1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static uint64_t rotateSign(int64_t I) { 813 uint64_t U = I; 814 return I < 0 ? ~(U << 1) : U << 1; 815 } 816 817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 818 BitstreamWriter &Stream, 819 SmallVectorImpl<uint64_t> &Record, 820 unsigned Abbrev) { 821 Record.push_back(N->isDistinct()); 822 Record.push_back(N->getCount()); 823 Record.push_back(rotateSign(N->getLo())); 824 825 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 826 Record.clear(); 827 } 828 829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 830 BitstreamWriter &Stream, 831 SmallVectorImpl<uint64_t> &Record, 832 unsigned Abbrev) { 833 Record.push_back(N->isDistinct()); 834 Record.push_back(rotateSign(N->getValue())); 835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 836 837 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 838 Record.clear(); 839 } 840 841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 842 BitstreamWriter &Stream, 843 SmallVectorImpl<uint64_t> &Record, 844 unsigned Abbrev) { 845 Record.push_back(N->isDistinct()); 846 Record.push_back(N->getTag()); 847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 848 Record.push_back(N->getSizeInBits()); 849 Record.push_back(N->getAlignInBits()); 850 Record.push_back(N->getEncoding()); 851 852 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 853 Record.clear(); 854 } 855 856 static void WriteMDDerivedType(const MDDerivedType *N, 857 const ValueEnumerator &VE, 858 BitstreamWriter &Stream, 859 SmallVectorImpl<uint64_t> &Record, 860 unsigned Abbrev) { 861 Record.push_back(N->isDistinct()); 862 Record.push_back(N->getTag()); 863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 864 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 865 Record.push_back(N->getLine()); 866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 867 Record.push_back(VE.getMetadataID(N->getBaseType())); 868 Record.push_back(N->getSizeInBits()); 869 Record.push_back(N->getAlignInBits()); 870 Record.push_back(N->getOffsetInBits()); 871 Record.push_back(N->getFlags()); 872 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 873 874 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 875 Record.clear(); 876 } 877 878 static void WriteMDCompositeType(const MDCompositeType *N, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, 881 SmallVectorImpl<uint64_t> &Record, 882 unsigned Abbrev) { 883 Record.push_back(N->isDistinct()); 884 Record.push_back(N->getTag()); 885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 887 Record.push_back(N->getLine()); 888 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 889 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 890 Record.push_back(N->getSizeInBits()); 891 Record.push_back(N->getAlignInBits()); 892 Record.push_back(N->getOffsetInBits()); 893 Record.push_back(N->getFlags()); 894 Record.push_back(VE.getMetadataOrNullID(N->getElements())); 895 Record.push_back(N->getRuntimeLang()); 896 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 897 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 898 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 899 900 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 901 Record.clear(); 902 } 903 904 static void WriteMDSubroutineType(const MDSubroutineType *N, 905 const ValueEnumerator &VE, 906 BitstreamWriter &Stream, 907 SmallVectorImpl<uint64_t> &Record, 908 unsigned Abbrev) { 909 Record.push_back(N->isDistinct()); 910 Record.push_back(N->getFlags()); 911 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray())); 912 913 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 914 Record.clear(); 915 } 916 917 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 918 BitstreamWriter &Stream, 919 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 920 Record.push_back(N->isDistinct()); 921 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 922 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 923 924 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 925 Record.clear(); 926 } 927 928 static void WriteMDCompileUnit(const MDCompileUnit *N, 929 const ValueEnumerator &VE, 930 BitstreamWriter &Stream, 931 SmallVectorImpl<uint64_t> &Record, 932 unsigned Abbrev) { 933 Record.push_back(N->isDistinct()); 934 Record.push_back(N->getSourceLanguage()); 935 Record.push_back(VE.getMetadataID(N->getFile())); 936 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 937 Record.push_back(N->isOptimized()); 938 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 939 Record.push_back(N->getRuntimeVersion()); 940 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 941 Record.push_back(N->getEmissionKind()); 942 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes())); 943 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes())); 944 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms())); 945 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables())); 946 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities())); 947 948 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 949 Record.clear(); 950 } 951 952 static void WriteMDSubprogram(const MDSubprogram *N, 953 const ValueEnumerator &VE, 954 BitstreamWriter &Stream, 955 SmallVectorImpl<uint64_t> &Record, 956 unsigned Abbrev) { 957 Record.push_back(N->isDistinct()); 958 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 959 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 960 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 961 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 962 Record.push_back(N->getLine()); 963 Record.push_back(VE.getMetadataOrNullID(N->getType())); 964 Record.push_back(N->isLocalToUnit()); 965 Record.push_back(N->isDefinition()); 966 Record.push_back(N->getScopeLine()); 967 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 968 Record.push_back(N->getVirtuality()); 969 Record.push_back(N->getVirtualIndex()); 970 Record.push_back(N->getFlags()); 971 Record.push_back(N->isOptimized()); 972 Record.push_back(VE.getMetadataOrNullID(N->getFunction())); 973 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 974 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 975 Record.push_back(VE.getMetadataOrNullID(N->getVariables())); 976 977 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 978 Record.clear(); 979 } 980 981 static void WriteMDLexicalBlock(const MDLexicalBlock *N, 982 const ValueEnumerator &VE, 983 BitstreamWriter &Stream, 984 SmallVectorImpl<uint64_t> &Record, 985 unsigned Abbrev) { 986 Record.push_back(N->isDistinct()); 987 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 988 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 989 Record.push_back(N->getLine()); 990 Record.push_back(N->getColumn()); 991 992 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 993 Record.clear(); 994 } 995 996 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N, 997 const ValueEnumerator &VE, 998 BitstreamWriter &Stream, 999 SmallVectorImpl<uint64_t> &Record, 1000 unsigned Abbrev) { 1001 Record.push_back(N->isDistinct()); 1002 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1003 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1004 Record.push_back(N->getDiscriminator()); 1005 1006 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1007 Record.clear(); 1008 } 1009 1010 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE, 1011 BitstreamWriter &Stream, 1012 SmallVectorImpl<uint64_t> &Record, 1013 unsigned Abbrev) { 1014 Record.push_back(N->isDistinct()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1016 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1017 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1018 Record.push_back(N->getLine()); 1019 1020 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1021 Record.clear(); 1022 } 1023 1024 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N, 1025 const ValueEnumerator &VE, 1026 BitstreamWriter &Stream, 1027 SmallVectorImpl<uint64_t> &Record, 1028 unsigned Abbrev) { 1029 Record.push_back(N->isDistinct()); 1030 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1031 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1033 1034 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1035 Record.clear(); 1036 } 1037 1038 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N, 1039 const ValueEnumerator &VE, 1040 BitstreamWriter &Stream, 1041 SmallVectorImpl<uint64_t> &Record, 1042 unsigned Abbrev) { 1043 Record.push_back(N->isDistinct()); 1044 Record.push_back(N->getTag()); 1045 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1046 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1047 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1048 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1049 1050 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1051 Record.clear(); 1052 } 1053 1054 static void WriteMDGlobalVariable(const MDGlobalVariable *N, 1055 const ValueEnumerator &VE, 1056 BitstreamWriter &Stream, 1057 SmallVectorImpl<uint64_t> &Record, 1058 unsigned Abbrev) { 1059 Record.push_back(N->isDistinct()); 1060 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1061 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1062 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1063 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1064 Record.push_back(N->getLine()); 1065 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1066 Record.push_back(N->isLocalToUnit()); 1067 Record.push_back(N->isDefinition()); 1068 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1069 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1070 1071 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1072 Record.clear(); 1073 } 1074 1075 static void WriteMDLocalVariable(const MDLocalVariable *N, 1076 const ValueEnumerator &VE, 1077 BitstreamWriter &Stream, 1078 SmallVectorImpl<uint64_t> &Record, 1079 unsigned Abbrev) { 1080 Record.push_back(N->isDistinct()); 1081 Record.push_back(N->getTag()); 1082 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1083 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1084 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1085 Record.push_back(N->getLine()); 1086 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1087 Record.push_back(N->getArg()); 1088 Record.push_back(N->getFlags()); 1089 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1090 1091 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1092 Record.clear(); 1093 } 1094 1095 static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &, 1096 BitstreamWriter &Stream, 1097 SmallVectorImpl<uint64_t> &Record, 1098 unsigned Abbrev) { 1099 Record.reserve(N->getElements().size() + 1); 1100 1101 Record.push_back(N->isDistinct()); 1102 Record.append(N->elements_begin(), N->elements_end()); 1103 1104 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1105 Record.clear(); 1106 } 1107 1108 static void WriteMDObjCProperty(const MDObjCProperty *N, 1109 const ValueEnumerator &VE, 1110 BitstreamWriter &Stream, 1111 SmallVectorImpl<uint64_t> &Record, 1112 unsigned Abbrev) { 1113 Record.push_back(N->isDistinct()); 1114 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1115 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1116 Record.push_back(N->getLine()); 1117 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1118 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1119 Record.push_back(N->getAttributes()); 1120 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1121 1122 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1123 Record.clear(); 1124 } 1125 1126 static void WriteMDImportedEntity(const MDImportedEntity *N, 1127 const ValueEnumerator &VE, 1128 BitstreamWriter &Stream, 1129 SmallVectorImpl<uint64_t> &Record, 1130 unsigned Abbrev) { 1131 Record.push_back(N->isDistinct()); 1132 Record.push_back(N->getTag()); 1133 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1134 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1135 Record.push_back(N->getLine()); 1136 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1137 1138 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1139 Record.clear(); 1140 } 1141 1142 static void WriteModuleMetadata(const Module *M, 1143 const ValueEnumerator &VE, 1144 BitstreamWriter &Stream) { 1145 const auto &MDs = VE.getMDs(); 1146 if (MDs.empty() && M->named_metadata_empty()) 1147 return; 1148 1149 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1150 1151 unsigned MDSAbbrev = 0; 1152 if (VE.hasMDString()) { 1153 // Abbrev for METADATA_STRING. 1154 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1155 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1158 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1159 } 1160 1161 // Initialize MDNode abbreviations. 1162 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1163 #include "llvm/IR/Metadata.def" 1164 1165 if (VE.hasMDLocation()) { 1166 // Abbrev for METADATA_LOCATION. 1167 // 1168 // Assume the column is usually under 128, and always output the inlined-at 1169 // location (it's never more expensive than building an array size 1). 1170 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1171 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1177 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1178 } 1179 1180 if (VE.hasGenericDebugNode()) { 1181 // Abbrev for METADATA_GENERIC_DEBUG. 1182 // 1183 // Assume the column is usually under 128, and always output the inlined-at 1184 // location (it's never more expensive than building an array size 1). 1185 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1186 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1193 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1194 } 1195 1196 unsigned NameAbbrev = 0; 1197 if (!M->named_metadata_empty()) { 1198 // Abbrev for METADATA_NAME. 1199 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1200 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1203 NameAbbrev = Stream.EmitAbbrev(Abbv); 1204 } 1205 1206 SmallVector<uint64_t, 64> Record; 1207 for (const Metadata *MD : MDs) { 1208 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1209 switch (N->getMetadataID()) { 1210 default: 1211 llvm_unreachable("Invalid MDNode subclass"); 1212 #define HANDLE_MDNODE_LEAF(CLASS) \ 1213 case Metadata::CLASS##Kind: \ 1214 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1215 continue; 1216 #include "llvm/IR/Metadata.def" 1217 } 1218 } 1219 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1220 WriteValueAsMetadata(MDC, VE, Stream, Record); 1221 continue; 1222 } 1223 const MDString *MDS = cast<MDString>(MD); 1224 // Code: [strchar x N] 1225 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1226 1227 // Emit the finished record. 1228 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1229 Record.clear(); 1230 } 1231 1232 // Write named metadata. 1233 for (const NamedMDNode &NMD : M->named_metadata()) { 1234 // Write name. 1235 StringRef Str = NMD.getName(); 1236 Record.append(Str.bytes_begin(), Str.bytes_end()); 1237 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1238 Record.clear(); 1239 1240 // Write named metadata operands. 1241 for (const MDNode *N : NMD.operands()) 1242 Record.push_back(VE.getMetadataID(N)); 1243 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1244 Record.clear(); 1245 } 1246 1247 Stream.ExitBlock(); 1248 } 1249 1250 static void WriteFunctionLocalMetadata(const Function &F, 1251 const ValueEnumerator &VE, 1252 BitstreamWriter &Stream) { 1253 bool StartedMetadataBlock = false; 1254 SmallVector<uint64_t, 64> Record; 1255 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1256 VE.getFunctionLocalMDs(); 1257 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1258 assert(MDs[i] && "Expected valid function-local metadata"); 1259 if (!StartedMetadataBlock) { 1260 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1261 StartedMetadataBlock = true; 1262 } 1263 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1264 } 1265 1266 if (StartedMetadataBlock) 1267 Stream.ExitBlock(); 1268 } 1269 1270 static void WriteMetadataAttachment(const Function &F, 1271 const ValueEnumerator &VE, 1272 BitstreamWriter &Stream) { 1273 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1274 1275 SmallVector<uint64_t, 64> Record; 1276 1277 // Write metadata attachments 1278 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1279 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1280 1281 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1282 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1283 I != E; ++I) { 1284 MDs.clear(); 1285 I->getAllMetadataOtherThanDebugLoc(MDs); 1286 1287 // If no metadata, ignore instruction. 1288 if (MDs.empty()) continue; 1289 1290 Record.push_back(VE.getInstructionID(I)); 1291 1292 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1293 Record.push_back(MDs[i].first); 1294 Record.push_back(VE.getMetadataID(MDs[i].second)); 1295 } 1296 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1297 Record.clear(); 1298 } 1299 1300 Stream.ExitBlock(); 1301 } 1302 1303 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1304 SmallVector<uint64_t, 64> Record; 1305 1306 // Write metadata kinds 1307 // METADATA_KIND - [n x [id, name]] 1308 SmallVector<StringRef, 8> Names; 1309 M->getMDKindNames(Names); 1310 1311 if (Names.empty()) return; 1312 1313 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1314 1315 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1316 Record.push_back(MDKindID); 1317 StringRef KName = Names[MDKindID]; 1318 Record.append(KName.begin(), KName.end()); 1319 1320 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1321 Record.clear(); 1322 } 1323 1324 Stream.ExitBlock(); 1325 } 1326 1327 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1328 if ((int64_t)V >= 0) 1329 Vals.push_back(V << 1); 1330 else 1331 Vals.push_back((-V << 1) | 1); 1332 } 1333 1334 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1335 const ValueEnumerator &VE, 1336 BitstreamWriter &Stream, bool isGlobal) { 1337 if (FirstVal == LastVal) return; 1338 1339 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1340 1341 unsigned AggregateAbbrev = 0; 1342 unsigned String8Abbrev = 0; 1343 unsigned CString7Abbrev = 0; 1344 unsigned CString6Abbrev = 0; 1345 // If this is a constant pool for the module, emit module-specific abbrevs. 1346 if (isGlobal) { 1347 // Abbrev for CST_CODE_AGGREGATE. 1348 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1349 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1352 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1353 1354 // Abbrev for CST_CODE_STRING. 1355 Abbv = new BitCodeAbbrev(); 1356 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1359 String8Abbrev = Stream.EmitAbbrev(Abbv); 1360 // Abbrev for CST_CODE_CSTRING. 1361 Abbv = new BitCodeAbbrev(); 1362 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1365 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1366 // Abbrev for CST_CODE_CSTRING. 1367 Abbv = new BitCodeAbbrev(); 1368 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1371 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1372 } 1373 1374 SmallVector<uint64_t, 64> Record; 1375 1376 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1377 Type *LastTy = nullptr; 1378 for (unsigned i = FirstVal; i != LastVal; ++i) { 1379 const Value *V = Vals[i].first; 1380 // If we need to switch types, do so now. 1381 if (V->getType() != LastTy) { 1382 LastTy = V->getType(); 1383 Record.push_back(VE.getTypeID(LastTy)); 1384 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1385 CONSTANTS_SETTYPE_ABBREV); 1386 Record.clear(); 1387 } 1388 1389 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1390 Record.push_back(unsigned(IA->hasSideEffects()) | 1391 unsigned(IA->isAlignStack()) << 1 | 1392 unsigned(IA->getDialect()&1) << 2); 1393 1394 // Add the asm string. 1395 const std::string &AsmStr = IA->getAsmString(); 1396 Record.push_back(AsmStr.size()); 1397 Record.append(AsmStr.begin(), AsmStr.end()); 1398 1399 // Add the constraint string. 1400 const std::string &ConstraintStr = IA->getConstraintString(); 1401 Record.push_back(ConstraintStr.size()); 1402 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1403 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1404 Record.clear(); 1405 continue; 1406 } 1407 const Constant *C = cast<Constant>(V); 1408 unsigned Code = -1U; 1409 unsigned AbbrevToUse = 0; 1410 if (C->isNullValue()) { 1411 Code = bitc::CST_CODE_NULL; 1412 } else if (isa<UndefValue>(C)) { 1413 Code = bitc::CST_CODE_UNDEF; 1414 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1415 if (IV->getBitWidth() <= 64) { 1416 uint64_t V = IV->getSExtValue(); 1417 emitSignedInt64(Record, V); 1418 Code = bitc::CST_CODE_INTEGER; 1419 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1420 } else { // Wide integers, > 64 bits in size. 1421 // We have an arbitrary precision integer value to write whose 1422 // bit width is > 64. However, in canonical unsigned integer 1423 // format it is likely that the high bits are going to be zero. 1424 // So, we only write the number of active words. 1425 unsigned NWords = IV->getValue().getActiveWords(); 1426 const uint64_t *RawWords = IV->getValue().getRawData(); 1427 for (unsigned i = 0; i != NWords; ++i) { 1428 emitSignedInt64(Record, RawWords[i]); 1429 } 1430 Code = bitc::CST_CODE_WIDE_INTEGER; 1431 } 1432 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1433 Code = bitc::CST_CODE_FLOAT; 1434 Type *Ty = CFP->getType(); 1435 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1436 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1437 } else if (Ty->isX86_FP80Ty()) { 1438 // api needed to prevent premature destruction 1439 // bits are not in the same order as a normal i80 APInt, compensate. 1440 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1441 const uint64_t *p = api.getRawData(); 1442 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1443 Record.push_back(p[0] & 0xffffLL); 1444 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1445 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1446 const uint64_t *p = api.getRawData(); 1447 Record.push_back(p[0]); 1448 Record.push_back(p[1]); 1449 } else { 1450 assert (0 && "Unknown FP type!"); 1451 } 1452 } else if (isa<ConstantDataSequential>(C) && 1453 cast<ConstantDataSequential>(C)->isString()) { 1454 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1455 // Emit constant strings specially. 1456 unsigned NumElts = Str->getNumElements(); 1457 // If this is a null-terminated string, use the denser CSTRING encoding. 1458 if (Str->isCString()) { 1459 Code = bitc::CST_CODE_CSTRING; 1460 --NumElts; // Don't encode the null, which isn't allowed by char6. 1461 } else { 1462 Code = bitc::CST_CODE_STRING; 1463 AbbrevToUse = String8Abbrev; 1464 } 1465 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1466 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1467 for (unsigned i = 0; i != NumElts; ++i) { 1468 unsigned char V = Str->getElementAsInteger(i); 1469 Record.push_back(V); 1470 isCStr7 &= (V & 128) == 0; 1471 if (isCStrChar6) 1472 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1473 } 1474 1475 if (isCStrChar6) 1476 AbbrevToUse = CString6Abbrev; 1477 else if (isCStr7) 1478 AbbrevToUse = CString7Abbrev; 1479 } else if (const ConstantDataSequential *CDS = 1480 dyn_cast<ConstantDataSequential>(C)) { 1481 Code = bitc::CST_CODE_DATA; 1482 Type *EltTy = CDS->getType()->getElementType(); 1483 if (isa<IntegerType>(EltTy)) { 1484 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1485 Record.push_back(CDS->getElementAsInteger(i)); 1486 } else if (EltTy->isFloatTy()) { 1487 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1488 union { float F; uint32_t I; }; 1489 F = CDS->getElementAsFloat(i); 1490 Record.push_back(I); 1491 } 1492 } else { 1493 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1494 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1495 union { double F; uint64_t I; }; 1496 F = CDS->getElementAsDouble(i); 1497 Record.push_back(I); 1498 } 1499 } 1500 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1501 isa<ConstantVector>(C)) { 1502 Code = bitc::CST_CODE_AGGREGATE; 1503 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1504 Record.push_back(VE.getValueID(C->getOperand(i))); 1505 AbbrevToUse = AggregateAbbrev; 1506 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1507 switch (CE->getOpcode()) { 1508 default: 1509 if (Instruction::isCast(CE->getOpcode())) { 1510 Code = bitc::CST_CODE_CE_CAST; 1511 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1512 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1513 Record.push_back(VE.getValueID(C->getOperand(0))); 1514 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1515 } else { 1516 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1517 Code = bitc::CST_CODE_CE_BINOP; 1518 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1519 Record.push_back(VE.getValueID(C->getOperand(0))); 1520 Record.push_back(VE.getValueID(C->getOperand(1))); 1521 uint64_t Flags = GetOptimizationFlags(CE); 1522 if (Flags != 0) 1523 Record.push_back(Flags); 1524 } 1525 break; 1526 case Instruction::GetElementPtr: 1527 Code = bitc::CST_CODE_CE_GEP; 1528 if (cast<GEPOperator>(C)->isInBounds()) 1529 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1530 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1531 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1532 Record.push_back(VE.getValueID(C->getOperand(i))); 1533 } 1534 break; 1535 case Instruction::Select: 1536 Code = bitc::CST_CODE_CE_SELECT; 1537 Record.push_back(VE.getValueID(C->getOperand(0))); 1538 Record.push_back(VE.getValueID(C->getOperand(1))); 1539 Record.push_back(VE.getValueID(C->getOperand(2))); 1540 break; 1541 case Instruction::ExtractElement: 1542 Code = bitc::CST_CODE_CE_EXTRACTELT; 1543 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1544 Record.push_back(VE.getValueID(C->getOperand(0))); 1545 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1546 Record.push_back(VE.getValueID(C->getOperand(1))); 1547 break; 1548 case Instruction::InsertElement: 1549 Code = bitc::CST_CODE_CE_INSERTELT; 1550 Record.push_back(VE.getValueID(C->getOperand(0))); 1551 Record.push_back(VE.getValueID(C->getOperand(1))); 1552 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1553 Record.push_back(VE.getValueID(C->getOperand(2))); 1554 break; 1555 case Instruction::ShuffleVector: 1556 // If the return type and argument types are the same, this is a 1557 // standard shufflevector instruction. If the types are different, 1558 // then the shuffle is widening or truncating the input vectors, and 1559 // the argument type must also be encoded. 1560 if (C->getType() == C->getOperand(0)->getType()) { 1561 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1562 } else { 1563 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1564 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1565 } 1566 Record.push_back(VE.getValueID(C->getOperand(0))); 1567 Record.push_back(VE.getValueID(C->getOperand(1))); 1568 Record.push_back(VE.getValueID(C->getOperand(2))); 1569 break; 1570 case Instruction::ICmp: 1571 case Instruction::FCmp: 1572 Code = bitc::CST_CODE_CE_CMP; 1573 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1574 Record.push_back(VE.getValueID(C->getOperand(0))); 1575 Record.push_back(VE.getValueID(C->getOperand(1))); 1576 Record.push_back(CE->getPredicate()); 1577 break; 1578 } 1579 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1580 Code = bitc::CST_CODE_BLOCKADDRESS; 1581 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1582 Record.push_back(VE.getValueID(BA->getFunction())); 1583 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1584 } else { 1585 #ifndef NDEBUG 1586 C->dump(); 1587 #endif 1588 llvm_unreachable("Unknown constant!"); 1589 } 1590 Stream.EmitRecord(Code, Record, AbbrevToUse); 1591 Record.clear(); 1592 } 1593 1594 Stream.ExitBlock(); 1595 } 1596 1597 static void WriteModuleConstants(const ValueEnumerator &VE, 1598 BitstreamWriter &Stream) { 1599 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1600 1601 // Find the first constant to emit, which is the first non-globalvalue value. 1602 // We know globalvalues have been emitted by WriteModuleInfo. 1603 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1604 if (!isa<GlobalValue>(Vals[i].first)) { 1605 WriteConstants(i, Vals.size(), VE, Stream, true); 1606 return; 1607 } 1608 } 1609 } 1610 1611 /// PushValueAndType - The file has to encode both the value and type id for 1612 /// many values, because we need to know what type to create for forward 1613 /// references. However, most operands are not forward references, so this type 1614 /// field is not needed. 1615 /// 1616 /// This function adds V's value ID to Vals. If the value ID is higher than the 1617 /// instruction ID, then it is a forward reference, and it also includes the 1618 /// type ID. The value ID that is written is encoded relative to the InstID. 1619 static bool PushValueAndType(const Value *V, unsigned InstID, 1620 SmallVectorImpl<unsigned> &Vals, 1621 ValueEnumerator &VE) { 1622 unsigned ValID = VE.getValueID(V); 1623 // Make encoding relative to the InstID. 1624 Vals.push_back(InstID - ValID); 1625 if (ValID >= InstID) { 1626 Vals.push_back(VE.getTypeID(V->getType())); 1627 return true; 1628 } 1629 return false; 1630 } 1631 1632 /// pushValue - Like PushValueAndType, but where the type of the value is 1633 /// omitted (perhaps it was already encoded in an earlier operand). 1634 static void pushValue(const Value *V, unsigned InstID, 1635 SmallVectorImpl<unsigned> &Vals, 1636 ValueEnumerator &VE) { 1637 unsigned ValID = VE.getValueID(V); 1638 Vals.push_back(InstID - ValID); 1639 } 1640 1641 static void pushValueSigned(const Value *V, unsigned InstID, 1642 SmallVectorImpl<uint64_t> &Vals, 1643 ValueEnumerator &VE) { 1644 unsigned ValID = VE.getValueID(V); 1645 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1646 emitSignedInt64(Vals, diff); 1647 } 1648 1649 /// WriteInstruction - Emit an instruction to the specified stream. 1650 static void WriteInstruction(const Instruction &I, unsigned InstID, 1651 ValueEnumerator &VE, BitstreamWriter &Stream, 1652 SmallVectorImpl<unsigned> &Vals) { 1653 unsigned Code = 0; 1654 unsigned AbbrevToUse = 0; 1655 VE.setInstructionID(&I); 1656 switch (I.getOpcode()) { 1657 default: 1658 if (Instruction::isCast(I.getOpcode())) { 1659 Code = bitc::FUNC_CODE_INST_CAST; 1660 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1661 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1662 Vals.push_back(VE.getTypeID(I.getType())); 1663 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1664 } else { 1665 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1666 Code = bitc::FUNC_CODE_INST_BINOP; 1667 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1668 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1669 pushValue(I.getOperand(1), InstID, Vals, VE); 1670 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1671 uint64_t Flags = GetOptimizationFlags(&I); 1672 if (Flags != 0) { 1673 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1674 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1675 Vals.push_back(Flags); 1676 } 1677 } 1678 break; 1679 1680 case Instruction::GetElementPtr: 1681 Code = bitc::FUNC_CODE_INST_GEP; 1682 if (cast<GEPOperator>(&I)->isInBounds()) 1683 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1684 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1685 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1686 break; 1687 case Instruction::ExtractValue: { 1688 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1689 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1690 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1691 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1692 break; 1693 } 1694 case Instruction::InsertValue: { 1695 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1696 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1697 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1698 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1699 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1700 break; 1701 } 1702 case Instruction::Select: 1703 Code = bitc::FUNC_CODE_INST_VSELECT; 1704 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1705 pushValue(I.getOperand(2), InstID, Vals, VE); 1706 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1707 break; 1708 case Instruction::ExtractElement: 1709 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1710 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1711 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1712 break; 1713 case Instruction::InsertElement: 1714 Code = bitc::FUNC_CODE_INST_INSERTELT; 1715 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1716 pushValue(I.getOperand(1), InstID, Vals, VE); 1717 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1718 break; 1719 case Instruction::ShuffleVector: 1720 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1721 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1722 pushValue(I.getOperand(1), InstID, Vals, VE); 1723 pushValue(I.getOperand(2), InstID, Vals, VE); 1724 break; 1725 case Instruction::ICmp: 1726 case Instruction::FCmp: 1727 // compare returning Int1Ty or vector of Int1Ty 1728 Code = bitc::FUNC_CODE_INST_CMP2; 1729 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1730 pushValue(I.getOperand(1), InstID, Vals, VE); 1731 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1732 break; 1733 1734 case Instruction::Ret: 1735 { 1736 Code = bitc::FUNC_CODE_INST_RET; 1737 unsigned NumOperands = I.getNumOperands(); 1738 if (NumOperands == 0) 1739 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1740 else if (NumOperands == 1) { 1741 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1742 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1743 } else { 1744 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1745 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1746 } 1747 } 1748 break; 1749 case Instruction::Br: 1750 { 1751 Code = bitc::FUNC_CODE_INST_BR; 1752 const BranchInst &II = cast<BranchInst>(I); 1753 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1754 if (II.isConditional()) { 1755 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1756 pushValue(II.getCondition(), InstID, Vals, VE); 1757 } 1758 } 1759 break; 1760 case Instruction::Switch: 1761 { 1762 Code = bitc::FUNC_CODE_INST_SWITCH; 1763 const SwitchInst &SI = cast<SwitchInst>(I); 1764 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1765 pushValue(SI.getCondition(), InstID, Vals, VE); 1766 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1767 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1768 i != e; ++i) { 1769 Vals.push_back(VE.getValueID(i.getCaseValue())); 1770 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1771 } 1772 } 1773 break; 1774 case Instruction::IndirectBr: 1775 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1776 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1777 // Encode the address operand as relative, but not the basic blocks. 1778 pushValue(I.getOperand(0), InstID, Vals, VE); 1779 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1780 Vals.push_back(VE.getValueID(I.getOperand(i))); 1781 break; 1782 1783 case Instruction::Invoke: { 1784 const InvokeInst *II = cast<InvokeInst>(&I); 1785 const Value *Callee(II->getCalledValue()); 1786 PointerType *PTy = cast<PointerType>(Callee->getType()); 1787 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1788 Code = bitc::FUNC_CODE_INST_INVOKE; 1789 1790 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1791 Vals.push_back(II->getCallingConv()); 1792 Vals.push_back(VE.getValueID(II->getNormalDest())); 1793 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1794 PushValueAndType(Callee, InstID, Vals, VE); 1795 1796 // Emit value #'s for the fixed parameters. 1797 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1798 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1799 1800 // Emit type/value pairs for varargs params. 1801 if (FTy->isVarArg()) { 1802 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1803 i != e; ++i) 1804 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1805 } 1806 break; 1807 } 1808 case Instruction::Resume: 1809 Code = bitc::FUNC_CODE_INST_RESUME; 1810 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1811 break; 1812 case Instruction::Unreachable: 1813 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1814 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1815 break; 1816 1817 case Instruction::PHI: { 1818 const PHINode &PN = cast<PHINode>(I); 1819 Code = bitc::FUNC_CODE_INST_PHI; 1820 // With the newer instruction encoding, forward references could give 1821 // negative valued IDs. This is most common for PHIs, so we use 1822 // signed VBRs. 1823 SmallVector<uint64_t, 128> Vals64; 1824 Vals64.push_back(VE.getTypeID(PN.getType())); 1825 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1826 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1827 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1828 } 1829 // Emit a Vals64 vector and exit. 1830 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1831 Vals64.clear(); 1832 return; 1833 } 1834 1835 case Instruction::LandingPad: { 1836 const LandingPadInst &LP = cast<LandingPadInst>(I); 1837 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1838 Vals.push_back(VE.getTypeID(LP.getType())); 1839 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1840 Vals.push_back(LP.isCleanup()); 1841 Vals.push_back(LP.getNumClauses()); 1842 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1843 if (LP.isCatch(I)) 1844 Vals.push_back(LandingPadInst::Catch); 1845 else 1846 Vals.push_back(LandingPadInst::Filter); 1847 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1848 } 1849 break; 1850 } 1851 1852 case Instruction::Alloca: { 1853 Code = bitc::FUNC_CODE_INST_ALLOCA; 1854 Vals.push_back(VE.getTypeID(I.getType())); 1855 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1856 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1857 const AllocaInst &AI = cast<AllocaInst>(I); 1858 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1859 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1860 "not enough bits for maximum alignment"); 1861 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1862 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1863 Vals.push_back(AlignRecord); 1864 break; 1865 } 1866 1867 case Instruction::Load: 1868 if (cast<LoadInst>(I).isAtomic()) { 1869 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1870 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1871 } else { 1872 Code = bitc::FUNC_CODE_INST_LOAD; 1873 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1874 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1875 } 1876 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1877 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1878 if (cast<LoadInst>(I).isAtomic()) { 1879 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1880 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1881 } 1882 break; 1883 case Instruction::Store: 1884 if (cast<StoreInst>(I).isAtomic()) 1885 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1886 else 1887 Code = bitc::FUNC_CODE_INST_STORE; 1888 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1889 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1890 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1891 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1892 if (cast<StoreInst>(I).isAtomic()) { 1893 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1894 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1895 } 1896 break; 1897 case Instruction::AtomicCmpXchg: 1898 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1899 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1900 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1901 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1902 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1903 Vals.push_back(GetEncodedOrdering( 1904 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1905 Vals.push_back(GetEncodedSynchScope( 1906 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1907 Vals.push_back(GetEncodedOrdering( 1908 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1909 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1910 break; 1911 case Instruction::AtomicRMW: 1912 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1913 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1914 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1915 Vals.push_back(GetEncodedRMWOperation( 1916 cast<AtomicRMWInst>(I).getOperation())); 1917 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1918 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1919 Vals.push_back(GetEncodedSynchScope( 1920 cast<AtomicRMWInst>(I).getSynchScope())); 1921 break; 1922 case Instruction::Fence: 1923 Code = bitc::FUNC_CODE_INST_FENCE; 1924 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1925 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1926 break; 1927 case Instruction::Call: { 1928 const CallInst &CI = cast<CallInst>(I); 1929 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1930 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1931 1932 Code = bitc::FUNC_CODE_INST_CALL; 1933 1934 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1935 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1936 unsigned(CI.isMustTailCall()) << 14); 1937 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1938 1939 // Emit value #'s for the fixed parameters. 1940 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1941 // Check for labels (can happen with asm labels). 1942 if (FTy->getParamType(i)->isLabelTy()) 1943 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1944 else 1945 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1946 } 1947 1948 // Emit type/value pairs for varargs params. 1949 if (FTy->isVarArg()) { 1950 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1951 i != e; ++i) 1952 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1953 } 1954 break; 1955 } 1956 case Instruction::VAArg: 1957 Code = bitc::FUNC_CODE_INST_VAARG; 1958 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1959 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1960 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1961 break; 1962 } 1963 1964 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1965 Vals.clear(); 1966 } 1967 1968 // Emit names for globals/functions etc. 1969 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1970 const ValueEnumerator &VE, 1971 BitstreamWriter &Stream) { 1972 if (VST.empty()) return; 1973 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1974 1975 // FIXME: Set up the abbrev, we know how many values there are! 1976 // FIXME: We know if the type names can use 7-bit ascii. 1977 SmallVector<unsigned, 64> NameVals; 1978 1979 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1980 SI != SE; ++SI) { 1981 1982 const ValueName &Name = *SI; 1983 1984 // Figure out the encoding to use for the name. 1985 bool is7Bit = true; 1986 bool isChar6 = true; 1987 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1988 C != E; ++C) { 1989 if (isChar6) 1990 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1991 if ((unsigned char)*C & 128) { 1992 is7Bit = false; 1993 break; // don't bother scanning the rest. 1994 } 1995 } 1996 1997 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1998 1999 // VST_ENTRY: [valueid, namechar x N] 2000 // VST_BBENTRY: [bbid, namechar x N] 2001 unsigned Code; 2002 if (isa<BasicBlock>(SI->getValue())) { 2003 Code = bitc::VST_CODE_BBENTRY; 2004 if (isChar6) 2005 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2006 } else { 2007 Code = bitc::VST_CODE_ENTRY; 2008 if (isChar6) 2009 AbbrevToUse = VST_ENTRY_6_ABBREV; 2010 else if (is7Bit) 2011 AbbrevToUse = VST_ENTRY_7_ABBREV; 2012 } 2013 2014 NameVals.push_back(VE.getValueID(SI->getValue())); 2015 for (const char *P = Name.getKeyData(), 2016 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2017 NameVals.push_back((unsigned char)*P); 2018 2019 // Emit the finished record. 2020 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2021 NameVals.clear(); 2022 } 2023 Stream.ExitBlock(); 2024 } 2025 2026 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2027 BitstreamWriter &Stream) { 2028 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2029 unsigned Code; 2030 if (isa<BasicBlock>(Order.V)) 2031 Code = bitc::USELIST_CODE_BB; 2032 else 2033 Code = bitc::USELIST_CODE_DEFAULT; 2034 2035 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2036 Record.push_back(VE.getValueID(Order.V)); 2037 Stream.EmitRecord(Code, Record); 2038 } 2039 2040 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2041 BitstreamWriter &Stream) { 2042 auto hasMore = [&]() { 2043 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2044 }; 2045 if (!hasMore()) 2046 // Nothing to do. 2047 return; 2048 2049 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2050 while (hasMore()) { 2051 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2052 VE.UseListOrders.pop_back(); 2053 } 2054 Stream.ExitBlock(); 2055 } 2056 2057 /// WriteFunction - Emit a function body to the module stream. 2058 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2059 BitstreamWriter &Stream) { 2060 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2061 VE.incorporateFunction(F); 2062 2063 SmallVector<unsigned, 64> Vals; 2064 2065 // Emit the number of basic blocks, so the reader can create them ahead of 2066 // time. 2067 Vals.push_back(VE.getBasicBlocks().size()); 2068 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2069 Vals.clear(); 2070 2071 // If there are function-local constants, emit them now. 2072 unsigned CstStart, CstEnd; 2073 VE.getFunctionConstantRange(CstStart, CstEnd); 2074 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2075 2076 // If there is function-local metadata, emit it now. 2077 WriteFunctionLocalMetadata(F, VE, Stream); 2078 2079 // Keep a running idea of what the instruction ID is. 2080 unsigned InstID = CstEnd; 2081 2082 bool NeedsMetadataAttachment = false; 2083 2084 DebugLoc LastDL; 2085 2086 // Finally, emit all the instructions, in order. 2087 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2088 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2089 I != E; ++I) { 2090 WriteInstruction(*I, InstID, VE, Stream, Vals); 2091 2092 if (!I->getType()->isVoidTy()) 2093 ++InstID; 2094 2095 // If the instruction has metadata, write a metadata attachment later. 2096 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2097 2098 // If the instruction has a debug location, emit it. 2099 DebugLoc DL = I->getDebugLoc(); 2100 if (DL.isUnknown()) { 2101 // nothing todo. 2102 } else if (DL == LastDL) { 2103 // Just repeat the same debug loc as last time. 2104 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2105 } else { 2106 MDNode *Scope, *IA; 2107 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 2108 assert(Scope && "Expected valid scope"); 2109 2110 Vals.push_back(DL.getLine()); 2111 Vals.push_back(DL.getCol()); 2112 Vals.push_back(VE.getMetadataOrNullID(Scope)); 2113 Vals.push_back(VE.getMetadataOrNullID(IA)); 2114 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2115 Vals.clear(); 2116 2117 LastDL = DL; 2118 } 2119 } 2120 2121 // Emit names for all the instructions etc. 2122 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2123 2124 if (NeedsMetadataAttachment) 2125 WriteMetadataAttachment(F, VE, Stream); 2126 if (shouldPreserveBitcodeUseListOrder()) 2127 WriteUseListBlock(&F, VE, Stream); 2128 VE.purgeFunction(); 2129 Stream.ExitBlock(); 2130 } 2131 2132 // Emit blockinfo, which defines the standard abbreviations etc. 2133 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2134 // We only want to emit block info records for blocks that have multiple 2135 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2136 // Other blocks can define their abbrevs inline. 2137 Stream.EnterBlockInfoBlock(2); 2138 2139 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2140 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2145 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2146 Abbv) != VST_ENTRY_8_ABBREV) 2147 llvm_unreachable("Unexpected abbrev ordering!"); 2148 } 2149 2150 { // 7-bit fixed width VST_ENTRY strings. 2151 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2152 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2156 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2157 Abbv) != VST_ENTRY_7_ABBREV) 2158 llvm_unreachable("Unexpected abbrev ordering!"); 2159 } 2160 { // 6-bit char6 VST_ENTRY strings. 2161 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2162 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2166 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2167 Abbv) != VST_ENTRY_6_ABBREV) 2168 llvm_unreachable("Unexpected abbrev ordering!"); 2169 } 2170 { // 6-bit char6 VST_BBENTRY strings. 2171 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2172 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2176 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2177 Abbv) != VST_BBENTRY_6_ABBREV) 2178 llvm_unreachable("Unexpected abbrev ordering!"); 2179 } 2180 2181 2182 2183 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2184 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2185 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2187 Log2_32_Ceil(VE.getTypes().size()+1))); 2188 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2189 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2190 llvm_unreachable("Unexpected abbrev ordering!"); 2191 } 2192 2193 { // INTEGER abbrev for CONSTANTS_BLOCK. 2194 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2195 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2197 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2198 Abbv) != CONSTANTS_INTEGER_ABBREV) 2199 llvm_unreachable("Unexpected abbrev ordering!"); 2200 } 2201 2202 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2203 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2204 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2207 Log2_32_Ceil(VE.getTypes().size()+1))); 2208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2209 2210 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2211 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2212 llvm_unreachable("Unexpected abbrev ordering!"); 2213 } 2214 { // NULL abbrev for CONSTANTS_BLOCK. 2215 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2216 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2217 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2218 Abbv) != CONSTANTS_NULL_Abbrev) 2219 llvm_unreachable("Unexpected abbrev ordering!"); 2220 } 2221 2222 // FIXME: This should only use space for first class types! 2223 2224 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2225 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2226 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2230 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2231 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2232 llvm_unreachable("Unexpected abbrev ordering!"); 2233 } 2234 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2235 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2236 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2240 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2241 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2242 llvm_unreachable("Unexpected abbrev ordering!"); 2243 } 2244 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2245 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2246 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2251 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2252 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2253 llvm_unreachable("Unexpected abbrev ordering!"); 2254 } 2255 { // INST_CAST abbrev for FUNCTION_BLOCK. 2256 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2257 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2260 Log2_32_Ceil(VE.getTypes().size()+1))); 2261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2262 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2263 Abbv) != FUNCTION_INST_CAST_ABBREV) 2264 llvm_unreachable("Unexpected abbrev ordering!"); 2265 } 2266 2267 { // INST_RET abbrev for FUNCTION_BLOCK. 2268 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2269 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2270 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2271 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2272 llvm_unreachable("Unexpected abbrev ordering!"); 2273 } 2274 { // INST_RET abbrev for FUNCTION_BLOCK. 2275 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2276 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2278 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2279 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2280 llvm_unreachable("Unexpected abbrev ordering!"); 2281 } 2282 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2283 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2284 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2285 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2286 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2287 llvm_unreachable("Unexpected abbrev ordering!"); 2288 } 2289 2290 Stream.ExitBlock(); 2291 } 2292 2293 /// WriteModule - Emit the specified module to the bitstream. 2294 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2295 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2296 2297 SmallVector<unsigned, 1> Vals; 2298 unsigned CurVersion = 1; 2299 Vals.push_back(CurVersion); 2300 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2301 2302 // Analyze the module, enumerating globals, functions, etc. 2303 ValueEnumerator VE(*M); 2304 2305 // Emit blockinfo, which defines the standard abbreviations etc. 2306 WriteBlockInfo(VE, Stream); 2307 2308 // Emit information about attribute groups. 2309 WriteAttributeGroupTable(VE, Stream); 2310 2311 // Emit information about parameter attributes. 2312 WriteAttributeTable(VE, Stream); 2313 2314 // Emit information describing all of the types in the module. 2315 WriteTypeTable(VE, Stream); 2316 2317 writeComdats(VE, Stream); 2318 2319 // Emit top-level description of module, including target triple, inline asm, 2320 // descriptors for global variables, and function prototype info. 2321 WriteModuleInfo(M, VE, Stream); 2322 2323 // Emit constants. 2324 WriteModuleConstants(VE, Stream); 2325 2326 // Emit metadata. 2327 WriteModuleMetadata(M, VE, Stream); 2328 2329 // Emit metadata. 2330 WriteModuleMetadataStore(M, Stream); 2331 2332 // Emit names for globals/functions etc. 2333 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2334 2335 // Emit module-level use-lists. 2336 if (shouldPreserveBitcodeUseListOrder()) 2337 WriteUseListBlock(nullptr, VE, Stream); 2338 2339 // Emit function bodies. 2340 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2341 if (!F->isDeclaration()) 2342 WriteFunction(*F, VE, Stream); 2343 2344 Stream.ExitBlock(); 2345 } 2346 2347 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2348 /// header and trailer to make it compatible with the system archiver. To do 2349 /// this we emit the following header, and then emit a trailer that pads the 2350 /// file out to be a multiple of 16 bytes. 2351 /// 2352 /// struct bc_header { 2353 /// uint32_t Magic; // 0x0B17C0DE 2354 /// uint32_t Version; // Version, currently always 0. 2355 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2356 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2357 /// uint32_t CPUType; // CPU specifier. 2358 /// ... potentially more later ... 2359 /// }; 2360 enum { 2361 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2362 DarwinBCHeaderSize = 5*4 2363 }; 2364 2365 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2366 uint32_t &Position) { 2367 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2368 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2369 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2370 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2371 Position += 4; 2372 } 2373 2374 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2375 const Triple &TT) { 2376 unsigned CPUType = ~0U; 2377 2378 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2379 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2380 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2381 // specific constants here because they are implicitly part of the Darwin ABI. 2382 enum { 2383 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2384 DARWIN_CPU_TYPE_X86 = 7, 2385 DARWIN_CPU_TYPE_ARM = 12, 2386 DARWIN_CPU_TYPE_POWERPC = 18 2387 }; 2388 2389 Triple::ArchType Arch = TT.getArch(); 2390 if (Arch == Triple::x86_64) 2391 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2392 else if (Arch == Triple::x86) 2393 CPUType = DARWIN_CPU_TYPE_X86; 2394 else if (Arch == Triple::ppc) 2395 CPUType = DARWIN_CPU_TYPE_POWERPC; 2396 else if (Arch == Triple::ppc64) 2397 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2398 else if (Arch == Triple::arm || Arch == Triple::thumb) 2399 CPUType = DARWIN_CPU_TYPE_ARM; 2400 2401 // Traditional Bitcode starts after header. 2402 assert(Buffer.size() >= DarwinBCHeaderSize && 2403 "Expected header size to be reserved"); 2404 unsigned BCOffset = DarwinBCHeaderSize; 2405 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2406 2407 // Write the magic and version. 2408 unsigned Position = 0; 2409 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2410 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2411 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2412 WriteInt32ToBuffer(BCSize , Buffer, Position); 2413 WriteInt32ToBuffer(CPUType , Buffer, Position); 2414 2415 // If the file is not a multiple of 16 bytes, insert dummy padding. 2416 while (Buffer.size() & 15) 2417 Buffer.push_back(0); 2418 } 2419 2420 /// WriteBitcodeToFile - Write the specified module to the specified output 2421 /// stream. 2422 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2423 SmallVector<char, 0> Buffer; 2424 Buffer.reserve(256*1024); 2425 2426 // If this is darwin or another generic macho target, reserve space for the 2427 // header. 2428 Triple TT(M->getTargetTriple()); 2429 if (TT.isOSDarwin()) 2430 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2431 2432 // Emit the module into the buffer. 2433 { 2434 BitstreamWriter Stream(Buffer); 2435 2436 // Emit the file header. 2437 Stream.Emit((unsigned)'B', 8); 2438 Stream.Emit((unsigned)'C', 8); 2439 Stream.Emit(0x0, 4); 2440 Stream.Emit(0xC, 4); 2441 Stream.Emit(0xE, 4); 2442 Stream.Emit(0xD, 4); 2443 2444 // Emit the module. 2445 WriteModule(M, Stream); 2446 } 2447 2448 if (TT.isOSDarwin()) 2449 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2450 2451 // Write the generated bitstream to "Out". 2452 Out.write((char*)&Buffer.front(), Buffer.size()); 2453 } 2454