1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (!CallEdge.first.getValue()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (!VI.getValue()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 forEachSummary([&](GVInfo I) { 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 }); 346 } 347 348 /// The below iterator returns the GUID and associated summary. 349 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 350 351 /// Calls the callback for each value GUID and summary to be written to 352 /// bitcode. This hides the details of whether they are being pulled from the 353 /// entire index or just those in a provided ModuleToSummariesForIndex map. 354 void forEachSummary(std::function<void(GVInfo)> Callback) { 355 if (ModuleToSummariesForIndex) { 356 for (auto &M : *ModuleToSummariesForIndex) 357 for (auto &Summary : M.second) 358 Callback(Summary); 359 } else { 360 for (auto &Summaries : Index) 361 for (auto &Summary : Summaries.second.SummaryList) 362 Callback({Summaries.first, Summary.get()}); 363 } 364 } 365 366 /// Calls the callback for each entry in the modulePaths StringMap that 367 /// should be written to the module path string table. This hides the details 368 /// of whether they are being pulled from the entire index or just those in a 369 /// provided ModuleToSummariesForIndex map. 370 void 371 forEachModule(std::function< 372 void(const StringMapEntry<std::pair<uint64_t, ModuleHash>> &)> 373 Callback) { 374 if (ModuleToSummariesForIndex) { 375 for (const auto &M : *ModuleToSummariesForIndex) { 376 const auto &MPI = Index.modulePaths().find(M.first); 377 if (MPI == Index.modulePaths().end()) { 378 // This should only happen if the bitcode file was empty, in which 379 // case we shouldn't be importing (the ModuleToSummariesForIndex 380 // would only include the module we are writing and index for). 381 assert(ModuleToSummariesForIndex->size() == 1); 382 continue; 383 } 384 Callback(*MPI); 385 } 386 } else { 387 for (const auto &MPSE : Index.modulePaths()) 388 Callback(MPSE); 389 } 390 } 391 392 /// Main entry point for writing a combined index to bitcode. 393 void write(); 394 395 private: 396 void writeModStrings(); 397 void writeCombinedGlobalValueSummary(); 398 399 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 400 auto VMI = GUIDToValueIdMap.find(ValGUID); 401 if (VMI == GUIDToValueIdMap.end()) 402 return None; 403 return VMI->second; 404 } 405 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 406 }; 407 } // end anonymous namespace 408 409 static unsigned getEncodedCastOpcode(unsigned Opcode) { 410 switch (Opcode) { 411 default: llvm_unreachable("Unknown cast instruction!"); 412 case Instruction::Trunc : return bitc::CAST_TRUNC; 413 case Instruction::ZExt : return bitc::CAST_ZEXT; 414 case Instruction::SExt : return bitc::CAST_SEXT; 415 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 416 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 417 case Instruction::UIToFP : return bitc::CAST_UITOFP; 418 case Instruction::SIToFP : return bitc::CAST_SITOFP; 419 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 420 case Instruction::FPExt : return bitc::CAST_FPEXT; 421 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 422 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 423 case Instruction::BitCast : return bitc::CAST_BITCAST; 424 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 425 } 426 } 427 428 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 429 switch (Opcode) { 430 default: llvm_unreachable("Unknown binary instruction!"); 431 case Instruction::Add: 432 case Instruction::FAdd: return bitc::BINOP_ADD; 433 case Instruction::Sub: 434 case Instruction::FSub: return bitc::BINOP_SUB; 435 case Instruction::Mul: 436 case Instruction::FMul: return bitc::BINOP_MUL; 437 case Instruction::UDiv: return bitc::BINOP_UDIV; 438 case Instruction::FDiv: 439 case Instruction::SDiv: return bitc::BINOP_SDIV; 440 case Instruction::URem: return bitc::BINOP_UREM; 441 case Instruction::FRem: 442 case Instruction::SRem: return bitc::BINOP_SREM; 443 case Instruction::Shl: return bitc::BINOP_SHL; 444 case Instruction::LShr: return bitc::BINOP_LSHR; 445 case Instruction::AShr: return bitc::BINOP_ASHR; 446 case Instruction::And: return bitc::BINOP_AND; 447 case Instruction::Or: return bitc::BINOP_OR; 448 case Instruction::Xor: return bitc::BINOP_XOR; 449 } 450 } 451 452 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 453 switch (Op) { 454 default: llvm_unreachable("Unknown RMW operation!"); 455 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 456 case AtomicRMWInst::Add: return bitc::RMW_ADD; 457 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 458 case AtomicRMWInst::And: return bitc::RMW_AND; 459 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 460 case AtomicRMWInst::Or: return bitc::RMW_OR; 461 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 462 case AtomicRMWInst::Max: return bitc::RMW_MAX; 463 case AtomicRMWInst::Min: return bitc::RMW_MIN; 464 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 465 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 466 } 467 } 468 469 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 470 switch (Ordering) { 471 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 472 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 473 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 474 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 475 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 476 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 477 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 478 } 479 llvm_unreachable("Invalid ordering"); 480 } 481 482 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 483 switch (SynchScope) { 484 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 485 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 486 } 487 llvm_unreachable("Invalid synch scope"); 488 } 489 490 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 491 StringRef Str, unsigned AbbrevToUse) { 492 SmallVector<unsigned, 64> Vals; 493 494 // Code: [strchar x N] 495 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 496 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 497 AbbrevToUse = 0; 498 Vals.push_back(Str[i]); 499 } 500 501 // Emit the finished record. 502 Stream.EmitRecord(Code, Vals, AbbrevToUse); 503 } 504 505 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 506 switch (Kind) { 507 case Attribute::Alignment: 508 return bitc::ATTR_KIND_ALIGNMENT; 509 case Attribute::AllocSize: 510 return bitc::ATTR_KIND_ALLOC_SIZE; 511 case Attribute::AlwaysInline: 512 return bitc::ATTR_KIND_ALWAYS_INLINE; 513 case Attribute::ArgMemOnly: 514 return bitc::ATTR_KIND_ARGMEMONLY; 515 case Attribute::Builtin: 516 return bitc::ATTR_KIND_BUILTIN; 517 case Attribute::ByVal: 518 return bitc::ATTR_KIND_BY_VAL; 519 case Attribute::Convergent: 520 return bitc::ATTR_KIND_CONVERGENT; 521 case Attribute::InAlloca: 522 return bitc::ATTR_KIND_IN_ALLOCA; 523 case Attribute::Cold: 524 return bitc::ATTR_KIND_COLD; 525 case Attribute::InaccessibleMemOnly: 526 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 527 case Attribute::InaccessibleMemOrArgMemOnly: 528 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 529 case Attribute::InlineHint: 530 return bitc::ATTR_KIND_INLINE_HINT; 531 case Attribute::InReg: 532 return bitc::ATTR_KIND_IN_REG; 533 case Attribute::JumpTable: 534 return bitc::ATTR_KIND_JUMP_TABLE; 535 case Attribute::MinSize: 536 return bitc::ATTR_KIND_MIN_SIZE; 537 case Attribute::Naked: 538 return bitc::ATTR_KIND_NAKED; 539 case Attribute::Nest: 540 return bitc::ATTR_KIND_NEST; 541 case Attribute::NoAlias: 542 return bitc::ATTR_KIND_NO_ALIAS; 543 case Attribute::NoBuiltin: 544 return bitc::ATTR_KIND_NO_BUILTIN; 545 case Attribute::NoCapture: 546 return bitc::ATTR_KIND_NO_CAPTURE; 547 case Attribute::NoDuplicate: 548 return bitc::ATTR_KIND_NO_DUPLICATE; 549 case Attribute::NoImplicitFloat: 550 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 551 case Attribute::NoInline: 552 return bitc::ATTR_KIND_NO_INLINE; 553 case Attribute::NoRecurse: 554 return bitc::ATTR_KIND_NO_RECURSE; 555 case Attribute::NonLazyBind: 556 return bitc::ATTR_KIND_NON_LAZY_BIND; 557 case Attribute::NonNull: 558 return bitc::ATTR_KIND_NON_NULL; 559 case Attribute::Dereferenceable: 560 return bitc::ATTR_KIND_DEREFERENCEABLE; 561 case Attribute::DereferenceableOrNull: 562 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 563 case Attribute::NoRedZone: 564 return bitc::ATTR_KIND_NO_RED_ZONE; 565 case Attribute::NoReturn: 566 return bitc::ATTR_KIND_NO_RETURN; 567 case Attribute::NoUnwind: 568 return bitc::ATTR_KIND_NO_UNWIND; 569 case Attribute::OptimizeForSize: 570 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 571 case Attribute::OptimizeNone: 572 return bitc::ATTR_KIND_OPTIMIZE_NONE; 573 case Attribute::ReadNone: 574 return bitc::ATTR_KIND_READ_NONE; 575 case Attribute::ReadOnly: 576 return bitc::ATTR_KIND_READ_ONLY; 577 case Attribute::Returned: 578 return bitc::ATTR_KIND_RETURNED; 579 case Attribute::ReturnsTwice: 580 return bitc::ATTR_KIND_RETURNS_TWICE; 581 case Attribute::SExt: 582 return bitc::ATTR_KIND_S_EXT; 583 case Attribute::Speculatable: 584 return bitc::ATTR_KIND_SPECULATABLE; 585 case Attribute::StackAlignment: 586 return bitc::ATTR_KIND_STACK_ALIGNMENT; 587 case Attribute::StackProtect: 588 return bitc::ATTR_KIND_STACK_PROTECT; 589 case Attribute::StackProtectReq: 590 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 591 case Attribute::StackProtectStrong: 592 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 593 case Attribute::SafeStack: 594 return bitc::ATTR_KIND_SAFESTACK; 595 case Attribute::StructRet: 596 return bitc::ATTR_KIND_STRUCT_RET; 597 case Attribute::SanitizeAddress: 598 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 599 case Attribute::SanitizeThread: 600 return bitc::ATTR_KIND_SANITIZE_THREAD; 601 case Attribute::SanitizeMemory: 602 return bitc::ATTR_KIND_SANITIZE_MEMORY; 603 case Attribute::SwiftError: 604 return bitc::ATTR_KIND_SWIFT_ERROR; 605 case Attribute::SwiftSelf: 606 return bitc::ATTR_KIND_SWIFT_SELF; 607 case Attribute::UWTable: 608 return bitc::ATTR_KIND_UW_TABLE; 609 case Attribute::WriteOnly: 610 return bitc::ATTR_KIND_WRITEONLY; 611 case Attribute::ZExt: 612 return bitc::ATTR_KIND_Z_EXT; 613 case Attribute::EndAttrKinds: 614 llvm_unreachable("Can not encode end-attribute kinds marker."); 615 case Attribute::None: 616 llvm_unreachable("Can not encode none-attribute."); 617 } 618 619 llvm_unreachable("Trying to encode unknown attribute"); 620 } 621 622 void ModuleBitcodeWriter::writeAttributeGroupTable() { 623 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 624 VE.getAttributeGroups(); 625 if (AttrGrps.empty()) return; 626 627 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 628 629 SmallVector<uint64_t, 64> Record; 630 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 631 unsigned AttrListIndex = Pair.first; 632 AttributeSet AS = Pair.second; 633 Record.push_back(VE.getAttributeGroupID(Pair)); 634 Record.push_back(AttrListIndex); 635 636 for (Attribute Attr : AS) { 637 if (Attr.isEnumAttribute()) { 638 Record.push_back(0); 639 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 640 } else if (Attr.isIntAttribute()) { 641 Record.push_back(1); 642 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 643 Record.push_back(Attr.getValueAsInt()); 644 } else { 645 StringRef Kind = Attr.getKindAsString(); 646 StringRef Val = Attr.getValueAsString(); 647 648 Record.push_back(Val.empty() ? 3 : 4); 649 Record.append(Kind.begin(), Kind.end()); 650 Record.push_back(0); 651 if (!Val.empty()) { 652 Record.append(Val.begin(), Val.end()); 653 Record.push_back(0); 654 } 655 } 656 } 657 658 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 659 Record.clear(); 660 } 661 662 Stream.ExitBlock(); 663 } 664 665 void ModuleBitcodeWriter::writeAttributeTable() { 666 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 667 if (Attrs.empty()) return; 668 669 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 670 671 SmallVector<uint64_t, 64> Record; 672 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 673 AttributeList AL = Attrs[i]; 674 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 675 AttributeSet AS = AL.getAttributes(i); 676 if (AS.hasAttributes()) 677 Record.push_back(VE.getAttributeGroupID({i, AS})); 678 } 679 680 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 681 Record.clear(); 682 } 683 684 Stream.ExitBlock(); 685 } 686 687 /// WriteTypeTable - Write out the type table for a module. 688 void ModuleBitcodeWriter::writeTypeTable() { 689 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 690 691 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 692 SmallVector<uint64_t, 64> TypeVals; 693 694 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 695 696 // Abbrev for TYPE_CODE_POINTER. 697 auto Abbv = std::make_shared<BitCodeAbbrev>(); 698 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 700 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 701 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 702 703 // Abbrev for TYPE_CODE_FUNCTION. 704 Abbv = std::make_shared<BitCodeAbbrev>(); 705 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 709 710 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 711 712 // Abbrev for TYPE_CODE_STRUCT_ANON. 713 Abbv = std::make_shared<BitCodeAbbrev>(); 714 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 718 719 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 720 721 // Abbrev for TYPE_CODE_STRUCT_NAME. 722 Abbv = std::make_shared<BitCodeAbbrev>(); 723 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 726 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 727 728 // Abbrev for TYPE_CODE_STRUCT_NAMED. 729 Abbv = std::make_shared<BitCodeAbbrev>(); 730 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 734 735 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 736 737 // Abbrev for TYPE_CODE_ARRAY. 738 Abbv = std::make_shared<BitCodeAbbrev>(); 739 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 742 743 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 744 745 // Emit an entry count so the reader can reserve space. 746 TypeVals.push_back(TypeList.size()); 747 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 748 TypeVals.clear(); 749 750 // Loop over all of the types, emitting each in turn. 751 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 752 Type *T = TypeList[i]; 753 int AbbrevToUse = 0; 754 unsigned Code = 0; 755 756 switch (T->getTypeID()) { 757 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 758 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 759 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 760 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 761 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 762 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 763 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 764 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 765 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 766 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 767 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 768 case Type::IntegerTyID: 769 // INTEGER: [width] 770 Code = bitc::TYPE_CODE_INTEGER; 771 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 772 break; 773 case Type::PointerTyID: { 774 PointerType *PTy = cast<PointerType>(T); 775 // POINTER: [pointee type, address space] 776 Code = bitc::TYPE_CODE_POINTER; 777 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 778 unsigned AddressSpace = PTy->getAddressSpace(); 779 TypeVals.push_back(AddressSpace); 780 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 781 break; 782 } 783 case Type::FunctionTyID: { 784 FunctionType *FT = cast<FunctionType>(T); 785 // FUNCTION: [isvararg, retty, paramty x N] 786 Code = bitc::TYPE_CODE_FUNCTION; 787 TypeVals.push_back(FT->isVarArg()); 788 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 789 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 790 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 791 AbbrevToUse = FunctionAbbrev; 792 break; 793 } 794 case Type::StructTyID: { 795 StructType *ST = cast<StructType>(T); 796 // STRUCT: [ispacked, eltty x N] 797 TypeVals.push_back(ST->isPacked()); 798 // Output all of the element types. 799 for (StructType::element_iterator I = ST->element_begin(), 800 E = ST->element_end(); I != E; ++I) 801 TypeVals.push_back(VE.getTypeID(*I)); 802 803 if (ST->isLiteral()) { 804 Code = bitc::TYPE_CODE_STRUCT_ANON; 805 AbbrevToUse = StructAnonAbbrev; 806 } else { 807 if (ST->isOpaque()) { 808 Code = bitc::TYPE_CODE_OPAQUE; 809 } else { 810 Code = bitc::TYPE_CODE_STRUCT_NAMED; 811 AbbrevToUse = StructNamedAbbrev; 812 } 813 814 // Emit the name if it is present. 815 if (!ST->getName().empty()) 816 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 817 StructNameAbbrev); 818 } 819 break; 820 } 821 case Type::ArrayTyID: { 822 ArrayType *AT = cast<ArrayType>(T); 823 // ARRAY: [numelts, eltty] 824 Code = bitc::TYPE_CODE_ARRAY; 825 TypeVals.push_back(AT->getNumElements()); 826 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 827 AbbrevToUse = ArrayAbbrev; 828 break; 829 } 830 case Type::VectorTyID: { 831 VectorType *VT = cast<VectorType>(T); 832 // VECTOR [numelts, eltty] 833 Code = bitc::TYPE_CODE_VECTOR; 834 TypeVals.push_back(VT->getNumElements()); 835 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 836 break; 837 } 838 } 839 840 // Emit the finished record. 841 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 842 TypeVals.clear(); 843 } 844 845 Stream.ExitBlock(); 846 } 847 848 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 849 switch (Linkage) { 850 case GlobalValue::ExternalLinkage: 851 return 0; 852 case GlobalValue::WeakAnyLinkage: 853 return 16; 854 case GlobalValue::AppendingLinkage: 855 return 2; 856 case GlobalValue::InternalLinkage: 857 return 3; 858 case GlobalValue::LinkOnceAnyLinkage: 859 return 18; 860 case GlobalValue::ExternalWeakLinkage: 861 return 7; 862 case GlobalValue::CommonLinkage: 863 return 8; 864 case GlobalValue::PrivateLinkage: 865 return 9; 866 case GlobalValue::WeakODRLinkage: 867 return 17; 868 case GlobalValue::LinkOnceODRLinkage: 869 return 19; 870 case GlobalValue::AvailableExternallyLinkage: 871 return 12; 872 } 873 llvm_unreachable("Invalid linkage"); 874 } 875 876 static unsigned getEncodedLinkage(const GlobalValue &GV) { 877 return getEncodedLinkage(GV.getLinkage()); 878 } 879 880 // Decode the flags for GlobalValue in the summary 881 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 882 uint64_t RawFlags = 0; 883 884 RawFlags |= Flags.NotEligibleToImport; // bool 885 RawFlags |= (Flags.Live << 1); 886 // Linkage don't need to be remapped at that time for the summary. Any future 887 // change to the getEncodedLinkage() function will need to be taken into 888 // account here as well. 889 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 890 891 return RawFlags; 892 } 893 894 static unsigned getEncodedVisibility(const GlobalValue &GV) { 895 switch (GV.getVisibility()) { 896 case GlobalValue::DefaultVisibility: return 0; 897 case GlobalValue::HiddenVisibility: return 1; 898 case GlobalValue::ProtectedVisibility: return 2; 899 } 900 llvm_unreachable("Invalid visibility"); 901 } 902 903 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 904 switch (GV.getDLLStorageClass()) { 905 case GlobalValue::DefaultStorageClass: return 0; 906 case GlobalValue::DLLImportStorageClass: return 1; 907 case GlobalValue::DLLExportStorageClass: return 2; 908 } 909 llvm_unreachable("Invalid DLL storage class"); 910 } 911 912 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 913 switch (GV.getThreadLocalMode()) { 914 case GlobalVariable::NotThreadLocal: return 0; 915 case GlobalVariable::GeneralDynamicTLSModel: return 1; 916 case GlobalVariable::LocalDynamicTLSModel: return 2; 917 case GlobalVariable::InitialExecTLSModel: return 3; 918 case GlobalVariable::LocalExecTLSModel: return 4; 919 } 920 llvm_unreachable("Invalid TLS model"); 921 } 922 923 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 924 switch (C.getSelectionKind()) { 925 case Comdat::Any: 926 return bitc::COMDAT_SELECTION_KIND_ANY; 927 case Comdat::ExactMatch: 928 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 929 case Comdat::Largest: 930 return bitc::COMDAT_SELECTION_KIND_LARGEST; 931 case Comdat::NoDuplicates: 932 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 933 case Comdat::SameSize: 934 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 935 } 936 llvm_unreachable("Invalid selection kind"); 937 } 938 939 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 940 switch (GV.getUnnamedAddr()) { 941 case GlobalValue::UnnamedAddr::None: return 0; 942 case GlobalValue::UnnamedAddr::Local: return 2; 943 case GlobalValue::UnnamedAddr::Global: return 1; 944 } 945 llvm_unreachable("Invalid unnamed_addr"); 946 } 947 948 void ModuleBitcodeWriter::writeComdats() { 949 SmallVector<unsigned, 64> Vals; 950 for (const Comdat *C : VE.getComdats()) { 951 // COMDAT: [strtab offset, strtab size, selection_kind] 952 Vals.push_back(StrtabBuilder.add(C->getName())); 953 Vals.push_back(C->getName().size()); 954 Vals.push_back(getEncodedComdatSelectionKind(*C)); 955 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 956 Vals.clear(); 957 } 958 } 959 960 /// Write a record that will eventually hold the word offset of the 961 /// module-level VST. For now the offset is 0, which will be backpatched 962 /// after the real VST is written. Saves the bit offset to backpatch. 963 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 964 // Write a placeholder value in for the offset of the real VST, 965 // which is written after the function blocks so that it can include 966 // the offset of each function. The placeholder offset will be 967 // updated when the real VST is written. 968 auto Abbv = std::make_shared<BitCodeAbbrev>(); 969 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 970 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 971 // hold the real VST offset. Must use fixed instead of VBR as we don't 972 // know how many VBR chunks to reserve ahead of time. 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 974 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 975 976 // Emit the placeholder 977 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 978 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 979 980 // Compute and save the bit offset to the placeholder, which will be 981 // patched when the real VST is written. We can simply subtract the 32-bit 982 // fixed size from the current bit number to get the location to backpatch. 983 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 984 } 985 986 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 987 988 /// Determine the encoding to use for the given string name and length. 989 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 990 bool isChar6 = true; 991 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 992 if (isChar6) 993 isChar6 = BitCodeAbbrevOp::isChar6(*C); 994 if ((unsigned char)*C & 128) 995 // don't bother scanning the rest. 996 return SE_Fixed8; 997 } 998 if (isChar6) 999 return SE_Char6; 1000 else 1001 return SE_Fixed7; 1002 } 1003 1004 /// Emit top-level description of module, including target triple, inline asm, 1005 /// descriptors for global variables, and function prototype info. 1006 /// Returns the bit offset to backpatch with the location of the real VST. 1007 void ModuleBitcodeWriter::writeModuleInfo() { 1008 // Emit various pieces of data attached to a module. 1009 if (!M.getTargetTriple().empty()) 1010 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1011 0 /*TODO*/); 1012 const std::string &DL = M.getDataLayoutStr(); 1013 if (!DL.empty()) 1014 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1015 if (!M.getModuleInlineAsm().empty()) 1016 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1017 0 /*TODO*/); 1018 1019 // Emit information about sections and GC, computing how many there are. Also 1020 // compute the maximum alignment value. 1021 std::map<std::string, unsigned> SectionMap; 1022 std::map<std::string, unsigned> GCMap; 1023 unsigned MaxAlignment = 0; 1024 unsigned MaxGlobalType = 0; 1025 for (const GlobalValue &GV : M.globals()) { 1026 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1027 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1028 if (GV.hasSection()) { 1029 // Give section names unique ID's. 1030 unsigned &Entry = SectionMap[GV.getSection()]; 1031 if (!Entry) { 1032 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1033 0 /*TODO*/); 1034 Entry = SectionMap.size(); 1035 } 1036 } 1037 } 1038 for (const Function &F : M) { 1039 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1040 if (F.hasSection()) { 1041 // Give section names unique ID's. 1042 unsigned &Entry = SectionMap[F.getSection()]; 1043 if (!Entry) { 1044 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1045 0 /*TODO*/); 1046 Entry = SectionMap.size(); 1047 } 1048 } 1049 if (F.hasGC()) { 1050 // Same for GC names. 1051 unsigned &Entry = GCMap[F.getGC()]; 1052 if (!Entry) { 1053 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1054 0 /*TODO*/); 1055 Entry = GCMap.size(); 1056 } 1057 } 1058 } 1059 1060 // Emit abbrev for globals, now that we know # sections and max alignment. 1061 unsigned SimpleGVarAbbrev = 0; 1062 if (!M.global_empty()) { 1063 // Add an abbrev for common globals with no visibility or thread localness. 1064 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1065 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1069 Log2_32_Ceil(MaxGlobalType+1))); 1070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1071 //| explicitType << 1 1072 //| constant 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1075 if (MaxAlignment == 0) // Alignment. 1076 Abbv->Add(BitCodeAbbrevOp(0)); 1077 else { 1078 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1080 Log2_32_Ceil(MaxEncAlignment+1))); 1081 } 1082 if (SectionMap.empty()) // Section. 1083 Abbv->Add(BitCodeAbbrevOp(0)); 1084 else 1085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1086 Log2_32_Ceil(SectionMap.size()+1))); 1087 // Don't bother emitting vis + thread local. 1088 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1089 } 1090 1091 SmallVector<unsigned, 64> Vals; 1092 // Emit the module's source file name. 1093 { 1094 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1095 M.getSourceFileName().size()); 1096 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1097 if (Bits == SE_Char6) 1098 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1099 else if (Bits == SE_Fixed7) 1100 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1101 1102 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1103 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1104 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1106 Abbv->Add(AbbrevOpToUse); 1107 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1108 1109 for (const auto P : M.getSourceFileName()) 1110 Vals.push_back((unsigned char)P); 1111 1112 // Emit the finished record. 1113 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1114 Vals.clear(); 1115 } 1116 1117 // Emit the global variable information. 1118 for (const GlobalVariable &GV : M.globals()) { 1119 unsigned AbbrevToUse = 0; 1120 1121 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1122 // linkage, alignment, section, visibility, threadlocal, 1123 // unnamed_addr, externally_initialized, dllstorageclass, 1124 // comdat, attributes] 1125 Vals.push_back(StrtabBuilder.add(GV.getName())); 1126 Vals.push_back(GV.getName().size()); 1127 Vals.push_back(VE.getTypeID(GV.getValueType())); 1128 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1129 Vals.push_back(GV.isDeclaration() ? 0 : 1130 (VE.getValueID(GV.getInitializer()) + 1)); 1131 Vals.push_back(getEncodedLinkage(GV)); 1132 Vals.push_back(Log2_32(GV.getAlignment())+1); 1133 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1134 if (GV.isThreadLocal() || 1135 GV.getVisibility() != GlobalValue::DefaultVisibility || 1136 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1137 GV.isExternallyInitialized() || 1138 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1139 GV.hasComdat() || 1140 GV.hasAttributes()) { 1141 Vals.push_back(getEncodedVisibility(GV)); 1142 Vals.push_back(getEncodedThreadLocalMode(GV)); 1143 Vals.push_back(getEncodedUnnamedAddr(GV)); 1144 Vals.push_back(GV.isExternallyInitialized()); 1145 Vals.push_back(getEncodedDLLStorageClass(GV)); 1146 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1147 1148 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1149 Vals.push_back(VE.getAttributeListID(AL)); 1150 } else { 1151 AbbrevToUse = SimpleGVarAbbrev; 1152 } 1153 1154 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1155 Vals.clear(); 1156 } 1157 1158 // Emit the function proto information. 1159 for (const Function &F : M) { 1160 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1161 // linkage, paramattrs, alignment, section, visibility, gc, 1162 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1163 // prefixdata, personalityfn] 1164 Vals.push_back(StrtabBuilder.add(F.getName())); 1165 Vals.push_back(F.getName().size()); 1166 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1167 Vals.push_back(F.getCallingConv()); 1168 Vals.push_back(F.isDeclaration()); 1169 Vals.push_back(getEncodedLinkage(F)); 1170 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1171 Vals.push_back(Log2_32(F.getAlignment())+1); 1172 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1173 Vals.push_back(getEncodedVisibility(F)); 1174 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1175 Vals.push_back(getEncodedUnnamedAddr(F)); 1176 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1177 : 0); 1178 Vals.push_back(getEncodedDLLStorageClass(F)); 1179 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1180 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1181 : 0); 1182 Vals.push_back( 1183 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1184 1185 unsigned AbbrevToUse = 0; 1186 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1187 Vals.clear(); 1188 } 1189 1190 // Emit the alias information. 1191 for (const GlobalAlias &A : M.aliases()) { 1192 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1193 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1194 Vals.push_back(StrtabBuilder.add(A.getName())); 1195 Vals.push_back(A.getName().size()); 1196 Vals.push_back(VE.getTypeID(A.getValueType())); 1197 Vals.push_back(A.getType()->getAddressSpace()); 1198 Vals.push_back(VE.getValueID(A.getAliasee())); 1199 Vals.push_back(getEncodedLinkage(A)); 1200 Vals.push_back(getEncodedVisibility(A)); 1201 Vals.push_back(getEncodedDLLStorageClass(A)); 1202 Vals.push_back(getEncodedThreadLocalMode(A)); 1203 Vals.push_back(getEncodedUnnamedAddr(A)); 1204 unsigned AbbrevToUse = 0; 1205 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1206 Vals.clear(); 1207 } 1208 1209 // Emit the ifunc information. 1210 for (const GlobalIFunc &I : M.ifuncs()) { 1211 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1212 // val#, linkage, visibility] 1213 Vals.push_back(StrtabBuilder.add(I.getName())); 1214 Vals.push_back(I.getName().size()); 1215 Vals.push_back(VE.getTypeID(I.getValueType())); 1216 Vals.push_back(I.getType()->getAddressSpace()); 1217 Vals.push_back(VE.getValueID(I.getResolver())); 1218 Vals.push_back(getEncodedLinkage(I)); 1219 Vals.push_back(getEncodedVisibility(I)); 1220 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1221 Vals.clear(); 1222 } 1223 1224 writeValueSymbolTableForwardDecl(); 1225 } 1226 1227 static uint64_t getOptimizationFlags(const Value *V) { 1228 uint64_t Flags = 0; 1229 1230 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1231 if (OBO->hasNoSignedWrap()) 1232 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1233 if (OBO->hasNoUnsignedWrap()) 1234 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1235 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1236 if (PEO->isExact()) 1237 Flags |= 1 << bitc::PEO_EXACT; 1238 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1239 if (FPMO->hasUnsafeAlgebra()) 1240 Flags |= FastMathFlags::UnsafeAlgebra; 1241 if (FPMO->hasNoNaNs()) 1242 Flags |= FastMathFlags::NoNaNs; 1243 if (FPMO->hasNoInfs()) 1244 Flags |= FastMathFlags::NoInfs; 1245 if (FPMO->hasNoSignedZeros()) 1246 Flags |= FastMathFlags::NoSignedZeros; 1247 if (FPMO->hasAllowReciprocal()) 1248 Flags |= FastMathFlags::AllowReciprocal; 1249 if (FPMO->hasAllowContract()) 1250 Flags |= FastMathFlags::AllowContract; 1251 } 1252 1253 return Flags; 1254 } 1255 1256 void ModuleBitcodeWriter::writeValueAsMetadata( 1257 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1258 // Mimic an MDNode with a value as one operand. 1259 Value *V = MD->getValue(); 1260 Record.push_back(VE.getTypeID(V->getType())); 1261 Record.push_back(VE.getValueID(V)); 1262 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1263 Record.clear(); 1264 } 1265 1266 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1267 SmallVectorImpl<uint64_t> &Record, 1268 unsigned Abbrev) { 1269 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1270 Metadata *MD = N->getOperand(i); 1271 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1272 "Unexpected function-local metadata"); 1273 Record.push_back(VE.getMetadataOrNullID(MD)); 1274 } 1275 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1276 : bitc::METADATA_NODE, 1277 Record, Abbrev); 1278 Record.clear(); 1279 } 1280 1281 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1282 // Assume the column is usually under 128, and always output the inlined-at 1283 // location (it's never more expensive than building an array size 1). 1284 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1285 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1291 return Stream.EmitAbbrev(std::move(Abbv)); 1292 } 1293 1294 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1295 SmallVectorImpl<uint64_t> &Record, 1296 unsigned &Abbrev) { 1297 if (!Abbrev) 1298 Abbrev = createDILocationAbbrev(); 1299 1300 Record.push_back(N->isDistinct()); 1301 Record.push_back(N->getLine()); 1302 Record.push_back(N->getColumn()); 1303 Record.push_back(VE.getMetadataID(N->getScope())); 1304 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1305 1306 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1307 Record.clear(); 1308 } 1309 1310 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1311 // Assume the column is usually under 128, and always output the inlined-at 1312 // location (it's never more expensive than building an array size 1). 1313 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1314 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1321 return Stream.EmitAbbrev(std::move(Abbv)); 1322 } 1323 1324 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1325 SmallVectorImpl<uint64_t> &Record, 1326 unsigned &Abbrev) { 1327 if (!Abbrev) 1328 Abbrev = createGenericDINodeAbbrev(); 1329 1330 Record.push_back(N->isDistinct()); 1331 Record.push_back(N->getTag()); 1332 Record.push_back(0); // Per-tag version field; unused for now. 1333 1334 for (auto &I : N->operands()) 1335 Record.push_back(VE.getMetadataOrNullID(I)); 1336 1337 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1338 Record.clear(); 1339 } 1340 1341 static uint64_t rotateSign(int64_t I) { 1342 uint64_t U = I; 1343 return I < 0 ? ~(U << 1) : U << 1; 1344 } 1345 1346 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1347 SmallVectorImpl<uint64_t> &Record, 1348 unsigned Abbrev) { 1349 Record.push_back(N->isDistinct()); 1350 Record.push_back(N->getCount()); 1351 Record.push_back(rotateSign(N->getLowerBound())); 1352 1353 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1354 Record.clear(); 1355 } 1356 1357 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1358 SmallVectorImpl<uint64_t> &Record, 1359 unsigned Abbrev) { 1360 Record.push_back(N->isDistinct()); 1361 Record.push_back(rotateSign(N->getValue())); 1362 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1363 1364 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1365 Record.clear(); 1366 } 1367 1368 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1369 SmallVectorImpl<uint64_t> &Record, 1370 unsigned Abbrev) { 1371 Record.push_back(N->isDistinct()); 1372 Record.push_back(N->getTag()); 1373 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1374 Record.push_back(N->getSizeInBits()); 1375 Record.push_back(N->getAlignInBits()); 1376 Record.push_back(N->getEncoding()); 1377 1378 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1379 Record.clear(); 1380 } 1381 1382 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1383 SmallVectorImpl<uint64_t> &Record, 1384 unsigned Abbrev) { 1385 Record.push_back(N->isDistinct()); 1386 Record.push_back(N->getTag()); 1387 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1388 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1389 Record.push_back(N->getLine()); 1390 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1391 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1392 Record.push_back(N->getSizeInBits()); 1393 Record.push_back(N->getAlignInBits()); 1394 Record.push_back(N->getOffsetInBits()); 1395 Record.push_back(N->getFlags()); 1396 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1397 1398 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1399 // that there is no DWARF address space associated with DIDerivedType. 1400 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1401 Record.push_back(*DWARFAddressSpace + 1); 1402 else 1403 Record.push_back(0); 1404 1405 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1406 Record.clear(); 1407 } 1408 1409 void ModuleBitcodeWriter::writeDICompositeType( 1410 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1411 unsigned Abbrev) { 1412 const unsigned IsNotUsedInOldTypeRef = 0x2; 1413 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1414 Record.push_back(N->getTag()); 1415 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1416 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1417 Record.push_back(N->getLine()); 1418 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1419 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1420 Record.push_back(N->getSizeInBits()); 1421 Record.push_back(N->getAlignInBits()); 1422 Record.push_back(N->getOffsetInBits()); 1423 Record.push_back(N->getFlags()); 1424 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1425 Record.push_back(N->getRuntimeLang()); 1426 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1427 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1428 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1429 1430 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1431 Record.clear(); 1432 } 1433 1434 void ModuleBitcodeWriter::writeDISubroutineType( 1435 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1436 unsigned Abbrev) { 1437 const unsigned HasNoOldTypeRefs = 0x2; 1438 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1439 Record.push_back(N->getFlags()); 1440 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1441 Record.push_back(N->getCC()); 1442 1443 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1448 SmallVectorImpl<uint64_t> &Record, 1449 unsigned Abbrev) { 1450 Record.push_back(N->isDistinct()); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1452 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1453 Record.push_back(N->getChecksumKind()); 1454 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1455 1456 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1461 SmallVectorImpl<uint64_t> &Record, 1462 unsigned Abbrev) { 1463 assert(N->isDistinct() && "Expected distinct compile units"); 1464 Record.push_back(/* IsDistinct */ true); 1465 Record.push_back(N->getSourceLanguage()); 1466 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1467 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1468 Record.push_back(N->isOptimized()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1470 Record.push_back(N->getRuntimeVersion()); 1471 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1472 Record.push_back(N->getEmissionKind()); 1473 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1474 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1475 Record.push_back(/* subprograms */ 0); 1476 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1478 Record.push_back(N->getDWOId()); 1479 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1480 Record.push_back(N->getSplitDebugInlining()); 1481 Record.push_back(N->getDebugInfoForProfiling()); 1482 1483 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1484 Record.clear(); 1485 } 1486 1487 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1488 SmallVectorImpl<uint64_t> &Record, 1489 unsigned Abbrev) { 1490 uint64_t HasUnitFlag = 1 << 1; 1491 Record.push_back(N->isDistinct() | HasUnitFlag); 1492 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1493 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1494 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1495 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1496 Record.push_back(N->getLine()); 1497 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1498 Record.push_back(N->isLocalToUnit()); 1499 Record.push_back(N->isDefinition()); 1500 Record.push_back(N->getScopeLine()); 1501 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1502 Record.push_back(N->getVirtuality()); 1503 Record.push_back(N->getVirtualIndex()); 1504 Record.push_back(N->getFlags()); 1505 Record.push_back(N->isOptimized()); 1506 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1507 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1509 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1510 Record.push_back(N->getThisAdjustment()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1512 1513 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1514 Record.clear(); 1515 } 1516 1517 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1518 SmallVectorImpl<uint64_t> &Record, 1519 unsigned Abbrev) { 1520 Record.push_back(N->isDistinct()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1522 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1523 Record.push_back(N->getLine()); 1524 Record.push_back(N->getColumn()); 1525 1526 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1527 Record.clear(); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1531 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1532 unsigned Abbrev) { 1533 Record.push_back(N->isDistinct()); 1534 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1536 Record.push_back(N->getDiscriminator()); 1537 1538 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1539 Record.clear(); 1540 } 1541 1542 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1543 SmallVectorImpl<uint64_t> &Record, 1544 unsigned Abbrev) { 1545 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1546 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1548 1549 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1550 Record.clear(); 1551 } 1552 1553 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1554 SmallVectorImpl<uint64_t> &Record, 1555 unsigned Abbrev) { 1556 Record.push_back(N->isDistinct()); 1557 Record.push_back(N->getMacinfoType()); 1558 Record.push_back(N->getLine()); 1559 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1561 1562 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1563 Record.clear(); 1564 } 1565 1566 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1567 SmallVectorImpl<uint64_t> &Record, 1568 unsigned Abbrev) { 1569 Record.push_back(N->isDistinct()); 1570 Record.push_back(N->getMacinfoType()); 1571 Record.push_back(N->getLine()); 1572 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1573 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1574 1575 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1576 Record.clear(); 1577 } 1578 1579 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1580 SmallVectorImpl<uint64_t> &Record, 1581 unsigned Abbrev) { 1582 Record.push_back(N->isDistinct()); 1583 for (auto &I : N->operands()) 1584 Record.push_back(VE.getMetadataOrNullID(I)); 1585 1586 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1587 Record.clear(); 1588 } 1589 1590 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1591 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1592 unsigned Abbrev) { 1593 Record.push_back(N->isDistinct()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1596 1597 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1602 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 Record.push_back(N->isDistinct()); 1605 Record.push_back(N->getTag()); 1606 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1609 1610 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1611 Record.clear(); 1612 } 1613 1614 void ModuleBitcodeWriter::writeDIGlobalVariable( 1615 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1616 unsigned Abbrev) { 1617 const uint64_t Version = 1 << 1; 1618 Record.push_back((uint64_t)N->isDistinct() | Version); 1619 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1623 Record.push_back(N->getLine()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1625 Record.push_back(N->isLocalToUnit()); 1626 Record.push_back(N->isDefinition()); 1627 Record.push_back(/* expr */ 0); 1628 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1629 Record.push_back(N->getAlignInBits()); 1630 1631 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1632 Record.clear(); 1633 } 1634 1635 void ModuleBitcodeWriter::writeDILocalVariable( 1636 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1637 unsigned Abbrev) { 1638 // In order to support all possible bitcode formats in BitcodeReader we need 1639 // to distinguish the following cases: 1640 // 1) Record has no artificial tag (Record[1]), 1641 // has no obsolete inlinedAt field (Record[9]). 1642 // In this case Record size will be 8, HasAlignment flag is false. 1643 // 2) Record has artificial tag (Record[1]), 1644 // has no obsolete inlignedAt field (Record[9]). 1645 // In this case Record size will be 9, HasAlignment flag is false. 1646 // 3) Record has both artificial tag (Record[1]) and 1647 // obsolete inlignedAt field (Record[9]). 1648 // In this case Record size will be 10, HasAlignment flag is false. 1649 // 4) Record has neither artificial tag, nor inlignedAt field, but 1650 // HasAlignment flag is true and Record[8] contains alignment value. 1651 const uint64_t HasAlignmentFlag = 1 << 1; 1652 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1653 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1656 Record.push_back(N->getLine()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1658 Record.push_back(N->getArg()); 1659 Record.push_back(N->getFlags()); 1660 Record.push_back(N->getAlignInBits()); 1661 1662 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1667 SmallVectorImpl<uint64_t> &Record, 1668 unsigned Abbrev) { 1669 Record.reserve(N->getElements().size() + 1); 1670 const uint64_t Version = 2 << 1; 1671 Record.push_back((uint64_t)N->isDistinct() | Version); 1672 Record.append(N->elements_begin(), N->elements_end()); 1673 1674 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1679 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 Record.push_back(N->isDistinct()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1684 1685 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1686 Record.clear(); 1687 } 1688 1689 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1690 SmallVectorImpl<uint64_t> &Record, 1691 unsigned Abbrev) { 1692 Record.push_back(N->isDistinct()); 1693 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1695 Record.push_back(N->getLine()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1698 Record.push_back(N->getAttributes()); 1699 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1700 1701 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDIImportedEntity( 1706 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 Record.push_back(N->isDistinct()); 1709 Record.push_back(N->getTag()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1712 Record.push_back(N->getLine()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1714 1715 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1720 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1721 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1724 return Stream.EmitAbbrev(std::move(Abbv)); 1725 } 1726 1727 void ModuleBitcodeWriter::writeNamedMetadata( 1728 SmallVectorImpl<uint64_t> &Record) { 1729 if (M.named_metadata_empty()) 1730 return; 1731 1732 unsigned Abbrev = createNamedMetadataAbbrev(); 1733 for (const NamedMDNode &NMD : M.named_metadata()) { 1734 // Write name. 1735 StringRef Str = NMD.getName(); 1736 Record.append(Str.bytes_begin(), Str.bytes_end()); 1737 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1738 Record.clear(); 1739 1740 // Write named metadata operands. 1741 for (const MDNode *N : NMD.operands()) 1742 Record.push_back(VE.getMetadataID(N)); 1743 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1744 Record.clear(); 1745 } 1746 } 1747 1748 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1749 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1750 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1754 return Stream.EmitAbbrev(std::move(Abbv)); 1755 } 1756 1757 /// Write out a record for MDString. 1758 /// 1759 /// All the metadata strings in a metadata block are emitted in a single 1760 /// record. The sizes and strings themselves are shoved into a blob. 1761 void ModuleBitcodeWriter::writeMetadataStrings( 1762 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1763 if (Strings.empty()) 1764 return; 1765 1766 // Start the record with the number of strings. 1767 Record.push_back(bitc::METADATA_STRINGS); 1768 Record.push_back(Strings.size()); 1769 1770 // Emit the sizes of the strings in the blob. 1771 SmallString<256> Blob; 1772 { 1773 BitstreamWriter W(Blob); 1774 for (const Metadata *MD : Strings) 1775 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1776 W.FlushToWord(); 1777 } 1778 1779 // Add the offset to the strings to the record. 1780 Record.push_back(Blob.size()); 1781 1782 // Add the strings to the blob. 1783 for (const Metadata *MD : Strings) 1784 Blob.append(cast<MDString>(MD)->getString()); 1785 1786 // Emit the final record. 1787 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1788 Record.clear(); 1789 } 1790 1791 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1792 enum MetadataAbbrev : unsigned { 1793 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1794 #include "llvm/IR/Metadata.def" 1795 LastPlusOne 1796 }; 1797 1798 void ModuleBitcodeWriter::writeMetadataRecords( 1799 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1800 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1801 if (MDs.empty()) 1802 return; 1803 1804 // Initialize MDNode abbreviations. 1805 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1806 #include "llvm/IR/Metadata.def" 1807 1808 for (const Metadata *MD : MDs) { 1809 if (IndexPos) 1810 IndexPos->push_back(Stream.GetCurrentBitNo()); 1811 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1812 assert(N->isResolved() && "Expected forward references to be resolved"); 1813 1814 switch (N->getMetadataID()) { 1815 default: 1816 llvm_unreachable("Invalid MDNode subclass"); 1817 #define HANDLE_MDNODE_LEAF(CLASS) \ 1818 case Metadata::CLASS##Kind: \ 1819 if (MDAbbrevs) \ 1820 write##CLASS(cast<CLASS>(N), Record, \ 1821 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1822 else \ 1823 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1824 continue; 1825 #include "llvm/IR/Metadata.def" 1826 } 1827 } 1828 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1829 } 1830 } 1831 1832 void ModuleBitcodeWriter::writeModuleMetadata() { 1833 if (!VE.hasMDs() && M.named_metadata_empty()) 1834 return; 1835 1836 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1837 SmallVector<uint64_t, 64> Record; 1838 1839 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1840 // block and load any metadata. 1841 std::vector<unsigned> MDAbbrevs; 1842 1843 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1844 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1845 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1846 createGenericDINodeAbbrev(); 1847 1848 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1849 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1852 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1853 1854 Abbv = std::make_shared<BitCodeAbbrev>(); 1855 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1858 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1859 1860 // Emit MDStrings together upfront. 1861 writeMetadataStrings(VE.getMDStrings(), Record); 1862 1863 // We only emit an index for the metadata record if we have more than a given 1864 // (naive) threshold of metadatas, otherwise it is not worth it. 1865 if (VE.getNonMDStrings().size() > IndexThreshold) { 1866 // Write a placeholder value in for the offset of the metadata index, 1867 // which is written after the records, so that it can include 1868 // the offset of each entry. The placeholder offset will be 1869 // updated after all records are emitted. 1870 uint64_t Vals[] = {0, 0}; 1871 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1872 } 1873 1874 // Compute and save the bit offset to the current position, which will be 1875 // patched when we emit the index later. We can simply subtract the 64-bit 1876 // fixed size from the current bit number to get the location to backpatch. 1877 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1878 1879 // This index will contain the bitpos for each individual record. 1880 std::vector<uint64_t> IndexPos; 1881 IndexPos.reserve(VE.getNonMDStrings().size()); 1882 1883 // Write all the records 1884 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1885 1886 if (VE.getNonMDStrings().size() > IndexThreshold) { 1887 // Now that we have emitted all the records we will emit the index. But 1888 // first 1889 // backpatch the forward reference so that the reader can skip the records 1890 // efficiently. 1891 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1892 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1893 1894 // Delta encode the index. 1895 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1896 for (auto &Elt : IndexPos) { 1897 auto EltDelta = Elt - PreviousValue; 1898 PreviousValue = Elt; 1899 Elt = EltDelta; 1900 } 1901 // Emit the index record. 1902 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1903 IndexPos.clear(); 1904 } 1905 1906 // Write the named metadata now. 1907 writeNamedMetadata(Record); 1908 1909 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1910 SmallVector<uint64_t, 4> Record; 1911 Record.push_back(VE.getValueID(&GO)); 1912 pushGlobalMetadataAttachment(Record, GO); 1913 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1914 }; 1915 for (const Function &F : M) 1916 if (F.isDeclaration() && F.hasMetadata()) 1917 AddDeclAttachedMetadata(F); 1918 // FIXME: Only store metadata for declarations here, and move data for global 1919 // variable definitions to a separate block (PR28134). 1920 for (const GlobalVariable &GV : M.globals()) 1921 if (GV.hasMetadata()) 1922 AddDeclAttachedMetadata(GV); 1923 1924 Stream.ExitBlock(); 1925 } 1926 1927 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1928 if (!VE.hasMDs()) 1929 return; 1930 1931 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1932 SmallVector<uint64_t, 64> Record; 1933 writeMetadataStrings(VE.getMDStrings(), Record); 1934 writeMetadataRecords(VE.getNonMDStrings(), Record); 1935 Stream.ExitBlock(); 1936 } 1937 1938 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1939 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1940 // [n x [id, mdnode]] 1941 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1942 GO.getAllMetadata(MDs); 1943 for (const auto &I : MDs) { 1944 Record.push_back(I.first); 1945 Record.push_back(VE.getMetadataID(I.second)); 1946 } 1947 } 1948 1949 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1950 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1951 1952 SmallVector<uint64_t, 64> Record; 1953 1954 if (F.hasMetadata()) { 1955 pushGlobalMetadataAttachment(Record, F); 1956 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1957 Record.clear(); 1958 } 1959 1960 // Write metadata attachments 1961 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1962 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1963 for (const BasicBlock &BB : F) 1964 for (const Instruction &I : BB) { 1965 MDs.clear(); 1966 I.getAllMetadataOtherThanDebugLoc(MDs); 1967 1968 // If no metadata, ignore instruction. 1969 if (MDs.empty()) continue; 1970 1971 Record.push_back(VE.getInstructionID(&I)); 1972 1973 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1974 Record.push_back(MDs[i].first); 1975 Record.push_back(VE.getMetadataID(MDs[i].second)); 1976 } 1977 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1978 Record.clear(); 1979 } 1980 1981 Stream.ExitBlock(); 1982 } 1983 1984 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1985 SmallVector<uint64_t, 64> Record; 1986 1987 // Write metadata kinds 1988 // METADATA_KIND - [n x [id, name]] 1989 SmallVector<StringRef, 8> Names; 1990 M.getMDKindNames(Names); 1991 1992 if (Names.empty()) return; 1993 1994 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1995 1996 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1997 Record.push_back(MDKindID); 1998 StringRef KName = Names[MDKindID]; 1999 Record.append(KName.begin(), KName.end()); 2000 2001 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2002 Record.clear(); 2003 } 2004 2005 Stream.ExitBlock(); 2006 } 2007 2008 void ModuleBitcodeWriter::writeOperandBundleTags() { 2009 // Write metadata kinds 2010 // 2011 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2012 // 2013 // OPERAND_BUNDLE_TAG - [strchr x N] 2014 2015 SmallVector<StringRef, 8> Tags; 2016 M.getOperandBundleTags(Tags); 2017 2018 if (Tags.empty()) 2019 return; 2020 2021 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2022 2023 SmallVector<uint64_t, 64> Record; 2024 2025 for (auto Tag : Tags) { 2026 Record.append(Tag.begin(), Tag.end()); 2027 2028 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2029 Record.clear(); 2030 } 2031 2032 Stream.ExitBlock(); 2033 } 2034 2035 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2036 if ((int64_t)V >= 0) 2037 Vals.push_back(V << 1); 2038 else 2039 Vals.push_back((-V << 1) | 1); 2040 } 2041 2042 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2043 bool isGlobal) { 2044 if (FirstVal == LastVal) return; 2045 2046 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2047 2048 unsigned AggregateAbbrev = 0; 2049 unsigned String8Abbrev = 0; 2050 unsigned CString7Abbrev = 0; 2051 unsigned CString6Abbrev = 0; 2052 // If this is a constant pool for the module, emit module-specific abbrevs. 2053 if (isGlobal) { 2054 // Abbrev for CST_CODE_AGGREGATE. 2055 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2056 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2059 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2060 2061 // Abbrev for CST_CODE_STRING. 2062 Abbv = std::make_shared<BitCodeAbbrev>(); 2063 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2066 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2067 // Abbrev for CST_CODE_CSTRING. 2068 Abbv = std::make_shared<BitCodeAbbrev>(); 2069 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2072 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2073 // Abbrev for CST_CODE_CSTRING. 2074 Abbv = std::make_shared<BitCodeAbbrev>(); 2075 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2078 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2079 } 2080 2081 SmallVector<uint64_t, 64> Record; 2082 2083 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2084 Type *LastTy = nullptr; 2085 for (unsigned i = FirstVal; i != LastVal; ++i) { 2086 const Value *V = Vals[i].first; 2087 // If we need to switch types, do so now. 2088 if (V->getType() != LastTy) { 2089 LastTy = V->getType(); 2090 Record.push_back(VE.getTypeID(LastTy)); 2091 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2092 CONSTANTS_SETTYPE_ABBREV); 2093 Record.clear(); 2094 } 2095 2096 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2097 Record.push_back(unsigned(IA->hasSideEffects()) | 2098 unsigned(IA->isAlignStack()) << 1 | 2099 unsigned(IA->getDialect()&1) << 2); 2100 2101 // Add the asm string. 2102 const std::string &AsmStr = IA->getAsmString(); 2103 Record.push_back(AsmStr.size()); 2104 Record.append(AsmStr.begin(), AsmStr.end()); 2105 2106 // Add the constraint string. 2107 const std::string &ConstraintStr = IA->getConstraintString(); 2108 Record.push_back(ConstraintStr.size()); 2109 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2110 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2111 Record.clear(); 2112 continue; 2113 } 2114 const Constant *C = cast<Constant>(V); 2115 unsigned Code = -1U; 2116 unsigned AbbrevToUse = 0; 2117 if (C->isNullValue()) { 2118 Code = bitc::CST_CODE_NULL; 2119 } else if (isa<UndefValue>(C)) { 2120 Code = bitc::CST_CODE_UNDEF; 2121 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2122 if (IV->getBitWidth() <= 64) { 2123 uint64_t V = IV->getSExtValue(); 2124 emitSignedInt64(Record, V); 2125 Code = bitc::CST_CODE_INTEGER; 2126 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2127 } else { // Wide integers, > 64 bits in size. 2128 // We have an arbitrary precision integer value to write whose 2129 // bit width is > 64. However, in canonical unsigned integer 2130 // format it is likely that the high bits are going to be zero. 2131 // So, we only write the number of active words. 2132 unsigned NWords = IV->getValue().getActiveWords(); 2133 const uint64_t *RawWords = IV->getValue().getRawData(); 2134 for (unsigned i = 0; i != NWords; ++i) { 2135 emitSignedInt64(Record, RawWords[i]); 2136 } 2137 Code = bitc::CST_CODE_WIDE_INTEGER; 2138 } 2139 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2140 Code = bitc::CST_CODE_FLOAT; 2141 Type *Ty = CFP->getType(); 2142 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2143 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2144 } else if (Ty->isX86_FP80Ty()) { 2145 // api needed to prevent premature destruction 2146 // bits are not in the same order as a normal i80 APInt, compensate. 2147 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2148 const uint64_t *p = api.getRawData(); 2149 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2150 Record.push_back(p[0] & 0xffffLL); 2151 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2152 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2153 const uint64_t *p = api.getRawData(); 2154 Record.push_back(p[0]); 2155 Record.push_back(p[1]); 2156 } else { 2157 assert (0 && "Unknown FP type!"); 2158 } 2159 } else if (isa<ConstantDataSequential>(C) && 2160 cast<ConstantDataSequential>(C)->isString()) { 2161 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2162 // Emit constant strings specially. 2163 unsigned NumElts = Str->getNumElements(); 2164 // If this is a null-terminated string, use the denser CSTRING encoding. 2165 if (Str->isCString()) { 2166 Code = bitc::CST_CODE_CSTRING; 2167 --NumElts; // Don't encode the null, which isn't allowed by char6. 2168 } else { 2169 Code = bitc::CST_CODE_STRING; 2170 AbbrevToUse = String8Abbrev; 2171 } 2172 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2173 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2174 for (unsigned i = 0; i != NumElts; ++i) { 2175 unsigned char V = Str->getElementAsInteger(i); 2176 Record.push_back(V); 2177 isCStr7 &= (V & 128) == 0; 2178 if (isCStrChar6) 2179 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2180 } 2181 2182 if (isCStrChar6) 2183 AbbrevToUse = CString6Abbrev; 2184 else if (isCStr7) 2185 AbbrevToUse = CString7Abbrev; 2186 } else if (const ConstantDataSequential *CDS = 2187 dyn_cast<ConstantDataSequential>(C)) { 2188 Code = bitc::CST_CODE_DATA; 2189 Type *EltTy = CDS->getType()->getElementType(); 2190 if (isa<IntegerType>(EltTy)) { 2191 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2192 Record.push_back(CDS->getElementAsInteger(i)); 2193 } else { 2194 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2195 Record.push_back( 2196 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2197 } 2198 } else if (isa<ConstantAggregate>(C)) { 2199 Code = bitc::CST_CODE_AGGREGATE; 2200 for (const Value *Op : C->operands()) 2201 Record.push_back(VE.getValueID(Op)); 2202 AbbrevToUse = AggregateAbbrev; 2203 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2204 switch (CE->getOpcode()) { 2205 default: 2206 if (Instruction::isCast(CE->getOpcode())) { 2207 Code = bitc::CST_CODE_CE_CAST; 2208 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2209 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2210 Record.push_back(VE.getValueID(C->getOperand(0))); 2211 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2212 } else { 2213 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2214 Code = bitc::CST_CODE_CE_BINOP; 2215 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2216 Record.push_back(VE.getValueID(C->getOperand(0))); 2217 Record.push_back(VE.getValueID(C->getOperand(1))); 2218 uint64_t Flags = getOptimizationFlags(CE); 2219 if (Flags != 0) 2220 Record.push_back(Flags); 2221 } 2222 break; 2223 case Instruction::GetElementPtr: { 2224 Code = bitc::CST_CODE_CE_GEP; 2225 const auto *GO = cast<GEPOperator>(C); 2226 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2227 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2228 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2229 Record.push_back((*Idx << 1) | GO->isInBounds()); 2230 } else if (GO->isInBounds()) 2231 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2232 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2233 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2234 Record.push_back(VE.getValueID(C->getOperand(i))); 2235 } 2236 break; 2237 } 2238 case Instruction::Select: 2239 Code = bitc::CST_CODE_CE_SELECT; 2240 Record.push_back(VE.getValueID(C->getOperand(0))); 2241 Record.push_back(VE.getValueID(C->getOperand(1))); 2242 Record.push_back(VE.getValueID(C->getOperand(2))); 2243 break; 2244 case Instruction::ExtractElement: 2245 Code = bitc::CST_CODE_CE_EXTRACTELT; 2246 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2247 Record.push_back(VE.getValueID(C->getOperand(0))); 2248 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2249 Record.push_back(VE.getValueID(C->getOperand(1))); 2250 break; 2251 case Instruction::InsertElement: 2252 Code = bitc::CST_CODE_CE_INSERTELT; 2253 Record.push_back(VE.getValueID(C->getOperand(0))); 2254 Record.push_back(VE.getValueID(C->getOperand(1))); 2255 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2256 Record.push_back(VE.getValueID(C->getOperand(2))); 2257 break; 2258 case Instruction::ShuffleVector: 2259 // If the return type and argument types are the same, this is a 2260 // standard shufflevector instruction. If the types are different, 2261 // then the shuffle is widening or truncating the input vectors, and 2262 // the argument type must also be encoded. 2263 if (C->getType() == C->getOperand(0)->getType()) { 2264 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2265 } else { 2266 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2267 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2268 } 2269 Record.push_back(VE.getValueID(C->getOperand(0))); 2270 Record.push_back(VE.getValueID(C->getOperand(1))); 2271 Record.push_back(VE.getValueID(C->getOperand(2))); 2272 break; 2273 case Instruction::ICmp: 2274 case Instruction::FCmp: 2275 Code = bitc::CST_CODE_CE_CMP; 2276 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2277 Record.push_back(VE.getValueID(C->getOperand(0))); 2278 Record.push_back(VE.getValueID(C->getOperand(1))); 2279 Record.push_back(CE->getPredicate()); 2280 break; 2281 } 2282 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2283 Code = bitc::CST_CODE_BLOCKADDRESS; 2284 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2285 Record.push_back(VE.getValueID(BA->getFunction())); 2286 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2287 } else { 2288 #ifndef NDEBUG 2289 C->dump(); 2290 #endif 2291 llvm_unreachable("Unknown constant!"); 2292 } 2293 Stream.EmitRecord(Code, Record, AbbrevToUse); 2294 Record.clear(); 2295 } 2296 2297 Stream.ExitBlock(); 2298 } 2299 2300 void ModuleBitcodeWriter::writeModuleConstants() { 2301 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2302 2303 // Find the first constant to emit, which is the first non-globalvalue value. 2304 // We know globalvalues have been emitted by WriteModuleInfo. 2305 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2306 if (!isa<GlobalValue>(Vals[i].first)) { 2307 writeConstants(i, Vals.size(), true); 2308 return; 2309 } 2310 } 2311 } 2312 2313 /// pushValueAndType - The file has to encode both the value and type id for 2314 /// many values, because we need to know what type to create for forward 2315 /// references. However, most operands are not forward references, so this type 2316 /// field is not needed. 2317 /// 2318 /// This function adds V's value ID to Vals. If the value ID is higher than the 2319 /// instruction ID, then it is a forward reference, and it also includes the 2320 /// type ID. The value ID that is written is encoded relative to the InstID. 2321 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2322 SmallVectorImpl<unsigned> &Vals) { 2323 unsigned ValID = VE.getValueID(V); 2324 // Make encoding relative to the InstID. 2325 Vals.push_back(InstID - ValID); 2326 if (ValID >= InstID) { 2327 Vals.push_back(VE.getTypeID(V->getType())); 2328 return true; 2329 } 2330 return false; 2331 } 2332 2333 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2334 unsigned InstID) { 2335 SmallVector<unsigned, 64> Record; 2336 LLVMContext &C = CS.getInstruction()->getContext(); 2337 2338 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2339 const auto &Bundle = CS.getOperandBundleAt(i); 2340 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2341 2342 for (auto &Input : Bundle.Inputs) 2343 pushValueAndType(Input, InstID, Record); 2344 2345 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2346 Record.clear(); 2347 } 2348 } 2349 2350 /// pushValue - Like pushValueAndType, but where the type of the value is 2351 /// omitted (perhaps it was already encoded in an earlier operand). 2352 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2353 SmallVectorImpl<unsigned> &Vals) { 2354 unsigned ValID = VE.getValueID(V); 2355 Vals.push_back(InstID - ValID); 2356 } 2357 2358 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2359 SmallVectorImpl<uint64_t> &Vals) { 2360 unsigned ValID = VE.getValueID(V); 2361 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2362 emitSignedInt64(Vals, diff); 2363 } 2364 2365 /// WriteInstruction - Emit an instruction to the specified stream. 2366 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2367 unsigned InstID, 2368 SmallVectorImpl<unsigned> &Vals) { 2369 unsigned Code = 0; 2370 unsigned AbbrevToUse = 0; 2371 VE.setInstructionID(&I); 2372 switch (I.getOpcode()) { 2373 default: 2374 if (Instruction::isCast(I.getOpcode())) { 2375 Code = bitc::FUNC_CODE_INST_CAST; 2376 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2377 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2378 Vals.push_back(VE.getTypeID(I.getType())); 2379 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2380 } else { 2381 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2382 Code = bitc::FUNC_CODE_INST_BINOP; 2383 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2384 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2385 pushValue(I.getOperand(1), InstID, Vals); 2386 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2387 uint64_t Flags = getOptimizationFlags(&I); 2388 if (Flags != 0) { 2389 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2390 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2391 Vals.push_back(Flags); 2392 } 2393 } 2394 break; 2395 2396 case Instruction::GetElementPtr: { 2397 Code = bitc::FUNC_CODE_INST_GEP; 2398 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2399 auto &GEPInst = cast<GetElementPtrInst>(I); 2400 Vals.push_back(GEPInst.isInBounds()); 2401 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2402 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2403 pushValueAndType(I.getOperand(i), InstID, Vals); 2404 break; 2405 } 2406 case Instruction::ExtractValue: { 2407 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2408 pushValueAndType(I.getOperand(0), InstID, Vals); 2409 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2410 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2411 break; 2412 } 2413 case Instruction::InsertValue: { 2414 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2415 pushValueAndType(I.getOperand(0), InstID, Vals); 2416 pushValueAndType(I.getOperand(1), InstID, Vals); 2417 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2418 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2419 break; 2420 } 2421 case Instruction::Select: 2422 Code = bitc::FUNC_CODE_INST_VSELECT; 2423 pushValueAndType(I.getOperand(1), InstID, Vals); 2424 pushValue(I.getOperand(2), InstID, Vals); 2425 pushValueAndType(I.getOperand(0), InstID, Vals); 2426 break; 2427 case Instruction::ExtractElement: 2428 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2429 pushValueAndType(I.getOperand(0), InstID, Vals); 2430 pushValueAndType(I.getOperand(1), InstID, Vals); 2431 break; 2432 case Instruction::InsertElement: 2433 Code = bitc::FUNC_CODE_INST_INSERTELT; 2434 pushValueAndType(I.getOperand(0), InstID, Vals); 2435 pushValue(I.getOperand(1), InstID, Vals); 2436 pushValueAndType(I.getOperand(2), InstID, Vals); 2437 break; 2438 case Instruction::ShuffleVector: 2439 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2440 pushValueAndType(I.getOperand(0), InstID, Vals); 2441 pushValue(I.getOperand(1), InstID, Vals); 2442 pushValue(I.getOperand(2), InstID, Vals); 2443 break; 2444 case Instruction::ICmp: 2445 case Instruction::FCmp: { 2446 // compare returning Int1Ty or vector of Int1Ty 2447 Code = bitc::FUNC_CODE_INST_CMP2; 2448 pushValueAndType(I.getOperand(0), InstID, Vals); 2449 pushValue(I.getOperand(1), InstID, Vals); 2450 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2451 uint64_t Flags = getOptimizationFlags(&I); 2452 if (Flags != 0) 2453 Vals.push_back(Flags); 2454 break; 2455 } 2456 2457 case Instruction::Ret: 2458 { 2459 Code = bitc::FUNC_CODE_INST_RET; 2460 unsigned NumOperands = I.getNumOperands(); 2461 if (NumOperands == 0) 2462 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2463 else if (NumOperands == 1) { 2464 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2465 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2466 } else { 2467 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2468 pushValueAndType(I.getOperand(i), InstID, Vals); 2469 } 2470 } 2471 break; 2472 case Instruction::Br: 2473 { 2474 Code = bitc::FUNC_CODE_INST_BR; 2475 const BranchInst &II = cast<BranchInst>(I); 2476 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2477 if (II.isConditional()) { 2478 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2479 pushValue(II.getCondition(), InstID, Vals); 2480 } 2481 } 2482 break; 2483 case Instruction::Switch: 2484 { 2485 Code = bitc::FUNC_CODE_INST_SWITCH; 2486 const SwitchInst &SI = cast<SwitchInst>(I); 2487 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2488 pushValue(SI.getCondition(), InstID, Vals); 2489 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2490 for (auto Case : SI.cases()) { 2491 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2492 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2493 } 2494 } 2495 break; 2496 case Instruction::IndirectBr: 2497 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2498 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2499 // Encode the address operand as relative, but not the basic blocks. 2500 pushValue(I.getOperand(0), InstID, Vals); 2501 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2502 Vals.push_back(VE.getValueID(I.getOperand(i))); 2503 break; 2504 2505 case Instruction::Invoke: { 2506 const InvokeInst *II = cast<InvokeInst>(&I); 2507 const Value *Callee = II->getCalledValue(); 2508 FunctionType *FTy = II->getFunctionType(); 2509 2510 if (II->hasOperandBundles()) 2511 writeOperandBundles(II, InstID); 2512 2513 Code = bitc::FUNC_CODE_INST_INVOKE; 2514 2515 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2516 Vals.push_back(II->getCallingConv() | 1 << 13); 2517 Vals.push_back(VE.getValueID(II->getNormalDest())); 2518 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2519 Vals.push_back(VE.getTypeID(FTy)); 2520 pushValueAndType(Callee, InstID, Vals); 2521 2522 // Emit value #'s for the fixed parameters. 2523 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2524 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2525 2526 // Emit type/value pairs for varargs params. 2527 if (FTy->isVarArg()) { 2528 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2529 i != e; ++i) 2530 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2531 } 2532 break; 2533 } 2534 case Instruction::Resume: 2535 Code = bitc::FUNC_CODE_INST_RESUME; 2536 pushValueAndType(I.getOperand(0), InstID, Vals); 2537 break; 2538 case Instruction::CleanupRet: { 2539 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2540 const auto &CRI = cast<CleanupReturnInst>(I); 2541 pushValue(CRI.getCleanupPad(), InstID, Vals); 2542 if (CRI.hasUnwindDest()) 2543 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2544 break; 2545 } 2546 case Instruction::CatchRet: { 2547 Code = bitc::FUNC_CODE_INST_CATCHRET; 2548 const auto &CRI = cast<CatchReturnInst>(I); 2549 pushValue(CRI.getCatchPad(), InstID, Vals); 2550 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2551 break; 2552 } 2553 case Instruction::CleanupPad: 2554 case Instruction::CatchPad: { 2555 const auto &FuncletPad = cast<FuncletPadInst>(I); 2556 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2557 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2558 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2559 2560 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2561 Vals.push_back(NumArgOperands); 2562 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2563 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2564 break; 2565 } 2566 case Instruction::CatchSwitch: { 2567 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2568 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2569 2570 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2571 2572 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2573 Vals.push_back(NumHandlers); 2574 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2575 Vals.push_back(VE.getValueID(CatchPadBB)); 2576 2577 if (CatchSwitch.hasUnwindDest()) 2578 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2579 break; 2580 } 2581 case Instruction::Unreachable: 2582 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2583 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2584 break; 2585 2586 case Instruction::PHI: { 2587 const PHINode &PN = cast<PHINode>(I); 2588 Code = bitc::FUNC_CODE_INST_PHI; 2589 // With the newer instruction encoding, forward references could give 2590 // negative valued IDs. This is most common for PHIs, so we use 2591 // signed VBRs. 2592 SmallVector<uint64_t, 128> Vals64; 2593 Vals64.push_back(VE.getTypeID(PN.getType())); 2594 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2595 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2596 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2597 } 2598 // Emit a Vals64 vector and exit. 2599 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2600 Vals64.clear(); 2601 return; 2602 } 2603 2604 case Instruction::LandingPad: { 2605 const LandingPadInst &LP = cast<LandingPadInst>(I); 2606 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2607 Vals.push_back(VE.getTypeID(LP.getType())); 2608 Vals.push_back(LP.isCleanup()); 2609 Vals.push_back(LP.getNumClauses()); 2610 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2611 if (LP.isCatch(I)) 2612 Vals.push_back(LandingPadInst::Catch); 2613 else 2614 Vals.push_back(LandingPadInst::Filter); 2615 pushValueAndType(LP.getClause(I), InstID, Vals); 2616 } 2617 break; 2618 } 2619 2620 case Instruction::Alloca: { 2621 Code = bitc::FUNC_CODE_INST_ALLOCA; 2622 const AllocaInst &AI = cast<AllocaInst>(I); 2623 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2624 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2625 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2626 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2627 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2628 "not enough bits for maximum alignment"); 2629 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2630 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2631 AlignRecord |= 1 << 6; 2632 AlignRecord |= AI.isSwiftError() << 7; 2633 Vals.push_back(AlignRecord); 2634 break; 2635 } 2636 2637 case Instruction::Load: 2638 if (cast<LoadInst>(I).isAtomic()) { 2639 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2640 pushValueAndType(I.getOperand(0), InstID, Vals); 2641 } else { 2642 Code = bitc::FUNC_CODE_INST_LOAD; 2643 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2644 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2645 } 2646 Vals.push_back(VE.getTypeID(I.getType())); 2647 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2648 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2649 if (cast<LoadInst>(I).isAtomic()) { 2650 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2651 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2652 } 2653 break; 2654 case Instruction::Store: 2655 if (cast<StoreInst>(I).isAtomic()) 2656 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2657 else 2658 Code = bitc::FUNC_CODE_INST_STORE; 2659 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2660 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2661 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2662 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2663 if (cast<StoreInst>(I).isAtomic()) { 2664 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2665 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2666 } 2667 break; 2668 case Instruction::AtomicCmpXchg: 2669 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2670 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2671 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2672 pushValue(I.getOperand(2), InstID, Vals); // newval. 2673 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2674 Vals.push_back( 2675 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2676 Vals.push_back( 2677 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2678 Vals.push_back( 2679 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2680 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2681 break; 2682 case Instruction::AtomicRMW: 2683 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2684 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2685 pushValue(I.getOperand(1), InstID, Vals); // val. 2686 Vals.push_back( 2687 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2688 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2689 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2690 Vals.push_back( 2691 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2692 break; 2693 case Instruction::Fence: 2694 Code = bitc::FUNC_CODE_INST_FENCE; 2695 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2696 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2697 break; 2698 case Instruction::Call: { 2699 const CallInst &CI = cast<CallInst>(I); 2700 FunctionType *FTy = CI.getFunctionType(); 2701 2702 if (CI.hasOperandBundles()) 2703 writeOperandBundles(&CI, InstID); 2704 2705 Code = bitc::FUNC_CODE_INST_CALL; 2706 2707 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2708 2709 unsigned Flags = getOptimizationFlags(&I); 2710 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2711 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2712 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2713 1 << bitc::CALL_EXPLICIT_TYPE | 2714 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2715 unsigned(Flags != 0) << bitc::CALL_FMF); 2716 if (Flags != 0) 2717 Vals.push_back(Flags); 2718 2719 Vals.push_back(VE.getTypeID(FTy)); 2720 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2721 2722 // Emit value #'s for the fixed parameters. 2723 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2724 // Check for labels (can happen with asm labels). 2725 if (FTy->getParamType(i)->isLabelTy()) 2726 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2727 else 2728 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2729 } 2730 2731 // Emit type/value pairs for varargs params. 2732 if (FTy->isVarArg()) { 2733 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2734 i != e; ++i) 2735 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2736 } 2737 break; 2738 } 2739 case Instruction::VAArg: 2740 Code = bitc::FUNC_CODE_INST_VAARG; 2741 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2742 pushValue(I.getOperand(0), InstID, Vals); // valist. 2743 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2744 break; 2745 } 2746 2747 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2748 Vals.clear(); 2749 } 2750 2751 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2752 /// to allow clients to efficiently find the function body. 2753 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2754 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2755 // Get the offset of the VST we are writing, and backpatch it into 2756 // the VST forward declaration record. 2757 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2758 // The BitcodeStartBit was the stream offset of the identification block. 2759 VSTOffset -= bitcodeStartBit(); 2760 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2761 // Note that we add 1 here because the offset is relative to one word 2762 // before the start of the identification block, which was historically 2763 // always the start of the regular bitcode header. 2764 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2765 2766 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2767 2768 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2769 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2772 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2773 2774 for (const Function &F : M) { 2775 uint64_t Record[2]; 2776 2777 if (F.isDeclaration()) 2778 continue; 2779 2780 Record[0] = VE.getValueID(&F); 2781 2782 // Save the word offset of the function (from the start of the 2783 // actual bitcode written to the stream). 2784 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2785 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2786 // Note that we add 1 here because the offset is relative to one word 2787 // before the start of the identification block, which was historically 2788 // always the start of the regular bitcode header. 2789 Record[1] = BitcodeIndex / 32 + 1; 2790 2791 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2792 } 2793 2794 Stream.ExitBlock(); 2795 } 2796 2797 /// Emit names for arguments, instructions and basic blocks in a function. 2798 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2799 const ValueSymbolTable &VST) { 2800 if (VST.empty()) 2801 return; 2802 2803 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2804 2805 // FIXME: Set up the abbrev, we know how many values there are! 2806 // FIXME: We know if the type names can use 7-bit ascii. 2807 SmallVector<uint64_t, 64> NameVals; 2808 2809 for (const ValueName &Name : VST) { 2810 // Figure out the encoding to use for the name. 2811 StringEncoding Bits = 2812 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2813 2814 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2815 NameVals.push_back(VE.getValueID(Name.getValue())); 2816 2817 // VST_CODE_ENTRY: [valueid, namechar x N] 2818 // VST_CODE_BBENTRY: [bbid, namechar x N] 2819 unsigned Code; 2820 if (isa<BasicBlock>(Name.getValue())) { 2821 Code = bitc::VST_CODE_BBENTRY; 2822 if (Bits == SE_Char6) 2823 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2824 } else { 2825 Code = bitc::VST_CODE_ENTRY; 2826 if (Bits == SE_Char6) 2827 AbbrevToUse = VST_ENTRY_6_ABBREV; 2828 else if (Bits == SE_Fixed7) 2829 AbbrevToUse = VST_ENTRY_7_ABBREV; 2830 } 2831 2832 for (const auto P : Name.getKey()) 2833 NameVals.push_back((unsigned char)P); 2834 2835 // Emit the finished record. 2836 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2837 NameVals.clear(); 2838 } 2839 2840 Stream.ExitBlock(); 2841 } 2842 2843 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2844 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2845 unsigned Code; 2846 if (isa<BasicBlock>(Order.V)) 2847 Code = bitc::USELIST_CODE_BB; 2848 else 2849 Code = bitc::USELIST_CODE_DEFAULT; 2850 2851 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2852 Record.push_back(VE.getValueID(Order.V)); 2853 Stream.EmitRecord(Code, Record); 2854 } 2855 2856 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2857 assert(VE.shouldPreserveUseListOrder() && 2858 "Expected to be preserving use-list order"); 2859 2860 auto hasMore = [&]() { 2861 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2862 }; 2863 if (!hasMore()) 2864 // Nothing to do. 2865 return; 2866 2867 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2868 while (hasMore()) { 2869 writeUseList(std::move(VE.UseListOrders.back())); 2870 VE.UseListOrders.pop_back(); 2871 } 2872 Stream.ExitBlock(); 2873 } 2874 2875 /// Emit a function body to the module stream. 2876 void ModuleBitcodeWriter::writeFunction( 2877 const Function &F, 2878 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2879 // Save the bitcode index of the start of this function block for recording 2880 // in the VST. 2881 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2882 2883 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2884 VE.incorporateFunction(F); 2885 2886 SmallVector<unsigned, 64> Vals; 2887 2888 // Emit the number of basic blocks, so the reader can create them ahead of 2889 // time. 2890 Vals.push_back(VE.getBasicBlocks().size()); 2891 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2892 Vals.clear(); 2893 2894 // If there are function-local constants, emit them now. 2895 unsigned CstStart, CstEnd; 2896 VE.getFunctionConstantRange(CstStart, CstEnd); 2897 writeConstants(CstStart, CstEnd, false); 2898 2899 // If there is function-local metadata, emit it now. 2900 writeFunctionMetadata(F); 2901 2902 // Keep a running idea of what the instruction ID is. 2903 unsigned InstID = CstEnd; 2904 2905 bool NeedsMetadataAttachment = F.hasMetadata(); 2906 2907 DILocation *LastDL = nullptr; 2908 // Finally, emit all the instructions, in order. 2909 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2910 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2911 I != E; ++I) { 2912 writeInstruction(*I, InstID, Vals); 2913 2914 if (!I->getType()->isVoidTy()) 2915 ++InstID; 2916 2917 // If the instruction has metadata, write a metadata attachment later. 2918 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2919 2920 // If the instruction has a debug location, emit it. 2921 DILocation *DL = I->getDebugLoc(); 2922 if (!DL) 2923 continue; 2924 2925 if (DL == LastDL) { 2926 // Just repeat the same debug loc as last time. 2927 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2928 continue; 2929 } 2930 2931 Vals.push_back(DL->getLine()); 2932 Vals.push_back(DL->getColumn()); 2933 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2934 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2935 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2936 Vals.clear(); 2937 2938 LastDL = DL; 2939 } 2940 2941 // Emit names for all the instructions etc. 2942 if (auto *Symtab = F.getValueSymbolTable()) 2943 writeFunctionLevelValueSymbolTable(*Symtab); 2944 2945 if (NeedsMetadataAttachment) 2946 writeFunctionMetadataAttachment(F); 2947 if (VE.shouldPreserveUseListOrder()) 2948 writeUseListBlock(&F); 2949 VE.purgeFunction(); 2950 Stream.ExitBlock(); 2951 } 2952 2953 // Emit blockinfo, which defines the standard abbreviations etc. 2954 void ModuleBitcodeWriter::writeBlockInfo() { 2955 // We only want to emit block info records for blocks that have multiple 2956 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2957 // Other blocks can define their abbrevs inline. 2958 Stream.EnterBlockInfoBlock(); 2959 2960 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2961 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2966 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2967 VST_ENTRY_8_ABBREV) 2968 llvm_unreachable("Unexpected abbrev ordering!"); 2969 } 2970 2971 { // 7-bit fixed width VST_CODE_ENTRY strings. 2972 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2973 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2977 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2978 VST_ENTRY_7_ABBREV) 2979 llvm_unreachable("Unexpected abbrev ordering!"); 2980 } 2981 { // 6-bit char6 VST_CODE_ENTRY strings. 2982 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2983 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2987 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2988 VST_ENTRY_6_ABBREV) 2989 llvm_unreachable("Unexpected abbrev ordering!"); 2990 } 2991 { // 6-bit char6 VST_CODE_BBENTRY strings. 2992 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2993 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2997 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2998 VST_BBENTRY_6_ABBREV) 2999 llvm_unreachable("Unexpected abbrev ordering!"); 3000 } 3001 3002 3003 3004 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3005 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3006 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3008 VE.computeBitsRequiredForTypeIndicies())); 3009 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3010 CONSTANTS_SETTYPE_ABBREV) 3011 llvm_unreachable("Unexpected abbrev ordering!"); 3012 } 3013 3014 { // INTEGER abbrev for CONSTANTS_BLOCK. 3015 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3016 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3018 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3019 CONSTANTS_INTEGER_ABBREV) 3020 llvm_unreachable("Unexpected abbrev ordering!"); 3021 } 3022 3023 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3024 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3025 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3028 VE.computeBitsRequiredForTypeIndicies())); 3029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3030 3031 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3032 CONSTANTS_CE_CAST_Abbrev) 3033 llvm_unreachable("Unexpected abbrev ordering!"); 3034 } 3035 { // NULL abbrev for CONSTANTS_BLOCK. 3036 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3037 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3038 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3039 CONSTANTS_NULL_Abbrev) 3040 llvm_unreachable("Unexpected abbrev ordering!"); 3041 } 3042 3043 // FIXME: This should only use space for first class types! 3044 3045 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3046 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3047 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3050 VE.computeBitsRequiredForTypeIndicies())); 3051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3053 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3054 FUNCTION_INST_LOAD_ABBREV) 3055 llvm_unreachable("Unexpected abbrev ordering!"); 3056 } 3057 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3058 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3059 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3063 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3064 FUNCTION_INST_BINOP_ABBREV) 3065 llvm_unreachable("Unexpected abbrev ordering!"); 3066 } 3067 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3068 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3069 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3074 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3075 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3076 llvm_unreachable("Unexpected abbrev ordering!"); 3077 } 3078 { // INST_CAST abbrev for FUNCTION_BLOCK. 3079 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3080 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3083 VE.computeBitsRequiredForTypeIndicies())); 3084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3085 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3086 FUNCTION_INST_CAST_ABBREV) 3087 llvm_unreachable("Unexpected abbrev ordering!"); 3088 } 3089 3090 { // INST_RET abbrev for FUNCTION_BLOCK. 3091 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3092 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3093 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3094 FUNCTION_INST_RET_VOID_ABBREV) 3095 llvm_unreachable("Unexpected abbrev ordering!"); 3096 } 3097 { // INST_RET abbrev for FUNCTION_BLOCK. 3098 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3099 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3101 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3102 FUNCTION_INST_RET_VAL_ABBREV) 3103 llvm_unreachable("Unexpected abbrev ordering!"); 3104 } 3105 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3106 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3107 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3108 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3109 FUNCTION_INST_UNREACHABLE_ABBREV) 3110 llvm_unreachable("Unexpected abbrev ordering!"); 3111 } 3112 { 3113 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3114 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3117 Log2_32_Ceil(VE.getTypes().size() + 1))); 3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3120 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3121 FUNCTION_INST_GEP_ABBREV) 3122 llvm_unreachable("Unexpected abbrev ordering!"); 3123 } 3124 3125 Stream.ExitBlock(); 3126 } 3127 3128 /// Write the module path strings, currently only used when generating 3129 /// a combined index file. 3130 void IndexBitcodeWriter::writeModStrings() { 3131 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3132 3133 // TODO: See which abbrev sizes we actually need to emit 3134 3135 // 8-bit fixed-width MST_ENTRY strings. 3136 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3137 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3141 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3142 3143 // 7-bit fixed width MST_ENTRY strings. 3144 Abbv = std::make_shared<BitCodeAbbrev>(); 3145 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3149 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3150 3151 // 6-bit char6 MST_ENTRY strings. 3152 Abbv = std::make_shared<BitCodeAbbrev>(); 3153 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3157 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3158 3159 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3160 Abbv = std::make_shared<BitCodeAbbrev>(); 3161 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3167 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3168 3169 SmallVector<unsigned, 64> Vals; 3170 forEachModule( 3171 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3172 StringEncoding Bits = 3173 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3174 unsigned AbbrevToUse = Abbrev8Bit; 3175 if (Bits == SE_Char6) 3176 AbbrevToUse = Abbrev6Bit; 3177 else if (Bits == SE_Fixed7) 3178 AbbrevToUse = Abbrev7Bit; 3179 3180 Vals.push_back(MPSE.getValue().first); 3181 3182 for (const auto P : MPSE.getKey()) 3183 Vals.push_back((unsigned char)P); 3184 3185 // Emit the finished record. 3186 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3187 3188 Vals.clear(); 3189 // Emit an optional hash for the module now 3190 auto &Hash = MPSE.getValue().second; 3191 bool AllZero = 3192 true; // Detect if the hash is empty, and do not generate it 3193 for (auto Val : Hash) { 3194 if (Val) 3195 AllZero = false; 3196 Vals.push_back(Val); 3197 } 3198 if (!AllZero) { 3199 // Emit the hash record. 3200 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3201 } 3202 3203 Vals.clear(); 3204 }); 3205 Stream.ExitBlock(); 3206 } 3207 3208 /// Write the function type metadata related records that need to appear before 3209 /// a function summary entry (whether per-module or combined). 3210 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3211 FunctionSummary *FS) { 3212 if (!FS->type_tests().empty()) 3213 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3214 3215 SmallVector<uint64_t, 64> Record; 3216 3217 auto WriteVFuncIdVec = [&](uint64_t Ty, 3218 ArrayRef<FunctionSummary::VFuncId> VFs) { 3219 if (VFs.empty()) 3220 return; 3221 Record.clear(); 3222 for (auto &VF : VFs) { 3223 Record.push_back(VF.GUID); 3224 Record.push_back(VF.Offset); 3225 } 3226 Stream.EmitRecord(Ty, Record); 3227 }; 3228 3229 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3230 FS->type_test_assume_vcalls()); 3231 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3232 FS->type_checked_load_vcalls()); 3233 3234 auto WriteConstVCallVec = [&](uint64_t Ty, 3235 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3236 for (auto &VC : VCs) { 3237 Record.clear(); 3238 Record.push_back(VC.VFunc.GUID); 3239 Record.push_back(VC.VFunc.Offset); 3240 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3241 Stream.EmitRecord(Ty, Record); 3242 } 3243 }; 3244 3245 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3246 FS->type_test_assume_const_vcalls()); 3247 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3248 FS->type_checked_load_const_vcalls()); 3249 } 3250 3251 // Helper to emit a single function summary record. 3252 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3253 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3254 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3255 const Function &F) { 3256 NameVals.push_back(ValueID); 3257 3258 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3259 writeFunctionTypeMetadataRecords(Stream, FS); 3260 3261 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3262 NameVals.push_back(FS->instCount()); 3263 NameVals.push_back(FS->refs().size()); 3264 3265 for (auto &RI : FS->refs()) 3266 NameVals.push_back(VE.getValueID(RI.getValue())); 3267 3268 bool HasProfileData = F.getEntryCount().hasValue(); 3269 for (auto &ECI : FS->calls()) { 3270 NameVals.push_back(getValueId(ECI.first)); 3271 if (HasProfileData) 3272 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3273 } 3274 3275 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3276 unsigned Code = 3277 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3278 3279 // Emit the finished record. 3280 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3281 NameVals.clear(); 3282 } 3283 3284 // Collect the global value references in the given variable's initializer, 3285 // and emit them in a summary record. 3286 void ModuleBitcodeWriter::writeModuleLevelReferences( 3287 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3288 unsigned FSModRefsAbbrev) { 3289 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3290 if (!VI || VI.getSummaryList().empty()) { 3291 // Only declarations should not have a summary (a declaration might however 3292 // have a summary if the def was in module level asm). 3293 assert(V.isDeclaration()); 3294 return; 3295 } 3296 auto *Summary = VI.getSummaryList()[0].get(); 3297 NameVals.push_back(VE.getValueID(&V)); 3298 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3299 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3300 3301 unsigned SizeBeforeRefs = NameVals.size(); 3302 for (auto &RI : VS->refs()) 3303 NameVals.push_back(VE.getValueID(RI.getValue())); 3304 // Sort the refs for determinism output, the vector returned by FS->refs() has 3305 // been initialized from a DenseSet. 3306 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3307 3308 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3309 FSModRefsAbbrev); 3310 NameVals.clear(); 3311 } 3312 3313 // Current version for the summary. 3314 // This is bumped whenever we introduce changes in the way some record are 3315 // interpreted, like flags for instance. 3316 static const uint64_t INDEX_VERSION = 3; 3317 3318 /// Emit the per-module summary section alongside the rest of 3319 /// the module's bitcode. 3320 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3321 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3322 3323 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3324 3325 if (Index->begin() == Index->end()) { 3326 Stream.ExitBlock(); 3327 return; 3328 } 3329 3330 for (const auto &GVI : valueIds()) { 3331 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3332 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3333 } 3334 3335 // Abbrev for FS_PERMODULE. 3336 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3337 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3342 // numrefs x valueid, n x (valueid) 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3345 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3346 3347 // Abbrev for FS_PERMODULE_PROFILE. 3348 Abbv = std::make_shared<BitCodeAbbrev>(); 3349 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3354 // numrefs x valueid, n x (valueid, hotness) 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3357 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3358 3359 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3360 Abbv = std::make_shared<BitCodeAbbrev>(); 3361 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3366 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3367 3368 // Abbrev for FS_ALIAS. 3369 Abbv = std::make_shared<BitCodeAbbrev>(); 3370 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3374 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3375 3376 SmallVector<uint64_t, 64> NameVals; 3377 // Iterate over the list of functions instead of the Index to 3378 // ensure the ordering is stable. 3379 for (const Function &F : M) { 3380 // Summary emission does not support anonymous functions, they have to 3381 // renamed using the anonymous function renaming pass. 3382 if (!F.hasName()) 3383 report_fatal_error("Unexpected anonymous function when writing summary"); 3384 3385 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3386 if (!VI || VI.getSummaryList().empty()) { 3387 // Only declarations should not have a summary (a declaration might 3388 // however have a summary if the def was in module level asm). 3389 assert(F.isDeclaration()); 3390 continue; 3391 } 3392 auto *Summary = VI.getSummaryList()[0].get(); 3393 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3394 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3395 } 3396 3397 // Capture references from GlobalVariable initializers, which are outside 3398 // of a function scope. 3399 for (const GlobalVariable &G : M.globals()) 3400 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3401 3402 for (const GlobalAlias &A : M.aliases()) { 3403 auto *Aliasee = A.getBaseObject(); 3404 if (!Aliasee->hasName()) 3405 // Nameless function don't have an entry in the summary, skip it. 3406 continue; 3407 auto AliasId = VE.getValueID(&A); 3408 auto AliaseeId = VE.getValueID(Aliasee); 3409 NameVals.push_back(AliasId); 3410 auto *Summary = Index->getGlobalValueSummary(A); 3411 AliasSummary *AS = cast<AliasSummary>(Summary); 3412 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3413 NameVals.push_back(AliaseeId); 3414 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3415 NameVals.clear(); 3416 } 3417 3418 Stream.ExitBlock(); 3419 } 3420 3421 /// Emit the combined summary section into the combined index file. 3422 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3423 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3424 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3425 3426 for (const auto &GVI : valueIds()) { 3427 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3428 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3429 } 3430 3431 // Abbrev for FS_COMBINED. 3432 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3433 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3439 // numrefs x valueid, n x (valueid) 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3442 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3443 3444 // Abbrev for FS_COMBINED_PROFILE. 3445 Abbv = std::make_shared<BitCodeAbbrev>(); 3446 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3452 // numrefs x valueid, n x (valueid, hotness) 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3455 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3456 3457 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3458 Abbv = std::make_shared<BitCodeAbbrev>(); 3459 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3465 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3466 3467 // Abbrev for FS_COMBINED_ALIAS. 3468 Abbv = std::make_shared<BitCodeAbbrev>(); 3469 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3474 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3475 3476 // The aliases are emitted as a post-pass, and will point to the value 3477 // id of the aliasee. Save them in a vector for post-processing. 3478 SmallVector<AliasSummary *, 64> Aliases; 3479 3480 // Save the value id for each summary for alias emission. 3481 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3482 3483 SmallVector<uint64_t, 64> NameVals; 3484 3485 // For local linkage, we also emit the original name separately 3486 // immediately after the record. 3487 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3488 if (!GlobalValue::isLocalLinkage(S.linkage())) 3489 return; 3490 NameVals.push_back(S.getOriginalName()); 3491 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3492 NameVals.clear(); 3493 }; 3494 3495 forEachSummary([&](GVInfo I) { 3496 GlobalValueSummary *S = I.second; 3497 assert(S); 3498 3499 auto ValueId = getValueId(I.first); 3500 assert(ValueId); 3501 SummaryToValueIdMap[S] = *ValueId; 3502 3503 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3504 // Will process aliases as a post-pass because the reader wants all 3505 // global to be loaded first. 3506 Aliases.push_back(AS); 3507 return; 3508 } 3509 3510 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3511 NameVals.push_back(*ValueId); 3512 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3513 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3514 for (auto &RI : VS->refs()) { 3515 auto RefValueId = getValueId(RI.getGUID()); 3516 if (!RefValueId) 3517 continue; 3518 NameVals.push_back(*RefValueId); 3519 } 3520 3521 // Emit the finished record. 3522 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3523 FSModRefsAbbrev); 3524 NameVals.clear(); 3525 MaybeEmitOriginalName(*S); 3526 return; 3527 } 3528 3529 auto *FS = cast<FunctionSummary>(S); 3530 writeFunctionTypeMetadataRecords(Stream, FS); 3531 3532 NameVals.push_back(*ValueId); 3533 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3534 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3535 NameVals.push_back(FS->instCount()); 3536 // Fill in below 3537 NameVals.push_back(0); 3538 3539 unsigned Count = 0; 3540 for (auto &RI : FS->refs()) { 3541 auto RefValueId = getValueId(RI.getGUID()); 3542 if (!RefValueId) 3543 continue; 3544 NameVals.push_back(*RefValueId); 3545 Count++; 3546 } 3547 NameVals[4] = Count; 3548 3549 bool HasProfileData = false; 3550 for (auto &EI : FS->calls()) { 3551 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3552 if (HasProfileData) 3553 break; 3554 } 3555 3556 for (auto &EI : FS->calls()) { 3557 // If this GUID doesn't have a value id, it doesn't have a function 3558 // summary and we don't need to record any calls to it. 3559 GlobalValue::GUID GUID = EI.first.getGUID(); 3560 auto CallValueId = getValueId(GUID); 3561 if (!CallValueId) { 3562 // For SamplePGO, the indirect call targets for local functions will 3563 // have its original name annotated in profile. We try to find the 3564 // corresponding PGOFuncName as the GUID. 3565 GUID = Index.getGUIDFromOriginalID(GUID); 3566 if (GUID == 0) 3567 continue; 3568 CallValueId = getValueId(GUID); 3569 if (!CallValueId) 3570 continue; 3571 } 3572 NameVals.push_back(*CallValueId); 3573 if (HasProfileData) 3574 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3575 } 3576 3577 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3578 unsigned Code = 3579 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3580 3581 // Emit the finished record. 3582 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3583 NameVals.clear(); 3584 MaybeEmitOriginalName(*S); 3585 }); 3586 3587 for (auto *AS : Aliases) { 3588 auto AliasValueId = SummaryToValueIdMap[AS]; 3589 assert(AliasValueId); 3590 NameVals.push_back(AliasValueId); 3591 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3592 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3593 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3594 assert(AliaseeValueId); 3595 NameVals.push_back(AliaseeValueId); 3596 3597 // Emit the finished record. 3598 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3599 NameVals.clear(); 3600 MaybeEmitOriginalName(*AS); 3601 } 3602 3603 Stream.ExitBlock(); 3604 } 3605 3606 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3607 /// current llvm version, and a record for the epoch number. 3608 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3609 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3610 3611 // Write the "user readable" string identifying the bitcode producer 3612 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3613 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3616 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3617 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3618 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3619 3620 // Write the epoch version 3621 Abbv = std::make_shared<BitCodeAbbrev>(); 3622 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3624 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3625 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3626 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3627 Stream.ExitBlock(); 3628 } 3629 3630 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3631 // Emit the module's hash. 3632 // MODULE_CODE_HASH: [5*i32] 3633 if (GenerateHash) { 3634 SHA1 Hasher; 3635 uint32_t Vals[5]; 3636 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3637 Buffer.size() - BlockStartPos)); 3638 StringRef Hash = Hasher.result(); 3639 for (int Pos = 0; Pos < 20; Pos += 4) { 3640 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3641 } 3642 3643 // Emit the finished record. 3644 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3645 3646 if (ModHash) 3647 // Save the written hash value. 3648 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3649 } else if (ModHash) 3650 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3651 } 3652 3653 void ModuleBitcodeWriter::write() { 3654 writeIdentificationBlock(Stream); 3655 3656 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3657 size_t BlockStartPos = Buffer.size(); 3658 3659 writeModuleVersion(); 3660 3661 // Emit blockinfo, which defines the standard abbreviations etc. 3662 writeBlockInfo(); 3663 3664 // Emit information about attribute groups. 3665 writeAttributeGroupTable(); 3666 3667 // Emit information about parameter attributes. 3668 writeAttributeTable(); 3669 3670 // Emit information describing all of the types in the module. 3671 writeTypeTable(); 3672 3673 writeComdats(); 3674 3675 // Emit top-level description of module, including target triple, inline asm, 3676 // descriptors for global variables, and function prototype info. 3677 writeModuleInfo(); 3678 3679 // Emit constants. 3680 writeModuleConstants(); 3681 3682 // Emit metadata kind names. 3683 writeModuleMetadataKinds(); 3684 3685 // Emit metadata. 3686 writeModuleMetadata(); 3687 3688 // Emit module-level use-lists. 3689 if (VE.shouldPreserveUseListOrder()) 3690 writeUseListBlock(nullptr); 3691 3692 writeOperandBundleTags(); 3693 3694 // Emit function bodies. 3695 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3696 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3697 if (!F->isDeclaration()) 3698 writeFunction(*F, FunctionToBitcodeIndex); 3699 3700 // Need to write after the above call to WriteFunction which populates 3701 // the summary information in the index. 3702 if (Index) 3703 writePerModuleGlobalValueSummary(); 3704 3705 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3706 3707 writeModuleHash(BlockStartPos); 3708 3709 Stream.ExitBlock(); 3710 } 3711 3712 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3713 uint32_t &Position) { 3714 support::endian::write32le(&Buffer[Position], Value); 3715 Position += 4; 3716 } 3717 3718 /// If generating a bc file on darwin, we have to emit a 3719 /// header and trailer to make it compatible with the system archiver. To do 3720 /// this we emit the following header, and then emit a trailer that pads the 3721 /// file out to be a multiple of 16 bytes. 3722 /// 3723 /// struct bc_header { 3724 /// uint32_t Magic; // 0x0B17C0DE 3725 /// uint32_t Version; // Version, currently always 0. 3726 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3727 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3728 /// uint32_t CPUType; // CPU specifier. 3729 /// ... potentially more later ... 3730 /// }; 3731 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3732 const Triple &TT) { 3733 unsigned CPUType = ~0U; 3734 3735 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3736 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3737 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3738 // specific constants here because they are implicitly part of the Darwin ABI. 3739 enum { 3740 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3741 DARWIN_CPU_TYPE_X86 = 7, 3742 DARWIN_CPU_TYPE_ARM = 12, 3743 DARWIN_CPU_TYPE_POWERPC = 18 3744 }; 3745 3746 Triple::ArchType Arch = TT.getArch(); 3747 if (Arch == Triple::x86_64) 3748 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3749 else if (Arch == Triple::x86) 3750 CPUType = DARWIN_CPU_TYPE_X86; 3751 else if (Arch == Triple::ppc) 3752 CPUType = DARWIN_CPU_TYPE_POWERPC; 3753 else if (Arch == Triple::ppc64) 3754 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3755 else if (Arch == Triple::arm || Arch == Triple::thumb) 3756 CPUType = DARWIN_CPU_TYPE_ARM; 3757 3758 // Traditional Bitcode starts after header. 3759 assert(Buffer.size() >= BWH_HeaderSize && 3760 "Expected header size to be reserved"); 3761 unsigned BCOffset = BWH_HeaderSize; 3762 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3763 3764 // Write the magic and version. 3765 unsigned Position = 0; 3766 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3767 writeInt32ToBuffer(0, Buffer, Position); // Version. 3768 writeInt32ToBuffer(BCOffset, Buffer, Position); 3769 writeInt32ToBuffer(BCSize, Buffer, Position); 3770 writeInt32ToBuffer(CPUType, Buffer, Position); 3771 3772 // If the file is not a multiple of 16 bytes, insert dummy padding. 3773 while (Buffer.size() & 15) 3774 Buffer.push_back(0); 3775 } 3776 3777 /// Helper to write the header common to all bitcode files. 3778 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3779 // Emit the file header. 3780 Stream.Emit((unsigned)'B', 8); 3781 Stream.Emit((unsigned)'C', 8); 3782 Stream.Emit(0x0, 4); 3783 Stream.Emit(0xC, 4); 3784 Stream.Emit(0xE, 4); 3785 Stream.Emit(0xD, 4); 3786 } 3787 3788 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3789 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3790 writeBitcodeHeader(*Stream); 3791 } 3792 3793 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3794 3795 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3796 Stream->EnterSubblock(Block, 3); 3797 3798 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3799 Abbv->Add(BitCodeAbbrevOp(Record)); 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3801 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3802 3803 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3804 3805 Stream->ExitBlock(); 3806 } 3807 3808 void BitcodeWriter::writeStrtab() { 3809 assert(!WroteStrtab); 3810 3811 std::vector<char> Strtab; 3812 StrtabBuilder.finalizeInOrder(); 3813 Strtab.resize(StrtabBuilder.getSize()); 3814 StrtabBuilder.write((uint8_t *)Strtab.data()); 3815 3816 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3817 {Strtab.data(), Strtab.size()}); 3818 3819 WroteStrtab = true; 3820 } 3821 3822 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3823 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3824 WroteStrtab = true; 3825 } 3826 3827 void BitcodeWriter::writeModule(const Module *M, 3828 bool ShouldPreserveUseListOrder, 3829 const ModuleSummaryIndex *Index, 3830 bool GenerateHash, ModuleHash *ModHash) { 3831 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3832 ShouldPreserveUseListOrder, Index, 3833 GenerateHash, ModHash); 3834 ModuleWriter.write(); 3835 } 3836 3837 /// WriteBitcodeToFile - Write the specified module to the specified output 3838 /// stream. 3839 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3840 bool ShouldPreserveUseListOrder, 3841 const ModuleSummaryIndex *Index, 3842 bool GenerateHash, ModuleHash *ModHash) { 3843 SmallVector<char, 0> Buffer; 3844 Buffer.reserve(256*1024); 3845 3846 // If this is darwin or another generic macho target, reserve space for the 3847 // header. 3848 Triple TT(M->getTargetTriple()); 3849 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3850 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3851 3852 BitcodeWriter Writer(Buffer); 3853 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3854 ModHash); 3855 Writer.writeStrtab(); 3856 3857 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3858 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3859 3860 // Write the generated bitstream to "Out". 3861 Out.write((char*)&Buffer.front(), Buffer.size()); 3862 } 3863 3864 void IndexBitcodeWriter::write() { 3865 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3866 3867 writeModuleVersion(); 3868 3869 // Write the module paths in the combined index. 3870 writeModStrings(); 3871 3872 // Write the summary combined index records. 3873 writeCombinedGlobalValueSummary(); 3874 3875 Stream.ExitBlock(); 3876 } 3877 3878 // Write the specified module summary index to the given raw output stream, 3879 // where it will be written in a new bitcode block. This is used when 3880 // writing the combined index file for ThinLTO. When writing a subset of the 3881 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3882 void llvm::WriteIndexToFile( 3883 const ModuleSummaryIndex &Index, raw_ostream &Out, 3884 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3885 SmallVector<char, 0> Buffer; 3886 Buffer.reserve(256 * 1024); 3887 3888 BitstreamWriter Stream(Buffer); 3889 writeBitcodeHeader(Stream); 3890 3891 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3892 IndexWriter.write(); 3893 3894 Out.write((char *)&Buffer.front(), Buffer.size()); 3895 } 3896