1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeBitcodeHeader(); 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 341 SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDIGlobalVariable(const DIGlobalVariable *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDILocalVariable(const DILocalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDILabel(const DILabel *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDIExpression(const DIExpression *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 356 SmallVectorImpl<uint64_t> &Record, 357 unsigned Abbrev); 358 void writeDIObjCProperty(const DIObjCProperty *N, 359 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 360 void writeDIImportedEntity(const DIImportedEntity *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 unsigned createNamedMetadataAbbrev(); 364 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 365 unsigned createMetadataStringsAbbrev(); 366 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 367 SmallVectorImpl<uint64_t> &Record); 368 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 369 SmallVectorImpl<uint64_t> &Record, 370 std::vector<unsigned> *MDAbbrevs = nullptr, 371 std::vector<uint64_t> *IndexPos = nullptr); 372 void writeModuleMetadata(); 373 void writeFunctionMetadata(const Function &F); 374 void writeFunctionMetadataAttachment(const Function &F); 375 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 601 AbbrevToUse = 0; 602 Vals.push_back(Str[i]); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::Hot: 630 return bitc::ATTR_KIND_HOT; 631 case Attribute::InaccessibleMemOnly: 632 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 633 case Attribute::InaccessibleMemOrArgMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 635 case Attribute::InlineHint: 636 return bitc::ATTR_KIND_INLINE_HINT; 637 case Attribute::InReg: 638 return bitc::ATTR_KIND_IN_REG; 639 case Attribute::JumpTable: 640 return bitc::ATTR_KIND_JUMP_TABLE; 641 case Attribute::MinSize: 642 return bitc::ATTR_KIND_MIN_SIZE; 643 case Attribute::Naked: 644 return bitc::ATTR_KIND_NAKED; 645 case Attribute::Nest: 646 return bitc::ATTR_KIND_NEST; 647 case Attribute::NoAlias: 648 return bitc::ATTR_KIND_NO_ALIAS; 649 case Attribute::NoBuiltin: 650 return bitc::ATTR_KIND_NO_BUILTIN; 651 case Attribute::NoCallback: 652 return bitc::ATTR_KIND_NO_CALLBACK; 653 case Attribute::NoCapture: 654 return bitc::ATTR_KIND_NO_CAPTURE; 655 case Attribute::NoDuplicate: 656 return bitc::ATTR_KIND_NO_DUPLICATE; 657 case Attribute::NoFree: 658 return bitc::ATTR_KIND_NOFREE; 659 case Attribute::NoImplicitFloat: 660 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 661 case Attribute::NoInline: 662 return bitc::ATTR_KIND_NO_INLINE; 663 case Attribute::NoRecurse: 664 return bitc::ATTR_KIND_NO_RECURSE; 665 case Attribute::NoMerge: 666 return bitc::ATTR_KIND_NO_MERGE; 667 case Attribute::NonLazyBind: 668 return bitc::ATTR_KIND_NON_LAZY_BIND; 669 case Attribute::NonNull: 670 return bitc::ATTR_KIND_NON_NULL; 671 case Attribute::Dereferenceable: 672 return bitc::ATTR_KIND_DEREFERENCEABLE; 673 case Attribute::DereferenceableOrNull: 674 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 675 case Attribute::NoRedZone: 676 return bitc::ATTR_KIND_NO_RED_ZONE; 677 case Attribute::NoReturn: 678 return bitc::ATTR_KIND_NO_RETURN; 679 case Attribute::NoSync: 680 return bitc::ATTR_KIND_NOSYNC; 681 case Attribute::NoCfCheck: 682 return bitc::ATTR_KIND_NOCF_CHECK; 683 case Attribute::NoUnwind: 684 return bitc::ATTR_KIND_NO_UNWIND; 685 case Attribute::NullPointerIsValid: 686 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 687 case Attribute::OptForFuzzing: 688 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 689 case Attribute::OptimizeForSize: 690 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 691 case Attribute::OptimizeNone: 692 return bitc::ATTR_KIND_OPTIMIZE_NONE; 693 case Attribute::ReadNone: 694 return bitc::ATTR_KIND_READ_NONE; 695 case Attribute::ReadOnly: 696 return bitc::ATTR_KIND_READ_ONLY; 697 case Attribute::Returned: 698 return bitc::ATTR_KIND_RETURNED; 699 case Attribute::ReturnsTwice: 700 return bitc::ATTR_KIND_RETURNS_TWICE; 701 case Attribute::SExt: 702 return bitc::ATTR_KIND_S_EXT; 703 case Attribute::Speculatable: 704 return bitc::ATTR_KIND_SPECULATABLE; 705 case Attribute::StackAlignment: 706 return bitc::ATTR_KIND_STACK_ALIGNMENT; 707 case Attribute::StackProtect: 708 return bitc::ATTR_KIND_STACK_PROTECT; 709 case Attribute::StackProtectReq: 710 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 711 case Attribute::StackProtectStrong: 712 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 713 case Attribute::SafeStack: 714 return bitc::ATTR_KIND_SAFESTACK; 715 case Attribute::ShadowCallStack: 716 return bitc::ATTR_KIND_SHADOWCALLSTACK; 717 case Attribute::StrictFP: 718 return bitc::ATTR_KIND_STRICT_FP; 719 case Attribute::StructRet: 720 return bitc::ATTR_KIND_STRUCT_RET; 721 case Attribute::SanitizeAddress: 722 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 723 case Attribute::SanitizeHWAddress: 724 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 725 case Attribute::SanitizeThread: 726 return bitc::ATTR_KIND_SANITIZE_THREAD; 727 case Attribute::SanitizeMemory: 728 return bitc::ATTR_KIND_SANITIZE_MEMORY; 729 case Attribute::SpeculativeLoadHardening: 730 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 731 case Attribute::SwiftError: 732 return bitc::ATTR_KIND_SWIFT_ERROR; 733 case Attribute::SwiftSelf: 734 return bitc::ATTR_KIND_SWIFT_SELF; 735 case Attribute::UWTable: 736 return bitc::ATTR_KIND_UW_TABLE; 737 case Attribute::WillReturn: 738 return bitc::ATTR_KIND_WILLRETURN; 739 case Attribute::WriteOnly: 740 return bitc::ATTR_KIND_WRITEONLY; 741 case Attribute::ZExt: 742 return bitc::ATTR_KIND_Z_EXT; 743 case Attribute::ImmArg: 744 return bitc::ATTR_KIND_IMMARG; 745 case Attribute::SanitizeMemTag: 746 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 747 case Attribute::Preallocated: 748 return bitc::ATTR_KIND_PREALLOCATED; 749 case Attribute::NoUndef: 750 return bitc::ATTR_KIND_NOUNDEF; 751 case Attribute::ByRef: 752 return bitc::ATTR_KIND_BYREF; 753 case Attribute::MustProgress: 754 return bitc::ATTR_KIND_MUSTPROGRESS; 755 case Attribute::EndAttrKinds: 756 llvm_unreachable("Can not encode end-attribute kinds marker."); 757 case Attribute::None: 758 llvm_unreachable("Can not encode none-attribute."); 759 case Attribute::EmptyKey: 760 case Attribute::TombstoneKey: 761 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 762 } 763 764 llvm_unreachable("Trying to encode unknown attribute"); 765 } 766 767 void ModuleBitcodeWriter::writeAttributeGroupTable() { 768 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 769 VE.getAttributeGroups(); 770 if (AttrGrps.empty()) return; 771 772 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 773 774 SmallVector<uint64_t, 64> Record; 775 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 776 unsigned AttrListIndex = Pair.first; 777 AttributeSet AS = Pair.second; 778 Record.push_back(VE.getAttributeGroupID(Pair)); 779 Record.push_back(AttrListIndex); 780 781 for (Attribute Attr : AS) { 782 if (Attr.isEnumAttribute()) { 783 Record.push_back(0); 784 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 785 } else if (Attr.isIntAttribute()) { 786 Record.push_back(1); 787 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 788 Record.push_back(Attr.getValueAsInt()); 789 } else if (Attr.isStringAttribute()) { 790 StringRef Kind = Attr.getKindAsString(); 791 StringRef Val = Attr.getValueAsString(); 792 793 Record.push_back(Val.empty() ? 3 : 4); 794 Record.append(Kind.begin(), Kind.end()); 795 Record.push_back(0); 796 if (!Val.empty()) { 797 Record.append(Val.begin(), Val.end()); 798 Record.push_back(0); 799 } 800 } else { 801 assert(Attr.isTypeAttribute()); 802 Type *Ty = Attr.getValueAsType(); 803 Record.push_back(Ty ? 6 : 5); 804 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 805 if (Ty) 806 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 807 } 808 } 809 810 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 811 Record.clear(); 812 } 813 814 Stream.ExitBlock(); 815 } 816 817 void ModuleBitcodeWriter::writeAttributeTable() { 818 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 819 if (Attrs.empty()) return; 820 821 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 822 823 SmallVector<uint64_t, 64> Record; 824 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 825 AttributeList AL = Attrs[i]; 826 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 827 AttributeSet AS = AL.getAttributes(i); 828 if (AS.hasAttributes()) 829 Record.push_back(VE.getAttributeGroupID({i, AS})); 830 } 831 832 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 833 Record.clear(); 834 } 835 836 Stream.ExitBlock(); 837 } 838 839 /// WriteTypeTable - Write out the type table for a module. 840 void ModuleBitcodeWriter::writeTypeTable() { 841 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 842 843 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 844 SmallVector<uint64_t, 64> TypeVals; 845 846 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 847 848 // Abbrev for TYPE_CODE_POINTER. 849 auto Abbv = std::make_shared<BitCodeAbbrev>(); 850 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 852 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 853 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 854 855 // Abbrev for TYPE_CODE_FUNCTION. 856 Abbv = std::make_shared<BitCodeAbbrev>(); 857 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 861 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 862 863 // Abbrev for TYPE_CODE_STRUCT_ANON. 864 Abbv = std::make_shared<BitCodeAbbrev>(); 865 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 869 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 870 871 // Abbrev for TYPE_CODE_STRUCT_NAME. 872 Abbv = std::make_shared<BitCodeAbbrev>(); 873 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 876 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 877 878 // Abbrev for TYPE_CODE_STRUCT_NAMED. 879 Abbv = std::make_shared<BitCodeAbbrev>(); 880 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 884 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 885 886 // Abbrev for TYPE_CODE_ARRAY. 887 Abbv = std::make_shared<BitCodeAbbrev>(); 888 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 891 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 892 893 // Emit an entry count so the reader can reserve space. 894 TypeVals.push_back(TypeList.size()); 895 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 896 TypeVals.clear(); 897 898 // Loop over all of the types, emitting each in turn. 899 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 900 Type *T = TypeList[i]; 901 int AbbrevToUse = 0; 902 unsigned Code = 0; 903 904 switch (T->getTypeID()) { 905 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 906 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 907 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 908 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 909 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 910 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 911 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 912 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 913 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 914 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 915 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 916 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 917 case Type::IntegerTyID: 918 // INTEGER: [width] 919 Code = bitc::TYPE_CODE_INTEGER; 920 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 921 break; 922 case Type::PointerTyID: { 923 PointerType *PTy = cast<PointerType>(T); 924 // POINTER: [pointee type, address space] 925 Code = bitc::TYPE_CODE_POINTER; 926 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 927 unsigned AddressSpace = PTy->getAddressSpace(); 928 TypeVals.push_back(AddressSpace); 929 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 930 break; 931 } 932 case Type::FunctionTyID: { 933 FunctionType *FT = cast<FunctionType>(T); 934 // FUNCTION: [isvararg, retty, paramty x N] 935 Code = bitc::TYPE_CODE_FUNCTION; 936 TypeVals.push_back(FT->isVarArg()); 937 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 938 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 939 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 940 AbbrevToUse = FunctionAbbrev; 941 break; 942 } 943 case Type::StructTyID: { 944 StructType *ST = cast<StructType>(T); 945 // STRUCT: [ispacked, eltty x N] 946 TypeVals.push_back(ST->isPacked()); 947 // Output all of the element types. 948 for (StructType::element_iterator I = ST->element_begin(), 949 E = ST->element_end(); I != E; ++I) 950 TypeVals.push_back(VE.getTypeID(*I)); 951 952 if (ST->isLiteral()) { 953 Code = bitc::TYPE_CODE_STRUCT_ANON; 954 AbbrevToUse = StructAnonAbbrev; 955 } else { 956 if (ST->isOpaque()) { 957 Code = bitc::TYPE_CODE_OPAQUE; 958 } else { 959 Code = bitc::TYPE_CODE_STRUCT_NAMED; 960 AbbrevToUse = StructNamedAbbrev; 961 } 962 963 // Emit the name if it is present. 964 if (!ST->getName().empty()) 965 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 966 StructNameAbbrev); 967 } 968 break; 969 } 970 case Type::ArrayTyID: { 971 ArrayType *AT = cast<ArrayType>(T); 972 // ARRAY: [numelts, eltty] 973 Code = bitc::TYPE_CODE_ARRAY; 974 TypeVals.push_back(AT->getNumElements()); 975 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 976 AbbrevToUse = ArrayAbbrev; 977 break; 978 } 979 case Type::FixedVectorTyID: 980 case Type::ScalableVectorTyID: { 981 VectorType *VT = cast<VectorType>(T); 982 // VECTOR [numelts, eltty] or 983 // [numelts, eltty, scalable] 984 Code = bitc::TYPE_CODE_VECTOR; 985 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 986 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 987 if (isa<ScalableVectorType>(VT)) 988 TypeVals.push_back(true); 989 break; 990 } 991 } 992 993 // Emit the finished record. 994 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 995 TypeVals.clear(); 996 } 997 998 Stream.ExitBlock(); 999 } 1000 1001 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1002 switch (Linkage) { 1003 case GlobalValue::ExternalLinkage: 1004 return 0; 1005 case GlobalValue::WeakAnyLinkage: 1006 return 16; 1007 case GlobalValue::AppendingLinkage: 1008 return 2; 1009 case GlobalValue::InternalLinkage: 1010 return 3; 1011 case GlobalValue::LinkOnceAnyLinkage: 1012 return 18; 1013 case GlobalValue::ExternalWeakLinkage: 1014 return 7; 1015 case GlobalValue::CommonLinkage: 1016 return 8; 1017 case GlobalValue::PrivateLinkage: 1018 return 9; 1019 case GlobalValue::WeakODRLinkage: 1020 return 17; 1021 case GlobalValue::LinkOnceODRLinkage: 1022 return 19; 1023 case GlobalValue::AvailableExternallyLinkage: 1024 return 12; 1025 } 1026 llvm_unreachable("Invalid linkage"); 1027 } 1028 1029 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1030 return getEncodedLinkage(GV.getLinkage()); 1031 } 1032 1033 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1034 uint64_t RawFlags = 0; 1035 RawFlags |= Flags.ReadNone; 1036 RawFlags |= (Flags.ReadOnly << 1); 1037 RawFlags |= (Flags.NoRecurse << 2); 1038 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1039 RawFlags |= (Flags.NoInline << 4); 1040 RawFlags |= (Flags.AlwaysInline << 5); 1041 return RawFlags; 1042 } 1043 1044 // Decode the flags for GlobalValue in the summary 1045 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1046 uint64_t RawFlags = 0; 1047 1048 RawFlags |= Flags.NotEligibleToImport; // bool 1049 RawFlags |= (Flags.Live << 1); 1050 RawFlags |= (Flags.DSOLocal << 2); 1051 RawFlags |= (Flags.CanAutoHide << 3); 1052 1053 // Linkage don't need to be remapped at that time for the summary. Any future 1054 // change to the getEncodedLinkage() function will need to be taken into 1055 // account here as well. 1056 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1057 1058 return RawFlags; 1059 } 1060 1061 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1062 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1063 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1064 return RawFlags; 1065 } 1066 1067 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1068 switch (GV.getVisibility()) { 1069 case GlobalValue::DefaultVisibility: return 0; 1070 case GlobalValue::HiddenVisibility: return 1; 1071 case GlobalValue::ProtectedVisibility: return 2; 1072 } 1073 llvm_unreachable("Invalid visibility"); 1074 } 1075 1076 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1077 switch (GV.getDLLStorageClass()) { 1078 case GlobalValue::DefaultStorageClass: return 0; 1079 case GlobalValue::DLLImportStorageClass: return 1; 1080 case GlobalValue::DLLExportStorageClass: return 2; 1081 } 1082 llvm_unreachable("Invalid DLL storage class"); 1083 } 1084 1085 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1086 switch (GV.getThreadLocalMode()) { 1087 case GlobalVariable::NotThreadLocal: return 0; 1088 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1089 case GlobalVariable::LocalDynamicTLSModel: return 2; 1090 case GlobalVariable::InitialExecTLSModel: return 3; 1091 case GlobalVariable::LocalExecTLSModel: return 4; 1092 } 1093 llvm_unreachable("Invalid TLS model"); 1094 } 1095 1096 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1097 switch (C.getSelectionKind()) { 1098 case Comdat::Any: 1099 return bitc::COMDAT_SELECTION_KIND_ANY; 1100 case Comdat::ExactMatch: 1101 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1102 case Comdat::Largest: 1103 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1104 case Comdat::NoDuplicates: 1105 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1106 case Comdat::SameSize: 1107 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1108 } 1109 llvm_unreachable("Invalid selection kind"); 1110 } 1111 1112 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1113 switch (GV.getUnnamedAddr()) { 1114 case GlobalValue::UnnamedAddr::None: return 0; 1115 case GlobalValue::UnnamedAddr::Local: return 2; 1116 case GlobalValue::UnnamedAddr::Global: return 1; 1117 } 1118 llvm_unreachable("Invalid unnamed_addr"); 1119 } 1120 1121 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1122 if (GenerateHash) 1123 Hasher.update(Str); 1124 return StrtabBuilder.add(Str); 1125 } 1126 1127 void ModuleBitcodeWriter::writeComdats() { 1128 SmallVector<unsigned, 64> Vals; 1129 for (const Comdat *C : VE.getComdats()) { 1130 // COMDAT: [strtab offset, strtab size, selection_kind] 1131 Vals.push_back(addToStrtab(C->getName())); 1132 Vals.push_back(C->getName().size()); 1133 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1134 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1135 Vals.clear(); 1136 } 1137 } 1138 1139 /// Write a record that will eventually hold the word offset of the 1140 /// module-level VST. For now the offset is 0, which will be backpatched 1141 /// after the real VST is written. Saves the bit offset to backpatch. 1142 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1143 // Write a placeholder value in for the offset of the real VST, 1144 // which is written after the function blocks so that it can include 1145 // the offset of each function. The placeholder offset will be 1146 // updated when the real VST is written. 1147 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1148 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1149 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1150 // hold the real VST offset. Must use fixed instead of VBR as we don't 1151 // know how many VBR chunks to reserve ahead of time. 1152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1153 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1154 1155 // Emit the placeholder 1156 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1157 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1158 1159 // Compute and save the bit offset to the placeholder, which will be 1160 // patched when the real VST is written. We can simply subtract the 32-bit 1161 // fixed size from the current bit number to get the location to backpatch. 1162 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1163 } 1164 1165 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1166 1167 /// Determine the encoding to use for the given string name and length. 1168 static StringEncoding getStringEncoding(StringRef Str) { 1169 bool isChar6 = true; 1170 for (char C : Str) { 1171 if (isChar6) 1172 isChar6 = BitCodeAbbrevOp::isChar6(C); 1173 if ((unsigned char)C & 128) 1174 // don't bother scanning the rest. 1175 return SE_Fixed8; 1176 } 1177 if (isChar6) 1178 return SE_Char6; 1179 return SE_Fixed7; 1180 } 1181 1182 /// Emit top-level description of module, including target triple, inline asm, 1183 /// descriptors for global variables, and function prototype info. 1184 /// Returns the bit offset to backpatch with the location of the real VST. 1185 void ModuleBitcodeWriter::writeModuleInfo() { 1186 // Emit various pieces of data attached to a module. 1187 if (!M.getTargetTriple().empty()) 1188 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1189 0 /*TODO*/); 1190 const std::string &DL = M.getDataLayoutStr(); 1191 if (!DL.empty()) 1192 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1193 if (!M.getModuleInlineAsm().empty()) 1194 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1195 0 /*TODO*/); 1196 1197 // Emit information about sections and GC, computing how many there are. Also 1198 // compute the maximum alignment value. 1199 std::map<std::string, unsigned> SectionMap; 1200 std::map<std::string, unsigned> GCMap; 1201 MaybeAlign MaxAlignment; 1202 unsigned MaxGlobalType = 0; 1203 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1204 if (A) 1205 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1206 }; 1207 for (const GlobalVariable &GV : M.globals()) { 1208 UpdateMaxAlignment(GV.getAlign()); 1209 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1210 if (GV.hasSection()) { 1211 // Give section names unique ID's. 1212 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1213 if (!Entry) { 1214 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1215 0 /*TODO*/); 1216 Entry = SectionMap.size(); 1217 } 1218 } 1219 } 1220 for (const Function &F : M) { 1221 UpdateMaxAlignment(F.getAlign()); 1222 if (F.hasSection()) { 1223 // Give section names unique ID's. 1224 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1225 if (!Entry) { 1226 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1227 0 /*TODO*/); 1228 Entry = SectionMap.size(); 1229 } 1230 } 1231 if (F.hasGC()) { 1232 // Same for GC names. 1233 unsigned &Entry = GCMap[F.getGC()]; 1234 if (!Entry) { 1235 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1236 0 /*TODO*/); 1237 Entry = GCMap.size(); 1238 } 1239 } 1240 } 1241 1242 // Emit abbrev for globals, now that we know # sections and max alignment. 1243 unsigned SimpleGVarAbbrev = 0; 1244 if (!M.global_empty()) { 1245 // Add an abbrev for common globals with no visibility or thread localness. 1246 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1247 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1251 Log2_32_Ceil(MaxGlobalType+1))); 1252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1253 //| explicitType << 1 1254 //| constant 1255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1257 if (!MaxAlignment) // Alignment. 1258 Abbv->Add(BitCodeAbbrevOp(0)); 1259 else { 1260 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1262 Log2_32_Ceil(MaxEncAlignment+1))); 1263 } 1264 if (SectionMap.empty()) // Section. 1265 Abbv->Add(BitCodeAbbrevOp(0)); 1266 else 1267 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1268 Log2_32_Ceil(SectionMap.size()+1))); 1269 // Don't bother emitting vis + thread local. 1270 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1271 } 1272 1273 SmallVector<unsigned, 64> Vals; 1274 // Emit the module's source file name. 1275 { 1276 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1277 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1278 if (Bits == SE_Char6) 1279 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1280 else if (Bits == SE_Fixed7) 1281 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1282 1283 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1284 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1285 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1287 Abbv->Add(AbbrevOpToUse); 1288 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1289 1290 for (const auto P : M.getSourceFileName()) 1291 Vals.push_back((unsigned char)P); 1292 1293 // Emit the finished record. 1294 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1295 Vals.clear(); 1296 } 1297 1298 // Emit the global variable information. 1299 for (const GlobalVariable &GV : M.globals()) { 1300 unsigned AbbrevToUse = 0; 1301 1302 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1303 // linkage, alignment, section, visibility, threadlocal, 1304 // unnamed_addr, externally_initialized, dllstorageclass, 1305 // comdat, attributes, DSO_Local] 1306 Vals.push_back(addToStrtab(GV.getName())); 1307 Vals.push_back(GV.getName().size()); 1308 Vals.push_back(VE.getTypeID(GV.getValueType())); 1309 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1310 Vals.push_back(GV.isDeclaration() ? 0 : 1311 (VE.getValueID(GV.getInitializer()) + 1)); 1312 Vals.push_back(getEncodedLinkage(GV)); 1313 Vals.push_back(getEncodedAlign(GV.getAlign())); 1314 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1315 : 0); 1316 if (GV.isThreadLocal() || 1317 GV.getVisibility() != GlobalValue::DefaultVisibility || 1318 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1319 GV.isExternallyInitialized() || 1320 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1321 GV.hasComdat() || 1322 GV.hasAttributes() || 1323 GV.isDSOLocal() || 1324 GV.hasPartition()) { 1325 Vals.push_back(getEncodedVisibility(GV)); 1326 Vals.push_back(getEncodedThreadLocalMode(GV)); 1327 Vals.push_back(getEncodedUnnamedAddr(GV)); 1328 Vals.push_back(GV.isExternallyInitialized()); 1329 Vals.push_back(getEncodedDLLStorageClass(GV)); 1330 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1331 1332 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1333 Vals.push_back(VE.getAttributeListID(AL)); 1334 1335 Vals.push_back(GV.isDSOLocal()); 1336 Vals.push_back(addToStrtab(GV.getPartition())); 1337 Vals.push_back(GV.getPartition().size()); 1338 } else { 1339 AbbrevToUse = SimpleGVarAbbrev; 1340 } 1341 1342 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1343 Vals.clear(); 1344 } 1345 1346 // Emit the function proto information. 1347 for (const Function &F : M) { 1348 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1349 // linkage, paramattrs, alignment, section, visibility, gc, 1350 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1351 // prefixdata, personalityfn, DSO_Local, addrspace] 1352 Vals.push_back(addToStrtab(F.getName())); 1353 Vals.push_back(F.getName().size()); 1354 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1355 Vals.push_back(F.getCallingConv()); 1356 Vals.push_back(F.isDeclaration()); 1357 Vals.push_back(getEncodedLinkage(F)); 1358 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1359 Vals.push_back(getEncodedAlign(F.getAlign())); 1360 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1361 : 0); 1362 Vals.push_back(getEncodedVisibility(F)); 1363 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1364 Vals.push_back(getEncodedUnnamedAddr(F)); 1365 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1366 : 0); 1367 Vals.push_back(getEncodedDLLStorageClass(F)); 1368 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1369 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1370 : 0); 1371 Vals.push_back( 1372 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1373 1374 Vals.push_back(F.isDSOLocal()); 1375 Vals.push_back(F.getAddressSpace()); 1376 Vals.push_back(addToStrtab(F.getPartition())); 1377 Vals.push_back(F.getPartition().size()); 1378 1379 unsigned AbbrevToUse = 0; 1380 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1381 Vals.clear(); 1382 } 1383 1384 // Emit the alias information. 1385 for (const GlobalAlias &A : M.aliases()) { 1386 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1387 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1388 // DSO_Local] 1389 Vals.push_back(addToStrtab(A.getName())); 1390 Vals.push_back(A.getName().size()); 1391 Vals.push_back(VE.getTypeID(A.getValueType())); 1392 Vals.push_back(A.getType()->getAddressSpace()); 1393 Vals.push_back(VE.getValueID(A.getAliasee())); 1394 Vals.push_back(getEncodedLinkage(A)); 1395 Vals.push_back(getEncodedVisibility(A)); 1396 Vals.push_back(getEncodedDLLStorageClass(A)); 1397 Vals.push_back(getEncodedThreadLocalMode(A)); 1398 Vals.push_back(getEncodedUnnamedAddr(A)); 1399 Vals.push_back(A.isDSOLocal()); 1400 Vals.push_back(addToStrtab(A.getPartition())); 1401 Vals.push_back(A.getPartition().size()); 1402 1403 unsigned AbbrevToUse = 0; 1404 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1405 Vals.clear(); 1406 } 1407 1408 // Emit the ifunc information. 1409 for (const GlobalIFunc &I : M.ifuncs()) { 1410 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1411 // val#, linkage, visibility, DSO_Local] 1412 Vals.push_back(addToStrtab(I.getName())); 1413 Vals.push_back(I.getName().size()); 1414 Vals.push_back(VE.getTypeID(I.getValueType())); 1415 Vals.push_back(I.getType()->getAddressSpace()); 1416 Vals.push_back(VE.getValueID(I.getResolver())); 1417 Vals.push_back(getEncodedLinkage(I)); 1418 Vals.push_back(getEncodedVisibility(I)); 1419 Vals.push_back(I.isDSOLocal()); 1420 Vals.push_back(addToStrtab(I.getPartition())); 1421 Vals.push_back(I.getPartition().size()); 1422 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1423 Vals.clear(); 1424 } 1425 1426 writeValueSymbolTableForwardDecl(); 1427 } 1428 1429 static uint64_t getOptimizationFlags(const Value *V) { 1430 uint64_t Flags = 0; 1431 1432 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1433 if (OBO->hasNoSignedWrap()) 1434 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1435 if (OBO->hasNoUnsignedWrap()) 1436 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1437 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1438 if (PEO->isExact()) 1439 Flags |= 1 << bitc::PEO_EXACT; 1440 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1441 if (FPMO->hasAllowReassoc()) 1442 Flags |= bitc::AllowReassoc; 1443 if (FPMO->hasNoNaNs()) 1444 Flags |= bitc::NoNaNs; 1445 if (FPMO->hasNoInfs()) 1446 Flags |= bitc::NoInfs; 1447 if (FPMO->hasNoSignedZeros()) 1448 Flags |= bitc::NoSignedZeros; 1449 if (FPMO->hasAllowReciprocal()) 1450 Flags |= bitc::AllowReciprocal; 1451 if (FPMO->hasAllowContract()) 1452 Flags |= bitc::AllowContract; 1453 if (FPMO->hasApproxFunc()) 1454 Flags |= bitc::ApproxFunc; 1455 } 1456 1457 return Flags; 1458 } 1459 1460 void ModuleBitcodeWriter::writeValueAsMetadata( 1461 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1462 // Mimic an MDNode with a value as one operand. 1463 Value *V = MD->getValue(); 1464 Record.push_back(VE.getTypeID(V->getType())); 1465 Record.push_back(VE.getValueID(V)); 1466 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1467 Record.clear(); 1468 } 1469 1470 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1471 SmallVectorImpl<uint64_t> &Record, 1472 unsigned Abbrev) { 1473 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1474 Metadata *MD = N->getOperand(i); 1475 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1476 "Unexpected function-local metadata"); 1477 Record.push_back(VE.getMetadataOrNullID(MD)); 1478 } 1479 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1480 : bitc::METADATA_NODE, 1481 Record, Abbrev); 1482 Record.clear(); 1483 } 1484 1485 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1486 // Assume the column is usually under 128, and always output the inlined-at 1487 // location (it's never more expensive than building an array size 1). 1488 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1489 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1496 return Stream.EmitAbbrev(std::move(Abbv)); 1497 } 1498 1499 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1500 SmallVectorImpl<uint64_t> &Record, 1501 unsigned &Abbrev) { 1502 if (!Abbrev) 1503 Abbrev = createDILocationAbbrev(); 1504 1505 Record.push_back(N->isDistinct()); 1506 Record.push_back(N->getLine()); 1507 Record.push_back(N->getColumn()); 1508 Record.push_back(VE.getMetadataID(N->getScope())); 1509 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1510 Record.push_back(N->isImplicitCode()); 1511 1512 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1517 // Assume the column is usually under 128, and always output the inlined-at 1518 // location (it's never more expensive than building an array size 1). 1519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1520 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1527 return Stream.EmitAbbrev(std::move(Abbv)); 1528 } 1529 1530 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned &Abbrev) { 1533 if (!Abbrev) 1534 Abbrev = createGenericDINodeAbbrev(); 1535 1536 Record.push_back(N->isDistinct()); 1537 Record.push_back(N->getTag()); 1538 Record.push_back(0); // Per-tag version field; unused for now. 1539 1540 for (auto &I : N->operands()) 1541 Record.push_back(VE.getMetadataOrNullID(I)); 1542 1543 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1548 SmallVectorImpl<uint64_t> &Record, 1549 unsigned Abbrev) { 1550 const uint64_t Version = 2 << 1; 1551 Record.push_back((uint64_t)N->isDistinct() | Version); 1552 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1553 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1556 1557 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1558 Record.clear(); 1559 } 1560 1561 void ModuleBitcodeWriter::writeDIGenericSubrange( 1562 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1563 unsigned Abbrev) { 1564 Record.push_back((uint64_t)N->isDistinct()); 1565 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1566 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1568 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1569 1570 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1571 Record.clear(); 1572 } 1573 1574 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1575 if ((int64_t)V >= 0) 1576 Vals.push_back(V << 1); 1577 else 1578 Vals.push_back((-V << 1) | 1); 1579 } 1580 1581 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1582 // We have an arbitrary precision integer value to write whose 1583 // bit width is > 64. However, in canonical unsigned integer 1584 // format it is likely that the high bits are going to be zero. 1585 // So, we only write the number of active words. 1586 unsigned NumWords = A.getActiveWords(); 1587 const uint64_t *RawData = A.getRawData(); 1588 for (unsigned i = 0; i < NumWords; i++) 1589 emitSignedInt64(Vals, RawData[i]); 1590 } 1591 1592 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1593 SmallVectorImpl<uint64_t> &Record, 1594 unsigned Abbrev) { 1595 const uint64_t IsBigInt = 1 << 2; 1596 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1597 Record.push_back(N->getValue().getBitWidth()); 1598 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1599 emitWideAPInt(Record, N->getValue()); 1600 1601 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1602 Record.clear(); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1606 SmallVectorImpl<uint64_t> &Record, 1607 unsigned Abbrev) { 1608 Record.push_back(N->isDistinct()); 1609 Record.push_back(N->getTag()); 1610 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1611 Record.push_back(N->getSizeInBits()); 1612 Record.push_back(N->getAlignInBits()); 1613 Record.push_back(N->getEncoding()); 1614 Record.push_back(N->getFlags()); 1615 1616 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1617 Record.clear(); 1618 } 1619 1620 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1621 SmallVectorImpl<uint64_t> &Record, 1622 unsigned Abbrev) { 1623 Record.push_back(N->isDistinct()); 1624 Record.push_back(N->getTag()); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1628 Record.push_back(N->getSizeInBits()); 1629 Record.push_back(N->getAlignInBits()); 1630 Record.push_back(N->getEncoding()); 1631 1632 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(N->getTag()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1642 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1643 Record.push_back(N->getLine()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1645 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1646 Record.push_back(N->getSizeInBits()); 1647 Record.push_back(N->getAlignInBits()); 1648 Record.push_back(N->getOffsetInBits()); 1649 Record.push_back(N->getFlags()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1651 1652 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1653 // that there is no DWARF address space associated with DIDerivedType. 1654 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1655 Record.push_back(*DWARFAddressSpace + 1); 1656 else 1657 Record.push_back(0); 1658 1659 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1660 Record.clear(); 1661 } 1662 1663 void ModuleBitcodeWriter::writeDICompositeType( 1664 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1665 unsigned Abbrev) { 1666 const unsigned IsNotUsedInOldTypeRef = 0x2; 1667 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1668 Record.push_back(N->getTag()); 1669 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1670 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1671 Record.push_back(N->getLine()); 1672 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1674 Record.push_back(N->getSizeInBits()); 1675 Record.push_back(N->getAlignInBits()); 1676 Record.push_back(N->getOffsetInBits()); 1677 Record.push_back(N->getFlags()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1679 Record.push_back(N->getRuntimeLang()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1688 1689 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1690 Record.clear(); 1691 } 1692 1693 void ModuleBitcodeWriter::writeDISubroutineType( 1694 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1695 unsigned Abbrev) { 1696 const unsigned HasNoOldTypeRefs = 0x2; 1697 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1698 Record.push_back(N->getFlags()); 1699 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1700 Record.push_back(N->getCC()); 1701 1702 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1703 Record.clear(); 1704 } 1705 1706 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1707 SmallVectorImpl<uint64_t> &Record, 1708 unsigned Abbrev) { 1709 Record.push_back(N->isDistinct()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1712 if (N->getRawChecksum()) { 1713 Record.push_back(N->getRawChecksum()->Kind); 1714 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1715 } else { 1716 // Maintain backwards compatibility with the old internal representation of 1717 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1718 Record.push_back(0); 1719 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1720 } 1721 auto Source = N->getRawSource(); 1722 if (Source) 1723 Record.push_back(VE.getMetadataOrNullID(*Source)); 1724 1725 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1726 Record.clear(); 1727 } 1728 1729 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1730 SmallVectorImpl<uint64_t> &Record, 1731 unsigned Abbrev) { 1732 assert(N->isDistinct() && "Expected distinct compile units"); 1733 Record.push_back(/* IsDistinct */ true); 1734 Record.push_back(N->getSourceLanguage()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1737 Record.push_back(N->isOptimized()); 1738 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1739 Record.push_back(N->getRuntimeVersion()); 1740 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1741 Record.push_back(N->getEmissionKind()); 1742 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1744 Record.push_back(/* subprograms */ 0); 1745 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1747 Record.push_back(N->getDWOId()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1749 Record.push_back(N->getSplitDebugInlining()); 1750 Record.push_back(N->getDebugInfoForProfiling()); 1751 Record.push_back((unsigned)N->getNameTableKind()); 1752 Record.push_back(N->getRangesBaseAddress()); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1755 1756 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1757 Record.clear(); 1758 } 1759 1760 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1761 SmallVectorImpl<uint64_t> &Record, 1762 unsigned Abbrev) { 1763 const uint64_t HasUnitFlag = 1 << 1; 1764 const uint64_t HasSPFlagsFlag = 1 << 2; 1765 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1766 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1770 Record.push_back(N->getLine()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1772 Record.push_back(N->getScopeLine()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1774 Record.push_back(N->getSPFlags()); 1775 Record.push_back(N->getVirtualIndex()); 1776 Record.push_back(N->getFlags()); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1781 Record.push_back(N->getThisAdjustment()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1783 1784 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1785 Record.clear(); 1786 } 1787 1788 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1789 SmallVectorImpl<uint64_t> &Record, 1790 unsigned Abbrev) { 1791 Record.push_back(N->isDistinct()); 1792 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1794 Record.push_back(N->getLine()); 1795 Record.push_back(N->getColumn()); 1796 1797 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1798 Record.clear(); 1799 } 1800 1801 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1802 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1803 unsigned Abbrev) { 1804 Record.push_back(N->isDistinct()); 1805 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1806 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1807 Record.push_back(N->getDiscriminator()); 1808 1809 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1810 Record.clear(); 1811 } 1812 1813 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1814 SmallVectorImpl<uint64_t> &Record, 1815 unsigned Abbrev) { 1816 Record.push_back(N->isDistinct()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1820 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1821 Record.push_back(N->getLineNo()); 1822 1823 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1824 Record.clear(); 1825 } 1826 1827 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1828 SmallVectorImpl<uint64_t> &Record, 1829 unsigned Abbrev) { 1830 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1831 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1833 1834 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1835 Record.clear(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1839 SmallVectorImpl<uint64_t> &Record, 1840 unsigned Abbrev) { 1841 Record.push_back(N->isDistinct()); 1842 Record.push_back(N->getMacinfoType()); 1843 Record.push_back(N->getLine()); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1846 1847 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1848 Record.clear(); 1849 } 1850 1851 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1852 SmallVectorImpl<uint64_t> &Record, 1853 unsigned Abbrev) { 1854 Record.push_back(N->isDistinct()); 1855 Record.push_back(N->getMacinfoType()); 1856 Record.push_back(N->getLine()); 1857 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1858 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1859 1860 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1861 Record.clear(); 1862 } 1863 1864 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1865 SmallVectorImpl<uint64_t> &Record, 1866 unsigned Abbrev) { 1867 Record.push_back(N->isDistinct()); 1868 for (auto &I : N->operands()) 1869 Record.push_back(VE.getMetadataOrNullID(I)); 1870 Record.push_back(N->getLineNo()); 1871 Record.push_back(N->getIsDecl()); 1872 1873 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1874 Record.clear(); 1875 } 1876 1877 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1878 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1879 unsigned Abbrev) { 1880 Record.push_back(N->isDistinct()); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1883 Record.push_back(N->isDefault()); 1884 1885 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1886 Record.clear(); 1887 } 1888 1889 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1890 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1891 unsigned Abbrev) { 1892 Record.push_back(N->isDistinct()); 1893 Record.push_back(N->getTag()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1896 Record.push_back(N->isDefault()); 1897 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1898 1899 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1900 Record.clear(); 1901 } 1902 1903 void ModuleBitcodeWriter::writeDIGlobalVariable( 1904 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1905 unsigned Abbrev) { 1906 const uint64_t Version = 2 << 1; 1907 Record.push_back((uint64_t)N->isDistinct() | Version); 1908 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1909 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1910 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1911 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1912 Record.push_back(N->getLine()); 1913 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1914 Record.push_back(N->isLocalToUnit()); 1915 Record.push_back(N->isDefinition()); 1916 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1918 Record.push_back(N->getAlignInBits()); 1919 1920 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDILocalVariable( 1925 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 // In order to support all possible bitcode formats in BitcodeReader we need 1928 // to distinguish the following cases: 1929 // 1) Record has no artificial tag (Record[1]), 1930 // has no obsolete inlinedAt field (Record[9]). 1931 // In this case Record size will be 8, HasAlignment flag is false. 1932 // 2) Record has artificial tag (Record[1]), 1933 // has no obsolete inlignedAt field (Record[9]). 1934 // In this case Record size will be 9, HasAlignment flag is false. 1935 // 3) Record has both artificial tag (Record[1]) and 1936 // obsolete inlignedAt field (Record[9]). 1937 // In this case Record size will be 10, HasAlignment flag is false. 1938 // 4) Record has neither artificial tag, nor inlignedAt field, but 1939 // HasAlignment flag is true and Record[8] contains alignment value. 1940 const uint64_t HasAlignmentFlag = 1 << 1; 1941 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1942 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1945 Record.push_back(N->getLine()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1947 Record.push_back(N->getArg()); 1948 Record.push_back(N->getFlags()); 1949 Record.push_back(N->getAlignInBits()); 1950 1951 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1952 Record.clear(); 1953 } 1954 1955 void ModuleBitcodeWriter::writeDILabel( 1956 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1957 unsigned Abbrev) { 1958 Record.push_back((uint64_t)N->isDistinct()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1960 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1961 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1962 Record.push_back(N->getLine()); 1963 1964 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1965 Record.clear(); 1966 } 1967 1968 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1969 SmallVectorImpl<uint64_t> &Record, 1970 unsigned Abbrev) { 1971 Record.reserve(N->getElements().size() + 1); 1972 const uint64_t Version = 3 << 1; 1973 Record.push_back((uint64_t)N->isDistinct() | Version); 1974 Record.append(N->elements_begin(), N->elements_end()); 1975 1976 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1977 Record.clear(); 1978 } 1979 1980 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1981 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1982 unsigned Abbrev) { 1983 Record.push_back(N->isDistinct()); 1984 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1985 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1986 1987 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1988 Record.clear(); 1989 } 1990 1991 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1992 SmallVectorImpl<uint64_t> &Record, 1993 unsigned Abbrev) { 1994 Record.push_back(N->isDistinct()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1996 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1997 Record.push_back(N->getLine()); 1998 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1999 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2000 Record.push_back(N->getAttributes()); 2001 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2002 2003 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2004 Record.clear(); 2005 } 2006 2007 void ModuleBitcodeWriter::writeDIImportedEntity( 2008 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2009 unsigned Abbrev) { 2010 Record.push_back(N->isDistinct()); 2011 Record.push_back(N->getTag()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2013 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2014 Record.push_back(N->getLine()); 2015 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2017 2018 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2019 Record.clear(); 2020 } 2021 2022 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2023 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2024 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2027 return Stream.EmitAbbrev(std::move(Abbv)); 2028 } 2029 2030 void ModuleBitcodeWriter::writeNamedMetadata( 2031 SmallVectorImpl<uint64_t> &Record) { 2032 if (M.named_metadata_empty()) 2033 return; 2034 2035 unsigned Abbrev = createNamedMetadataAbbrev(); 2036 for (const NamedMDNode &NMD : M.named_metadata()) { 2037 // Write name. 2038 StringRef Str = NMD.getName(); 2039 Record.append(Str.bytes_begin(), Str.bytes_end()); 2040 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2041 Record.clear(); 2042 2043 // Write named metadata operands. 2044 for (const MDNode *N : NMD.operands()) 2045 Record.push_back(VE.getMetadataID(N)); 2046 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2047 Record.clear(); 2048 } 2049 } 2050 2051 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2053 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2057 return Stream.EmitAbbrev(std::move(Abbv)); 2058 } 2059 2060 /// Write out a record for MDString. 2061 /// 2062 /// All the metadata strings in a metadata block are emitted in a single 2063 /// record. The sizes and strings themselves are shoved into a blob. 2064 void ModuleBitcodeWriter::writeMetadataStrings( 2065 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2066 if (Strings.empty()) 2067 return; 2068 2069 // Start the record with the number of strings. 2070 Record.push_back(bitc::METADATA_STRINGS); 2071 Record.push_back(Strings.size()); 2072 2073 // Emit the sizes of the strings in the blob. 2074 SmallString<256> Blob; 2075 { 2076 BitstreamWriter W(Blob); 2077 for (const Metadata *MD : Strings) 2078 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2079 W.FlushToWord(); 2080 } 2081 2082 // Add the offset to the strings to the record. 2083 Record.push_back(Blob.size()); 2084 2085 // Add the strings to the blob. 2086 for (const Metadata *MD : Strings) 2087 Blob.append(cast<MDString>(MD)->getString()); 2088 2089 // Emit the final record. 2090 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2091 Record.clear(); 2092 } 2093 2094 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2095 enum MetadataAbbrev : unsigned { 2096 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2097 #include "llvm/IR/Metadata.def" 2098 LastPlusOne 2099 }; 2100 2101 void ModuleBitcodeWriter::writeMetadataRecords( 2102 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2103 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2104 if (MDs.empty()) 2105 return; 2106 2107 // Initialize MDNode abbreviations. 2108 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2109 #include "llvm/IR/Metadata.def" 2110 2111 for (const Metadata *MD : MDs) { 2112 if (IndexPos) 2113 IndexPos->push_back(Stream.GetCurrentBitNo()); 2114 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2115 assert(N->isResolved() && "Expected forward references to be resolved"); 2116 2117 switch (N->getMetadataID()) { 2118 default: 2119 llvm_unreachable("Invalid MDNode subclass"); 2120 #define HANDLE_MDNODE_LEAF(CLASS) \ 2121 case Metadata::CLASS##Kind: \ 2122 if (MDAbbrevs) \ 2123 write##CLASS(cast<CLASS>(N), Record, \ 2124 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2125 else \ 2126 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2127 continue; 2128 #include "llvm/IR/Metadata.def" 2129 } 2130 } 2131 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2132 } 2133 } 2134 2135 void ModuleBitcodeWriter::writeModuleMetadata() { 2136 if (!VE.hasMDs() && M.named_metadata_empty()) 2137 return; 2138 2139 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2140 SmallVector<uint64_t, 64> Record; 2141 2142 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2143 // block and load any metadata. 2144 std::vector<unsigned> MDAbbrevs; 2145 2146 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2147 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2148 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2149 createGenericDINodeAbbrev(); 2150 2151 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2152 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2155 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2156 2157 Abbv = std::make_shared<BitCodeAbbrev>(); 2158 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2161 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2162 2163 // Emit MDStrings together upfront. 2164 writeMetadataStrings(VE.getMDStrings(), Record); 2165 2166 // We only emit an index for the metadata record if we have more than a given 2167 // (naive) threshold of metadatas, otherwise it is not worth it. 2168 if (VE.getNonMDStrings().size() > IndexThreshold) { 2169 // Write a placeholder value in for the offset of the metadata index, 2170 // which is written after the records, so that it can include 2171 // the offset of each entry. The placeholder offset will be 2172 // updated after all records are emitted. 2173 uint64_t Vals[] = {0, 0}; 2174 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2175 } 2176 2177 // Compute and save the bit offset to the current position, which will be 2178 // patched when we emit the index later. We can simply subtract the 64-bit 2179 // fixed size from the current bit number to get the location to backpatch. 2180 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2181 2182 // This index will contain the bitpos for each individual record. 2183 std::vector<uint64_t> IndexPos; 2184 IndexPos.reserve(VE.getNonMDStrings().size()); 2185 2186 // Write all the records 2187 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2188 2189 if (VE.getNonMDStrings().size() > IndexThreshold) { 2190 // Now that we have emitted all the records we will emit the index. But 2191 // first 2192 // backpatch the forward reference so that the reader can skip the records 2193 // efficiently. 2194 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2195 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2196 2197 // Delta encode the index. 2198 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2199 for (auto &Elt : IndexPos) { 2200 auto EltDelta = Elt - PreviousValue; 2201 PreviousValue = Elt; 2202 Elt = EltDelta; 2203 } 2204 // Emit the index record. 2205 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2206 IndexPos.clear(); 2207 } 2208 2209 // Write the named metadata now. 2210 writeNamedMetadata(Record); 2211 2212 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2213 SmallVector<uint64_t, 4> Record; 2214 Record.push_back(VE.getValueID(&GO)); 2215 pushGlobalMetadataAttachment(Record, GO); 2216 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2217 }; 2218 for (const Function &F : M) 2219 if (F.isDeclaration() && F.hasMetadata()) 2220 AddDeclAttachedMetadata(F); 2221 // FIXME: Only store metadata for declarations here, and move data for global 2222 // variable definitions to a separate block (PR28134). 2223 for (const GlobalVariable &GV : M.globals()) 2224 if (GV.hasMetadata()) 2225 AddDeclAttachedMetadata(GV); 2226 2227 Stream.ExitBlock(); 2228 } 2229 2230 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2231 if (!VE.hasMDs()) 2232 return; 2233 2234 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2235 SmallVector<uint64_t, 64> Record; 2236 writeMetadataStrings(VE.getMDStrings(), Record); 2237 writeMetadataRecords(VE.getNonMDStrings(), Record); 2238 Stream.ExitBlock(); 2239 } 2240 2241 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2242 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2243 // [n x [id, mdnode]] 2244 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2245 GO.getAllMetadata(MDs); 2246 for (const auto &I : MDs) { 2247 Record.push_back(I.first); 2248 Record.push_back(VE.getMetadataID(I.second)); 2249 } 2250 } 2251 2252 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2253 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2254 2255 SmallVector<uint64_t, 64> Record; 2256 2257 if (F.hasMetadata()) { 2258 pushGlobalMetadataAttachment(Record, F); 2259 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2260 Record.clear(); 2261 } 2262 2263 // Write metadata attachments 2264 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2265 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2266 for (const BasicBlock &BB : F) 2267 for (const Instruction &I : BB) { 2268 MDs.clear(); 2269 I.getAllMetadataOtherThanDebugLoc(MDs); 2270 2271 // If no metadata, ignore instruction. 2272 if (MDs.empty()) continue; 2273 2274 Record.push_back(VE.getInstructionID(&I)); 2275 2276 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2277 Record.push_back(MDs[i].first); 2278 Record.push_back(VE.getMetadataID(MDs[i].second)); 2279 } 2280 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2281 Record.clear(); 2282 } 2283 2284 Stream.ExitBlock(); 2285 } 2286 2287 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2288 SmallVector<uint64_t, 64> Record; 2289 2290 // Write metadata kinds 2291 // METADATA_KIND - [n x [id, name]] 2292 SmallVector<StringRef, 8> Names; 2293 M.getMDKindNames(Names); 2294 2295 if (Names.empty()) return; 2296 2297 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2298 2299 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2300 Record.push_back(MDKindID); 2301 StringRef KName = Names[MDKindID]; 2302 Record.append(KName.begin(), KName.end()); 2303 2304 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2305 Record.clear(); 2306 } 2307 2308 Stream.ExitBlock(); 2309 } 2310 2311 void ModuleBitcodeWriter::writeOperandBundleTags() { 2312 // Write metadata kinds 2313 // 2314 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2315 // 2316 // OPERAND_BUNDLE_TAG - [strchr x N] 2317 2318 SmallVector<StringRef, 8> Tags; 2319 M.getOperandBundleTags(Tags); 2320 2321 if (Tags.empty()) 2322 return; 2323 2324 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2325 2326 SmallVector<uint64_t, 64> Record; 2327 2328 for (auto Tag : Tags) { 2329 Record.append(Tag.begin(), Tag.end()); 2330 2331 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2332 Record.clear(); 2333 } 2334 2335 Stream.ExitBlock(); 2336 } 2337 2338 void ModuleBitcodeWriter::writeSyncScopeNames() { 2339 SmallVector<StringRef, 8> SSNs; 2340 M.getContext().getSyncScopeNames(SSNs); 2341 if (SSNs.empty()) 2342 return; 2343 2344 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2345 2346 SmallVector<uint64_t, 64> Record; 2347 for (auto SSN : SSNs) { 2348 Record.append(SSN.begin(), SSN.end()); 2349 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2350 Record.clear(); 2351 } 2352 2353 Stream.ExitBlock(); 2354 } 2355 2356 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2357 bool isGlobal) { 2358 if (FirstVal == LastVal) return; 2359 2360 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2361 2362 unsigned AggregateAbbrev = 0; 2363 unsigned String8Abbrev = 0; 2364 unsigned CString7Abbrev = 0; 2365 unsigned CString6Abbrev = 0; 2366 // If this is a constant pool for the module, emit module-specific abbrevs. 2367 if (isGlobal) { 2368 // Abbrev for CST_CODE_AGGREGATE. 2369 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2370 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2373 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2374 2375 // Abbrev for CST_CODE_STRING. 2376 Abbv = std::make_shared<BitCodeAbbrev>(); 2377 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2380 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2381 // Abbrev for CST_CODE_CSTRING. 2382 Abbv = std::make_shared<BitCodeAbbrev>(); 2383 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2386 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2387 // Abbrev for CST_CODE_CSTRING. 2388 Abbv = std::make_shared<BitCodeAbbrev>(); 2389 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2392 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2393 } 2394 2395 SmallVector<uint64_t, 64> Record; 2396 2397 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2398 Type *LastTy = nullptr; 2399 for (unsigned i = FirstVal; i != LastVal; ++i) { 2400 const Value *V = Vals[i].first; 2401 // If we need to switch types, do so now. 2402 if (V->getType() != LastTy) { 2403 LastTy = V->getType(); 2404 Record.push_back(VE.getTypeID(LastTy)); 2405 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2406 CONSTANTS_SETTYPE_ABBREV); 2407 Record.clear(); 2408 } 2409 2410 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2411 Record.push_back(unsigned(IA->hasSideEffects()) | 2412 unsigned(IA->isAlignStack()) << 1 | 2413 unsigned(IA->getDialect()&1) << 2); 2414 2415 // Add the asm string. 2416 const std::string &AsmStr = IA->getAsmString(); 2417 Record.push_back(AsmStr.size()); 2418 Record.append(AsmStr.begin(), AsmStr.end()); 2419 2420 // Add the constraint string. 2421 const std::string &ConstraintStr = IA->getConstraintString(); 2422 Record.push_back(ConstraintStr.size()); 2423 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2424 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2425 Record.clear(); 2426 continue; 2427 } 2428 const Constant *C = cast<Constant>(V); 2429 unsigned Code = -1U; 2430 unsigned AbbrevToUse = 0; 2431 if (C->isNullValue()) { 2432 Code = bitc::CST_CODE_NULL; 2433 } else if (isa<PoisonValue>(C)) { 2434 Code = bitc::CST_CODE_POISON; 2435 } else if (isa<UndefValue>(C)) { 2436 Code = bitc::CST_CODE_UNDEF; 2437 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2438 if (IV->getBitWidth() <= 64) { 2439 uint64_t V = IV->getSExtValue(); 2440 emitSignedInt64(Record, V); 2441 Code = bitc::CST_CODE_INTEGER; 2442 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2443 } else { // Wide integers, > 64 bits in size. 2444 emitWideAPInt(Record, IV->getValue()); 2445 Code = bitc::CST_CODE_WIDE_INTEGER; 2446 } 2447 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2448 Code = bitc::CST_CODE_FLOAT; 2449 Type *Ty = CFP->getType(); 2450 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2451 Ty->isDoubleTy()) { 2452 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2453 } else if (Ty->isX86_FP80Ty()) { 2454 // api needed to prevent premature destruction 2455 // bits are not in the same order as a normal i80 APInt, compensate. 2456 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2457 const uint64_t *p = api.getRawData(); 2458 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2459 Record.push_back(p[0] & 0xffffLL); 2460 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2461 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2462 const uint64_t *p = api.getRawData(); 2463 Record.push_back(p[0]); 2464 Record.push_back(p[1]); 2465 } else { 2466 assert(0 && "Unknown FP type!"); 2467 } 2468 } else if (isa<ConstantDataSequential>(C) && 2469 cast<ConstantDataSequential>(C)->isString()) { 2470 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2471 // Emit constant strings specially. 2472 unsigned NumElts = Str->getNumElements(); 2473 // If this is a null-terminated string, use the denser CSTRING encoding. 2474 if (Str->isCString()) { 2475 Code = bitc::CST_CODE_CSTRING; 2476 --NumElts; // Don't encode the null, which isn't allowed by char6. 2477 } else { 2478 Code = bitc::CST_CODE_STRING; 2479 AbbrevToUse = String8Abbrev; 2480 } 2481 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2482 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2483 for (unsigned i = 0; i != NumElts; ++i) { 2484 unsigned char V = Str->getElementAsInteger(i); 2485 Record.push_back(V); 2486 isCStr7 &= (V & 128) == 0; 2487 if (isCStrChar6) 2488 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2489 } 2490 2491 if (isCStrChar6) 2492 AbbrevToUse = CString6Abbrev; 2493 else if (isCStr7) 2494 AbbrevToUse = CString7Abbrev; 2495 } else if (const ConstantDataSequential *CDS = 2496 dyn_cast<ConstantDataSequential>(C)) { 2497 Code = bitc::CST_CODE_DATA; 2498 Type *EltTy = CDS->getElementType(); 2499 if (isa<IntegerType>(EltTy)) { 2500 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2501 Record.push_back(CDS->getElementAsInteger(i)); 2502 } else { 2503 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2504 Record.push_back( 2505 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2506 } 2507 } else if (isa<ConstantAggregate>(C)) { 2508 Code = bitc::CST_CODE_AGGREGATE; 2509 for (const Value *Op : C->operands()) 2510 Record.push_back(VE.getValueID(Op)); 2511 AbbrevToUse = AggregateAbbrev; 2512 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2513 switch (CE->getOpcode()) { 2514 default: 2515 if (Instruction::isCast(CE->getOpcode())) { 2516 Code = bitc::CST_CODE_CE_CAST; 2517 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2518 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2519 Record.push_back(VE.getValueID(C->getOperand(0))); 2520 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2521 } else { 2522 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2523 Code = bitc::CST_CODE_CE_BINOP; 2524 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2525 Record.push_back(VE.getValueID(C->getOperand(0))); 2526 Record.push_back(VE.getValueID(C->getOperand(1))); 2527 uint64_t Flags = getOptimizationFlags(CE); 2528 if (Flags != 0) 2529 Record.push_back(Flags); 2530 } 2531 break; 2532 case Instruction::FNeg: { 2533 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2534 Code = bitc::CST_CODE_CE_UNOP; 2535 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2536 Record.push_back(VE.getValueID(C->getOperand(0))); 2537 uint64_t Flags = getOptimizationFlags(CE); 2538 if (Flags != 0) 2539 Record.push_back(Flags); 2540 break; 2541 } 2542 case Instruction::GetElementPtr: { 2543 Code = bitc::CST_CODE_CE_GEP; 2544 const auto *GO = cast<GEPOperator>(C); 2545 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2546 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2547 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2548 Record.push_back((*Idx << 1) | GO->isInBounds()); 2549 } else if (GO->isInBounds()) 2550 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2551 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2552 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2553 Record.push_back(VE.getValueID(C->getOperand(i))); 2554 } 2555 break; 2556 } 2557 case Instruction::Select: 2558 Code = bitc::CST_CODE_CE_SELECT; 2559 Record.push_back(VE.getValueID(C->getOperand(0))); 2560 Record.push_back(VE.getValueID(C->getOperand(1))); 2561 Record.push_back(VE.getValueID(C->getOperand(2))); 2562 break; 2563 case Instruction::ExtractElement: 2564 Code = bitc::CST_CODE_CE_EXTRACTELT; 2565 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2566 Record.push_back(VE.getValueID(C->getOperand(0))); 2567 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2568 Record.push_back(VE.getValueID(C->getOperand(1))); 2569 break; 2570 case Instruction::InsertElement: 2571 Code = bitc::CST_CODE_CE_INSERTELT; 2572 Record.push_back(VE.getValueID(C->getOperand(0))); 2573 Record.push_back(VE.getValueID(C->getOperand(1))); 2574 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2575 Record.push_back(VE.getValueID(C->getOperand(2))); 2576 break; 2577 case Instruction::ShuffleVector: 2578 // If the return type and argument types are the same, this is a 2579 // standard shufflevector instruction. If the types are different, 2580 // then the shuffle is widening or truncating the input vectors, and 2581 // the argument type must also be encoded. 2582 if (C->getType() == C->getOperand(0)->getType()) { 2583 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2584 } else { 2585 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2586 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2587 } 2588 Record.push_back(VE.getValueID(C->getOperand(0))); 2589 Record.push_back(VE.getValueID(C->getOperand(1))); 2590 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2591 break; 2592 case Instruction::ICmp: 2593 case Instruction::FCmp: 2594 Code = bitc::CST_CODE_CE_CMP; 2595 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2596 Record.push_back(VE.getValueID(C->getOperand(0))); 2597 Record.push_back(VE.getValueID(C->getOperand(1))); 2598 Record.push_back(CE->getPredicate()); 2599 break; 2600 } 2601 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2602 Code = bitc::CST_CODE_BLOCKADDRESS; 2603 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2604 Record.push_back(VE.getValueID(BA->getFunction())); 2605 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2606 } else { 2607 #ifndef NDEBUG 2608 C->dump(); 2609 #endif 2610 llvm_unreachable("Unknown constant!"); 2611 } 2612 Stream.EmitRecord(Code, Record, AbbrevToUse); 2613 Record.clear(); 2614 } 2615 2616 Stream.ExitBlock(); 2617 } 2618 2619 void ModuleBitcodeWriter::writeModuleConstants() { 2620 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2621 2622 // Find the first constant to emit, which is the first non-globalvalue value. 2623 // We know globalvalues have been emitted by WriteModuleInfo. 2624 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2625 if (!isa<GlobalValue>(Vals[i].first)) { 2626 writeConstants(i, Vals.size(), true); 2627 return; 2628 } 2629 } 2630 } 2631 2632 /// pushValueAndType - The file has to encode both the value and type id for 2633 /// many values, because we need to know what type to create for forward 2634 /// references. However, most operands are not forward references, so this type 2635 /// field is not needed. 2636 /// 2637 /// This function adds V's value ID to Vals. If the value ID is higher than the 2638 /// instruction ID, then it is a forward reference, and it also includes the 2639 /// type ID. The value ID that is written is encoded relative to the InstID. 2640 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2641 SmallVectorImpl<unsigned> &Vals) { 2642 unsigned ValID = VE.getValueID(V); 2643 // Make encoding relative to the InstID. 2644 Vals.push_back(InstID - ValID); 2645 if (ValID >= InstID) { 2646 Vals.push_back(VE.getTypeID(V->getType())); 2647 return true; 2648 } 2649 return false; 2650 } 2651 2652 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2653 unsigned InstID) { 2654 SmallVector<unsigned, 64> Record; 2655 LLVMContext &C = CS.getContext(); 2656 2657 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2658 const auto &Bundle = CS.getOperandBundleAt(i); 2659 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2660 2661 for (auto &Input : Bundle.Inputs) 2662 pushValueAndType(Input, InstID, Record); 2663 2664 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2665 Record.clear(); 2666 } 2667 } 2668 2669 /// pushValue - Like pushValueAndType, but where the type of the value is 2670 /// omitted (perhaps it was already encoded in an earlier operand). 2671 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2672 SmallVectorImpl<unsigned> &Vals) { 2673 unsigned ValID = VE.getValueID(V); 2674 Vals.push_back(InstID - ValID); 2675 } 2676 2677 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2678 SmallVectorImpl<uint64_t> &Vals) { 2679 unsigned ValID = VE.getValueID(V); 2680 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2681 emitSignedInt64(Vals, diff); 2682 } 2683 2684 /// WriteInstruction - Emit an instruction to the specified stream. 2685 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2686 unsigned InstID, 2687 SmallVectorImpl<unsigned> &Vals) { 2688 unsigned Code = 0; 2689 unsigned AbbrevToUse = 0; 2690 VE.setInstructionID(&I); 2691 switch (I.getOpcode()) { 2692 default: 2693 if (Instruction::isCast(I.getOpcode())) { 2694 Code = bitc::FUNC_CODE_INST_CAST; 2695 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2696 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2697 Vals.push_back(VE.getTypeID(I.getType())); 2698 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2699 } else { 2700 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2701 Code = bitc::FUNC_CODE_INST_BINOP; 2702 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2703 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2704 pushValue(I.getOperand(1), InstID, Vals); 2705 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2706 uint64_t Flags = getOptimizationFlags(&I); 2707 if (Flags != 0) { 2708 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2709 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2710 Vals.push_back(Flags); 2711 } 2712 } 2713 break; 2714 case Instruction::FNeg: { 2715 Code = bitc::FUNC_CODE_INST_UNOP; 2716 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2717 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2718 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2719 uint64_t Flags = getOptimizationFlags(&I); 2720 if (Flags != 0) { 2721 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2722 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2723 Vals.push_back(Flags); 2724 } 2725 break; 2726 } 2727 case Instruction::GetElementPtr: { 2728 Code = bitc::FUNC_CODE_INST_GEP; 2729 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2730 auto &GEPInst = cast<GetElementPtrInst>(I); 2731 Vals.push_back(GEPInst.isInBounds()); 2732 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2733 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2734 pushValueAndType(I.getOperand(i), InstID, Vals); 2735 break; 2736 } 2737 case Instruction::ExtractValue: { 2738 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2739 pushValueAndType(I.getOperand(0), InstID, Vals); 2740 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2741 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2742 break; 2743 } 2744 case Instruction::InsertValue: { 2745 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2746 pushValueAndType(I.getOperand(0), InstID, Vals); 2747 pushValueAndType(I.getOperand(1), InstID, Vals); 2748 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2749 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2750 break; 2751 } 2752 case Instruction::Select: { 2753 Code = bitc::FUNC_CODE_INST_VSELECT; 2754 pushValueAndType(I.getOperand(1), InstID, Vals); 2755 pushValue(I.getOperand(2), InstID, Vals); 2756 pushValueAndType(I.getOperand(0), InstID, Vals); 2757 uint64_t Flags = getOptimizationFlags(&I); 2758 if (Flags != 0) 2759 Vals.push_back(Flags); 2760 break; 2761 } 2762 case Instruction::ExtractElement: 2763 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2764 pushValueAndType(I.getOperand(0), InstID, Vals); 2765 pushValueAndType(I.getOperand(1), InstID, Vals); 2766 break; 2767 case Instruction::InsertElement: 2768 Code = bitc::FUNC_CODE_INST_INSERTELT; 2769 pushValueAndType(I.getOperand(0), InstID, Vals); 2770 pushValue(I.getOperand(1), InstID, Vals); 2771 pushValueAndType(I.getOperand(2), InstID, Vals); 2772 break; 2773 case Instruction::ShuffleVector: 2774 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2775 pushValueAndType(I.getOperand(0), InstID, Vals); 2776 pushValue(I.getOperand(1), InstID, Vals); 2777 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2778 Vals); 2779 break; 2780 case Instruction::ICmp: 2781 case Instruction::FCmp: { 2782 // compare returning Int1Ty or vector of Int1Ty 2783 Code = bitc::FUNC_CODE_INST_CMP2; 2784 pushValueAndType(I.getOperand(0), InstID, Vals); 2785 pushValue(I.getOperand(1), InstID, Vals); 2786 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2787 uint64_t Flags = getOptimizationFlags(&I); 2788 if (Flags != 0) 2789 Vals.push_back(Flags); 2790 break; 2791 } 2792 2793 case Instruction::Ret: 2794 { 2795 Code = bitc::FUNC_CODE_INST_RET; 2796 unsigned NumOperands = I.getNumOperands(); 2797 if (NumOperands == 0) 2798 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2799 else if (NumOperands == 1) { 2800 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2801 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2802 } else { 2803 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2804 pushValueAndType(I.getOperand(i), InstID, Vals); 2805 } 2806 } 2807 break; 2808 case Instruction::Br: 2809 { 2810 Code = bitc::FUNC_CODE_INST_BR; 2811 const BranchInst &II = cast<BranchInst>(I); 2812 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2813 if (II.isConditional()) { 2814 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2815 pushValue(II.getCondition(), InstID, Vals); 2816 } 2817 } 2818 break; 2819 case Instruction::Switch: 2820 { 2821 Code = bitc::FUNC_CODE_INST_SWITCH; 2822 const SwitchInst &SI = cast<SwitchInst>(I); 2823 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2824 pushValue(SI.getCondition(), InstID, Vals); 2825 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2826 for (auto Case : SI.cases()) { 2827 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2828 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2829 } 2830 } 2831 break; 2832 case Instruction::IndirectBr: 2833 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2834 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2835 // Encode the address operand as relative, but not the basic blocks. 2836 pushValue(I.getOperand(0), InstID, Vals); 2837 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2838 Vals.push_back(VE.getValueID(I.getOperand(i))); 2839 break; 2840 2841 case Instruction::Invoke: { 2842 const InvokeInst *II = cast<InvokeInst>(&I); 2843 const Value *Callee = II->getCalledOperand(); 2844 FunctionType *FTy = II->getFunctionType(); 2845 2846 if (II->hasOperandBundles()) 2847 writeOperandBundles(*II, InstID); 2848 2849 Code = bitc::FUNC_CODE_INST_INVOKE; 2850 2851 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2852 Vals.push_back(II->getCallingConv() | 1 << 13); 2853 Vals.push_back(VE.getValueID(II->getNormalDest())); 2854 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2855 Vals.push_back(VE.getTypeID(FTy)); 2856 pushValueAndType(Callee, InstID, Vals); 2857 2858 // Emit value #'s for the fixed parameters. 2859 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2860 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2861 2862 // Emit type/value pairs for varargs params. 2863 if (FTy->isVarArg()) { 2864 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2865 i != e; ++i) 2866 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2867 } 2868 break; 2869 } 2870 case Instruction::Resume: 2871 Code = bitc::FUNC_CODE_INST_RESUME; 2872 pushValueAndType(I.getOperand(0), InstID, Vals); 2873 break; 2874 case Instruction::CleanupRet: { 2875 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2876 const auto &CRI = cast<CleanupReturnInst>(I); 2877 pushValue(CRI.getCleanupPad(), InstID, Vals); 2878 if (CRI.hasUnwindDest()) 2879 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2880 break; 2881 } 2882 case Instruction::CatchRet: { 2883 Code = bitc::FUNC_CODE_INST_CATCHRET; 2884 const auto &CRI = cast<CatchReturnInst>(I); 2885 pushValue(CRI.getCatchPad(), InstID, Vals); 2886 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2887 break; 2888 } 2889 case Instruction::CleanupPad: 2890 case Instruction::CatchPad: { 2891 const auto &FuncletPad = cast<FuncletPadInst>(I); 2892 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2893 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2894 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2895 2896 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2897 Vals.push_back(NumArgOperands); 2898 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2899 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2900 break; 2901 } 2902 case Instruction::CatchSwitch: { 2903 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2904 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2905 2906 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2907 2908 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2909 Vals.push_back(NumHandlers); 2910 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2911 Vals.push_back(VE.getValueID(CatchPadBB)); 2912 2913 if (CatchSwitch.hasUnwindDest()) 2914 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2915 break; 2916 } 2917 case Instruction::CallBr: { 2918 const CallBrInst *CBI = cast<CallBrInst>(&I); 2919 const Value *Callee = CBI->getCalledOperand(); 2920 FunctionType *FTy = CBI->getFunctionType(); 2921 2922 if (CBI->hasOperandBundles()) 2923 writeOperandBundles(*CBI, InstID); 2924 2925 Code = bitc::FUNC_CODE_INST_CALLBR; 2926 2927 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2928 2929 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2930 1 << bitc::CALL_EXPLICIT_TYPE); 2931 2932 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2933 Vals.push_back(CBI->getNumIndirectDests()); 2934 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2935 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2936 2937 Vals.push_back(VE.getTypeID(FTy)); 2938 pushValueAndType(Callee, InstID, Vals); 2939 2940 // Emit value #'s for the fixed parameters. 2941 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2942 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2943 2944 // Emit type/value pairs for varargs params. 2945 if (FTy->isVarArg()) { 2946 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2947 i != e; ++i) 2948 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2949 } 2950 break; 2951 } 2952 case Instruction::Unreachable: 2953 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2954 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2955 break; 2956 2957 case Instruction::PHI: { 2958 const PHINode &PN = cast<PHINode>(I); 2959 Code = bitc::FUNC_CODE_INST_PHI; 2960 // With the newer instruction encoding, forward references could give 2961 // negative valued IDs. This is most common for PHIs, so we use 2962 // signed VBRs. 2963 SmallVector<uint64_t, 128> Vals64; 2964 Vals64.push_back(VE.getTypeID(PN.getType())); 2965 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2966 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2967 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2968 } 2969 2970 uint64_t Flags = getOptimizationFlags(&I); 2971 if (Flags != 0) 2972 Vals64.push_back(Flags); 2973 2974 // Emit a Vals64 vector and exit. 2975 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2976 Vals64.clear(); 2977 return; 2978 } 2979 2980 case Instruction::LandingPad: { 2981 const LandingPadInst &LP = cast<LandingPadInst>(I); 2982 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2983 Vals.push_back(VE.getTypeID(LP.getType())); 2984 Vals.push_back(LP.isCleanup()); 2985 Vals.push_back(LP.getNumClauses()); 2986 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2987 if (LP.isCatch(I)) 2988 Vals.push_back(LandingPadInst::Catch); 2989 else 2990 Vals.push_back(LandingPadInst::Filter); 2991 pushValueAndType(LP.getClause(I), InstID, Vals); 2992 } 2993 break; 2994 } 2995 2996 case Instruction::Alloca: { 2997 Code = bitc::FUNC_CODE_INST_ALLOCA; 2998 const AllocaInst &AI = cast<AllocaInst>(I); 2999 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3000 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3001 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3002 using APV = AllocaPackedValues; 3003 unsigned Record = 0; 3004 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3005 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3006 Bitfield::set<APV::ExplicitType>(Record, true); 3007 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3008 Vals.push_back(Record); 3009 break; 3010 } 3011 3012 case Instruction::Load: 3013 if (cast<LoadInst>(I).isAtomic()) { 3014 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3015 pushValueAndType(I.getOperand(0), InstID, Vals); 3016 } else { 3017 Code = bitc::FUNC_CODE_INST_LOAD; 3018 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3019 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3020 } 3021 Vals.push_back(VE.getTypeID(I.getType())); 3022 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3023 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3024 if (cast<LoadInst>(I).isAtomic()) { 3025 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3026 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3027 } 3028 break; 3029 case Instruction::Store: 3030 if (cast<StoreInst>(I).isAtomic()) 3031 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3032 else 3033 Code = bitc::FUNC_CODE_INST_STORE; 3034 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3035 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3036 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3037 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3038 if (cast<StoreInst>(I).isAtomic()) { 3039 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3040 Vals.push_back( 3041 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3042 } 3043 break; 3044 case Instruction::AtomicCmpXchg: 3045 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3046 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3047 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3048 pushValue(I.getOperand(2), InstID, Vals); // newval. 3049 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3050 Vals.push_back( 3051 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3052 Vals.push_back( 3053 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3054 Vals.push_back( 3055 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3056 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3057 break; 3058 case Instruction::AtomicRMW: 3059 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3060 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3061 pushValue(I.getOperand(1), InstID, Vals); // val. 3062 Vals.push_back( 3063 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3064 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3065 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3066 Vals.push_back( 3067 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3068 break; 3069 case Instruction::Fence: 3070 Code = bitc::FUNC_CODE_INST_FENCE; 3071 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3072 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3073 break; 3074 case Instruction::Call: { 3075 const CallInst &CI = cast<CallInst>(I); 3076 FunctionType *FTy = CI.getFunctionType(); 3077 3078 if (CI.hasOperandBundles()) 3079 writeOperandBundles(CI, InstID); 3080 3081 Code = bitc::FUNC_CODE_INST_CALL; 3082 3083 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3084 3085 unsigned Flags = getOptimizationFlags(&I); 3086 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3087 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3088 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3089 1 << bitc::CALL_EXPLICIT_TYPE | 3090 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3091 unsigned(Flags != 0) << bitc::CALL_FMF); 3092 if (Flags != 0) 3093 Vals.push_back(Flags); 3094 3095 Vals.push_back(VE.getTypeID(FTy)); 3096 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3097 3098 // Emit value #'s for the fixed parameters. 3099 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3100 // Check for labels (can happen with asm labels). 3101 if (FTy->getParamType(i)->isLabelTy()) 3102 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3103 else 3104 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3105 } 3106 3107 // Emit type/value pairs for varargs params. 3108 if (FTy->isVarArg()) { 3109 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3110 i != e; ++i) 3111 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3112 } 3113 break; 3114 } 3115 case Instruction::VAArg: 3116 Code = bitc::FUNC_CODE_INST_VAARG; 3117 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3118 pushValue(I.getOperand(0), InstID, Vals); // valist. 3119 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3120 break; 3121 case Instruction::Freeze: 3122 Code = bitc::FUNC_CODE_INST_FREEZE; 3123 pushValueAndType(I.getOperand(0), InstID, Vals); 3124 break; 3125 } 3126 3127 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3128 Vals.clear(); 3129 } 3130 3131 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3132 /// to allow clients to efficiently find the function body. 3133 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3134 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3135 // Get the offset of the VST we are writing, and backpatch it into 3136 // the VST forward declaration record. 3137 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3138 // The BitcodeStartBit was the stream offset of the identification block. 3139 VSTOffset -= bitcodeStartBit(); 3140 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3141 // Note that we add 1 here because the offset is relative to one word 3142 // before the start of the identification block, which was historically 3143 // always the start of the regular bitcode header. 3144 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3145 3146 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3147 3148 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3149 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3152 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3153 3154 for (const Function &F : M) { 3155 uint64_t Record[2]; 3156 3157 if (F.isDeclaration()) 3158 continue; 3159 3160 Record[0] = VE.getValueID(&F); 3161 3162 // Save the word offset of the function (from the start of the 3163 // actual bitcode written to the stream). 3164 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3165 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3166 // Note that we add 1 here because the offset is relative to one word 3167 // before the start of the identification block, which was historically 3168 // always the start of the regular bitcode header. 3169 Record[1] = BitcodeIndex / 32 + 1; 3170 3171 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3172 } 3173 3174 Stream.ExitBlock(); 3175 } 3176 3177 /// Emit names for arguments, instructions and basic blocks in a function. 3178 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3179 const ValueSymbolTable &VST) { 3180 if (VST.empty()) 3181 return; 3182 3183 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3184 3185 // FIXME: Set up the abbrev, we know how many values there are! 3186 // FIXME: We know if the type names can use 7-bit ascii. 3187 SmallVector<uint64_t, 64> NameVals; 3188 3189 for (const ValueName &Name : VST) { 3190 // Figure out the encoding to use for the name. 3191 StringEncoding Bits = getStringEncoding(Name.getKey()); 3192 3193 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3194 NameVals.push_back(VE.getValueID(Name.getValue())); 3195 3196 // VST_CODE_ENTRY: [valueid, namechar x N] 3197 // VST_CODE_BBENTRY: [bbid, namechar x N] 3198 unsigned Code; 3199 if (isa<BasicBlock>(Name.getValue())) { 3200 Code = bitc::VST_CODE_BBENTRY; 3201 if (Bits == SE_Char6) 3202 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3203 } else { 3204 Code = bitc::VST_CODE_ENTRY; 3205 if (Bits == SE_Char6) 3206 AbbrevToUse = VST_ENTRY_6_ABBREV; 3207 else if (Bits == SE_Fixed7) 3208 AbbrevToUse = VST_ENTRY_7_ABBREV; 3209 } 3210 3211 for (const auto P : Name.getKey()) 3212 NameVals.push_back((unsigned char)P); 3213 3214 // Emit the finished record. 3215 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3216 NameVals.clear(); 3217 } 3218 3219 Stream.ExitBlock(); 3220 } 3221 3222 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3223 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3224 unsigned Code; 3225 if (isa<BasicBlock>(Order.V)) 3226 Code = bitc::USELIST_CODE_BB; 3227 else 3228 Code = bitc::USELIST_CODE_DEFAULT; 3229 3230 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3231 Record.push_back(VE.getValueID(Order.V)); 3232 Stream.EmitRecord(Code, Record); 3233 } 3234 3235 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3236 assert(VE.shouldPreserveUseListOrder() && 3237 "Expected to be preserving use-list order"); 3238 3239 auto hasMore = [&]() { 3240 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3241 }; 3242 if (!hasMore()) 3243 // Nothing to do. 3244 return; 3245 3246 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3247 while (hasMore()) { 3248 writeUseList(std::move(VE.UseListOrders.back())); 3249 VE.UseListOrders.pop_back(); 3250 } 3251 Stream.ExitBlock(); 3252 } 3253 3254 /// Emit a function body to the module stream. 3255 void ModuleBitcodeWriter::writeFunction( 3256 const Function &F, 3257 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3258 // Save the bitcode index of the start of this function block for recording 3259 // in the VST. 3260 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3261 3262 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3263 VE.incorporateFunction(F); 3264 3265 SmallVector<unsigned, 64> Vals; 3266 3267 // Emit the number of basic blocks, so the reader can create them ahead of 3268 // time. 3269 Vals.push_back(VE.getBasicBlocks().size()); 3270 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3271 Vals.clear(); 3272 3273 // If there are function-local constants, emit them now. 3274 unsigned CstStart, CstEnd; 3275 VE.getFunctionConstantRange(CstStart, CstEnd); 3276 writeConstants(CstStart, CstEnd, false); 3277 3278 // If there is function-local metadata, emit it now. 3279 writeFunctionMetadata(F); 3280 3281 // Keep a running idea of what the instruction ID is. 3282 unsigned InstID = CstEnd; 3283 3284 bool NeedsMetadataAttachment = F.hasMetadata(); 3285 3286 DILocation *LastDL = nullptr; 3287 // Finally, emit all the instructions, in order. 3288 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3289 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3290 I != E; ++I) { 3291 writeInstruction(*I, InstID, Vals); 3292 3293 if (!I->getType()->isVoidTy()) 3294 ++InstID; 3295 3296 // If the instruction has metadata, write a metadata attachment later. 3297 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3298 3299 // If the instruction has a debug location, emit it. 3300 DILocation *DL = I->getDebugLoc(); 3301 if (!DL) 3302 continue; 3303 3304 if (DL == LastDL) { 3305 // Just repeat the same debug loc as last time. 3306 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3307 continue; 3308 } 3309 3310 Vals.push_back(DL->getLine()); 3311 Vals.push_back(DL->getColumn()); 3312 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3313 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3314 Vals.push_back(DL->isImplicitCode()); 3315 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3316 Vals.clear(); 3317 3318 LastDL = DL; 3319 } 3320 3321 // Emit names for all the instructions etc. 3322 if (auto *Symtab = F.getValueSymbolTable()) 3323 writeFunctionLevelValueSymbolTable(*Symtab); 3324 3325 if (NeedsMetadataAttachment) 3326 writeFunctionMetadataAttachment(F); 3327 if (VE.shouldPreserveUseListOrder()) 3328 writeUseListBlock(&F); 3329 VE.purgeFunction(); 3330 Stream.ExitBlock(); 3331 } 3332 3333 // Emit blockinfo, which defines the standard abbreviations etc. 3334 void ModuleBitcodeWriter::writeBlockInfo() { 3335 // We only want to emit block info records for blocks that have multiple 3336 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3337 // Other blocks can define their abbrevs inline. 3338 Stream.EnterBlockInfoBlock(); 3339 3340 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3341 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3346 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3347 VST_ENTRY_8_ABBREV) 3348 llvm_unreachable("Unexpected abbrev ordering!"); 3349 } 3350 3351 { // 7-bit fixed width VST_CODE_ENTRY strings. 3352 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3353 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3357 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3358 VST_ENTRY_7_ABBREV) 3359 llvm_unreachable("Unexpected abbrev ordering!"); 3360 } 3361 { // 6-bit char6 VST_CODE_ENTRY strings. 3362 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3363 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3367 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3368 VST_ENTRY_6_ABBREV) 3369 llvm_unreachable("Unexpected abbrev ordering!"); 3370 } 3371 { // 6-bit char6 VST_CODE_BBENTRY strings. 3372 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3373 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3377 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3378 VST_BBENTRY_6_ABBREV) 3379 llvm_unreachable("Unexpected abbrev ordering!"); 3380 } 3381 3382 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3383 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3384 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3386 VE.computeBitsRequiredForTypeIndicies())); 3387 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3388 CONSTANTS_SETTYPE_ABBREV) 3389 llvm_unreachable("Unexpected abbrev ordering!"); 3390 } 3391 3392 { // INTEGER abbrev for CONSTANTS_BLOCK. 3393 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3394 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3396 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3397 CONSTANTS_INTEGER_ABBREV) 3398 llvm_unreachable("Unexpected abbrev ordering!"); 3399 } 3400 3401 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3402 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3403 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3406 VE.computeBitsRequiredForTypeIndicies())); 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3408 3409 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3410 CONSTANTS_CE_CAST_Abbrev) 3411 llvm_unreachable("Unexpected abbrev ordering!"); 3412 } 3413 { // NULL abbrev for CONSTANTS_BLOCK. 3414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3415 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3416 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3417 CONSTANTS_NULL_Abbrev) 3418 llvm_unreachable("Unexpected abbrev ordering!"); 3419 } 3420 3421 // FIXME: This should only use space for first class types! 3422 3423 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3424 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3425 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3428 VE.computeBitsRequiredForTypeIndicies())); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3431 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3432 FUNCTION_INST_LOAD_ABBREV) 3433 llvm_unreachable("Unexpected abbrev ordering!"); 3434 } 3435 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3437 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3440 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3441 FUNCTION_INST_UNOP_ABBREV) 3442 llvm_unreachable("Unexpected abbrev ordering!"); 3443 } 3444 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3445 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3446 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3450 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3451 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3452 llvm_unreachable("Unexpected abbrev ordering!"); 3453 } 3454 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3455 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3456 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3460 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3461 FUNCTION_INST_BINOP_ABBREV) 3462 llvm_unreachable("Unexpected abbrev ordering!"); 3463 } 3464 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3465 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3471 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3472 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3473 llvm_unreachable("Unexpected abbrev ordering!"); 3474 } 3475 { // INST_CAST abbrev for FUNCTION_BLOCK. 3476 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3477 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3480 VE.computeBitsRequiredForTypeIndicies())); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3482 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3483 FUNCTION_INST_CAST_ABBREV) 3484 llvm_unreachable("Unexpected abbrev ordering!"); 3485 } 3486 3487 { // INST_RET abbrev for FUNCTION_BLOCK. 3488 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3489 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3490 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3491 FUNCTION_INST_RET_VOID_ABBREV) 3492 llvm_unreachable("Unexpected abbrev ordering!"); 3493 } 3494 { // INST_RET abbrev for FUNCTION_BLOCK. 3495 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3496 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3498 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3499 FUNCTION_INST_RET_VAL_ABBREV) 3500 llvm_unreachable("Unexpected abbrev ordering!"); 3501 } 3502 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3503 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3504 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3505 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3506 FUNCTION_INST_UNREACHABLE_ABBREV) 3507 llvm_unreachable("Unexpected abbrev ordering!"); 3508 } 3509 { 3510 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3511 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3514 Log2_32_Ceil(VE.getTypes().size() + 1))); 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3517 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3518 FUNCTION_INST_GEP_ABBREV) 3519 llvm_unreachable("Unexpected abbrev ordering!"); 3520 } 3521 3522 Stream.ExitBlock(); 3523 } 3524 3525 /// Write the module path strings, currently only used when generating 3526 /// a combined index file. 3527 void IndexBitcodeWriter::writeModStrings() { 3528 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3529 3530 // TODO: See which abbrev sizes we actually need to emit 3531 3532 // 8-bit fixed-width MST_ENTRY strings. 3533 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3534 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3538 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3539 3540 // 7-bit fixed width MST_ENTRY strings. 3541 Abbv = std::make_shared<BitCodeAbbrev>(); 3542 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3546 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3547 3548 // 6-bit char6 MST_ENTRY strings. 3549 Abbv = std::make_shared<BitCodeAbbrev>(); 3550 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3554 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3555 3556 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3557 Abbv = std::make_shared<BitCodeAbbrev>(); 3558 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3564 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3565 3566 SmallVector<unsigned, 64> Vals; 3567 forEachModule( 3568 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3569 StringRef Key = MPSE.getKey(); 3570 const auto &Value = MPSE.getValue(); 3571 StringEncoding Bits = getStringEncoding(Key); 3572 unsigned AbbrevToUse = Abbrev8Bit; 3573 if (Bits == SE_Char6) 3574 AbbrevToUse = Abbrev6Bit; 3575 else if (Bits == SE_Fixed7) 3576 AbbrevToUse = Abbrev7Bit; 3577 3578 Vals.push_back(Value.first); 3579 Vals.append(Key.begin(), Key.end()); 3580 3581 // Emit the finished record. 3582 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3583 3584 // Emit an optional hash for the module now 3585 const auto &Hash = Value.second; 3586 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3587 Vals.assign(Hash.begin(), Hash.end()); 3588 // Emit the hash record. 3589 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3590 } 3591 3592 Vals.clear(); 3593 }); 3594 Stream.ExitBlock(); 3595 } 3596 3597 /// Write the function type metadata related records that need to appear before 3598 /// a function summary entry (whether per-module or combined). 3599 template <typename Fn> 3600 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3601 FunctionSummary *FS, 3602 Fn GetValueID) { 3603 if (!FS->type_tests().empty()) 3604 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3605 3606 SmallVector<uint64_t, 64> Record; 3607 3608 auto WriteVFuncIdVec = [&](uint64_t Ty, 3609 ArrayRef<FunctionSummary::VFuncId> VFs) { 3610 if (VFs.empty()) 3611 return; 3612 Record.clear(); 3613 for (auto &VF : VFs) { 3614 Record.push_back(VF.GUID); 3615 Record.push_back(VF.Offset); 3616 } 3617 Stream.EmitRecord(Ty, Record); 3618 }; 3619 3620 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3621 FS->type_test_assume_vcalls()); 3622 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3623 FS->type_checked_load_vcalls()); 3624 3625 auto WriteConstVCallVec = [&](uint64_t Ty, 3626 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3627 for (auto &VC : VCs) { 3628 Record.clear(); 3629 Record.push_back(VC.VFunc.GUID); 3630 Record.push_back(VC.VFunc.Offset); 3631 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3632 Stream.EmitRecord(Ty, Record); 3633 } 3634 }; 3635 3636 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3637 FS->type_test_assume_const_vcalls()); 3638 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3639 FS->type_checked_load_const_vcalls()); 3640 3641 auto WriteRange = [&](ConstantRange Range) { 3642 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3643 assert(Range.getLower().getNumWords() == 1); 3644 assert(Range.getUpper().getNumWords() == 1); 3645 emitSignedInt64(Record, *Range.getLower().getRawData()); 3646 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3647 }; 3648 3649 if (!FS->paramAccesses().empty()) { 3650 Record.clear(); 3651 for (auto &Arg : FS->paramAccesses()) { 3652 size_t UndoSize = Record.size(); 3653 Record.push_back(Arg.ParamNo); 3654 WriteRange(Arg.Use); 3655 Record.push_back(Arg.Calls.size()); 3656 for (auto &Call : Arg.Calls) { 3657 Record.push_back(Call.ParamNo); 3658 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3659 if (!ValueID) { 3660 // If ValueID is unknown we can't drop just this call, we must drop 3661 // entire parameter. 3662 Record.resize(UndoSize); 3663 break; 3664 } 3665 Record.push_back(*ValueID); 3666 WriteRange(Call.Offsets); 3667 } 3668 } 3669 if (!Record.empty()) 3670 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3671 } 3672 } 3673 3674 /// Collect type IDs from type tests used by function. 3675 static void 3676 getReferencedTypeIds(FunctionSummary *FS, 3677 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3678 if (!FS->type_tests().empty()) 3679 for (auto &TT : FS->type_tests()) 3680 ReferencedTypeIds.insert(TT); 3681 3682 auto GetReferencedTypesFromVFuncIdVec = 3683 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3684 for (auto &VF : VFs) 3685 ReferencedTypeIds.insert(VF.GUID); 3686 }; 3687 3688 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3689 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3690 3691 auto GetReferencedTypesFromConstVCallVec = 3692 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3693 for (auto &VC : VCs) 3694 ReferencedTypeIds.insert(VC.VFunc.GUID); 3695 }; 3696 3697 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3698 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3699 } 3700 3701 static void writeWholeProgramDevirtResolutionByArg( 3702 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3703 const WholeProgramDevirtResolution::ByArg &ByArg) { 3704 NameVals.push_back(args.size()); 3705 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3706 3707 NameVals.push_back(ByArg.TheKind); 3708 NameVals.push_back(ByArg.Info); 3709 NameVals.push_back(ByArg.Byte); 3710 NameVals.push_back(ByArg.Bit); 3711 } 3712 3713 static void writeWholeProgramDevirtResolution( 3714 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3715 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3716 NameVals.push_back(Id); 3717 3718 NameVals.push_back(Wpd.TheKind); 3719 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3720 NameVals.push_back(Wpd.SingleImplName.size()); 3721 3722 NameVals.push_back(Wpd.ResByArg.size()); 3723 for (auto &A : Wpd.ResByArg) 3724 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3725 } 3726 3727 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3728 StringTableBuilder &StrtabBuilder, 3729 const std::string &Id, 3730 const TypeIdSummary &Summary) { 3731 NameVals.push_back(StrtabBuilder.add(Id)); 3732 NameVals.push_back(Id.size()); 3733 3734 NameVals.push_back(Summary.TTRes.TheKind); 3735 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3736 NameVals.push_back(Summary.TTRes.AlignLog2); 3737 NameVals.push_back(Summary.TTRes.SizeM1); 3738 NameVals.push_back(Summary.TTRes.BitMask); 3739 NameVals.push_back(Summary.TTRes.InlineBits); 3740 3741 for (auto &W : Summary.WPDRes) 3742 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3743 W.second); 3744 } 3745 3746 static void writeTypeIdCompatibleVtableSummaryRecord( 3747 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3748 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3749 ValueEnumerator &VE) { 3750 NameVals.push_back(StrtabBuilder.add(Id)); 3751 NameVals.push_back(Id.size()); 3752 3753 for (auto &P : Summary) { 3754 NameVals.push_back(P.AddressPointOffset); 3755 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3756 } 3757 } 3758 3759 // Helper to emit a single function summary record. 3760 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3761 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3762 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3763 const Function &F) { 3764 NameVals.push_back(ValueID); 3765 3766 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3767 3768 writeFunctionTypeMetadataRecords( 3769 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3770 return {VE.getValueID(VI.getValue())}; 3771 }); 3772 3773 auto SpecialRefCnts = FS->specialRefCounts(); 3774 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3775 NameVals.push_back(FS->instCount()); 3776 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3777 NameVals.push_back(FS->refs().size()); 3778 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3779 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3780 3781 for (auto &RI : FS->refs()) 3782 NameVals.push_back(VE.getValueID(RI.getValue())); 3783 3784 bool HasProfileData = 3785 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3786 for (auto &ECI : FS->calls()) { 3787 NameVals.push_back(getValueId(ECI.first)); 3788 if (HasProfileData) 3789 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3790 else if (WriteRelBFToSummary) 3791 NameVals.push_back(ECI.second.RelBlockFreq); 3792 } 3793 3794 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3795 unsigned Code = 3796 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3797 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3798 : bitc::FS_PERMODULE)); 3799 3800 // Emit the finished record. 3801 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3802 NameVals.clear(); 3803 } 3804 3805 // Collect the global value references in the given variable's initializer, 3806 // and emit them in a summary record. 3807 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3808 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3809 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3810 auto VI = Index->getValueInfo(V.getGUID()); 3811 if (!VI || VI.getSummaryList().empty()) { 3812 // Only declarations should not have a summary (a declaration might however 3813 // have a summary if the def was in module level asm). 3814 assert(V.isDeclaration()); 3815 return; 3816 } 3817 auto *Summary = VI.getSummaryList()[0].get(); 3818 NameVals.push_back(VE.getValueID(&V)); 3819 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3820 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3821 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3822 3823 auto VTableFuncs = VS->vTableFuncs(); 3824 if (!VTableFuncs.empty()) 3825 NameVals.push_back(VS->refs().size()); 3826 3827 unsigned SizeBeforeRefs = NameVals.size(); 3828 for (auto &RI : VS->refs()) 3829 NameVals.push_back(VE.getValueID(RI.getValue())); 3830 // Sort the refs for determinism output, the vector returned by FS->refs() has 3831 // been initialized from a DenseSet. 3832 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3833 3834 if (VTableFuncs.empty()) 3835 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3836 FSModRefsAbbrev); 3837 else { 3838 // VTableFuncs pairs should already be sorted by offset. 3839 for (auto &P : VTableFuncs) { 3840 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3841 NameVals.push_back(P.VTableOffset); 3842 } 3843 3844 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3845 FSModVTableRefsAbbrev); 3846 } 3847 NameVals.clear(); 3848 } 3849 3850 /// Emit the per-module summary section alongside the rest of 3851 /// the module's bitcode. 3852 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3853 // By default we compile with ThinLTO if the module has a summary, but the 3854 // client can request full LTO with a module flag. 3855 bool IsThinLTO = true; 3856 if (auto *MD = 3857 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3858 IsThinLTO = MD->getZExtValue(); 3859 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3860 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3861 4); 3862 3863 Stream.EmitRecord( 3864 bitc::FS_VERSION, 3865 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3866 3867 // Write the index flags. 3868 uint64_t Flags = 0; 3869 // Bits 1-3 are set only in the combined index, skip them. 3870 if (Index->enableSplitLTOUnit()) 3871 Flags |= 0x8; 3872 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3873 3874 if (Index->begin() == Index->end()) { 3875 Stream.ExitBlock(); 3876 return; 3877 } 3878 3879 for (const auto &GVI : valueIds()) { 3880 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3881 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3882 } 3883 3884 // Abbrev for FS_PERMODULE_PROFILE. 3885 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3886 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3894 // numrefs x valueid, n x (valueid, hotness) 3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3897 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3898 3899 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3900 Abbv = std::make_shared<BitCodeAbbrev>(); 3901 if (WriteRelBFToSummary) 3902 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3903 else 3904 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3912 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3915 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3916 3917 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3918 Abbv = std::make_shared<BitCodeAbbrev>(); 3919 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3924 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3925 3926 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3927 Abbv = std::make_shared<BitCodeAbbrev>(); 3928 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3932 // numrefs x valueid, n x (valueid , offset) 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3935 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3936 3937 // Abbrev for FS_ALIAS. 3938 Abbv = std::make_shared<BitCodeAbbrev>(); 3939 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3943 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3944 3945 // Abbrev for FS_TYPE_ID_METADATA 3946 Abbv = std::make_shared<BitCodeAbbrev>(); 3947 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3950 // n x (valueid , offset) 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3953 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3954 3955 SmallVector<uint64_t, 64> NameVals; 3956 // Iterate over the list of functions instead of the Index to 3957 // ensure the ordering is stable. 3958 for (const Function &F : M) { 3959 // Summary emission does not support anonymous functions, they have to 3960 // renamed using the anonymous function renaming pass. 3961 if (!F.hasName()) 3962 report_fatal_error("Unexpected anonymous function when writing summary"); 3963 3964 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3965 if (!VI || VI.getSummaryList().empty()) { 3966 // Only declarations should not have a summary (a declaration might 3967 // however have a summary if the def was in module level asm). 3968 assert(F.isDeclaration()); 3969 continue; 3970 } 3971 auto *Summary = VI.getSummaryList()[0].get(); 3972 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3973 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3974 } 3975 3976 // Capture references from GlobalVariable initializers, which are outside 3977 // of a function scope. 3978 for (const GlobalVariable &G : M.globals()) 3979 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3980 FSModVTableRefsAbbrev); 3981 3982 for (const GlobalAlias &A : M.aliases()) { 3983 auto *Aliasee = A.getBaseObject(); 3984 if (!Aliasee->hasName()) 3985 // Nameless function don't have an entry in the summary, skip it. 3986 continue; 3987 auto AliasId = VE.getValueID(&A); 3988 auto AliaseeId = VE.getValueID(Aliasee); 3989 NameVals.push_back(AliasId); 3990 auto *Summary = Index->getGlobalValueSummary(A); 3991 AliasSummary *AS = cast<AliasSummary>(Summary); 3992 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3993 NameVals.push_back(AliaseeId); 3994 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3995 NameVals.clear(); 3996 } 3997 3998 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3999 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4000 S.second, VE); 4001 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4002 TypeIdCompatibleVtableAbbrev); 4003 NameVals.clear(); 4004 } 4005 4006 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4007 ArrayRef<uint64_t>{Index->getBlockCount()}); 4008 4009 Stream.ExitBlock(); 4010 } 4011 4012 /// Emit the combined summary section into the combined index file. 4013 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4014 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4015 Stream.EmitRecord( 4016 bitc::FS_VERSION, 4017 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4018 4019 // Write the index flags. 4020 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4021 4022 for (const auto &GVI : valueIds()) { 4023 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4024 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4025 } 4026 4027 // Abbrev for FS_COMBINED. 4028 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4029 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4039 // numrefs x valueid, n x (valueid) 4040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4042 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4043 4044 // Abbrev for FS_COMBINED_PROFILE. 4045 Abbv = std::make_shared<BitCodeAbbrev>(); 4046 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4056 // numrefs x valueid, n x (valueid, hotness) 4057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4059 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4060 4061 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4062 Abbv = std::make_shared<BitCodeAbbrev>(); 4063 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4069 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4070 4071 // Abbrev for FS_COMBINED_ALIAS. 4072 Abbv = std::make_shared<BitCodeAbbrev>(); 4073 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4078 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4079 4080 // The aliases are emitted as a post-pass, and will point to the value 4081 // id of the aliasee. Save them in a vector for post-processing. 4082 SmallVector<AliasSummary *, 64> Aliases; 4083 4084 // Save the value id for each summary for alias emission. 4085 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4086 4087 SmallVector<uint64_t, 64> NameVals; 4088 4089 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4090 // with the type ids referenced by this index file. 4091 std::set<GlobalValue::GUID> ReferencedTypeIds; 4092 4093 // For local linkage, we also emit the original name separately 4094 // immediately after the record. 4095 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4096 if (!GlobalValue::isLocalLinkage(S.linkage())) 4097 return; 4098 NameVals.push_back(S.getOriginalName()); 4099 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4100 NameVals.clear(); 4101 }; 4102 4103 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4104 forEachSummary([&](GVInfo I, bool IsAliasee) { 4105 GlobalValueSummary *S = I.second; 4106 assert(S); 4107 DefOrUseGUIDs.insert(I.first); 4108 for (const ValueInfo &VI : S->refs()) 4109 DefOrUseGUIDs.insert(VI.getGUID()); 4110 4111 auto ValueId = getValueId(I.first); 4112 assert(ValueId); 4113 SummaryToValueIdMap[S] = *ValueId; 4114 4115 // If this is invoked for an aliasee, we want to record the above 4116 // mapping, but then not emit a summary entry (if the aliasee is 4117 // to be imported, we will invoke this separately with IsAliasee=false). 4118 if (IsAliasee) 4119 return; 4120 4121 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4122 // Will process aliases as a post-pass because the reader wants all 4123 // global to be loaded first. 4124 Aliases.push_back(AS); 4125 return; 4126 } 4127 4128 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4129 NameVals.push_back(*ValueId); 4130 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4131 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4132 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4133 for (auto &RI : VS->refs()) { 4134 auto RefValueId = getValueId(RI.getGUID()); 4135 if (!RefValueId) 4136 continue; 4137 NameVals.push_back(*RefValueId); 4138 } 4139 4140 // Emit the finished record. 4141 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4142 FSModRefsAbbrev); 4143 NameVals.clear(); 4144 MaybeEmitOriginalName(*S); 4145 return; 4146 } 4147 4148 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4149 GlobalValue::GUID GUID = VI.getGUID(); 4150 Optional<unsigned> CallValueId = getValueId(GUID); 4151 if (CallValueId) 4152 return CallValueId; 4153 // For SamplePGO, the indirect call targets for local functions will 4154 // have its original name annotated in profile. We try to find the 4155 // corresponding PGOFuncName as the GUID. 4156 GUID = Index.getGUIDFromOriginalID(GUID); 4157 if (!GUID) 4158 return None; 4159 CallValueId = getValueId(GUID); 4160 if (!CallValueId) 4161 return None; 4162 // The mapping from OriginalId to GUID may return a GUID 4163 // that corresponds to a static variable. Filter it out here. 4164 // This can happen when 4165 // 1) There is a call to a library function which does not have 4166 // a CallValidId; 4167 // 2) There is a static variable with the OriginalGUID identical 4168 // to the GUID of the library function in 1); 4169 // When this happens, the logic for SamplePGO kicks in and 4170 // the static variable in 2) will be found, which needs to be 4171 // filtered out. 4172 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4173 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4174 return None; 4175 return CallValueId; 4176 }; 4177 4178 auto *FS = cast<FunctionSummary>(S); 4179 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4180 getReferencedTypeIds(FS, ReferencedTypeIds); 4181 4182 NameVals.push_back(*ValueId); 4183 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4184 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4185 NameVals.push_back(FS->instCount()); 4186 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4187 NameVals.push_back(FS->entryCount()); 4188 4189 // Fill in below 4190 NameVals.push_back(0); // numrefs 4191 NameVals.push_back(0); // rorefcnt 4192 NameVals.push_back(0); // worefcnt 4193 4194 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4195 for (auto &RI : FS->refs()) { 4196 auto RefValueId = getValueId(RI.getGUID()); 4197 if (!RefValueId) 4198 continue; 4199 NameVals.push_back(*RefValueId); 4200 if (RI.isReadOnly()) 4201 RORefCnt++; 4202 else if (RI.isWriteOnly()) 4203 WORefCnt++; 4204 Count++; 4205 } 4206 NameVals[6] = Count; 4207 NameVals[7] = RORefCnt; 4208 NameVals[8] = WORefCnt; 4209 4210 bool HasProfileData = false; 4211 for (auto &EI : FS->calls()) { 4212 HasProfileData |= 4213 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4214 if (HasProfileData) 4215 break; 4216 } 4217 4218 for (auto &EI : FS->calls()) { 4219 // If this GUID doesn't have a value id, it doesn't have a function 4220 // summary and we don't need to record any calls to it. 4221 Optional<unsigned> CallValueId = GetValueId(EI.first); 4222 if (!CallValueId) 4223 continue; 4224 NameVals.push_back(*CallValueId); 4225 if (HasProfileData) 4226 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4227 } 4228 4229 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4230 unsigned Code = 4231 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4232 4233 // Emit the finished record. 4234 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4235 NameVals.clear(); 4236 MaybeEmitOriginalName(*S); 4237 }); 4238 4239 for (auto *AS : Aliases) { 4240 auto AliasValueId = SummaryToValueIdMap[AS]; 4241 assert(AliasValueId); 4242 NameVals.push_back(AliasValueId); 4243 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4244 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4245 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4246 assert(AliaseeValueId); 4247 NameVals.push_back(AliaseeValueId); 4248 4249 // Emit the finished record. 4250 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4251 NameVals.clear(); 4252 MaybeEmitOriginalName(*AS); 4253 4254 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4255 getReferencedTypeIds(FS, ReferencedTypeIds); 4256 } 4257 4258 if (!Index.cfiFunctionDefs().empty()) { 4259 for (auto &S : Index.cfiFunctionDefs()) { 4260 if (DefOrUseGUIDs.count( 4261 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4262 NameVals.push_back(StrtabBuilder.add(S)); 4263 NameVals.push_back(S.size()); 4264 } 4265 } 4266 if (!NameVals.empty()) { 4267 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4268 NameVals.clear(); 4269 } 4270 } 4271 4272 if (!Index.cfiFunctionDecls().empty()) { 4273 for (auto &S : Index.cfiFunctionDecls()) { 4274 if (DefOrUseGUIDs.count( 4275 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4276 NameVals.push_back(StrtabBuilder.add(S)); 4277 NameVals.push_back(S.size()); 4278 } 4279 } 4280 if (!NameVals.empty()) { 4281 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4282 NameVals.clear(); 4283 } 4284 } 4285 4286 // Walk the GUIDs that were referenced, and write the 4287 // corresponding type id records. 4288 for (auto &T : ReferencedTypeIds) { 4289 auto TidIter = Index.typeIds().equal_range(T); 4290 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4291 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4292 It->second.second); 4293 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4294 NameVals.clear(); 4295 } 4296 } 4297 4298 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4299 ArrayRef<uint64_t>{Index.getBlockCount()}); 4300 4301 Stream.ExitBlock(); 4302 } 4303 4304 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4305 /// current llvm version, and a record for the epoch number. 4306 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4307 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4308 4309 // Write the "user readable" string identifying the bitcode producer 4310 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4311 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4314 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4315 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4316 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4317 4318 // Write the epoch version 4319 Abbv = std::make_shared<BitCodeAbbrev>(); 4320 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4322 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4323 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4324 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4325 Stream.ExitBlock(); 4326 } 4327 4328 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4329 // Emit the module's hash. 4330 // MODULE_CODE_HASH: [5*i32] 4331 if (GenerateHash) { 4332 uint32_t Vals[5]; 4333 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4334 Buffer.size() - BlockStartPos)); 4335 StringRef Hash = Hasher.result(); 4336 for (int Pos = 0; Pos < 20; Pos += 4) { 4337 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4338 } 4339 4340 // Emit the finished record. 4341 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4342 4343 if (ModHash) 4344 // Save the written hash value. 4345 llvm::copy(Vals, std::begin(*ModHash)); 4346 } 4347 } 4348 4349 void ModuleBitcodeWriter::write() { 4350 writeIdentificationBlock(Stream); 4351 4352 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4353 size_t BlockStartPos = Buffer.size(); 4354 4355 writeModuleVersion(); 4356 4357 // Emit blockinfo, which defines the standard abbreviations etc. 4358 writeBlockInfo(); 4359 4360 // Emit information describing all of the types in the module. 4361 writeTypeTable(); 4362 4363 // Emit information about attribute groups. 4364 writeAttributeGroupTable(); 4365 4366 // Emit information about parameter attributes. 4367 writeAttributeTable(); 4368 4369 writeComdats(); 4370 4371 // Emit top-level description of module, including target triple, inline asm, 4372 // descriptors for global variables, and function prototype info. 4373 writeModuleInfo(); 4374 4375 // Emit constants. 4376 writeModuleConstants(); 4377 4378 // Emit metadata kind names. 4379 writeModuleMetadataKinds(); 4380 4381 // Emit metadata. 4382 writeModuleMetadata(); 4383 4384 // Emit module-level use-lists. 4385 if (VE.shouldPreserveUseListOrder()) 4386 writeUseListBlock(nullptr); 4387 4388 writeOperandBundleTags(); 4389 writeSyncScopeNames(); 4390 4391 // Emit function bodies. 4392 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4393 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4394 if (!F->isDeclaration()) 4395 writeFunction(*F, FunctionToBitcodeIndex); 4396 4397 // Need to write after the above call to WriteFunction which populates 4398 // the summary information in the index. 4399 if (Index) 4400 writePerModuleGlobalValueSummary(); 4401 4402 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4403 4404 writeModuleHash(BlockStartPos); 4405 4406 Stream.ExitBlock(); 4407 } 4408 4409 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4410 uint32_t &Position) { 4411 support::endian::write32le(&Buffer[Position], Value); 4412 Position += 4; 4413 } 4414 4415 /// If generating a bc file on darwin, we have to emit a 4416 /// header and trailer to make it compatible with the system archiver. To do 4417 /// this we emit the following header, and then emit a trailer that pads the 4418 /// file out to be a multiple of 16 bytes. 4419 /// 4420 /// struct bc_header { 4421 /// uint32_t Magic; // 0x0B17C0DE 4422 /// uint32_t Version; // Version, currently always 0. 4423 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4424 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4425 /// uint32_t CPUType; // CPU specifier. 4426 /// ... potentially more later ... 4427 /// }; 4428 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4429 const Triple &TT) { 4430 unsigned CPUType = ~0U; 4431 4432 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4433 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4434 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4435 // specific constants here because they are implicitly part of the Darwin ABI. 4436 enum { 4437 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4438 DARWIN_CPU_TYPE_X86 = 7, 4439 DARWIN_CPU_TYPE_ARM = 12, 4440 DARWIN_CPU_TYPE_POWERPC = 18 4441 }; 4442 4443 Triple::ArchType Arch = TT.getArch(); 4444 if (Arch == Triple::x86_64) 4445 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4446 else if (Arch == Triple::x86) 4447 CPUType = DARWIN_CPU_TYPE_X86; 4448 else if (Arch == Triple::ppc) 4449 CPUType = DARWIN_CPU_TYPE_POWERPC; 4450 else if (Arch == Triple::ppc64) 4451 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4452 else if (Arch == Triple::arm || Arch == Triple::thumb) 4453 CPUType = DARWIN_CPU_TYPE_ARM; 4454 4455 // Traditional Bitcode starts after header. 4456 assert(Buffer.size() >= BWH_HeaderSize && 4457 "Expected header size to be reserved"); 4458 unsigned BCOffset = BWH_HeaderSize; 4459 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4460 4461 // Write the magic and version. 4462 unsigned Position = 0; 4463 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4464 writeInt32ToBuffer(0, Buffer, Position); // Version. 4465 writeInt32ToBuffer(BCOffset, Buffer, Position); 4466 writeInt32ToBuffer(BCSize, Buffer, Position); 4467 writeInt32ToBuffer(CPUType, Buffer, Position); 4468 4469 // If the file is not a multiple of 16 bytes, insert dummy padding. 4470 while (Buffer.size() & 15) 4471 Buffer.push_back(0); 4472 } 4473 4474 /// Helper to write the header common to all bitcode files. 4475 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4476 // Emit the file header. 4477 Stream.Emit((unsigned)'B', 8); 4478 Stream.Emit((unsigned)'C', 8); 4479 Stream.Emit(0x0, 4); 4480 Stream.Emit(0xC, 4); 4481 Stream.Emit(0xE, 4); 4482 Stream.Emit(0xD, 4); 4483 } 4484 4485 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4486 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4487 writeBitcodeHeader(*Stream); 4488 } 4489 4490 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4491 4492 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4493 Stream->EnterSubblock(Block, 3); 4494 4495 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4496 Abbv->Add(BitCodeAbbrevOp(Record)); 4497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4498 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4499 4500 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4501 4502 Stream->ExitBlock(); 4503 } 4504 4505 void BitcodeWriter::writeSymtab() { 4506 assert(!WroteStrtab && !WroteSymtab); 4507 4508 // If any module has module-level inline asm, we will require a registered asm 4509 // parser for the target so that we can create an accurate symbol table for 4510 // the module. 4511 for (Module *M : Mods) { 4512 if (M->getModuleInlineAsm().empty()) 4513 continue; 4514 4515 std::string Err; 4516 const Triple TT(M->getTargetTriple()); 4517 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4518 if (!T || !T->hasMCAsmParser()) 4519 return; 4520 } 4521 4522 WroteSymtab = true; 4523 SmallVector<char, 0> Symtab; 4524 // The irsymtab::build function may be unable to create a symbol table if the 4525 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4526 // table is not required for correctness, but we still want to be able to 4527 // write malformed modules to bitcode files, so swallow the error. 4528 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4529 consumeError(std::move(E)); 4530 return; 4531 } 4532 4533 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4534 {Symtab.data(), Symtab.size()}); 4535 } 4536 4537 void BitcodeWriter::writeStrtab() { 4538 assert(!WroteStrtab); 4539 4540 std::vector<char> Strtab; 4541 StrtabBuilder.finalizeInOrder(); 4542 Strtab.resize(StrtabBuilder.getSize()); 4543 StrtabBuilder.write((uint8_t *)Strtab.data()); 4544 4545 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4546 {Strtab.data(), Strtab.size()}); 4547 4548 WroteStrtab = true; 4549 } 4550 4551 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4552 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4553 WroteStrtab = true; 4554 } 4555 4556 void BitcodeWriter::writeModule(const Module &M, 4557 bool ShouldPreserveUseListOrder, 4558 const ModuleSummaryIndex *Index, 4559 bool GenerateHash, ModuleHash *ModHash) { 4560 assert(!WroteStrtab); 4561 4562 // The Mods vector is used by irsymtab::build, which requires non-const 4563 // Modules in case it needs to materialize metadata. But the bitcode writer 4564 // requires that the module is materialized, so we can cast to non-const here, 4565 // after checking that it is in fact materialized. 4566 assert(M.isMaterialized()); 4567 Mods.push_back(const_cast<Module *>(&M)); 4568 4569 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4570 ShouldPreserveUseListOrder, Index, 4571 GenerateHash, ModHash); 4572 ModuleWriter.write(); 4573 } 4574 4575 void BitcodeWriter::writeIndex( 4576 const ModuleSummaryIndex *Index, 4577 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4578 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4579 ModuleToSummariesForIndex); 4580 IndexWriter.write(); 4581 } 4582 4583 /// Write the specified module to the specified output stream. 4584 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4585 bool ShouldPreserveUseListOrder, 4586 const ModuleSummaryIndex *Index, 4587 bool GenerateHash, ModuleHash *ModHash) { 4588 SmallVector<char, 0> Buffer; 4589 Buffer.reserve(256*1024); 4590 4591 // If this is darwin or another generic macho target, reserve space for the 4592 // header. 4593 Triple TT(M.getTargetTriple()); 4594 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4595 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4596 4597 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4598 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4599 ModHash); 4600 Writer.writeSymtab(); 4601 Writer.writeStrtab(); 4602 4603 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4604 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4605 4606 // Write the generated bitstream to "Out". 4607 if (!Buffer.empty()) 4608 Out.write((char *)&Buffer.front(), Buffer.size()); 4609 } 4610 4611 void IndexBitcodeWriter::write() { 4612 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4613 4614 writeModuleVersion(); 4615 4616 // Write the module paths in the combined index. 4617 writeModStrings(); 4618 4619 // Write the summary combined index records. 4620 writeCombinedGlobalValueSummary(); 4621 4622 Stream.ExitBlock(); 4623 } 4624 4625 // Write the specified module summary index to the given raw output stream, 4626 // where it will be written in a new bitcode block. This is used when 4627 // writing the combined index file for ThinLTO. When writing a subset of the 4628 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4629 void llvm::WriteIndexToFile( 4630 const ModuleSummaryIndex &Index, raw_ostream &Out, 4631 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4632 SmallVector<char, 0> Buffer; 4633 Buffer.reserve(256 * 1024); 4634 4635 BitcodeWriter Writer(Buffer); 4636 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4637 Writer.writeStrtab(); 4638 4639 Out.write((char *)&Buffer.front(), Buffer.size()); 4640 } 4641 4642 namespace { 4643 4644 /// Class to manage the bitcode writing for a thin link bitcode file. 4645 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4646 /// ModHash is for use in ThinLTO incremental build, generated while writing 4647 /// the module bitcode file. 4648 const ModuleHash *ModHash; 4649 4650 public: 4651 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4652 BitstreamWriter &Stream, 4653 const ModuleSummaryIndex &Index, 4654 const ModuleHash &ModHash) 4655 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4656 /*ShouldPreserveUseListOrder=*/false, &Index), 4657 ModHash(&ModHash) {} 4658 4659 void write(); 4660 4661 private: 4662 void writeSimplifiedModuleInfo(); 4663 }; 4664 4665 } // end anonymous namespace 4666 4667 // This function writes a simpilified module info for thin link bitcode file. 4668 // It only contains the source file name along with the name(the offset and 4669 // size in strtab) and linkage for global values. For the global value info 4670 // entry, in order to keep linkage at offset 5, there are three zeros used 4671 // as padding. 4672 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4673 SmallVector<unsigned, 64> Vals; 4674 // Emit the module's source file name. 4675 { 4676 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4677 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4678 if (Bits == SE_Char6) 4679 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4680 else if (Bits == SE_Fixed7) 4681 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4682 4683 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4684 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4685 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4687 Abbv->Add(AbbrevOpToUse); 4688 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4689 4690 for (const auto P : M.getSourceFileName()) 4691 Vals.push_back((unsigned char)P); 4692 4693 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4694 Vals.clear(); 4695 } 4696 4697 // Emit the global variable information. 4698 for (const GlobalVariable &GV : M.globals()) { 4699 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4700 Vals.push_back(StrtabBuilder.add(GV.getName())); 4701 Vals.push_back(GV.getName().size()); 4702 Vals.push_back(0); 4703 Vals.push_back(0); 4704 Vals.push_back(0); 4705 Vals.push_back(getEncodedLinkage(GV)); 4706 4707 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4708 Vals.clear(); 4709 } 4710 4711 // Emit the function proto information. 4712 for (const Function &F : M) { 4713 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4714 Vals.push_back(StrtabBuilder.add(F.getName())); 4715 Vals.push_back(F.getName().size()); 4716 Vals.push_back(0); 4717 Vals.push_back(0); 4718 Vals.push_back(0); 4719 Vals.push_back(getEncodedLinkage(F)); 4720 4721 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4722 Vals.clear(); 4723 } 4724 4725 // Emit the alias information. 4726 for (const GlobalAlias &A : M.aliases()) { 4727 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4728 Vals.push_back(StrtabBuilder.add(A.getName())); 4729 Vals.push_back(A.getName().size()); 4730 Vals.push_back(0); 4731 Vals.push_back(0); 4732 Vals.push_back(0); 4733 Vals.push_back(getEncodedLinkage(A)); 4734 4735 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4736 Vals.clear(); 4737 } 4738 4739 // Emit the ifunc information. 4740 for (const GlobalIFunc &I : M.ifuncs()) { 4741 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4742 Vals.push_back(StrtabBuilder.add(I.getName())); 4743 Vals.push_back(I.getName().size()); 4744 Vals.push_back(0); 4745 Vals.push_back(0); 4746 Vals.push_back(0); 4747 Vals.push_back(getEncodedLinkage(I)); 4748 4749 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4750 Vals.clear(); 4751 } 4752 } 4753 4754 void ThinLinkBitcodeWriter::write() { 4755 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4756 4757 writeModuleVersion(); 4758 4759 writeSimplifiedModuleInfo(); 4760 4761 writePerModuleGlobalValueSummary(); 4762 4763 // Write module hash. 4764 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4765 4766 Stream.ExitBlock(); 4767 } 4768 4769 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4770 const ModuleSummaryIndex &Index, 4771 const ModuleHash &ModHash) { 4772 assert(!WroteStrtab); 4773 4774 // The Mods vector is used by irsymtab::build, which requires non-const 4775 // Modules in case it needs to materialize metadata. But the bitcode writer 4776 // requires that the module is materialized, so we can cast to non-const here, 4777 // after checking that it is in fact materialized. 4778 assert(M.isMaterialized()); 4779 Mods.push_back(const_cast<Module *>(&M)); 4780 4781 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4782 ModHash); 4783 ThinLinkWriter.write(); 4784 } 4785 4786 // Write the specified thin link bitcode file to the given raw output stream, 4787 // where it will be written in a new bitcode block. This is used when 4788 // writing the per-module index file for ThinLTO. 4789 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4790 const ModuleSummaryIndex &Index, 4791 const ModuleHash &ModHash) { 4792 SmallVector<char, 0> Buffer; 4793 Buffer.reserve(256 * 1024); 4794 4795 BitcodeWriter Writer(Buffer); 4796 Writer.writeThinLinkBitcode(M, Index, ModHash); 4797 Writer.writeSymtab(); 4798 Writer.writeStrtab(); 4799 4800 Out.write((char *)&Buffer.front(), Buffer.size()); 4801 } 4802 4803 static const char *getSectionNameForBitcode(const Triple &T) { 4804 switch (T.getObjectFormat()) { 4805 case Triple::MachO: 4806 return "__LLVM,__bitcode"; 4807 case Triple::COFF: 4808 case Triple::ELF: 4809 case Triple::Wasm: 4810 case Triple::UnknownObjectFormat: 4811 return ".llvmbc"; 4812 case Triple::GOFF: 4813 llvm_unreachable("GOFF is not yet implemented"); 4814 break; 4815 case Triple::XCOFF: 4816 llvm_unreachable("XCOFF is not yet implemented"); 4817 break; 4818 } 4819 llvm_unreachable("Unimplemented ObjectFormatType"); 4820 } 4821 4822 static const char *getSectionNameForCommandline(const Triple &T) { 4823 switch (T.getObjectFormat()) { 4824 case Triple::MachO: 4825 return "__LLVM,__cmdline"; 4826 case Triple::COFF: 4827 case Triple::ELF: 4828 case Triple::Wasm: 4829 case Triple::UnknownObjectFormat: 4830 return ".llvmcmd"; 4831 case Triple::GOFF: 4832 llvm_unreachable("GOFF is not yet implemented"); 4833 break; 4834 case Triple::XCOFF: 4835 llvm_unreachable("XCOFF is not yet implemented"); 4836 break; 4837 } 4838 llvm_unreachable("Unimplemented ObjectFormatType"); 4839 } 4840 4841 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4842 bool EmbedBitcode, bool EmbedCmdline, 4843 const std::vector<uint8_t> &CmdArgs) { 4844 // Save llvm.compiler.used and remove it. 4845 SmallVector<Constant *, 2> UsedArray; 4846 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4847 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4848 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4849 for (auto *GV : UsedGlobals) { 4850 if (GV->getName() != "llvm.embedded.module" && 4851 GV->getName() != "llvm.cmdline") 4852 UsedArray.push_back( 4853 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4854 } 4855 if (Used) 4856 Used->eraseFromParent(); 4857 4858 // Embed the bitcode for the llvm module. 4859 std::string Data; 4860 ArrayRef<uint8_t> ModuleData; 4861 Triple T(M.getTargetTriple()); 4862 4863 if (EmbedBitcode) { 4864 if (Buf.getBufferSize() == 0 || 4865 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4866 (const unsigned char *)Buf.getBufferEnd())) { 4867 // If the input is LLVM Assembly, bitcode is produced by serializing 4868 // the module. Use-lists order need to be preserved in this case. 4869 llvm::raw_string_ostream OS(Data); 4870 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4871 ModuleData = 4872 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4873 } else 4874 // If the input is LLVM bitcode, write the input byte stream directly. 4875 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4876 Buf.getBufferSize()); 4877 } 4878 llvm::Constant *ModuleConstant = 4879 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4880 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4881 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4882 ModuleConstant); 4883 GV->setSection(getSectionNameForBitcode(T)); 4884 // Set alignment to 1 to prevent padding between two contributions from input 4885 // sections after linking. 4886 GV->setAlignment(Align(1)); 4887 UsedArray.push_back( 4888 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4889 if (llvm::GlobalVariable *Old = 4890 M.getGlobalVariable("llvm.embedded.module", true)) { 4891 assert(Old->hasOneUse() && 4892 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4893 GV->takeName(Old); 4894 Old->eraseFromParent(); 4895 } else { 4896 GV->setName("llvm.embedded.module"); 4897 } 4898 4899 // Skip if only bitcode needs to be embedded. 4900 if (EmbedCmdline) { 4901 // Embed command-line options. 4902 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4903 CmdArgs.size()); 4904 llvm::Constant *CmdConstant = 4905 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4906 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4907 llvm::GlobalValue::PrivateLinkage, 4908 CmdConstant); 4909 GV->setSection(getSectionNameForCommandline(T)); 4910 GV->setAlignment(Align(1)); 4911 UsedArray.push_back( 4912 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4913 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4914 assert(Old->hasOneUse() && 4915 "llvm.cmdline can only be used once in llvm.compiler.used"); 4916 GV->takeName(Old); 4917 Old->eraseFromParent(); 4918 } else { 4919 GV->setName("llvm.cmdline"); 4920 } 4921 } 4922 4923 if (UsedArray.empty()) 4924 return; 4925 4926 // Recreate llvm.compiler.used. 4927 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4928 auto *NewUsed = new GlobalVariable( 4929 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4930 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4931 NewUsed->setSection("llvm.metadata"); 4932 } 4933