1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static void WriteModuleMetadata(const Module *M, 813 const ValueEnumerator &VE, 814 BitstreamWriter &Stream) { 815 const auto &MDs = VE.getMDs(); 816 if (MDs.empty() && M->named_metadata_empty()) 817 return; 818 819 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 820 821 unsigned MDSAbbrev = 0; 822 if (VE.hasMDString()) { 823 // Abbrev for METADATA_STRING. 824 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 825 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 828 MDSAbbrev = Stream.EmitAbbrev(Abbv); 829 } 830 831 unsigned MDLocationAbbrev = 0; 832 if (VE.hasMDLocation()) { 833 // Abbrev for METADATA_LOCATION. 834 // 835 // Assume the column is usually under 128, and always output the inlined-at 836 // location (it's never more expensive than building an array size 1). 837 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 838 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 844 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 845 } 846 847 unsigned GenericDebugNodeAbbrev = 0; 848 if (VE.hasGenericDebugNode()) { 849 // Abbrev for METADATA_GENERIC_DEBUG. 850 // 851 // Assume the column is usually under 128, and always output the inlined-at 852 // location (it's never more expensive than building an array size 1). 853 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 854 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 861 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 862 } 863 864 unsigned NameAbbrev = 0; 865 if (!M->named_metadata_empty()) { 866 // Abbrev for METADATA_NAME. 867 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 868 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 871 NameAbbrev = Stream.EmitAbbrev(Abbv); 872 } 873 874 unsigned MDTupleAbbrev = 0; 875 SmallVector<uint64_t, 64> Record; 876 for (const Metadata *MD : MDs) { 877 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 878 switch (N->getMetadataID()) { 879 default: 880 llvm_unreachable("Invalid MDNode subclass"); 881 #define HANDLE_MDNODE_LEAF(CLASS) \ 882 case Metadata::CLASS##Kind: \ 883 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 884 continue; 885 #include "llvm/IR/Metadata.def" 886 } 887 } 888 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 889 WriteValueAsMetadata(MDC, VE, Stream, Record); 890 continue; 891 } 892 const MDString *MDS = cast<MDString>(MD); 893 // Code: [strchar x N] 894 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 895 896 // Emit the finished record. 897 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 898 Record.clear(); 899 } 900 901 // Write named metadata. 902 for (const NamedMDNode &NMD : M->named_metadata()) { 903 // Write name. 904 StringRef Str = NMD.getName(); 905 Record.append(Str.bytes_begin(), Str.bytes_end()); 906 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 907 Record.clear(); 908 909 // Write named metadata operands. 910 for (const MDNode *N : NMD.operands()) 911 Record.push_back(VE.getMetadataID(N)); 912 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 913 Record.clear(); 914 } 915 916 Stream.ExitBlock(); 917 } 918 919 static void WriteFunctionLocalMetadata(const Function &F, 920 const ValueEnumerator &VE, 921 BitstreamWriter &Stream) { 922 bool StartedMetadataBlock = false; 923 SmallVector<uint64_t, 64> Record; 924 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 925 VE.getFunctionLocalMDs(); 926 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 927 assert(MDs[i] && "Expected valid function-local metadata"); 928 if (!StartedMetadataBlock) { 929 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 930 StartedMetadataBlock = true; 931 } 932 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 933 } 934 935 if (StartedMetadataBlock) 936 Stream.ExitBlock(); 937 } 938 939 static void WriteMetadataAttachment(const Function &F, 940 const ValueEnumerator &VE, 941 BitstreamWriter &Stream) { 942 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 943 944 SmallVector<uint64_t, 64> Record; 945 946 // Write metadata attachments 947 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 948 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 949 950 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 951 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 952 I != E; ++I) { 953 MDs.clear(); 954 I->getAllMetadataOtherThanDebugLoc(MDs); 955 956 // If no metadata, ignore instruction. 957 if (MDs.empty()) continue; 958 959 Record.push_back(VE.getInstructionID(I)); 960 961 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 962 Record.push_back(MDs[i].first); 963 Record.push_back(VE.getMetadataID(MDs[i].second)); 964 } 965 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 966 Record.clear(); 967 } 968 969 Stream.ExitBlock(); 970 } 971 972 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 973 SmallVector<uint64_t, 64> Record; 974 975 // Write metadata kinds 976 // METADATA_KIND - [n x [id, name]] 977 SmallVector<StringRef, 8> Names; 978 M->getMDKindNames(Names); 979 980 if (Names.empty()) return; 981 982 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 983 984 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 985 Record.push_back(MDKindID); 986 StringRef KName = Names[MDKindID]; 987 Record.append(KName.begin(), KName.end()); 988 989 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 990 Record.clear(); 991 } 992 993 Stream.ExitBlock(); 994 } 995 996 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 997 if ((int64_t)V >= 0) 998 Vals.push_back(V << 1); 999 else 1000 Vals.push_back((-V << 1) | 1); 1001 } 1002 1003 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1004 const ValueEnumerator &VE, 1005 BitstreamWriter &Stream, bool isGlobal) { 1006 if (FirstVal == LastVal) return; 1007 1008 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1009 1010 unsigned AggregateAbbrev = 0; 1011 unsigned String8Abbrev = 0; 1012 unsigned CString7Abbrev = 0; 1013 unsigned CString6Abbrev = 0; 1014 // If this is a constant pool for the module, emit module-specific abbrevs. 1015 if (isGlobal) { 1016 // Abbrev for CST_CODE_AGGREGATE. 1017 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1018 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1021 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1022 1023 // Abbrev for CST_CODE_STRING. 1024 Abbv = new BitCodeAbbrev(); 1025 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1028 String8Abbrev = Stream.EmitAbbrev(Abbv); 1029 // Abbrev for CST_CODE_CSTRING. 1030 Abbv = new BitCodeAbbrev(); 1031 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1034 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1035 // Abbrev for CST_CODE_CSTRING. 1036 Abbv = new BitCodeAbbrev(); 1037 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1040 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1041 } 1042 1043 SmallVector<uint64_t, 64> Record; 1044 1045 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1046 Type *LastTy = nullptr; 1047 for (unsigned i = FirstVal; i != LastVal; ++i) { 1048 const Value *V = Vals[i].first; 1049 // If we need to switch types, do so now. 1050 if (V->getType() != LastTy) { 1051 LastTy = V->getType(); 1052 Record.push_back(VE.getTypeID(LastTy)); 1053 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1054 CONSTANTS_SETTYPE_ABBREV); 1055 Record.clear(); 1056 } 1057 1058 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1059 Record.push_back(unsigned(IA->hasSideEffects()) | 1060 unsigned(IA->isAlignStack()) << 1 | 1061 unsigned(IA->getDialect()&1) << 2); 1062 1063 // Add the asm string. 1064 const std::string &AsmStr = IA->getAsmString(); 1065 Record.push_back(AsmStr.size()); 1066 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1067 Record.push_back(AsmStr[i]); 1068 1069 // Add the constraint string. 1070 const std::string &ConstraintStr = IA->getConstraintString(); 1071 Record.push_back(ConstraintStr.size()); 1072 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1073 Record.push_back(ConstraintStr[i]); 1074 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1075 Record.clear(); 1076 continue; 1077 } 1078 const Constant *C = cast<Constant>(V); 1079 unsigned Code = -1U; 1080 unsigned AbbrevToUse = 0; 1081 if (C->isNullValue()) { 1082 Code = bitc::CST_CODE_NULL; 1083 } else if (isa<UndefValue>(C)) { 1084 Code = bitc::CST_CODE_UNDEF; 1085 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1086 if (IV->getBitWidth() <= 64) { 1087 uint64_t V = IV->getSExtValue(); 1088 emitSignedInt64(Record, V); 1089 Code = bitc::CST_CODE_INTEGER; 1090 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1091 } else { // Wide integers, > 64 bits in size. 1092 // We have an arbitrary precision integer value to write whose 1093 // bit width is > 64. However, in canonical unsigned integer 1094 // format it is likely that the high bits are going to be zero. 1095 // So, we only write the number of active words. 1096 unsigned NWords = IV->getValue().getActiveWords(); 1097 const uint64_t *RawWords = IV->getValue().getRawData(); 1098 for (unsigned i = 0; i != NWords; ++i) { 1099 emitSignedInt64(Record, RawWords[i]); 1100 } 1101 Code = bitc::CST_CODE_WIDE_INTEGER; 1102 } 1103 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1104 Code = bitc::CST_CODE_FLOAT; 1105 Type *Ty = CFP->getType(); 1106 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1107 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1108 } else if (Ty->isX86_FP80Ty()) { 1109 // api needed to prevent premature destruction 1110 // bits are not in the same order as a normal i80 APInt, compensate. 1111 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1112 const uint64_t *p = api.getRawData(); 1113 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1114 Record.push_back(p[0] & 0xffffLL); 1115 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1116 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1117 const uint64_t *p = api.getRawData(); 1118 Record.push_back(p[0]); 1119 Record.push_back(p[1]); 1120 } else { 1121 assert (0 && "Unknown FP type!"); 1122 } 1123 } else if (isa<ConstantDataSequential>(C) && 1124 cast<ConstantDataSequential>(C)->isString()) { 1125 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1126 // Emit constant strings specially. 1127 unsigned NumElts = Str->getNumElements(); 1128 // If this is a null-terminated string, use the denser CSTRING encoding. 1129 if (Str->isCString()) { 1130 Code = bitc::CST_CODE_CSTRING; 1131 --NumElts; // Don't encode the null, which isn't allowed by char6. 1132 } else { 1133 Code = bitc::CST_CODE_STRING; 1134 AbbrevToUse = String8Abbrev; 1135 } 1136 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1137 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1138 for (unsigned i = 0; i != NumElts; ++i) { 1139 unsigned char V = Str->getElementAsInteger(i); 1140 Record.push_back(V); 1141 isCStr7 &= (V & 128) == 0; 1142 if (isCStrChar6) 1143 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1144 } 1145 1146 if (isCStrChar6) 1147 AbbrevToUse = CString6Abbrev; 1148 else if (isCStr7) 1149 AbbrevToUse = CString7Abbrev; 1150 } else if (const ConstantDataSequential *CDS = 1151 dyn_cast<ConstantDataSequential>(C)) { 1152 Code = bitc::CST_CODE_DATA; 1153 Type *EltTy = CDS->getType()->getElementType(); 1154 if (isa<IntegerType>(EltTy)) { 1155 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1156 Record.push_back(CDS->getElementAsInteger(i)); 1157 } else if (EltTy->isFloatTy()) { 1158 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1159 union { float F; uint32_t I; }; 1160 F = CDS->getElementAsFloat(i); 1161 Record.push_back(I); 1162 } 1163 } else { 1164 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1165 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1166 union { double F; uint64_t I; }; 1167 F = CDS->getElementAsDouble(i); 1168 Record.push_back(I); 1169 } 1170 } 1171 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1172 isa<ConstantVector>(C)) { 1173 Code = bitc::CST_CODE_AGGREGATE; 1174 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1175 Record.push_back(VE.getValueID(C->getOperand(i))); 1176 AbbrevToUse = AggregateAbbrev; 1177 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1178 switch (CE->getOpcode()) { 1179 default: 1180 if (Instruction::isCast(CE->getOpcode())) { 1181 Code = bitc::CST_CODE_CE_CAST; 1182 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1183 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1184 Record.push_back(VE.getValueID(C->getOperand(0))); 1185 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1186 } else { 1187 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1188 Code = bitc::CST_CODE_CE_BINOP; 1189 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1190 Record.push_back(VE.getValueID(C->getOperand(0))); 1191 Record.push_back(VE.getValueID(C->getOperand(1))); 1192 uint64_t Flags = GetOptimizationFlags(CE); 1193 if (Flags != 0) 1194 Record.push_back(Flags); 1195 } 1196 break; 1197 case Instruction::GetElementPtr: 1198 Code = bitc::CST_CODE_CE_GEP; 1199 if (cast<GEPOperator>(C)->isInBounds()) 1200 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1201 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1202 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1203 Record.push_back(VE.getValueID(C->getOperand(i))); 1204 } 1205 break; 1206 case Instruction::Select: 1207 Code = bitc::CST_CODE_CE_SELECT; 1208 Record.push_back(VE.getValueID(C->getOperand(0))); 1209 Record.push_back(VE.getValueID(C->getOperand(1))); 1210 Record.push_back(VE.getValueID(C->getOperand(2))); 1211 break; 1212 case Instruction::ExtractElement: 1213 Code = bitc::CST_CODE_CE_EXTRACTELT; 1214 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1215 Record.push_back(VE.getValueID(C->getOperand(0))); 1216 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1217 Record.push_back(VE.getValueID(C->getOperand(1))); 1218 break; 1219 case Instruction::InsertElement: 1220 Code = bitc::CST_CODE_CE_INSERTELT; 1221 Record.push_back(VE.getValueID(C->getOperand(0))); 1222 Record.push_back(VE.getValueID(C->getOperand(1))); 1223 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1224 Record.push_back(VE.getValueID(C->getOperand(2))); 1225 break; 1226 case Instruction::ShuffleVector: 1227 // If the return type and argument types are the same, this is a 1228 // standard shufflevector instruction. If the types are different, 1229 // then the shuffle is widening or truncating the input vectors, and 1230 // the argument type must also be encoded. 1231 if (C->getType() == C->getOperand(0)->getType()) { 1232 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1233 } else { 1234 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1235 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1236 } 1237 Record.push_back(VE.getValueID(C->getOperand(0))); 1238 Record.push_back(VE.getValueID(C->getOperand(1))); 1239 Record.push_back(VE.getValueID(C->getOperand(2))); 1240 break; 1241 case Instruction::ICmp: 1242 case Instruction::FCmp: 1243 Code = bitc::CST_CODE_CE_CMP; 1244 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1245 Record.push_back(VE.getValueID(C->getOperand(0))); 1246 Record.push_back(VE.getValueID(C->getOperand(1))); 1247 Record.push_back(CE->getPredicate()); 1248 break; 1249 } 1250 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1251 Code = bitc::CST_CODE_BLOCKADDRESS; 1252 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1253 Record.push_back(VE.getValueID(BA->getFunction())); 1254 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1255 } else { 1256 #ifndef NDEBUG 1257 C->dump(); 1258 #endif 1259 llvm_unreachable("Unknown constant!"); 1260 } 1261 Stream.EmitRecord(Code, Record, AbbrevToUse); 1262 Record.clear(); 1263 } 1264 1265 Stream.ExitBlock(); 1266 } 1267 1268 static void WriteModuleConstants(const ValueEnumerator &VE, 1269 BitstreamWriter &Stream) { 1270 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1271 1272 // Find the first constant to emit, which is the first non-globalvalue value. 1273 // We know globalvalues have been emitted by WriteModuleInfo. 1274 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1275 if (!isa<GlobalValue>(Vals[i].first)) { 1276 WriteConstants(i, Vals.size(), VE, Stream, true); 1277 return; 1278 } 1279 } 1280 } 1281 1282 /// PushValueAndType - The file has to encode both the value and type id for 1283 /// many values, because we need to know what type to create for forward 1284 /// references. However, most operands are not forward references, so this type 1285 /// field is not needed. 1286 /// 1287 /// This function adds V's value ID to Vals. If the value ID is higher than the 1288 /// instruction ID, then it is a forward reference, and it also includes the 1289 /// type ID. The value ID that is written is encoded relative to the InstID. 1290 static bool PushValueAndType(const Value *V, unsigned InstID, 1291 SmallVectorImpl<unsigned> &Vals, 1292 ValueEnumerator &VE) { 1293 unsigned ValID = VE.getValueID(V); 1294 // Make encoding relative to the InstID. 1295 Vals.push_back(InstID - ValID); 1296 if (ValID >= InstID) { 1297 Vals.push_back(VE.getTypeID(V->getType())); 1298 return true; 1299 } 1300 return false; 1301 } 1302 1303 /// pushValue - Like PushValueAndType, but where the type of the value is 1304 /// omitted (perhaps it was already encoded in an earlier operand). 1305 static void pushValue(const Value *V, unsigned InstID, 1306 SmallVectorImpl<unsigned> &Vals, 1307 ValueEnumerator &VE) { 1308 unsigned ValID = VE.getValueID(V); 1309 Vals.push_back(InstID - ValID); 1310 } 1311 1312 static void pushValueSigned(const Value *V, unsigned InstID, 1313 SmallVectorImpl<uint64_t> &Vals, 1314 ValueEnumerator &VE) { 1315 unsigned ValID = VE.getValueID(V); 1316 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1317 emitSignedInt64(Vals, diff); 1318 } 1319 1320 /// WriteInstruction - Emit an instruction to the specified stream. 1321 static void WriteInstruction(const Instruction &I, unsigned InstID, 1322 ValueEnumerator &VE, BitstreamWriter &Stream, 1323 SmallVectorImpl<unsigned> &Vals) { 1324 unsigned Code = 0; 1325 unsigned AbbrevToUse = 0; 1326 VE.setInstructionID(&I); 1327 switch (I.getOpcode()) { 1328 default: 1329 if (Instruction::isCast(I.getOpcode())) { 1330 Code = bitc::FUNC_CODE_INST_CAST; 1331 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1332 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1333 Vals.push_back(VE.getTypeID(I.getType())); 1334 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1335 } else { 1336 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1337 Code = bitc::FUNC_CODE_INST_BINOP; 1338 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1339 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1340 pushValue(I.getOperand(1), InstID, Vals, VE); 1341 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1342 uint64_t Flags = GetOptimizationFlags(&I); 1343 if (Flags != 0) { 1344 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1345 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1346 Vals.push_back(Flags); 1347 } 1348 } 1349 break; 1350 1351 case Instruction::GetElementPtr: 1352 Code = bitc::FUNC_CODE_INST_GEP; 1353 if (cast<GEPOperator>(&I)->isInBounds()) 1354 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1355 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1356 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1357 break; 1358 case Instruction::ExtractValue: { 1359 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1360 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1361 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1362 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1363 Vals.push_back(*i); 1364 break; 1365 } 1366 case Instruction::InsertValue: { 1367 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1368 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1369 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1370 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1371 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1372 Vals.push_back(*i); 1373 break; 1374 } 1375 case Instruction::Select: 1376 Code = bitc::FUNC_CODE_INST_VSELECT; 1377 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1378 pushValue(I.getOperand(2), InstID, Vals, VE); 1379 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1380 break; 1381 case Instruction::ExtractElement: 1382 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1383 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1384 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1385 break; 1386 case Instruction::InsertElement: 1387 Code = bitc::FUNC_CODE_INST_INSERTELT; 1388 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1389 pushValue(I.getOperand(1), InstID, Vals, VE); 1390 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1391 break; 1392 case Instruction::ShuffleVector: 1393 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1394 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1395 pushValue(I.getOperand(1), InstID, Vals, VE); 1396 pushValue(I.getOperand(2), InstID, Vals, VE); 1397 break; 1398 case Instruction::ICmp: 1399 case Instruction::FCmp: 1400 // compare returning Int1Ty or vector of Int1Ty 1401 Code = bitc::FUNC_CODE_INST_CMP2; 1402 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1403 pushValue(I.getOperand(1), InstID, Vals, VE); 1404 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1405 break; 1406 1407 case Instruction::Ret: 1408 { 1409 Code = bitc::FUNC_CODE_INST_RET; 1410 unsigned NumOperands = I.getNumOperands(); 1411 if (NumOperands == 0) 1412 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1413 else if (NumOperands == 1) { 1414 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1415 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1416 } else { 1417 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1418 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1419 } 1420 } 1421 break; 1422 case Instruction::Br: 1423 { 1424 Code = bitc::FUNC_CODE_INST_BR; 1425 const BranchInst &II = cast<BranchInst>(I); 1426 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1427 if (II.isConditional()) { 1428 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1429 pushValue(II.getCondition(), InstID, Vals, VE); 1430 } 1431 } 1432 break; 1433 case Instruction::Switch: 1434 { 1435 Code = bitc::FUNC_CODE_INST_SWITCH; 1436 const SwitchInst &SI = cast<SwitchInst>(I); 1437 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1438 pushValue(SI.getCondition(), InstID, Vals, VE); 1439 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1440 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1441 i != e; ++i) { 1442 Vals.push_back(VE.getValueID(i.getCaseValue())); 1443 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1444 } 1445 } 1446 break; 1447 case Instruction::IndirectBr: 1448 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1449 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1450 // Encode the address operand as relative, but not the basic blocks. 1451 pushValue(I.getOperand(0), InstID, Vals, VE); 1452 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1453 Vals.push_back(VE.getValueID(I.getOperand(i))); 1454 break; 1455 1456 case Instruction::Invoke: { 1457 const InvokeInst *II = cast<InvokeInst>(&I); 1458 const Value *Callee(II->getCalledValue()); 1459 PointerType *PTy = cast<PointerType>(Callee->getType()); 1460 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1461 Code = bitc::FUNC_CODE_INST_INVOKE; 1462 1463 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1464 Vals.push_back(II->getCallingConv()); 1465 Vals.push_back(VE.getValueID(II->getNormalDest())); 1466 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1467 PushValueAndType(Callee, InstID, Vals, VE); 1468 1469 // Emit value #'s for the fixed parameters. 1470 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1471 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1472 1473 // Emit type/value pairs for varargs params. 1474 if (FTy->isVarArg()) { 1475 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1476 i != e; ++i) 1477 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1478 } 1479 break; 1480 } 1481 case Instruction::Resume: 1482 Code = bitc::FUNC_CODE_INST_RESUME; 1483 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1484 break; 1485 case Instruction::Unreachable: 1486 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1487 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1488 break; 1489 1490 case Instruction::PHI: { 1491 const PHINode &PN = cast<PHINode>(I); 1492 Code = bitc::FUNC_CODE_INST_PHI; 1493 // With the newer instruction encoding, forward references could give 1494 // negative valued IDs. This is most common for PHIs, so we use 1495 // signed VBRs. 1496 SmallVector<uint64_t, 128> Vals64; 1497 Vals64.push_back(VE.getTypeID(PN.getType())); 1498 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1499 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1500 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1501 } 1502 // Emit a Vals64 vector and exit. 1503 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1504 Vals64.clear(); 1505 return; 1506 } 1507 1508 case Instruction::LandingPad: { 1509 const LandingPadInst &LP = cast<LandingPadInst>(I); 1510 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1511 Vals.push_back(VE.getTypeID(LP.getType())); 1512 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1513 Vals.push_back(LP.isCleanup()); 1514 Vals.push_back(LP.getNumClauses()); 1515 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1516 if (LP.isCatch(I)) 1517 Vals.push_back(LandingPadInst::Catch); 1518 else 1519 Vals.push_back(LandingPadInst::Filter); 1520 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1521 } 1522 break; 1523 } 1524 1525 case Instruction::Alloca: { 1526 Code = bitc::FUNC_CODE_INST_ALLOCA; 1527 Vals.push_back(VE.getTypeID(I.getType())); 1528 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1529 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1530 const AllocaInst &AI = cast<AllocaInst>(I); 1531 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1532 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1533 "not enough bits for maximum alignment"); 1534 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1535 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1536 Vals.push_back(AlignRecord); 1537 break; 1538 } 1539 1540 case Instruction::Load: 1541 if (cast<LoadInst>(I).isAtomic()) { 1542 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1543 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1544 } else { 1545 Code = bitc::FUNC_CODE_INST_LOAD; 1546 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1547 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1548 } 1549 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1550 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1551 if (cast<LoadInst>(I).isAtomic()) { 1552 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1553 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1554 } 1555 break; 1556 case Instruction::Store: 1557 if (cast<StoreInst>(I).isAtomic()) 1558 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1559 else 1560 Code = bitc::FUNC_CODE_INST_STORE; 1561 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1562 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1563 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1564 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1565 if (cast<StoreInst>(I).isAtomic()) { 1566 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1567 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1568 } 1569 break; 1570 case Instruction::AtomicCmpXchg: 1571 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1572 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1573 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1574 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1575 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1576 Vals.push_back(GetEncodedOrdering( 1577 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1578 Vals.push_back(GetEncodedSynchScope( 1579 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1580 Vals.push_back(GetEncodedOrdering( 1581 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1582 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1583 break; 1584 case Instruction::AtomicRMW: 1585 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1586 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1587 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1588 Vals.push_back(GetEncodedRMWOperation( 1589 cast<AtomicRMWInst>(I).getOperation())); 1590 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1591 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1592 Vals.push_back(GetEncodedSynchScope( 1593 cast<AtomicRMWInst>(I).getSynchScope())); 1594 break; 1595 case Instruction::Fence: 1596 Code = bitc::FUNC_CODE_INST_FENCE; 1597 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1598 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1599 break; 1600 case Instruction::Call: { 1601 const CallInst &CI = cast<CallInst>(I); 1602 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1603 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1604 1605 Code = bitc::FUNC_CODE_INST_CALL; 1606 1607 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1608 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1609 unsigned(CI.isMustTailCall()) << 14); 1610 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1611 1612 // Emit value #'s for the fixed parameters. 1613 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1614 // Check for labels (can happen with asm labels). 1615 if (FTy->getParamType(i)->isLabelTy()) 1616 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1617 else 1618 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1619 } 1620 1621 // Emit type/value pairs for varargs params. 1622 if (FTy->isVarArg()) { 1623 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1624 i != e; ++i) 1625 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1626 } 1627 break; 1628 } 1629 case Instruction::VAArg: 1630 Code = bitc::FUNC_CODE_INST_VAARG; 1631 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1632 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1633 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1634 break; 1635 } 1636 1637 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1638 Vals.clear(); 1639 } 1640 1641 // Emit names for globals/functions etc. 1642 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1643 const ValueEnumerator &VE, 1644 BitstreamWriter &Stream) { 1645 if (VST.empty()) return; 1646 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1647 1648 // FIXME: Set up the abbrev, we know how many values there are! 1649 // FIXME: We know if the type names can use 7-bit ascii. 1650 SmallVector<unsigned, 64> NameVals; 1651 1652 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1653 SI != SE; ++SI) { 1654 1655 const ValueName &Name = *SI; 1656 1657 // Figure out the encoding to use for the name. 1658 bool is7Bit = true; 1659 bool isChar6 = true; 1660 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1661 C != E; ++C) { 1662 if (isChar6) 1663 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1664 if ((unsigned char)*C & 128) { 1665 is7Bit = false; 1666 break; // don't bother scanning the rest. 1667 } 1668 } 1669 1670 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1671 1672 // VST_ENTRY: [valueid, namechar x N] 1673 // VST_BBENTRY: [bbid, namechar x N] 1674 unsigned Code; 1675 if (isa<BasicBlock>(SI->getValue())) { 1676 Code = bitc::VST_CODE_BBENTRY; 1677 if (isChar6) 1678 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1679 } else { 1680 Code = bitc::VST_CODE_ENTRY; 1681 if (isChar6) 1682 AbbrevToUse = VST_ENTRY_6_ABBREV; 1683 else if (is7Bit) 1684 AbbrevToUse = VST_ENTRY_7_ABBREV; 1685 } 1686 1687 NameVals.push_back(VE.getValueID(SI->getValue())); 1688 for (const char *P = Name.getKeyData(), 1689 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1690 NameVals.push_back((unsigned char)*P); 1691 1692 // Emit the finished record. 1693 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1694 NameVals.clear(); 1695 } 1696 Stream.ExitBlock(); 1697 } 1698 1699 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1700 BitstreamWriter &Stream) { 1701 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1702 unsigned Code; 1703 if (isa<BasicBlock>(Order.V)) 1704 Code = bitc::USELIST_CODE_BB; 1705 else 1706 Code = bitc::USELIST_CODE_DEFAULT; 1707 1708 SmallVector<uint64_t, 64> Record; 1709 for (unsigned I : Order.Shuffle) 1710 Record.push_back(I); 1711 Record.push_back(VE.getValueID(Order.V)); 1712 Stream.EmitRecord(Code, Record); 1713 } 1714 1715 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1716 BitstreamWriter &Stream) { 1717 auto hasMore = [&]() { 1718 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1719 }; 1720 if (!hasMore()) 1721 // Nothing to do. 1722 return; 1723 1724 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1725 while (hasMore()) { 1726 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1727 VE.UseListOrders.pop_back(); 1728 } 1729 Stream.ExitBlock(); 1730 } 1731 1732 /// WriteFunction - Emit a function body to the module stream. 1733 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1734 BitstreamWriter &Stream) { 1735 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1736 VE.incorporateFunction(F); 1737 1738 SmallVector<unsigned, 64> Vals; 1739 1740 // Emit the number of basic blocks, so the reader can create them ahead of 1741 // time. 1742 Vals.push_back(VE.getBasicBlocks().size()); 1743 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1744 Vals.clear(); 1745 1746 // If there are function-local constants, emit them now. 1747 unsigned CstStart, CstEnd; 1748 VE.getFunctionConstantRange(CstStart, CstEnd); 1749 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1750 1751 // If there is function-local metadata, emit it now. 1752 WriteFunctionLocalMetadata(F, VE, Stream); 1753 1754 // Keep a running idea of what the instruction ID is. 1755 unsigned InstID = CstEnd; 1756 1757 bool NeedsMetadataAttachment = false; 1758 1759 DebugLoc LastDL; 1760 1761 // Finally, emit all the instructions, in order. 1762 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1763 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1764 I != E; ++I) { 1765 WriteInstruction(*I, InstID, VE, Stream, Vals); 1766 1767 if (!I->getType()->isVoidTy()) 1768 ++InstID; 1769 1770 // If the instruction has metadata, write a metadata attachment later. 1771 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1772 1773 // If the instruction has a debug location, emit it. 1774 DebugLoc DL = I->getDebugLoc(); 1775 if (DL.isUnknown()) { 1776 // nothing todo. 1777 } else if (DL == LastDL) { 1778 // Just repeat the same debug loc as last time. 1779 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1780 } else { 1781 MDNode *Scope, *IA; 1782 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1783 assert(Scope && "Expected valid scope"); 1784 1785 Vals.push_back(DL.getLine()); 1786 Vals.push_back(DL.getCol()); 1787 Vals.push_back(VE.getMetadataOrNullID(Scope)); 1788 Vals.push_back(VE.getMetadataOrNullID(IA)); 1789 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1790 Vals.clear(); 1791 1792 LastDL = DL; 1793 } 1794 } 1795 1796 // Emit names for all the instructions etc. 1797 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1798 1799 if (NeedsMetadataAttachment) 1800 WriteMetadataAttachment(F, VE, Stream); 1801 if (shouldPreserveBitcodeUseListOrder()) 1802 WriteUseListBlock(&F, VE, Stream); 1803 VE.purgeFunction(); 1804 Stream.ExitBlock(); 1805 } 1806 1807 // Emit blockinfo, which defines the standard abbreviations etc. 1808 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1809 // We only want to emit block info records for blocks that have multiple 1810 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1811 // Other blocks can define their abbrevs inline. 1812 Stream.EnterBlockInfoBlock(2); 1813 1814 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1815 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1820 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1821 Abbv) != VST_ENTRY_8_ABBREV) 1822 llvm_unreachable("Unexpected abbrev ordering!"); 1823 } 1824 1825 { // 7-bit fixed width VST_ENTRY strings. 1826 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1827 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1831 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1832 Abbv) != VST_ENTRY_7_ABBREV) 1833 llvm_unreachable("Unexpected abbrev ordering!"); 1834 } 1835 { // 6-bit char6 VST_ENTRY strings. 1836 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1837 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1841 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1842 Abbv) != VST_ENTRY_6_ABBREV) 1843 llvm_unreachable("Unexpected abbrev ordering!"); 1844 } 1845 { // 6-bit char6 VST_BBENTRY strings. 1846 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1847 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1851 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1852 Abbv) != VST_BBENTRY_6_ABBREV) 1853 llvm_unreachable("Unexpected abbrev ordering!"); 1854 } 1855 1856 1857 1858 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1859 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1860 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1862 Log2_32_Ceil(VE.getTypes().size()+1))); 1863 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1864 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1865 llvm_unreachable("Unexpected abbrev ordering!"); 1866 } 1867 1868 { // INTEGER abbrev for CONSTANTS_BLOCK. 1869 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1870 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1872 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1873 Abbv) != CONSTANTS_INTEGER_ABBREV) 1874 llvm_unreachable("Unexpected abbrev ordering!"); 1875 } 1876 1877 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1878 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1879 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1882 Log2_32_Ceil(VE.getTypes().size()+1))); 1883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1884 1885 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1886 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1887 llvm_unreachable("Unexpected abbrev ordering!"); 1888 } 1889 { // NULL abbrev for CONSTANTS_BLOCK. 1890 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1891 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1892 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1893 Abbv) != CONSTANTS_NULL_Abbrev) 1894 llvm_unreachable("Unexpected abbrev ordering!"); 1895 } 1896 1897 // FIXME: This should only use space for first class types! 1898 1899 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1900 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1901 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1905 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1906 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1907 llvm_unreachable("Unexpected abbrev ordering!"); 1908 } 1909 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1910 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1911 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1915 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1916 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1917 llvm_unreachable("Unexpected abbrev ordering!"); 1918 } 1919 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1920 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1921 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1926 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1927 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1928 llvm_unreachable("Unexpected abbrev ordering!"); 1929 } 1930 { // INST_CAST abbrev for FUNCTION_BLOCK. 1931 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1932 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1935 Log2_32_Ceil(VE.getTypes().size()+1))); 1936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1937 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1938 Abbv) != FUNCTION_INST_CAST_ABBREV) 1939 llvm_unreachable("Unexpected abbrev ordering!"); 1940 } 1941 1942 { // INST_RET abbrev for FUNCTION_BLOCK. 1943 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1944 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1945 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1946 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1947 llvm_unreachable("Unexpected abbrev ordering!"); 1948 } 1949 { // INST_RET abbrev for FUNCTION_BLOCK. 1950 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1951 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1953 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1954 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1955 llvm_unreachable("Unexpected abbrev ordering!"); 1956 } 1957 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1958 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1959 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1960 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1961 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1962 llvm_unreachable("Unexpected abbrev ordering!"); 1963 } 1964 1965 Stream.ExitBlock(); 1966 } 1967 1968 /// WriteModule - Emit the specified module to the bitstream. 1969 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1970 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1971 1972 SmallVector<unsigned, 1> Vals; 1973 unsigned CurVersion = 1; 1974 Vals.push_back(CurVersion); 1975 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1976 1977 // Analyze the module, enumerating globals, functions, etc. 1978 ValueEnumerator VE(*M); 1979 1980 // Emit blockinfo, which defines the standard abbreviations etc. 1981 WriteBlockInfo(VE, Stream); 1982 1983 // Emit information about attribute groups. 1984 WriteAttributeGroupTable(VE, Stream); 1985 1986 // Emit information about parameter attributes. 1987 WriteAttributeTable(VE, Stream); 1988 1989 // Emit information describing all of the types in the module. 1990 WriteTypeTable(VE, Stream); 1991 1992 writeComdats(VE, Stream); 1993 1994 // Emit top-level description of module, including target triple, inline asm, 1995 // descriptors for global variables, and function prototype info. 1996 WriteModuleInfo(M, VE, Stream); 1997 1998 // Emit constants. 1999 WriteModuleConstants(VE, Stream); 2000 2001 // Emit metadata. 2002 WriteModuleMetadata(M, VE, Stream); 2003 2004 // Emit metadata. 2005 WriteModuleMetadataStore(M, Stream); 2006 2007 // Emit names for globals/functions etc. 2008 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2009 2010 // Emit module-level use-lists. 2011 if (shouldPreserveBitcodeUseListOrder()) 2012 WriteUseListBlock(nullptr, VE, Stream); 2013 2014 // Emit function bodies. 2015 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2016 if (!F->isDeclaration()) 2017 WriteFunction(*F, VE, Stream); 2018 2019 Stream.ExitBlock(); 2020 } 2021 2022 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2023 /// header and trailer to make it compatible with the system archiver. To do 2024 /// this we emit the following header, and then emit a trailer that pads the 2025 /// file out to be a multiple of 16 bytes. 2026 /// 2027 /// struct bc_header { 2028 /// uint32_t Magic; // 0x0B17C0DE 2029 /// uint32_t Version; // Version, currently always 0. 2030 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2031 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2032 /// uint32_t CPUType; // CPU specifier. 2033 /// ... potentially more later ... 2034 /// }; 2035 enum { 2036 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2037 DarwinBCHeaderSize = 5*4 2038 }; 2039 2040 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2041 uint32_t &Position) { 2042 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2043 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2044 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2045 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2046 Position += 4; 2047 } 2048 2049 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2050 const Triple &TT) { 2051 unsigned CPUType = ~0U; 2052 2053 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2054 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2055 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2056 // specific constants here because they are implicitly part of the Darwin ABI. 2057 enum { 2058 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2059 DARWIN_CPU_TYPE_X86 = 7, 2060 DARWIN_CPU_TYPE_ARM = 12, 2061 DARWIN_CPU_TYPE_POWERPC = 18 2062 }; 2063 2064 Triple::ArchType Arch = TT.getArch(); 2065 if (Arch == Triple::x86_64) 2066 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2067 else if (Arch == Triple::x86) 2068 CPUType = DARWIN_CPU_TYPE_X86; 2069 else if (Arch == Triple::ppc) 2070 CPUType = DARWIN_CPU_TYPE_POWERPC; 2071 else if (Arch == Triple::ppc64) 2072 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2073 else if (Arch == Triple::arm || Arch == Triple::thumb) 2074 CPUType = DARWIN_CPU_TYPE_ARM; 2075 2076 // Traditional Bitcode starts after header. 2077 assert(Buffer.size() >= DarwinBCHeaderSize && 2078 "Expected header size to be reserved"); 2079 unsigned BCOffset = DarwinBCHeaderSize; 2080 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2081 2082 // Write the magic and version. 2083 unsigned Position = 0; 2084 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2085 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2086 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2087 WriteInt32ToBuffer(BCSize , Buffer, Position); 2088 WriteInt32ToBuffer(CPUType , Buffer, Position); 2089 2090 // If the file is not a multiple of 16 bytes, insert dummy padding. 2091 while (Buffer.size() & 15) 2092 Buffer.push_back(0); 2093 } 2094 2095 /// WriteBitcodeToFile - Write the specified module to the specified output 2096 /// stream. 2097 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2098 SmallVector<char, 0> Buffer; 2099 Buffer.reserve(256*1024); 2100 2101 // If this is darwin or another generic macho target, reserve space for the 2102 // header. 2103 Triple TT(M->getTargetTriple()); 2104 if (TT.isOSDarwin()) 2105 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2106 2107 // Emit the module into the buffer. 2108 { 2109 BitstreamWriter Stream(Buffer); 2110 2111 // Emit the file header. 2112 Stream.Emit((unsigned)'B', 8); 2113 Stream.Emit((unsigned)'C', 8); 2114 Stream.Emit(0x0, 4); 2115 Stream.Emit(0xC, 4); 2116 Stream.Emit(0xE, 4); 2117 Stream.Emit(0xD, 4); 2118 2119 // Emit the module. 2120 WriteModule(M, Stream); 2121 } 2122 2123 if (TT.isOSDarwin()) 2124 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2125 2126 // Write the generated bitstream to "Out". 2127 Out.write((char*)&Buffer.front(), Buffer.size()); 2128 } 2129