
1722       Record.push_back(VE.getMetadataID(N));
1723     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1724     Record.clear();
1725   }
1726 }
1727 
1728 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1729   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1730   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1731   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1732   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1733   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1734   return Stream.EmitAbbrev(Abbv);
1735 }
1736 
1737 /// Write out a record for MDString.
1738 ///
1739 /// All the metadata strings in a metadata block are emitted in a single
1740 /// record.  The sizes and strings themselves are shoved into a blob.
1741 void ModuleBitcodeWriter::writeMetadataStrings(
1742     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1743   if (Strings.empty())
1744     return;
1745 
1746   // Start the record with the number of strings.
1747   Record.push_back(bitc::METADATA_STRINGS);
1748   Record.push_back(Strings.size());
1749 
1750   // Emit the sizes of the strings in the blob.
1751   SmallString<256> Blob;
1752   {
1753     BitstreamWriter W(Blob);
1754     for (const Metadata *MD : Strings)
1755       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1756     W.FlushToWord();
1757   }
1758 
1759   // Add the offset to the strings to the record.
1760   Record.push_back(Blob.size());
1761 
1762   // Add the strings to the blob.
1763   for (const Metadata *MD : Strings)
1764     Blob.append(cast<MDString>(MD)->getString());
1765 
1766   // Emit the final record.
1767   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1768   Record.clear();
1769 }
1770 
1771 void ModuleBitcodeWriter::writeMetadataRecords(
1772     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
1773   if (MDs.empty())
1774     return;
1775 
1776   // Initialize MDNode abbreviations.
1777 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1778 #include "llvm/IR/Metadata.def"
1779 
1780   for (const Metadata *MD : MDs) {
1781     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1782       assert(N->isResolved() && "Expected forward references to be resolved");
1783 
1784       switch (N->getMetadataID()) {
1785       default:
1786         llvm_unreachable("Invalid MDNode subclass");
1787 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1788   case Metadata::CLASS##Kind:                                                  \
1789     write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                       \
1790     continue;
1791 #include "llvm/IR/Metadata.def"
1792       }
1793     }
1794     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1795   }
1796 }
1797 
1798 void ModuleBitcodeWriter::writeModuleMetadata() {
1799   if (!VE.hasMDs() && M.named_metadata_empty())
1800     return;
1801 
1802   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1803   SmallVector<uint64_t, 64> Record;
1804   writeMetadataStrings(VE.getMDStrings(), Record);
1805   writeMetadataRecords(VE.getNonMDStrings(), Record);
1806   writeNamedMetadata(Record);
1807   Stream.ExitBlock();
1808 }
1809 
1810 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
1811   if (!VE.hasMDs())
1812     return;
1813 
1814   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1815   SmallVector<uint64_t, 64> Record;
1816   writeMetadataStrings(VE.getMDStrings(), Record);
1817   writeMetadataRecords(VE.getNonMDStrings(), Record);
1818   Stream.ExitBlock();
1819 }
1820 
1821 void ModuleBitcodeWriter::writeMetadataAttachment(const Function &F) {
1822   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1823 
1824   SmallVector<uint64_t, 64> Record;
1825 
1826   // Write metadata attachments
1827   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1828   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1829   F.getAllMetadata(MDs);
1830   if (!MDs.empty()) {
1831     for (const auto &I : MDs) {
1832       Record.push_back(I.first);
1833       Record.push_back(VE.getMetadataID(I.second));
1834     }
1835     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1836     Record.clear();
1837   }
1838 
1839   for (const BasicBlock &BB : F)
1840     for (const Instruction &I : BB) {
1841       MDs.clear();
1842       I.getAllMetadataOtherThanDebugLoc(MDs);
1843 
1844       // If no metadata, ignore instruction.
1845       if (MDs.empty()) continue;
1846 
1847       Record.push_back(VE.getInstructionID(&I));
1848 
1849       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1850         Record.push_back(MDs[i].first);
1851         Record.push_back(VE.getMetadataID(MDs[i].second));
1852       }
1853       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1854       Record.clear();
1855     }
1856 
1857   Stream.ExitBlock();
1858 }
1859 
1860 void ModuleBitcodeWriter::writeModuleMetadataStore() {
1861   SmallVector<uint64_t, 64> Record;
1862 
1863   // Write metadata kinds
1864   // METADATA_KIND - [n x [id, name]]
1865   SmallVector<StringRef, 8> Names;
1866   M.getMDKindNames(Names);
1867 
1868   if (Names.empty()) return;
1869 
1870   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1871 
1872   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1873     Record.push_back(MDKindID);
1874     StringRef KName = Names[MDKindID];
1875     Record.append(KName.begin(), KName.end());
1876 
1877     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1878     Record.clear();
1879   }
1880 
1881   Stream.ExitBlock();
1882 }
1883 
1884 void ModuleBitcodeWriter::writeOperandBundleTags() {
1885   // Write metadata kinds
1886   //
1887   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1888   //
1889   // OPERAND_BUNDLE_TAG - [strchr x N]
1890 
1891   SmallVector<StringRef, 8> Tags;
1892   M.getOperandBundleTags(Tags);
1893 
1894   if (Tags.empty())
1895     return;
1896 
1897   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1898 
1899   SmallVector<uint64_t, 64> Record;
1900 
1901   for (auto Tag : Tags) {
1902     Record.append(Tag.begin(), Tag.end());
1903 
1904     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1905     Record.clear();
1906   }
1907 
1908   Stream.ExitBlock();
1909 }
1910 
1911 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1912   if ((int64_t)V >= 0)
1913     Vals.push_back(V << 1);
1914   else
1915     Vals.push_back((-V << 1) | 1);
1916 }
1917 
1918 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1919                                          bool isGlobal) {
1920   if (FirstVal == LastVal) return;
1921 
1922   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1923 
1924   unsigned AggregateAbbrev = 0;
1925   unsigned String8Abbrev = 0;
1926   unsigned CString7Abbrev = 0;
1927   unsigned CString6Abbrev = 0;
1928   // If this is a constant pool for the module, emit module-specific abbrevs.
1929   if (isGlobal) {
1930     // Abbrev for CST_CODE_AGGREGATE.
1931     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1932     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1933     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1934     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1935     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1936 
1937     // Abbrev for CST_CODE_STRING.
1938     Abbv = new BitCodeAbbrev();
1939     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1940     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1941     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1942     String8Abbrev = Stream.EmitAbbrev(Abbv);
1943     // Abbrev for CST_CODE_CSTRING.
1944     Abbv = new BitCodeAbbrev();
1945     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1946     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1947     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1948     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1949     // Abbrev for CST_CODE_CSTRING.
1950     Abbv = new BitCodeAbbrev();
1951     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1952     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1953     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1954     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1955   }
1956 
1957   SmallVector<uint64_t, 64> Record;
1958 
1959   const ValueEnumerator::ValueList &Vals = VE.getValues();
1960   Type *LastTy = nullptr;
1961   for (unsigned i = FirstVal; i != LastVal; ++i) {
1962     const Value *V = Vals[i].first;
1963     // If we need to switch types, do so now.
1964     if (V->getType() != LastTy) {
1965       LastTy = V->getType();
1966       Record.push_back(VE.getTypeID(LastTy));
1967       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1968                         CONSTANTS_SETTYPE_ABBREV);
1969       Record.clear();
1970     }
1971 
1972     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1973       Record.push_back(unsigned(IA->hasSideEffects()) |
1974                        unsigned(IA->isAlignStack()) << 1 |
1975                        unsigned(IA->getDialect()&1) << 2);
1976 
1977       // Add the asm string.
1978       const std::string &AsmStr = IA->getAsmString();
1979       Record.push_back(AsmStr.size());
1980       Record.append(AsmStr.begin(), AsmStr.end());
1981 
1982       // Add the constraint string.
1983       const std::string &ConstraintStr = IA->getConstraintString();
1984       Record.push_back(ConstraintStr.size());
1985       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1986       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1987       Record.clear();
1988       continue;
1989     }
1990     const Constant *C = cast<Constant>(V);
1991     unsigned Code = -1U;
1992     unsigned AbbrevToUse = 0;
1993     if (C->isNullValue()) {
1994       Code = bitc::CST_CODE_NULL;
1995     } else if (isa<UndefValue>(C)) {
1996       Code = bitc::CST_CODE_UNDEF;
1997     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1998       if (IV->getBitWidth() <= 64) {
1999         uint64_t V = IV->getSExtValue();
2000         emitSignedInt64(Record, V);
2001         Code = bitc::CST_CODE_INTEGER;
2002         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2003       } else {                             // Wide integers, > 64 bits in size.
2004         // We have an arbitrary precision integer value to write whose
2005         // bit width is > 64. However, in canonical unsigned integer
2006         // format it is likely that the high bits are going to be zero.
2007         // So, we only write the number of active words.
2008         unsigned NWords = IV->getValue().getActiveWords();
2009         const uint64_t *RawWords = IV->getValue().getRawData();
2010         for (unsigned i = 0; i != NWords; ++i) {
2011           emitSignedInt64(Record, RawWords[i]);
2012         }
2013         Code = bitc::CST_CODE_WIDE_INTEGER;
2014       }
2015     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2016       Code = bitc::CST_CODE_FLOAT;
2017       Type *Ty = CFP->getType();
2018       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2019         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2020       } else if (Ty->isX86_FP80Ty()) {
2021         // api needed to prevent premature destruction
2022         // bits are not in the same order as a normal i80 APInt, compensate.
2023         APInt api = CFP->getValueAPF().bitcastToAPInt();
2024         const uint64_t *p = api.getRawData();
2025         Record.push_back((p[1] << 48) | (p[0] >> 16));
2026         Record.push_back(p[0] & 0xffffLL);
2027       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2028         APInt api = CFP->getValueAPF().bitcastToAPInt();
2029         const uint64_t *p = api.getRawData();
2030         Record.push_back(p[0]);
2031         Record.push_back(p[1]);
2032       } else {
2033         assert (0 && "Unknown FP type!");
2034       }
2035     } else if (isa<ConstantDataSequential>(C) &&
2036                cast<ConstantDataSequential>(C)->isString()) {
2037       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2038       // Emit constant strings specially.
2039       unsigned NumElts = Str->getNumElements();
2040       // If this is a null-terminated string, use the denser CSTRING encoding.
2041       if (Str->isCString()) {
2042         Code = bitc::CST_CODE_CSTRING;
2043         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2044       } else {
2045         Code = bitc::CST_CODE_STRING;
2046         AbbrevToUse = String8Abbrev;
2047       }
2048       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2049       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2050       for (unsigned i = 0; i != NumElts; ++i) {
2051         unsigned char V = Str->getElementAsInteger(i);
2052         Record.push_back(V);
2053         isCStr7 &= (V & 128) == 0;
2054         if (isCStrChar6)
2055           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2056       }
2057 
2058       if (isCStrChar6)
2059         AbbrevToUse = CString6Abbrev;
2060       else if (isCStr7)
2061         AbbrevToUse = CString7Abbrev;
2062     } else if (const ConstantDataSequential *CDS =
2063                   dyn_cast<ConstantDataSequential>(C)) {
2064       Code = bitc::CST_CODE_DATA;
2065       Type *EltTy = CDS->getType()->getElementType();
2066       if (isa<IntegerType>(EltTy)) {
2067         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2068           Record.push_back(CDS->getElementAsInteger(i));
2069       } else {
2070         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2071           Record.push_back(
2072               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2073       }
2074     } else if (isa<ConstantAggregate>(C)) {
2075       Code = bitc::CST_CODE_AGGREGATE;
2076       for (const Value *Op : C->operands())
2077         Record.push_back(VE.getValueID(Op));
2078       AbbrevToUse = AggregateAbbrev;
2079     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2080       switch (CE->getOpcode()) {
2081       default:
2082         if (Instruction::isCast(CE->getOpcode())) {
2083           Code = bitc::CST_CODE_CE_CAST;
2084           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2085           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2086           Record.push_back(VE.getValueID(C->getOperand(0)));
2087           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2088         } else {
2089           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2090           Code = bitc::CST_CODE_CE_BINOP;
2091           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2092           Record.push_back(VE.getValueID(C->getOperand(0)));
2093           Record.push_back(VE.getValueID(C->getOperand(1)));
2094           uint64_t Flags = getOptimizationFlags(CE);
2095           if (Flags != 0)
2096             Record.push_back(Flags);
2097         }
2098         break;
2099       case Instruction::GetElementPtr: {
2100         Code = bitc::CST_CODE_CE_GEP;
2101         const auto *GO = cast<GEPOperator>(C);
2102         if (GO->isInBounds())
2103           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2104         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2105         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2106           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2107           Record.push_back(VE.getValueID(C->getOperand(i)));
2108         }
2109         break;
2110       }
2111       case Instruction::Select:
2112         Code = bitc::CST_CODE_CE_SELECT;
2113         Record.push_back(VE.getValueID(C->getOperand(0)));
2114         Record.push_back(VE.getValueID(C->getOperand(1)));
2115         Record.push_back(VE.getValueID(C->getOperand(2)));
2116         break;
2117       case Instruction::ExtractElement:
2118         Code = bitc::CST_CODE_CE_EXTRACTELT;
2119         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2120         Record.push_back(VE.getValueID(C->getOperand(0)));
2121         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2122         Record.push_back(VE.getValueID(C->getOperand(1)));
2123         break;
2124       case Instruction::InsertElement:
2125         Code = bitc::CST_CODE_CE_INSERTELT;
2126         Record.push_back(VE.getValueID(C->getOperand(0)));
2127         Record.push_back(VE.getValueID(C->getOperand(1)));
2128         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2129         Record.push_back(VE.getValueID(C->getOperand(2)));
2130         break;
2131       case Instruction::ShuffleVector:
2132         // If the return type and argument types are the same, this is a
2133         // standard shufflevector instruction.  If the types are different,
2134         // then the shuffle is widening or truncating the input vectors, and
2135         // the argument type must also be encoded.
2136         if (C->getType() == C->getOperand(0)->getType()) {
2137           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2138         } else {
2139           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2140           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2141         }
2142         Record.push_back(VE.getValueID(C->getOperand(0)));
2143         Record.push_back(VE.getValueID(C->getOperand(1)));
2144         Record.push_back(VE.getValueID(C->getOperand(2)));
2145         break;
2146       case Instruction::ICmp:
2147       case Instruction::FCmp:
2148         Code = bitc::CST_CODE_CE_CMP;
2149         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2150         Record.push_back(VE.getValueID(C->getOperand(0)));
2151         Record.push_back(VE.getValueID(C->getOperand(1)));
2152         Record.push_back(CE->getPredicate());
2153         break;
2154       }
2155     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2156       Code = bitc::CST_CODE_BLOCKADDRESS;
2157       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2158       Record.push_back(VE.getValueID(BA->getFunction()));
2159       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2160     } else {
2161 #ifndef NDEBUG
2162       C->dump();
2163 #endif
2164       llvm_unreachable("Unknown constant!");
2165     }
2166     Stream.EmitRecord(Code, Record, AbbrevToUse);
2167     Record.clear();
2168   }
2169 
2170   Stream.ExitBlock();
2171 }
2172 
2173 void ModuleBitcodeWriter::writeModuleConstants() {
2174   const ValueEnumerator::ValueList &Vals = VE.getValues();
2175 
2176   // Find the first constant to emit, which is the first non-globalvalue value.
2177   // We know globalvalues have been emitted by WriteModuleInfo.
2178   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2179     if (!isa<GlobalValue>(Vals[i].first)) {
2180       writeConstants(i, Vals.size(), true);
2181       return;
2182     }
2183   }
2184 }
2185 
2186 /// pushValueAndType - The file has to encode both the value and type id for
2187 /// many values, because we need to know what type to create for forward
2188 /// references.  However, most operands are not forward references, so this type
2189 /// field is not needed.
2190 ///
2191 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2192 /// instruction ID, then it is a forward reference, and it also includes the
2193 /// type ID.  The value ID that is written is encoded relative to the InstID.
2194 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2195                                            SmallVectorImpl<unsigned> &Vals) {
2196   unsigned ValID = VE.getValueID(V);
2197   // Make encoding relative to the InstID.
2198   Vals.push_back(InstID - ValID);
2199   if (ValID >= InstID) {
2200     Vals.push_back(VE.getTypeID(V->getType()));
2201     return true;
2202   }
2203   return false;
2204 }
2205 
2206 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2207                                               unsigned InstID) {
2208   SmallVector<unsigned, 64> Record;
2209   LLVMContext &C = CS.getInstruction()->getContext();
2210 
2211   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2212     const auto &Bundle = CS.getOperandBundleAt(i);
2213     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2214 
2215     for (auto &Input : Bundle.Inputs)
2216       pushValueAndType(Input, InstID, Record);
2217 
2218     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2219     Record.clear();
2220   }
2221 }
2222 
2223 /// pushValue - Like pushValueAndType, but where the type of the value is
2224 /// omitted (perhaps it was already encoded in an earlier operand).
2225 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2226                                     SmallVectorImpl<unsigned> &Vals) {
2227   unsigned ValID = VE.getValueID(V);
2228   Vals.push_back(InstID - ValID);
2229 }
2230 
2231 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2232                                           SmallVectorImpl<uint64_t> &Vals) {
2233   unsigned ValID = VE.getValueID(V);
2234   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2235   emitSignedInt64(Vals, diff);
2236 }
2237 
2238 /// WriteInstruction - Emit an instruction to the specified stream.
2239 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2240                                            unsigned InstID,
2241                                            SmallVectorImpl<unsigned> &Vals) {
2242   unsigned Code = 0;
2243   unsigned AbbrevToUse = 0;
2244   VE.setInstructionID(&I);
2245   switch (I.getOpcode()) {
2246   default:
2247     if (Instruction::isCast(I.getOpcode())) {
2248       Code = bitc::FUNC_CODE_INST_CAST;
2249       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2250         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2251       Vals.push_back(VE.getTypeID(I.getType()));
2252       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2253     } else {
2254       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2255       Code = bitc::FUNC_CODE_INST_BINOP;
2256       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2257         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2258       pushValue(I.getOperand(1), InstID, Vals);
2259       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2260       uint64_t Flags = getOptimizationFlags(&I);
2261       if (Flags != 0) {
2262         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2263           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2264         Vals.push_back(Flags);
2265       }
2266     }
2267     break;
2268 
2269   case Instruction::GetElementPtr: {
2270     Code = bitc::FUNC_CODE_INST_GEP;
2271     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2272     auto &GEPInst = cast<GetElementPtrInst>(I);
2273     Vals.push_back(GEPInst.isInBounds());
2274     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2275     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2276       pushValueAndType(I.getOperand(i), InstID, Vals);
2277     break;
2278   }
2279   case Instruction::ExtractValue: {
2280     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2281     pushValueAndType(I.getOperand(0), InstID, Vals);
2282     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2283     Vals.append(EVI->idx_begin(), EVI->idx_end());
2284     break;
2285   }
2286   case Instruction::InsertValue: {
2287     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2288     pushValueAndType(I.getOperand(0), InstID, Vals);
2289     pushValueAndType(I.getOperand(1), InstID, Vals);
2290     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2291     Vals.append(IVI->idx_begin(), IVI->idx_end());
2292     break;
2293   }
2294   case Instruction::Select:
2295     Code = bitc::FUNC_CODE_INST_VSELECT;
2296     pushValueAndType(I.getOperand(1), InstID, Vals);
2297     pushValue(I.getOperand(2), InstID, Vals);
2298     pushValueAndType(I.getOperand(0), InstID, Vals);
2299     break;
2300   case Instruction::ExtractElement:
2301     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2302     pushValueAndType(I.getOperand(0), InstID, Vals);
2303     pushValueAndType(I.getOperand(1), InstID, Vals);
2304     break;
2305   case Instruction::InsertElement:
2306     Code = bitc::FUNC_CODE_INST_INSERTELT;
2307     pushValueAndType(I.getOperand(0), InstID, Vals);
2308     pushValue(I.getOperand(1), InstID, Vals);
2309     pushValueAndType(I.getOperand(2), InstID, Vals);
2310     break;
2311   case Instruction::ShuffleVector:
2312     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2313     pushValueAndType(I.getOperand(0), InstID, Vals);
2314     pushValue(I.getOperand(1), InstID, Vals);
2315     pushValue(I.getOperand(2), InstID, Vals);
2316     break;
2317   case Instruction::ICmp:
2318   case Instruction::FCmp: {
2319     // compare returning Int1Ty or vector of Int1Ty
2320     Code = bitc::FUNC_CODE_INST_CMP2;
2321     pushValueAndType(I.getOperand(0), InstID, Vals);
2322     pushValue(I.getOperand(1), InstID, Vals);
2323     Vals.push_back(cast<CmpInst>(I).getPredicate());
2324     uint64_t Flags = getOptimizationFlags(&I);
2325     if (Flags != 0)
2326       Vals.push_back(Flags);
2327     break;
2328   }
2329 
2330   case Instruction::Ret:
2331     {
2332       Code = bitc::FUNC_CODE_INST_RET;
2333       unsigned NumOperands = I.getNumOperands();
2334       if (NumOperands == 0)
2335         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2336       else if (NumOperands == 1) {
2337         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2338           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2339       } else {
2340         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2341           pushValueAndType(I.getOperand(i), InstID, Vals);
2342       }
2343     }
2344     break;
2345   case Instruction::Br:
2346     {
2347       Code = bitc::FUNC_CODE_INST_BR;
2348       const BranchInst &II = cast<BranchInst>(I);
2349       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2350       if (II.isConditional()) {
2351         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2352         pushValue(II.getCondition(), InstID, Vals);
2353       }
2354     }
2355     break;
2356   case Instruction::Switch:
2357     {
2358       Code = bitc::FUNC_CODE_INST_SWITCH;
2359       const SwitchInst &SI = cast<SwitchInst>(I);
2360       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2361       pushValue(SI.getCondition(), InstID, Vals);
2362       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2363       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
2364         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2365         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2366       }
2367     }
2368     break;
2369   case Instruction::IndirectBr:
2370     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2371     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2372     // Encode the address operand as relative, but not the basic blocks.
2373     pushValue(I.getOperand(0), InstID, Vals);
2374     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2375       Vals.push_back(VE.getValueID(I.getOperand(i)));
2376     break;
2377 
2378   case Instruction::Invoke: {
2379     const InvokeInst *II = cast<InvokeInst>(&I);
2380     const Value *Callee = II->getCalledValue();
2381     FunctionType *FTy = II->getFunctionType();
2382 
2383     if (II->hasOperandBundles())
2384       writeOperandBundles(II, InstID);
2385 
2386     Code = bitc::FUNC_CODE_INST_INVOKE;
2387 
2388     Vals.push_back(VE.getAttributeID(II->getAttributes()));
2389     Vals.push_back(II->getCallingConv() | 1 << 13);
2390     Vals.push_back(VE.getValueID(II->getNormalDest()));
2391     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2392     Vals.push_back(VE.getTypeID(FTy));
2393     pushValueAndType(Callee, InstID, Vals);
2394 
2395     // Emit value #'s for the fixed parameters.
2396     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2397       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2398 
2399     // Emit type/value pairs for varargs params.
2400     if (FTy->isVarArg()) {
2401       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
2402            i != e; ++i)
2403         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2404     }
2405     break;
2406   }
2407   case Instruction::Resume:
2408     Code = bitc::FUNC_CODE_INST_RESUME;
2409     pushValueAndType(I.getOperand(0), InstID, Vals);
2410     break;
2411   case Instruction::CleanupRet: {
2412     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2413     const auto &CRI = cast<CleanupReturnInst>(I);
2414     pushValue(CRI.getCleanupPad(), InstID, Vals);
2415     if (CRI.hasUnwindDest())
2416       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2417     break;
2418   }
2419   case Instruction::CatchRet: {
2420     Code = bitc::FUNC_CODE_INST_CATCHRET;
2421     const auto &CRI = cast<CatchReturnInst>(I);
2422     pushValue(CRI.getCatchPad(), InstID, Vals);
2423     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2424     break;
2425   }
2426   case Instruction::CleanupPad:
2427   case Instruction::CatchPad: {
2428     const auto &FuncletPad = cast<FuncletPadInst>(I);
2429     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2430                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2431     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2432 
2433     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2434     Vals.push_back(NumArgOperands);
2435     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2436       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2437     break;
2438   }
2439   case Instruction::CatchSwitch: {
2440     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2441     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2442 
2443     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2444 
2445     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2446     Vals.push_back(NumHandlers);
2447     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2448       Vals.push_back(VE.getValueID(CatchPadBB));
2449 
2450     if (CatchSwitch.hasUnwindDest())
2451       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2452     break;
2453   }
2454   case Instruction::Unreachable:
2455     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2456     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2457     break;
2458 
2459   case Instruction::PHI: {
2460     const PHINode &PN = cast<PHINode>(I);
2461     Code = bitc::FUNC_CODE_INST_PHI;
2462     // With the newer instruction encoding, forward references could give
2463     // negative valued IDs.  This is most common for PHIs, so we use
2464     // signed VBRs.
2465     SmallVector<uint64_t, 128> Vals64;
2466     Vals64.push_back(VE.getTypeID(PN.getType()));
2467     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2468       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2469       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2470     }
2471     // Emit a Vals64 vector and exit.
2472     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2473     Vals64.clear();
2474     return;
2475   }
2476 
2477   case Instruction::LandingPad: {
2478     const LandingPadInst &LP = cast<LandingPadInst>(I);
2479     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2480     Vals.push_back(VE.getTypeID(LP.getType()));
2481     Vals.push_back(LP.isCleanup());
2482     Vals.push_back(LP.getNumClauses());
2483     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2484       if (LP.isCatch(I))
2485         Vals.push_back(LandingPadInst::Catch);
2486       else
2487         Vals.push_back(LandingPadInst::Filter);
2488       pushValueAndType(LP.getClause(I), InstID, Vals);
2489     }
2490     break;
2491   }
2492 
2493   case Instruction::Alloca: {
2494     Code = bitc::FUNC_CODE_INST_ALLOCA;
2495     const AllocaInst &AI = cast<AllocaInst>(I);
2496     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2497     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2498     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2499     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2500     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2501            "not enough bits for maximum alignment");
2502     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2503     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2504     AlignRecord |= 1 << 6;
2505     AlignRecord |= AI.isSwiftError() << 7;
2506     Vals.push_back(AlignRecord);
2507     break;
2508   }
2509 
2510   case Instruction::Load:
2511     if (cast<LoadInst>(I).isAtomic()) {
2512       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2513       pushValueAndType(I.getOperand(0), InstID, Vals);
2514     } else {
2515       Code = bitc::FUNC_CODE_INST_LOAD;
2516       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2517         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2518     }
2519     Vals.push_back(VE.getTypeID(I.getType()));
2520     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2521     Vals.push_back(cast<LoadInst>(I).isVolatile());
2522     if (cast<LoadInst>(I).isAtomic()) {
2523       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2524       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2525     }
2526     break;
2527   case Instruction::Store:
2528     if (cast<StoreInst>(I).isAtomic())
2529       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2530     else
2531       Code = bitc::FUNC_CODE_INST_STORE;
2532     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2533     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2534     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2535     Vals.push_back(cast<StoreInst>(I).isVolatile());
2536     if (cast<StoreInst>(I).isAtomic()) {
2537       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2538       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2539     }
2540     break;
2541   case Instruction::AtomicCmpXchg:
2542     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2543     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2544     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2545     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2546     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2547     Vals.push_back(
2548         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2549     Vals.push_back(
2550         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2551     Vals.push_back(
2552         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2553     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2554     break;
2555   case Instruction::AtomicRMW:
2556     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2557     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2558     pushValue(I.getOperand(1), InstID, Vals);        // val.
2559     Vals.push_back(
2560         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2561     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2562     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2563     Vals.push_back(
2564         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2565     break;
2566   case Instruction::Fence:
2567     Code = bitc::FUNC_CODE_INST_FENCE;
2568     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2569     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2570     break;
2571   case Instruction::Call: {
2572     const CallInst &CI = cast<CallInst>(I);
2573     FunctionType *FTy = CI.getFunctionType();
2574 
2575     if (CI.hasOperandBundles())
2576       writeOperandBundles(&CI, InstID);
2577 
2578     Code = bitc::FUNC_CODE_INST_CALL;
2579 
2580     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2581 
2582     unsigned Flags = getOptimizationFlags(&I);
2583     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2584                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2585                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2586                    1 << bitc::CALL_EXPLICIT_TYPE |
2587                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2588                    unsigned(Flags != 0) << bitc::CALL_FMF);
2589     if (Flags != 0)
2590       Vals.push_back(Flags);
2591 
2592     Vals.push_back(VE.getTypeID(FTy));
2593     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2594 
2595     // Emit value #'s for the fixed parameters.
2596     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2597       // Check for labels (can happen with asm labels).
2598       if (FTy->getParamType(i)->isLabelTy())
2599         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2600       else
2601         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2602     }
2603 
2604     // Emit type/value pairs for varargs params.
2605     if (FTy->isVarArg()) {
2606       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2607            i != e; ++i)
2608         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2609     }
2610     break;
2611   }
2612   case Instruction::VAArg:
2613     Code = bitc::FUNC_CODE_INST_VAARG;
2614     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2615     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2616     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2617     break;
2618   }
2619 
2620   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2621   Vals.clear();
2622 }
2623 
2624 /// Emit names for globals/functions etc. \p IsModuleLevel is true when
2625 /// we are writing the module-level VST, where we are including a function
2626 /// bitcode index and need to backpatch the VST forward declaration record.
2627 void ModuleBitcodeWriter::writeValueSymbolTable(
2628     const ValueSymbolTable &VST, bool IsModuleLevel,
2629     DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
2630   if (VST.empty()) {
2631     // writeValueSymbolTableForwardDecl should have returned early as
2632     // well. Ensure this handling remains in sync by asserting that
2633     // the placeholder offset is not set.
2634     assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
2635     return;
2636   }
2637 
2638   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2639     // Get the offset of the VST we are writing, and backpatch it into
2640     // the VST forward declaration record.
2641     uint64_t VSTOffset = Stream.GetCurrentBitNo();
2642     // The BitcodeStartBit was the stream offset of the actual bitcode
2643     // (e.g. excluding any initial darwin header).
2644     VSTOffset -= bitcodeStartBit();
2645     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2646     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2647   }
2648 
2649   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2650 
2651   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2652   // records, which are not used in the per-function VSTs.
2653   unsigned FnEntry8BitAbbrev;
2654   unsigned FnEntry7BitAbbrev;
2655   unsigned FnEntry6BitAbbrev;
2656   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2657     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2658     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2659     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2660     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2661     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2662     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2663     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2664     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2665 
2666     // 7-bit fixed width VST_CODE_FNENTRY function strings.
2667     Abbv = new BitCodeAbbrev();
2668     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2669     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2670     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2671     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2672     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2673     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2674 
2675     // 6-bit char6 VST_CODE_FNENTRY function strings.
2676     Abbv = new BitCodeAbbrev();
2677     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2678     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2679     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2680     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2681     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2682     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2683   }
2684 
2685   // FIXME: Set up the abbrev, we know how many values there are!
2686   // FIXME: We know if the type names can use 7-bit ascii.
2687   SmallVector<unsigned, 64> NameVals;
2688 
2689   for (const ValueName &Name : VST) {
2690     // Figure out the encoding to use for the name.
2691     StringEncoding Bits =
2692         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2693 
2694     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2695     NameVals.push_back(VE.getValueID(Name.getValue()));
2696 
2697     Function *F = dyn_cast<Function>(Name.getValue());
2698     if (!F) {
2699       // If value is an alias, need to get the aliased base object to
2700       // see if it is a function.
2701       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2702       if (GA && GA->getBaseObject())
2703         F = dyn_cast<Function>(GA->getBaseObject());
2704     }
2705 
2706     // VST_CODE_ENTRY:   [valueid, namechar x N]
2707     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2708     // VST_CODE_BBENTRY: [bbid, namechar x N]
2709     unsigned Code;
2710     if (isa<BasicBlock>(Name.getValue())) {
2711       Code = bitc::VST_CODE_BBENTRY;
2712       if (Bits == SE_Char6)
2713         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2714     } else if (F && !F->isDeclaration()) {
2715       // Must be the module-level VST, where we pass in the Index and
2716       // have a VSTOffsetPlaceholder. The function-level VST should not
2717       // contain any Function symbols.
2718       assert(FunctionToBitcodeIndex);
2719       assert(hasVSTOffsetPlaceholder());
2720 
2721       // Save the word offset of the function (from the start of the
2722       // actual bitcode written to the stream).
2723       uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
2724       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2725       NameVals.push_back(BitcodeIndex / 32);
2726 
2727       Code = bitc::VST_CODE_FNENTRY;
2728       AbbrevToUse = FnEntry8BitAbbrev;
2729       if (Bits == SE_Char6)
2730         AbbrevToUse = FnEntry6BitAbbrev;
2731       else if (Bits == SE_Fixed7)
2732         AbbrevToUse = FnEntry7BitAbbrev;
2733     } else {
2734       Code = bitc::VST_CODE_ENTRY;
2735       if (Bits == SE_Char6)
2736         AbbrevToUse = VST_ENTRY_6_ABBREV;
2737       else if (Bits == SE_Fixed7)
2738         AbbrevToUse = VST_ENTRY_7_ABBREV;
2739     }
2740 
2741     for (const auto P : Name.getKey())
2742       NameVals.push_back((unsigned char)P);
2743 
2744     // Emit the finished record.
2745     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2746     NameVals.clear();
2747   }
2748   Stream.ExitBlock();
2749 }
2750 
2751 /// Emit function names and summary offsets for the combined index
2752 /// used by ThinLTO.
2753 void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
2754   assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
2755   // Get the offset of the VST we are writing, and backpatch it into
2756   // the VST forward declaration record.
2757   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2758   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2759   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2760 
2761   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2762 
2763   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2764   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2765   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2766   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2767   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
2768 
2769   SmallVector<uint64_t, 64> NameVals;
2770   for (const auto &GVI : valueIds()) {
2771     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
2772     NameVals.push_back(GVI.second);
2773     NameVals.push_back(GVI.first);
2774 
2775     // Emit the finished record.
2776     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
2777     NameVals.clear();
2778   }
2779   Stream.ExitBlock();
2780 }
2781 
2782 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2783   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2784   unsigned Code;
2785   if (isa<BasicBlock>(Order.V))
2786     Code = bitc::USELIST_CODE_BB;
2787   else
2788     Code = bitc::USELIST_CODE_DEFAULT;
2789 
2790   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2791   Record.push_back(VE.getValueID(Order.V));
2792   Stream.EmitRecord(Code, Record);
2793 }
2794 
2795 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2796   assert(VE.shouldPreserveUseListOrder() &&
2797          "Expected to be preserving use-list order");
2798 
2799   auto hasMore = [&]() {
2800     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2801   };
2802   if (!hasMore())
2803     // Nothing to do.
2804     return;
2805 
2806   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2807   while (hasMore()) {
2808     writeUseList(std::move(VE.UseListOrders.back()));
2809     VE.UseListOrders.pop_back();
2810   }
2811   Stream.ExitBlock();
2812 }
2813 
2814 /// Emit a function body to the module stream.
2815 void ModuleBitcodeWriter::writeFunction(
2816     const Function &F,
2817     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2818   // Save the bitcode index of the start of this function block for recording
2819   // in the VST.
2820   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2821 
2822   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2823   VE.incorporateFunction(F);
2824 
2825   SmallVector<unsigned, 64> Vals;
2826 
2827   // Emit the number of basic blocks, so the reader can create them ahead of
2828   // time.
2829   Vals.push_back(VE.getBasicBlocks().size());
2830   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2831   Vals.clear();
2832 
2833   // If there are function-local constants, emit them now.
2834   unsigned CstStart, CstEnd;
2835   VE.getFunctionConstantRange(CstStart, CstEnd);
2836   writeConstants(CstStart, CstEnd, false);
2837 
2838   // If there is function-local metadata, emit it now.
2839   writeFunctionMetadata(F);
2840 
2841   // Keep a running idea of what the instruction ID is.
2842   unsigned InstID = CstEnd;
2843 
2844   bool NeedsMetadataAttachment = F.hasMetadata();
2845 
2846   DILocation *LastDL = nullptr;
2847   // Finally, emit all the instructions, in order.
2848   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2849     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2850          I != E; ++I) {
2851       writeInstruction(*I, InstID, Vals);
2852 
2853       if (!I->getType()->isVoidTy())
2854         ++InstID;
2855 
2856       // If the instruction has metadata, write a metadata attachment later.
2857       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2858 
2859       // If the instruction has a debug location, emit it.
2860       DILocation *DL = I->getDebugLoc();
2861       if (!DL)
2862         continue;
2863 
2864       if (DL == LastDL) {
2865         // Just repeat the same debug loc as last time.
2866         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2867         continue;
2868       }
2869 
2870       Vals.push_back(DL->getLine());
2871       Vals.push_back(DL->getColumn());
2872       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2873       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2874       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2875       Vals.clear();
2876 
2877       LastDL = DL;
2878     }
2879 
2880   // Emit names for all the instructions etc.
2881   writeValueSymbolTable(F.getValueSymbolTable());
2882 
2883   if (NeedsMetadataAttachment)
2884     writeMetadataAttachment(F);
2885   if (VE.shouldPreserveUseListOrder())
2886     writeUseListBlock(&F);
2887   VE.purgeFunction();
2888   Stream.ExitBlock();
2889 }
2890 
2891 // Emit blockinfo, which defines the standard abbreviations etc.
2892 void ModuleBitcodeWriter::writeBlockInfo() {
2893   // We only want to emit block info records for blocks that have multiple
2894   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2895   // Other blocks can define their abbrevs inline.
2896   Stream.EnterBlockInfoBlock(2);
2897 
2898   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
2899     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2900     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2901     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2902     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2903     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2904     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2905         VST_ENTRY_8_ABBREV)
2906       llvm_unreachable("Unexpected abbrev ordering!");
2907   }
2908 
2909   { // 7-bit fixed width VST_CODE_ENTRY strings.
2910     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2911     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2912     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2913     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2914     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2915     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2916         VST_ENTRY_7_ABBREV)
2917       llvm_unreachable("Unexpected abbrev ordering!");
2918   }
2919   { // 6-bit char6 VST_CODE_ENTRY strings.
2920     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2921     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2922     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2923     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2924     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2925     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2926         VST_ENTRY_6_ABBREV)
2927       llvm_unreachable("Unexpected abbrev ordering!");
2928   }
2929   { // 6-bit char6 VST_CODE_BBENTRY strings.
2930     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2931     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2932     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2933     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2934     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2935     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2936         VST_BBENTRY_6_ABBREV)
2937       llvm_unreachable("Unexpected abbrev ordering!");
2938   }
2939 
2940 
2941 
2942   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2943     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2944     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2945     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2946                               VE.computeBitsRequiredForTypeIndicies()));
2947     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2948         CONSTANTS_SETTYPE_ABBREV)
2949       llvm_unreachable("Unexpected abbrev ordering!");
2950   }
2951 
2952   { // INTEGER abbrev for CONSTANTS_BLOCK.
2953     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2954     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2955     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2956     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2957         CONSTANTS_INTEGER_ABBREV)
2958       llvm_unreachable("Unexpected abbrev ordering!");
2959   }
2960 
2961   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2962     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2963     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2964     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2965     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2966                               VE.computeBitsRequiredForTypeIndicies()));
2967     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2968 
2969     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2970         CONSTANTS_CE_CAST_Abbrev)
2971       llvm_unreachable("Unexpected abbrev ordering!");
2972   }
2973   { // NULL abbrev for CONSTANTS_BLOCK.
2974     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2975     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2976     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2977         CONSTANTS_NULL_Abbrev)
2978       llvm_unreachable("Unexpected abbrev ordering!");
2979   }
2980 
2981   // FIXME: This should only use space for first class types!
2982 
2983   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2984     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2985     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2986     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2987     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2988                               VE.computeBitsRequiredForTypeIndicies()));
2989     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2990     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2991     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2992         FUNCTION_INST_LOAD_ABBREV)
2993       llvm_unreachable("Unexpected abbrev ordering!");
2994   }
2995   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2996     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2997     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2998     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2999     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3000     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3001     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3002         FUNCTION_INST_BINOP_ABBREV)
3003       llvm_unreachable("Unexpected abbrev ordering!");
3004   }
3005   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3006     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3007     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3008     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3009     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3010     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3011     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3012     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3013         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3014       llvm_unreachable("Unexpected abbrev ordering!");
3015   }
3016   { // INST_CAST abbrev for FUNCTION_BLOCK.
3017     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3018     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3019     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3020     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3021                               VE.computeBitsRequiredForTypeIndicies()));
3022     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3023     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3024         FUNCTION_INST_CAST_ABBREV)
3025       llvm_unreachable("Unexpected abbrev ordering!");
3026   }
3027 
3028   { // INST_RET abbrev for FUNCTION_BLOCK.
3029     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3030     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3031     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3032         FUNCTION_INST_RET_VOID_ABBREV)
3033       llvm_unreachable("Unexpected abbrev ordering!");
3034   }
3035   { // INST_RET abbrev for FUNCTION_BLOCK.
3036     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3037     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3038     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3039     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3040         FUNCTION_INST_RET_VAL_ABBREV)
3041       llvm_unreachable("Unexpected abbrev ordering!");
3042   }
3043   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3044     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3045     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3046     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3047         FUNCTION_INST_UNREACHABLE_ABBREV)
3048       llvm_unreachable("Unexpected abbrev ordering!");
3049   }
3050   {
3051     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3052     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3053     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3054     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3055                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3056     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3057     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3058     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3059         FUNCTION_INST_GEP_ABBREV)
3060       llvm_unreachable("Unexpected abbrev ordering!");
3061   }
3062 
3063   Stream.ExitBlock();
3064 }
3065 
3066 /// Write the module path strings, currently only used when generating
3067 /// a combined index file.
3068 void IndexBitcodeWriter::writeModStrings() {
3069   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3070 
3071   // TODO: See which abbrev sizes we actually need to emit
3072 
3073   // 8-bit fixed-width MST_ENTRY strings.
3074   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3075   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3076   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3077   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3078   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3079   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
3080 
3081   // 7-bit fixed width MST_ENTRY strings.
3082   Abbv = new BitCodeAbbrev();
3083   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3084   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3085   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3086   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3087   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
3088 
3089   // 6-bit char6 MST_ENTRY strings.
3090   Abbv = new BitCodeAbbrev();
3091   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3092   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3093   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3094   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3095   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
3096 
3097   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3098   Abbv = new BitCodeAbbrev();
3099   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3100   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3101   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3102   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3103   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3104   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3105   unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
3106 
3107   SmallVector<unsigned, 64> Vals;
3108   for (const auto &MPSE : Index.modulePaths()) {
3109     if (!doIncludeModule(MPSE.getKey()))
3110       continue;
3111     StringEncoding Bits =
3112         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3113     unsigned AbbrevToUse = Abbrev8Bit;
3114     if (Bits == SE_Char6)
3115       AbbrevToUse = Abbrev6Bit;
3116     else if (Bits == SE_Fixed7)
3117       AbbrevToUse = Abbrev7Bit;
3118 
3119     Vals.push_back(MPSE.getValue().first);
3120 
3121     for (const auto P : MPSE.getKey())
3122       Vals.push_back((unsigned char)P);
3123 
3124     // Emit the finished record.
3125     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3126 
3127     Vals.clear();
3128     // Emit an optional hash for the module now
3129     auto &Hash = MPSE.getValue().second;
3130     bool AllZero = true; // Detect if the hash is empty, and do not generate it
3131     for (auto Val : Hash) {
3132       if (Val)
3133         AllZero = false;
3134       Vals.push_back(Val);
3135     }
3136     if (!AllZero) {
3137       // Emit the hash record.
3138       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3139     }
3140 
3141     Vals.clear();
3142   }
3143   Stream.ExitBlock();
3144 }
3145 
3146 // Helper to emit a single function summary record.
3147 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3148     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3149     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3150     const Function &F) {
3151   NameVals.push_back(ValueID);
3152 
3153   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3154   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3155   NameVals.push_back(FS->instCount());
3156   NameVals.push_back(FS->refs().size());
3157 
3158   for (auto &RI : FS->refs())
3159     NameVals.push_back(VE.getValueID(RI.getValue()));
3160 
3161   bool HasProfileData = F.getEntryCount().hasValue();
3162   for (auto &ECI : FS->calls()) {
3163     NameVals.push_back(VE.getValueID(ECI.first.getValue()));
3164     assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
3165     NameVals.push_back(ECI.second.CallsiteCount);
3166     if (HasProfileData)
3167       NameVals.push_back(ECI.second.ProfileCount);
3168   }
3169 
3170   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3171   unsigned Code =
3172       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3173 
3174   // Emit the finished record.
3175   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3176   NameVals.clear();
3177 }
3178 
3179 // Collect the global value references in the given variable's initializer,
3180 // and emit them in a summary record.
3181 void ModuleBitcodeWriter::writeModuleLevelReferences(
3182     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3183     unsigned FSModRefsAbbrev) {
3184   // Only interested in recording variable defs in the summary.
3185   if (V.isDeclaration())
3186     return;
3187   NameVals.push_back(VE.getValueID(&V));
3188   NameVals.push_back(getEncodedGVSummaryFlags(V));
3189   auto *Summary = Index->getGlobalValueSummary(V);
3190   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3191   for (auto Ref : VS->refs())
3192     NameVals.push_back(VE.getValueID(Ref.getValue()));
3193   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3194                     FSModRefsAbbrev);
3195   NameVals.clear();
3196 }
3197 
3198 // Current version for the summary.
3199 // This is bumped whenever we introduce changes in the way some record are
3200 // interpreted, like flags for instance.
3201 static const uint64_t INDEX_VERSION = 1;
3202 
3203 /// Emit the per-module summary section alongside the rest of
3204 /// the module's bitcode.
3205 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3206   if (M.empty())
3207     return;
3208 
3209   if (Index->begin() == Index->end())
3210     return;
3211 
3212   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3213 
3214   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3215 
3216   // Abbrev for FS_PERMODULE.
3217   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3218   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3219   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3220   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3221   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3222   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3223   // numrefs x valueid, n x (valueid, callsitecount)
3224   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3225   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3226   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3227 
3228   // Abbrev for FS_PERMODULE_PROFILE.
3229   Abbv = new BitCodeAbbrev();
3230   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3231   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3232   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3233   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3235   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3236   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3237   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3238   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3239 
3240   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3241   Abbv = new BitCodeAbbrev();
3242   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3243   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3244   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3245   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3246   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3247   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3248 
3249   // Abbrev for FS_ALIAS.
3250   Abbv = new BitCodeAbbrev();
3251   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3252   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3253   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3254   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3255   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3256 
3257   SmallVector<uint64_t, 64> NameVals;
3258   // Iterate over the list of functions instead of the Index to
3259   // ensure the ordering is stable.
3260   for (const Function &F : M) {
3261     if (F.isDeclaration())
3262       continue;
3263     // Summary emission does not support anonymous functions, they have to
3264     // renamed using the anonymous function renaming pass.
3265     if (!F.hasName())
3266       report_fatal_error("Unexpected anonymous function when writing summary");
3267 
3268     auto *Summary = Index->getGlobalValueSummary(F);
3269     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3270                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3271   }
3272 
3273   // Capture references from GlobalVariable initializers, which are outside
3274   // of a function scope.
3275   for (const GlobalVariable &G : M.globals())
3276     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3277 
3278   for (const GlobalAlias &A : M.aliases()) {
3279     auto *Aliasee = A.getBaseObject();
3280     if (!Aliasee->hasName())
3281       // Nameless function don't have an entry in the summary, skip it.
3282       continue;
3283     auto AliasId = VE.getValueID(&A);
3284     auto AliaseeId = VE.getValueID(Aliasee);
3285     NameVals.push_back(AliasId);
3286     NameVals.push_back(getEncodedGVSummaryFlags(A));
3287     NameVals.push_back(AliaseeId);
3288     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3289     NameVals.clear();
3290   }
3291 
3292   Stream.ExitBlock();
3293 }
3294 
3295 /// Emit the combined summary section into the combined index file.
3296 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3297   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3298   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3299 
3300   // Abbrev for FS_COMBINED.
3301   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3302   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3303   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3304   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3305   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3306   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3307   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3308   // numrefs x valueid, n x (valueid, callsitecount)
3309   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3310   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3311   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3312 
3313   // Abbrev for FS_COMBINED_PROFILE.
3314   Abbv = new BitCodeAbbrev();
3315   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3316   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3317   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3318   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3319   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3320   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3321   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3322   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3323   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3324   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3325 
3326   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3327   Abbv = new BitCodeAbbrev();
3328   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3329   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3331   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3332   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3333   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3334   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3335 
3336   // Abbrev for FS_COMBINED_ALIAS.
3337   Abbv = new BitCodeAbbrev();
3338   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3341   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3342   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3343   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3344 
3345   // The aliases are emitted as a post-pass, and will point to the value
3346   // id of the aliasee. Save them in a vector for post-processing.
3347   SmallVector<AliasSummary *, 64> Aliases;
3348 
3349   // Save the value id for each summary for alias emission.
3350   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3351 
3352   SmallVector<uint64_t, 64> NameVals;
3353 
3354   // For local linkage, we also emit the original name separately
3355   // immediately after the record.
3356   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3357     if (!GlobalValue::isLocalLinkage(S.linkage()))
3358       return;
3359     NameVals.push_back(S.getOriginalName());
3360     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3361     NameVals.clear();
3362   };
3363 
3364   for (const auto &I : *this) {
3365     GlobalValueSummary *S = I.second;
3366     assert(S);
3367 
3368     assert(hasValueId(I.first));
3369     unsigned ValueId = getValueId(I.first);
3370     SummaryToValueIdMap[S] = ValueId;
3371 
3372     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3373       // Will process aliases as a post-pass because the reader wants all
3374       // global to be loaded first.
3375       Aliases.push_back(AS);
3376       continue;
3377     }
3378 
3379     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3380       NameVals.push_back(ValueId);
3381       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3382       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3383       for (auto &RI : VS->refs()) {
3384         NameVals.push_back(getValueId(RI.getGUID()));
3385       }
3386 
3387       // Emit the finished record.
3388       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3389                         FSModRefsAbbrev);
3390       NameVals.clear();
3391       MaybeEmitOriginalName(*S);
3392       continue;
3393     }
3394 
3395     auto *FS = cast<FunctionSummary>(S);
3396     NameVals.push_back(ValueId);
3397     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3398     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3399     NameVals.push_back(FS->instCount());
3400     NameVals.push_back(FS->refs().size());
3401 
3402     for (auto &RI : FS->refs()) {
3403       NameVals.push_back(getValueId(RI.getGUID()));
3404     }
3405 
3406     bool HasProfileData = false;
3407     for (auto &EI : FS->calls()) {
3408       HasProfileData |= EI.second.ProfileCount != 0;
3409       if (HasProfileData)
3410         break;
3411     }
3412 
3413     for (auto &EI : FS->calls()) {
3414       // If this GUID doesn't have a value id, it doesn't have a function
3415       // summary and we don't need to record any calls to it.
3416       if (!hasValueId(EI.first.getGUID()))
3417         continue;
3418       NameVals.push_back(getValueId(EI.first.getGUID()));
3419       assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
3420       NameVals.push_back(EI.second.CallsiteCount);
3421       if (HasProfileData)
3422         NameVals.push_back(EI.second.ProfileCount);
3423     }
3424 
3425     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3426     unsigned Code =
3427         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3428 
3429     // Emit the finished record.
3430     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3431     NameVals.clear();
3432     MaybeEmitOriginalName(*S);
3433   }
3434 
3435   for (auto *AS : Aliases) {
3436     auto AliasValueId = SummaryToValueIdMap[AS];
3437     assert(AliasValueId);
3438     NameVals.push_back(AliasValueId);
3439     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3440     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3441     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3442     assert(AliaseeValueId);
3443     NameVals.push_back(AliaseeValueId);
3444 
3445     // Emit the finished record.
3446     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3447     NameVals.clear();
3448     MaybeEmitOriginalName(*AS);
3449   }
3450 
3451   Stream.ExitBlock();
3452 }
3453 
3454 void ModuleBitcodeWriter::writeIdentificationBlock() {
3455   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3456 
3457   // Write the "user readable" string identifying the bitcode producer
3458   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3459   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3460   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3461   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3462   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
3463   writeStringRecord(bitc::IDENTIFICATION_CODE_STRING,
3464                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3465 
3466   // Write the epoch version
3467   Abbv = new BitCodeAbbrev();
3468   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3469   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3470   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
3471   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3472   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3473   Stream.ExitBlock();
3474 }
3475 
3476 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3477   // Emit the module's hash.
3478   // MODULE_CODE_HASH: [5*i32]
3479   SHA1 Hasher;
3480   Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3481                                   Buffer.size() - BlockStartPos));
3482   auto Hash = Hasher.result();
3483   SmallVector<uint64_t, 20> Vals;
3484   auto LShift = [&](unsigned char Val, unsigned Amount)
3485                     -> uint64_t { return ((uint64_t)Val) << Amount; };
3486   for (int Pos = 0; Pos < 20; Pos += 4) {
3487     uint32_t SubHash = LShift(Hash[Pos + 0], 24);
3488     SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) |
3489                (unsigned)(unsigned char)Hash[Pos + 3];
3490     Vals.push_back(SubHash);
3491   }
3492 
3493   // Emit the finished record.
3494   Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3495 }
3496 
3497 void BitcodeWriter::write() {
3498   // Emit the file header first.
3499   writeBitcodeHeader();
3500 
3501   writeBlocks();
3502 }
3503 
3504 void ModuleBitcodeWriter::writeBlocks() {
3505   writeIdentificationBlock();
3506   writeModule();
3507 }
3508 
3509 void IndexBitcodeWriter::writeBlocks() {
3510   // Index contains only a single outer (module) block.
3511   writeIndex();
3512 }
3513 
3514 void ModuleBitcodeWriter::writeModule() {
3515   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3516   size_t BlockStartPos = Buffer.size();
3517 
3518   SmallVector<unsigned, 1> Vals;
3519   unsigned CurVersion = 1;
3520   Vals.push_back(CurVersion);
3521   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3522 
3523   // Emit blockinfo, which defines the standard abbreviations etc.
3524   writeBlockInfo();
3525 
3526   // Emit information about attribute groups.
3527   writeAttributeGroupTable();
3528 
3529   // Emit information about parameter attributes.
3530   writeAttributeTable();
3531 
3532   // Emit information describing all of the types in the module.
3533   writeTypeTable();
3534 
3535   writeComdats();
3536 
3537   // Emit top-level description of module, including target triple, inline asm,
3538   // descriptors for global variables, and function prototype info.
3539   writeModuleInfo();
3540 
3541   // Emit constants.
3542   writeModuleConstants();
3543 
3544   // Emit metadata.
3545   writeModuleMetadata();
3546 
3547   // Emit metadata.
3548   writeModuleMetadataStore();
3549 
3550   // Emit module-level use-lists.
3551   if (VE.shouldPreserveUseListOrder())
3552     writeUseListBlock(nullptr);
3553 
3554   writeOperandBundleTags();
3555 
3556   // Emit function bodies.
3557   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3558   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3559     if (!F->isDeclaration())
3560       writeFunction(*F, FunctionToBitcodeIndex);
3561 
3562   // Need to write after the above call to WriteFunction which populates
3563   // the summary information in the index.
3564   if (Index)
3565     writePerModuleGlobalValueSummary();
3566 
3567   writeValueSymbolTable(M.getValueSymbolTable(),
3568                         /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
3569 
3570   if (GenerateHash) {
3571     writeModuleHash(BlockStartPos);
3572   }
3573 
3574   Stream.ExitBlock();
3575 }
3576 
3577 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3578                                uint32_t &Position) {
3579   support::endian::write32le(&Buffer[Position], Value);
3580   Position += 4;
3581 }
3582 
3583 /// If generating a bc file on darwin, we have to emit a
3584 /// header and trailer to make it compatible with the system archiver.  To do
3585 /// this we emit the following header, and then emit a trailer that pads the
3586 /// file out to be a multiple of 16 bytes.
3587 ///
3588 /// struct bc_header {
3589 ///   uint32_t Magic;         // 0x0B17C0DE
3590 ///   uint32_t Version;       // Version, currently always 0.
3591 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3592 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3593 ///   uint32_t CPUType;       // CPU specifier.
3594 ///   ... potentially more later ...
3595 /// };
3596 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3597                                          const Triple &TT) {
3598   unsigned CPUType = ~0U;
3599 
3600   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3601   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3602   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3603   // specific constants here because they are implicitly part of the Darwin ABI.
3604   enum {
3605     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3606     DARWIN_CPU_TYPE_X86        = 7,
3607     DARWIN_CPU_TYPE_ARM        = 12,
3608     DARWIN_CPU_TYPE_POWERPC    = 18
3609   };
3610 
3611   Triple::ArchType Arch = TT.getArch();
3612   if (Arch == Triple::x86_64)
3613     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3614   else if (Arch == Triple::x86)
3615     CPUType = DARWIN_CPU_TYPE_X86;
3616   else if (Arch == Triple::ppc)
3617     CPUType = DARWIN_CPU_TYPE_POWERPC;
3618   else if (Arch == Triple::ppc64)
3619     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3620   else if (Arch == Triple::arm || Arch == Triple::thumb)
3621     CPUType = DARWIN_CPU_TYPE_ARM;
3622 
3623   // Traditional Bitcode starts after header.
3624   assert(Buffer.size() >= BWH_HeaderSize &&
3625          "Expected header size to be reserved");
3626   unsigned BCOffset = BWH_HeaderSize;
3627   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3628 
3629   // Write the magic and version.
3630   unsigned Position = 0;
3631   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3632   writeInt32ToBuffer(0, Buffer, Position); // Version.
3633   writeInt32ToBuffer(BCOffset, Buffer, Position);
3634   writeInt32ToBuffer(BCSize, Buffer, Position);
3635   writeInt32ToBuffer(CPUType, Buffer, Position);
3636 
3637   // If the file is not a multiple of 16 bytes, insert dummy padding.
3638   while (Buffer.size() & 15)
3639     Buffer.push_back(0);
3640 }
3641 
3642 /// Helper to write the header common to all bitcode files.
3643 void BitcodeWriter::writeBitcodeHeader() {
3644   // Emit the file header.
3645   Stream.Emit((unsigned)'B', 8);
3646   Stream.Emit((unsigned)'C', 8);
3647   Stream.Emit(0x0, 4);
3648   Stream.Emit(0xC, 4);
3649   Stream.Emit(0xE, 4);
3650   Stream.Emit(0xD, 4);
3651 }
3652 
3653 /// WriteBitcodeToFile - Write the specified module to the specified output
3654 /// stream.
3655 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3656                               bool ShouldPreserveUseListOrder,
3657                               const ModuleSummaryIndex *Index,
3658                               bool GenerateHash) {
3659   SmallVector<char, 0> Buffer;
3660   Buffer.reserve(256*1024);
3661 
3662   // If this is darwin or another generic macho target, reserve space for the
3663   // header.
3664   Triple TT(M->getTargetTriple());
3665   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3666     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3667 
3668   // Emit the module into the buffer.
3669   ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index,
3670                                    GenerateHash);
3671   ModuleWriter.write();
3672 
3673   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3674     emitDarwinBCHeaderAndTrailer(Buffer, TT);
3675 
3676   // Write the generated bitstream to "Out".
3677   Out.write((char*)&Buffer.front(), Buffer.size());
3678 }
3679 
3680 void IndexBitcodeWriter::writeIndex() {
3681   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3682 
3683   SmallVector<unsigned, 1> Vals;
3684   unsigned CurVersion = 1;
3685   Vals.push_back(CurVersion);
3686   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3687 
3688   // If we have a VST, write the VSTOFFSET record placeholder.
3689   writeValueSymbolTableForwardDecl();
3690 
3691   // Write the module paths in the combined index.
3692   writeModStrings();
3693 
3694   // Write the summary combined index records.
3695   writeCombinedGlobalValueSummary();
3696 
3697   // Need a special VST writer for the combined index (we don't have a
3698   // real VST and real values when this is invoked).
3699   writeCombinedValueSymbolTable();
3700 
3701   Stream.ExitBlock();
3702 }
3703 
3704 // Write the specified module summary index to the given raw output stream,
3705 // where it will be written in a new bitcode block. This is used when
3706 // writing the combined index file for ThinLTO. When writing a subset of the
3707 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
3708 void llvm::WriteIndexToFile(
3709     const ModuleSummaryIndex &Index, raw_ostream &Out,
3710     std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
3711   SmallVector<char, 0> Buffer;
3712   Buffer.reserve(256 * 1024);
3713 
3714   IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex);
3715   IndexWriter.write();
3716 
3717   Out.write((char *)&Buffer.front(), Buffer.size());
3718 }
3719