1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(const CallBase &CB, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NoMerge: 651 return bitc::ATTR_KIND_NO_MERGE; 652 case Attribute::NonLazyBind: 653 return bitc::ATTR_KIND_NON_LAZY_BIND; 654 case Attribute::NonNull: 655 return bitc::ATTR_KIND_NON_NULL; 656 case Attribute::Dereferenceable: 657 return bitc::ATTR_KIND_DEREFERENCEABLE; 658 case Attribute::DereferenceableOrNull: 659 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 660 case Attribute::NoRedZone: 661 return bitc::ATTR_KIND_NO_RED_ZONE; 662 case Attribute::NoReturn: 663 return bitc::ATTR_KIND_NO_RETURN; 664 case Attribute::NoSync: 665 return bitc::ATTR_KIND_NOSYNC; 666 case Attribute::NoCfCheck: 667 return bitc::ATTR_KIND_NOCF_CHECK; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::NullPointerIsValid: 671 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 672 case Attribute::OptForFuzzing: 673 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 674 case Attribute::OptimizeForSize: 675 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 676 case Attribute::OptimizeNone: 677 return bitc::ATTR_KIND_OPTIMIZE_NONE; 678 case Attribute::ReadNone: 679 return bitc::ATTR_KIND_READ_NONE; 680 case Attribute::ReadOnly: 681 return bitc::ATTR_KIND_READ_ONLY; 682 case Attribute::Returned: 683 return bitc::ATTR_KIND_RETURNED; 684 case Attribute::ReturnsTwice: 685 return bitc::ATTR_KIND_RETURNS_TWICE; 686 case Attribute::SExt: 687 return bitc::ATTR_KIND_S_EXT; 688 case Attribute::Speculatable: 689 return bitc::ATTR_KIND_SPECULATABLE; 690 case Attribute::StackAlignment: 691 return bitc::ATTR_KIND_STACK_ALIGNMENT; 692 case Attribute::StackProtect: 693 return bitc::ATTR_KIND_STACK_PROTECT; 694 case Attribute::StackProtectReq: 695 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 696 case Attribute::StackProtectStrong: 697 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 698 case Attribute::SafeStack: 699 return bitc::ATTR_KIND_SAFESTACK; 700 case Attribute::ShadowCallStack: 701 return bitc::ATTR_KIND_SHADOWCALLSTACK; 702 case Attribute::StrictFP: 703 return bitc::ATTR_KIND_STRICT_FP; 704 case Attribute::StructRet: 705 return bitc::ATTR_KIND_STRUCT_RET; 706 case Attribute::SanitizeAddress: 707 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 708 case Attribute::SanitizeHWAddress: 709 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 710 case Attribute::SanitizeThread: 711 return bitc::ATTR_KIND_SANITIZE_THREAD; 712 case Attribute::SanitizeMemory: 713 return bitc::ATTR_KIND_SANITIZE_MEMORY; 714 case Attribute::SpeculativeLoadHardening: 715 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 716 case Attribute::SwiftError: 717 return bitc::ATTR_KIND_SWIFT_ERROR; 718 case Attribute::SwiftSelf: 719 return bitc::ATTR_KIND_SWIFT_SELF; 720 case Attribute::UWTable: 721 return bitc::ATTR_KIND_UW_TABLE; 722 case Attribute::WillReturn: 723 return bitc::ATTR_KIND_WILLRETURN; 724 case Attribute::WriteOnly: 725 return bitc::ATTR_KIND_WRITEONLY; 726 case Attribute::ZExt: 727 return bitc::ATTR_KIND_Z_EXT; 728 case Attribute::ImmArg: 729 return bitc::ATTR_KIND_IMMARG; 730 case Attribute::SanitizeMemTag: 731 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 732 case Attribute::Preallocated: 733 return bitc::ATTR_KIND_PREALLOCATED; 734 case Attribute::NoUndef: 735 return bitc::ATTR_KIND_NOUNDEF; 736 case Attribute::ByRef: 737 return bitc::ATTR_KIND_BYREF; 738 case Attribute::EndAttrKinds: 739 llvm_unreachable("Can not encode end-attribute kinds marker."); 740 case Attribute::None: 741 llvm_unreachable("Can not encode none-attribute."); 742 case Attribute::EmptyKey: 743 case Attribute::TombstoneKey: 744 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 745 } 746 747 llvm_unreachable("Trying to encode unknown attribute"); 748 } 749 750 void ModuleBitcodeWriter::writeAttributeGroupTable() { 751 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 752 VE.getAttributeGroups(); 753 if (AttrGrps.empty()) return; 754 755 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 756 757 SmallVector<uint64_t, 64> Record; 758 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 759 unsigned AttrListIndex = Pair.first; 760 AttributeSet AS = Pair.second; 761 Record.push_back(VE.getAttributeGroupID(Pair)); 762 Record.push_back(AttrListIndex); 763 764 for (Attribute Attr : AS) { 765 if (Attr.isEnumAttribute()) { 766 Record.push_back(0); 767 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 768 } else if (Attr.isIntAttribute()) { 769 Record.push_back(1); 770 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 771 Record.push_back(Attr.getValueAsInt()); 772 } else if (Attr.isStringAttribute()) { 773 StringRef Kind = Attr.getKindAsString(); 774 StringRef Val = Attr.getValueAsString(); 775 776 Record.push_back(Val.empty() ? 3 : 4); 777 Record.append(Kind.begin(), Kind.end()); 778 Record.push_back(0); 779 if (!Val.empty()) { 780 Record.append(Val.begin(), Val.end()); 781 Record.push_back(0); 782 } 783 } else { 784 assert(Attr.isTypeAttribute()); 785 Type *Ty = Attr.getValueAsType(); 786 Record.push_back(Ty ? 6 : 5); 787 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 788 if (Ty) 789 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 790 } 791 } 792 793 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 794 Record.clear(); 795 } 796 797 Stream.ExitBlock(); 798 } 799 800 void ModuleBitcodeWriter::writeAttributeTable() { 801 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 802 if (Attrs.empty()) return; 803 804 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 805 806 SmallVector<uint64_t, 64> Record; 807 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 808 AttributeList AL = Attrs[i]; 809 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 810 AttributeSet AS = AL.getAttributes(i); 811 if (AS.hasAttributes()) 812 Record.push_back(VE.getAttributeGroupID({i, AS})); 813 } 814 815 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 816 Record.clear(); 817 } 818 819 Stream.ExitBlock(); 820 } 821 822 /// WriteTypeTable - Write out the type table for a module. 823 void ModuleBitcodeWriter::writeTypeTable() { 824 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 825 826 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 827 SmallVector<uint64_t, 64> TypeVals; 828 829 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 830 831 // Abbrev for TYPE_CODE_POINTER. 832 auto Abbv = std::make_shared<BitCodeAbbrev>(); 833 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 835 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 836 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 837 838 // Abbrev for TYPE_CODE_FUNCTION. 839 Abbv = std::make_shared<BitCodeAbbrev>(); 840 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 844 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 845 846 // Abbrev for TYPE_CODE_STRUCT_ANON. 847 Abbv = std::make_shared<BitCodeAbbrev>(); 848 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 852 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 853 854 // Abbrev for TYPE_CODE_STRUCT_NAME. 855 Abbv = std::make_shared<BitCodeAbbrev>(); 856 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 859 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 860 861 // Abbrev for TYPE_CODE_STRUCT_NAMED. 862 Abbv = std::make_shared<BitCodeAbbrev>(); 863 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 867 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 868 869 // Abbrev for TYPE_CODE_ARRAY. 870 Abbv = std::make_shared<BitCodeAbbrev>(); 871 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 874 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 875 876 // Emit an entry count so the reader can reserve space. 877 TypeVals.push_back(TypeList.size()); 878 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 879 TypeVals.clear(); 880 881 // Loop over all of the types, emitting each in turn. 882 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 883 Type *T = TypeList[i]; 884 int AbbrevToUse = 0; 885 unsigned Code = 0; 886 887 switch (T->getTypeID()) { 888 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 889 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 890 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 891 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 892 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 893 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 894 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 895 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 896 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 897 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 898 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 899 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 900 case Type::IntegerTyID: 901 // INTEGER: [width] 902 Code = bitc::TYPE_CODE_INTEGER; 903 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 904 break; 905 case Type::PointerTyID: { 906 PointerType *PTy = cast<PointerType>(T); 907 // POINTER: [pointee type, address space] 908 Code = bitc::TYPE_CODE_POINTER; 909 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 910 unsigned AddressSpace = PTy->getAddressSpace(); 911 TypeVals.push_back(AddressSpace); 912 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 913 break; 914 } 915 case Type::FunctionTyID: { 916 FunctionType *FT = cast<FunctionType>(T); 917 // FUNCTION: [isvararg, retty, paramty x N] 918 Code = bitc::TYPE_CODE_FUNCTION; 919 TypeVals.push_back(FT->isVarArg()); 920 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 921 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 922 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 923 AbbrevToUse = FunctionAbbrev; 924 break; 925 } 926 case Type::StructTyID: { 927 StructType *ST = cast<StructType>(T); 928 // STRUCT: [ispacked, eltty x N] 929 TypeVals.push_back(ST->isPacked()); 930 // Output all of the element types. 931 for (StructType::element_iterator I = ST->element_begin(), 932 E = ST->element_end(); I != E; ++I) 933 TypeVals.push_back(VE.getTypeID(*I)); 934 935 if (ST->isLiteral()) { 936 Code = bitc::TYPE_CODE_STRUCT_ANON; 937 AbbrevToUse = StructAnonAbbrev; 938 } else { 939 if (ST->isOpaque()) { 940 Code = bitc::TYPE_CODE_OPAQUE; 941 } else { 942 Code = bitc::TYPE_CODE_STRUCT_NAMED; 943 AbbrevToUse = StructNamedAbbrev; 944 } 945 946 // Emit the name if it is present. 947 if (!ST->getName().empty()) 948 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 949 StructNameAbbrev); 950 } 951 break; 952 } 953 case Type::ArrayTyID: { 954 ArrayType *AT = cast<ArrayType>(T); 955 // ARRAY: [numelts, eltty] 956 Code = bitc::TYPE_CODE_ARRAY; 957 TypeVals.push_back(AT->getNumElements()); 958 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 959 AbbrevToUse = ArrayAbbrev; 960 break; 961 } 962 case Type::FixedVectorTyID: 963 case Type::ScalableVectorTyID: { 964 VectorType *VT = cast<VectorType>(T); 965 // VECTOR [numelts, eltty] or 966 // [numelts, eltty, scalable] 967 Code = bitc::TYPE_CODE_VECTOR; 968 TypeVals.push_back(VT->getElementCount().Min); 969 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 970 if (isa<ScalableVectorType>(VT)) 971 TypeVals.push_back(true); 972 break; 973 } 974 } 975 976 // Emit the finished record. 977 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 978 TypeVals.clear(); 979 } 980 981 Stream.ExitBlock(); 982 } 983 984 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 985 switch (Linkage) { 986 case GlobalValue::ExternalLinkage: 987 return 0; 988 case GlobalValue::WeakAnyLinkage: 989 return 16; 990 case GlobalValue::AppendingLinkage: 991 return 2; 992 case GlobalValue::InternalLinkage: 993 return 3; 994 case GlobalValue::LinkOnceAnyLinkage: 995 return 18; 996 case GlobalValue::ExternalWeakLinkage: 997 return 7; 998 case GlobalValue::CommonLinkage: 999 return 8; 1000 case GlobalValue::PrivateLinkage: 1001 return 9; 1002 case GlobalValue::WeakODRLinkage: 1003 return 17; 1004 case GlobalValue::LinkOnceODRLinkage: 1005 return 19; 1006 case GlobalValue::AvailableExternallyLinkage: 1007 return 12; 1008 } 1009 llvm_unreachable("Invalid linkage"); 1010 } 1011 1012 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1013 return getEncodedLinkage(GV.getLinkage()); 1014 } 1015 1016 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1017 uint64_t RawFlags = 0; 1018 RawFlags |= Flags.ReadNone; 1019 RawFlags |= (Flags.ReadOnly << 1); 1020 RawFlags |= (Flags.NoRecurse << 2); 1021 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1022 RawFlags |= (Flags.NoInline << 4); 1023 RawFlags |= (Flags.AlwaysInline << 5); 1024 return RawFlags; 1025 } 1026 1027 // Decode the flags for GlobalValue in the summary 1028 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1029 uint64_t RawFlags = 0; 1030 1031 RawFlags |= Flags.NotEligibleToImport; // bool 1032 RawFlags |= (Flags.Live << 1); 1033 RawFlags |= (Flags.DSOLocal << 2); 1034 RawFlags |= (Flags.CanAutoHide << 3); 1035 1036 // Linkage don't need to be remapped at that time for the summary. Any future 1037 // change to the getEncodedLinkage() function will need to be taken into 1038 // account here as well. 1039 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1040 1041 return RawFlags; 1042 } 1043 1044 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1045 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1046 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1047 return RawFlags; 1048 } 1049 1050 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1051 switch (GV.getVisibility()) { 1052 case GlobalValue::DefaultVisibility: return 0; 1053 case GlobalValue::HiddenVisibility: return 1; 1054 case GlobalValue::ProtectedVisibility: return 2; 1055 } 1056 llvm_unreachable("Invalid visibility"); 1057 } 1058 1059 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1060 switch (GV.getDLLStorageClass()) { 1061 case GlobalValue::DefaultStorageClass: return 0; 1062 case GlobalValue::DLLImportStorageClass: return 1; 1063 case GlobalValue::DLLExportStorageClass: return 2; 1064 } 1065 llvm_unreachable("Invalid DLL storage class"); 1066 } 1067 1068 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1069 switch (GV.getThreadLocalMode()) { 1070 case GlobalVariable::NotThreadLocal: return 0; 1071 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1072 case GlobalVariable::LocalDynamicTLSModel: return 2; 1073 case GlobalVariable::InitialExecTLSModel: return 3; 1074 case GlobalVariable::LocalExecTLSModel: return 4; 1075 } 1076 llvm_unreachable("Invalid TLS model"); 1077 } 1078 1079 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1080 switch (C.getSelectionKind()) { 1081 case Comdat::Any: 1082 return bitc::COMDAT_SELECTION_KIND_ANY; 1083 case Comdat::ExactMatch: 1084 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1085 case Comdat::Largest: 1086 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1087 case Comdat::NoDuplicates: 1088 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1089 case Comdat::SameSize: 1090 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1091 } 1092 llvm_unreachable("Invalid selection kind"); 1093 } 1094 1095 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1096 switch (GV.getUnnamedAddr()) { 1097 case GlobalValue::UnnamedAddr::None: return 0; 1098 case GlobalValue::UnnamedAddr::Local: return 2; 1099 case GlobalValue::UnnamedAddr::Global: return 1; 1100 } 1101 llvm_unreachable("Invalid unnamed_addr"); 1102 } 1103 1104 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1105 if (GenerateHash) 1106 Hasher.update(Str); 1107 return StrtabBuilder.add(Str); 1108 } 1109 1110 void ModuleBitcodeWriter::writeComdats() { 1111 SmallVector<unsigned, 64> Vals; 1112 for (const Comdat *C : VE.getComdats()) { 1113 // COMDAT: [strtab offset, strtab size, selection_kind] 1114 Vals.push_back(addToStrtab(C->getName())); 1115 Vals.push_back(C->getName().size()); 1116 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1117 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1118 Vals.clear(); 1119 } 1120 } 1121 1122 /// Write a record that will eventually hold the word offset of the 1123 /// module-level VST. For now the offset is 0, which will be backpatched 1124 /// after the real VST is written. Saves the bit offset to backpatch. 1125 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1126 // Write a placeholder value in for the offset of the real VST, 1127 // which is written after the function blocks so that it can include 1128 // the offset of each function. The placeholder offset will be 1129 // updated when the real VST is written. 1130 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1131 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1132 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1133 // hold the real VST offset. Must use fixed instead of VBR as we don't 1134 // know how many VBR chunks to reserve ahead of time. 1135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1136 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1137 1138 // Emit the placeholder 1139 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1140 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1141 1142 // Compute and save the bit offset to the placeholder, which will be 1143 // patched when the real VST is written. We can simply subtract the 32-bit 1144 // fixed size from the current bit number to get the location to backpatch. 1145 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1146 } 1147 1148 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1149 1150 /// Determine the encoding to use for the given string name and length. 1151 static StringEncoding getStringEncoding(StringRef Str) { 1152 bool isChar6 = true; 1153 for (char C : Str) { 1154 if (isChar6) 1155 isChar6 = BitCodeAbbrevOp::isChar6(C); 1156 if ((unsigned char)C & 128) 1157 // don't bother scanning the rest. 1158 return SE_Fixed8; 1159 } 1160 if (isChar6) 1161 return SE_Char6; 1162 return SE_Fixed7; 1163 } 1164 1165 /// Emit top-level description of module, including target triple, inline asm, 1166 /// descriptors for global variables, and function prototype info. 1167 /// Returns the bit offset to backpatch with the location of the real VST. 1168 void ModuleBitcodeWriter::writeModuleInfo() { 1169 // Emit various pieces of data attached to a module. 1170 if (!M.getTargetTriple().empty()) 1171 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1172 0 /*TODO*/); 1173 const std::string &DL = M.getDataLayoutStr(); 1174 if (!DL.empty()) 1175 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1176 if (!M.getModuleInlineAsm().empty()) 1177 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1178 0 /*TODO*/); 1179 1180 // Emit information about sections and GC, computing how many there are. Also 1181 // compute the maximum alignment value. 1182 std::map<std::string, unsigned> SectionMap; 1183 std::map<std::string, unsigned> GCMap; 1184 unsigned MaxAlignment = 0; 1185 unsigned MaxGlobalType = 0; 1186 for (const GlobalVariable &GV : M.globals()) { 1187 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1188 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1189 if (GV.hasSection()) { 1190 // Give section names unique ID's. 1191 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1192 if (!Entry) { 1193 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1194 0 /*TODO*/); 1195 Entry = SectionMap.size(); 1196 } 1197 } 1198 } 1199 for (const Function &F : M) { 1200 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1201 if (F.hasSection()) { 1202 // Give section names unique ID's. 1203 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1204 if (!Entry) { 1205 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1206 0 /*TODO*/); 1207 Entry = SectionMap.size(); 1208 } 1209 } 1210 if (F.hasGC()) { 1211 // Same for GC names. 1212 unsigned &Entry = GCMap[F.getGC()]; 1213 if (!Entry) { 1214 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1215 0 /*TODO*/); 1216 Entry = GCMap.size(); 1217 } 1218 } 1219 } 1220 1221 // Emit abbrev for globals, now that we know # sections and max alignment. 1222 unsigned SimpleGVarAbbrev = 0; 1223 if (!M.global_empty()) { 1224 // Add an abbrev for common globals with no visibility or thread localness. 1225 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1226 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1230 Log2_32_Ceil(MaxGlobalType+1))); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1232 //| explicitType << 1 1233 //| constant 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1236 if (MaxAlignment == 0) // Alignment. 1237 Abbv->Add(BitCodeAbbrevOp(0)); 1238 else { 1239 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1241 Log2_32_Ceil(MaxEncAlignment+1))); 1242 } 1243 if (SectionMap.empty()) // Section. 1244 Abbv->Add(BitCodeAbbrevOp(0)); 1245 else 1246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1247 Log2_32_Ceil(SectionMap.size()+1))); 1248 // Don't bother emitting vis + thread local. 1249 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1250 } 1251 1252 SmallVector<unsigned, 64> Vals; 1253 // Emit the module's source file name. 1254 { 1255 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1256 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1257 if (Bits == SE_Char6) 1258 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1259 else if (Bits == SE_Fixed7) 1260 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1261 1262 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1263 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1264 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1266 Abbv->Add(AbbrevOpToUse); 1267 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1268 1269 for (const auto P : M.getSourceFileName()) 1270 Vals.push_back((unsigned char)P); 1271 1272 // Emit the finished record. 1273 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1274 Vals.clear(); 1275 } 1276 1277 // Emit the global variable information. 1278 for (const GlobalVariable &GV : M.globals()) { 1279 unsigned AbbrevToUse = 0; 1280 1281 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1282 // linkage, alignment, section, visibility, threadlocal, 1283 // unnamed_addr, externally_initialized, dllstorageclass, 1284 // comdat, attributes, DSO_Local] 1285 Vals.push_back(addToStrtab(GV.getName())); 1286 Vals.push_back(GV.getName().size()); 1287 Vals.push_back(VE.getTypeID(GV.getValueType())); 1288 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1289 Vals.push_back(GV.isDeclaration() ? 0 : 1290 (VE.getValueID(GV.getInitializer()) + 1)); 1291 Vals.push_back(getEncodedLinkage(GV)); 1292 Vals.push_back(Log2_32(GV.getAlignment())+1); 1293 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1294 : 0); 1295 if (GV.isThreadLocal() || 1296 GV.getVisibility() != GlobalValue::DefaultVisibility || 1297 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1298 GV.isExternallyInitialized() || 1299 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1300 GV.hasComdat() || 1301 GV.hasAttributes() || 1302 GV.isDSOLocal() || 1303 GV.hasPartition()) { 1304 Vals.push_back(getEncodedVisibility(GV)); 1305 Vals.push_back(getEncodedThreadLocalMode(GV)); 1306 Vals.push_back(getEncodedUnnamedAddr(GV)); 1307 Vals.push_back(GV.isExternallyInitialized()); 1308 Vals.push_back(getEncodedDLLStorageClass(GV)); 1309 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1310 1311 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1312 Vals.push_back(VE.getAttributeListID(AL)); 1313 1314 Vals.push_back(GV.isDSOLocal()); 1315 Vals.push_back(addToStrtab(GV.getPartition())); 1316 Vals.push_back(GV.getPartition().size()); 1317 } else { 1318 AbbrevToUse = SimpleGVarAbbrev; 1319 } 1320 1321 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1322 Vals.clear(); 1323 } 1324 1325 // Emit the function proto information. 1326 for (const Function &F : M) { 1327 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1328 // linkage, paramattrs, alignment, section, visibility, gc, 1329 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1330 // prefixdata, personalityfn, DSO_Local, addrspace] 1331 Vals.push_back(addToStrtab(F.getName())); 1332 Vals.push_back(F.getName().size()); 1333 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1334 Vals.push_back(F.getCallingConv()); 1335 Vals.push_back(F.isDeclaration()); 1336 Vals.push_back(getEncodedLinkage(F)); 1337 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1338 Vals.push_back(Log2_32(F.getAlignment())+1); 1339 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1340 : 0); 1341 Vals.push_back(getEncodedVisibility(F)); 1342 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1343 Vals.push_back(getEncodedUnnamedAddr(F)); 1344 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1345 : 0); 1346 Vals.push_back(getEncodedDLLStorageClass(F)); 1347 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1348 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1349 : 0); 1350 Vals.push_back( 1351 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1352 1353 Vals.push_back(F.isDSOLocal()); 1354 Vals.push_back(F.getAddressSpace()); 1355 Vals.push_back(addToStrtab(F.getPartition())); 1356 Vals.push_back(F.getPartition().size()); 1357 1358 unsigned AbbrevToUse = 0; 1359 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1360 Vals.clear(); 1361 } 1362 1363 // Emit the alias information. 1364 for (const GlobalAlias &A : M.aliases()) { 1365 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1366 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1367 // DSO_Local] 1368 Vals.push_back(addToStrtab(A.getName())); 1369 Vals.push_back(A.getName().size()); 1370 Vals.push_back(VE.getTypeID(A.getValueType())); 1371 Vals.push_back(A.getType()->getAddressSpace()); 1372 Vals.push_back(VE.getValueID(A.getAliasee())); 1373 Vals.push_back(getEncodedLinkage(A)); 1374 Vals.push_back(getEncodedVisibility(A)); 1375 Vals.push_back(getEncodedDLLStorageClass(A)); 1376 Vals.push_back(getEncodedThreadLocalMode(A)); 1377 Vals.push_back(getEncodedUnnamedAddr(A)); 1378 Vals.push_back(A.isDSOLocal()); 1379 Vals.push_back(addToStrtab(A.getPartition())); 1380 Vals.push_back(A.getPartition().size()); 1381 1382 unsigned AbbrevToUse = 0; 1383 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1384 Vals.clear(); 1385 } 1386 1387 // Emit the ifunc information. 1388 for (const GlobalIFunc &I : M.ifuncs()) { 1389 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1390 // val#, linkage, visibility, DSO_Local] 1391 Vals.push_back(addToStrtab(I.getName())); 1392 Vals.push_back(I.getName().size()); 1393 Vals.push_back(VE.getTypeID(I.getValueType())); 1394 Vals.push_back(I.getType()->getAddressSpace()); 1395 Vals.push_back(VE.getValueID(I.getResolver())); 1396 Vals.push_back(getEncodedLinkage(I)); 1397 Vals.push_back(getEncodedVisibility(I)); 1398 Vals.push_back(I.isDSOLocal()); 1399 Vals.push_back(addToStrtab(I.getPartition())); 1400 Vals.push_back(I.getPartition().size()); 1401 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1402 Vals.clear(); 1403 } 1404 1405 writeValueSymbolTableForwardDecl(); 1406 } 1407 1408 static uint64_t getOptimizationFlags(const Value *V) { 1409 uint64_t Flags = 0; 1410 1411 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1412 if (OBO->hasNoSignedWrap()) 1413 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1414 if (OBO->hasNoUnsignedWrap()) 1415 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1416 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1417 if (PEO->isExact()) 1418 Flags |= 1 << bitc::PEO_EXACT; 1419 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1420 if (FPMO->hasAllowReassoc()) 1421 Flags |= bitc::AllowReassoc; 1422 if (FPMO->hasNoNaNs()) 1423 Flags |= bitc::NoNaNs; 1424 if (FPMO->hasNoInfs()) 1425 Flags |= bitc::NoInfs; 1426 if (FPMO->hasNoSignedZeros()) 1427 Flags |= bitc::NoSignedZeros; 1428 if (FPMO->hasAllowReciprocal()) 1429 Flags |= bitc::AllowReciprocal; 1430 if (FPMO->hasAllowContract()) 1431 Flags |= bitc::AllowContract; 1432 if (FPMO->hasApproxFunc()) 1433 Flags |= bitc::ApproxFunc; 1434 } 1435 1436 return Flags; 1437 } 1438 1439 void ModuleBitcodeWriter::writeValueAsMetadata( 1440 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1441 // Mimic an MDNode with a value as one operand. 1442 Value *V = MD->getValue(); 1443 Record.push_back(VE.getTypeID(V->getType())); 1444 Record.push_back(VE.getValueID(V)); 1445 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1446 Record.clear(); 1447 } 1448 1449 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1450 SmallVectorImpl<uint64_t> &Record, 1451 unsigned Abbrev) { 1452 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1453 Metadata *MD = N->getOperand(i); 1454 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1455 "Unexpected function-local metadata"); 1456 Record.push_back(VE.getMetadataOrNullID(MD)); 1457 } 1458 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1459 : bitc::METADATA_NODE, 1460 Record, Abbrev); 1461 Record.clear(); 1462 } 1463 1464 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1465 // Assume the column is usually under 128, and always output the inlined-at 1466 // location (it's never more expensive than building an array size 1). 1467 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1468 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1475 return Stream.EmitAbbrev(std::move(Abbv)); 1476 } 1477 1478 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1479 SmallVectorImpl<uint64_t> &Record, 1480 unsigned &Abbrev) { 1481 if (!Abbrev) 1482 Abbrev = createDILocationAbbrev(); 1483 1484 Record.push_back(N->isDistinct()); 1485 Record.push_back(N->getLine()); 1486 Record.push_back(N->getColumn()); 1487 Record.push_back(VE.getMetadataID(N->getScope())); 1488 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1489 Record.push_back(N->isImplicitCode()); 1490 1491 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1492 Record.clear(); 1493 } 1494 1495 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1496 // Assume the column is usually under 128, and always output the inlined-at 1497 // location (it's never more expensive than building an array size 1). 1498 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1499 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1506 return Stream.EmitAbbrev(std::move(Abbv)); 1507 } 1508 1509 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1510 SmallVectorImpl<uint64_t> &Record, 1511 unsigned &Abbrev) { 1512 if (!Abbrev) 1513 Abbrev = createGenericDINodeAbbrev(); 1514 1515 Record.push_back(N->isDistinct()); 1516 Record.push_back(N->getTag()); 1517 Record.push_back(0); // Per-tag version field; unused for now. 1518 1519 for (auto &I : N->operands()) 1520 Record.push_back(VE.getMetadataOrNullID(I)); 1521 1522 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1523 Record.clear(); 1524 } 1525 1526 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1527 SmallVectorImpl<uint64_t> &Record, 1528 unsigned Abbrev) { 1529 const uint64_t Version = 2 << 1; 1530 Record.push_back((uint64_t)N->isDistinct() | Version); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1533 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1534 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1535 1536 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1537 Record.clear(); 1538 } 1539 1540 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1541 if ((int64_t)V >= 0) 1542 Vals.push_back(V << 1); 1543 else 1544 Vals.push_back((-V << 1) | 1); 1545 } 1546 1547 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1548 // We have an arbitrary precision integer value to write whose 1549 // bit width is > 64. However, in canonical unsigned integer 1550 // format it is likely that the high bits are going to be zero. 1551 // So, we only write the number of active words. 1552 unsigned NumWords = A.getActiveWords(); 1553 const uint64_t *RawData = A.getRawData(); 1554 for (unsigned i = 0; i < NumWords; i++) 1555 emitSignedInt64(Vals, RawData[i]); 1556 } 1557 1558 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1559 SmallVectorImpl<uint64_t> &Record, 1560 unsigned Abbrev) { 1561 const uint64_t IsBigInt = 1 << 2; 1562 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1563 Record.push_back(N->getValue().getBitWidth()); 1564 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1565 emitWideAPInt(Record, N->getValue()); 1566 1567 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1568 Record.clear(); 1569 } 1570 1571 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1572 SmallVectorImpl<uint64_t> &Record, 1573 unsigned Abbrev) { 1574 Record.push_back(N->isDistinct()); 1575 Record.push_back(N->getTag()); 1576 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1577 Record.push_back(N->getSizeInBits()); 1578 Record.push_back(N->getAlignInBits()); 1579 Record.push_back(N->getEncoding()); 1580 Record.push_back(N->getFlags()); 1581 1582 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1583 Record.clear(); 1584 } 1585 1586 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1587 SmallVectorImpl<uint64_t> &Record, 1588 unsigned Abbrev) { 1589 Record.push_back(N->isDistinct()); 1590 Record.push_back(N->getTag()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1593 Record.push_back(N->getLine()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1596 Record.push_back(N->getSizeInBits()); 1597 Record.push_back(N->getAlignInBits()); 1598 Record.push_back(N->getOffsetInBits()); 1599 Record.push_back(N->getFlags()); 1600 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1601 1602 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1603 // that there is no DWARF address space associated with DIDerivedType. 1604 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1605 Record.push_back(*DWARFAddressSpace + 1); 1606 else 1607 Record.push_back(0); 1608 1609 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1610 Record.clear(); 1611 } 1612 1613 void ModuleBitcodeWriter::writeDICompositeType( 1614 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1615 unsigned Abbrev) { 1616 const unsigned IsNotUsedInOldTypeRef = 0x2; 1617 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1618 Record.push_back(N->getTag()); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1621 Record.push_back(N->getLine()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1624 Record.push_back(N->getSizeInBits()); 1625 Record.push_back(N->getAlignInBits()); 1626 Record.push_back(N->getOffsetInBits()); 1627 Record.push_back(N->getFlags()); 1628 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1629 Record.push_back(N->getRuntimeLang()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1633 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1635 1636 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1637 Record.clear(); 1638 } 1639 1640 void ModuleBitcodeWriter::writeDISubroutineType( 1641 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1642 unsigned Abbrev) { 1643 const unsigned HasNoOldTypeRefs = 0x2; 1644 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1645 Record.push_back(N->getFlags()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1647 Record.push_back(N->getCC()); 1648 1649 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1650 Record.clear(); 1651 } 1652 1653 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1654 SmallVectorImpl<uint64_t> &Record, 1655 unsigned Abbrev) { 1656 Record.push_back(N->isDistinct()); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1659 if (N->getRawChecksum()) { 1660 Record.push_back(N->getRawChecksum()->Kind); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1662 } else { 1663 // Maintain backwards compatibility with the old internal representation of 1664 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1665 Record.push_back(0); 1666 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1667 } 1668 auto Source = N->getRawSource(); 1669 if (Source) 1670 Record.push_back(VE.getMetadataOrNullID(*Source)); 1671 1672 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1677 SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 assert(N->isDistinct() && "Expected distinct compile units"); 1680 Record.push_back(/* IsDistinct */ true); 1681 Record.push_back(N->getSourceLanguage()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1684 Record.push_back(N->isOptimized()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1686 Record.push_back(N->getRuntimeVersion()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1688 Record.push_back(N->getEmissionKind()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1691 Record.push_back(/* subprograms */ 0); 1692 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1694 Record.push_back(N->getDWOId()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1696 Record.push_back(N->getSplitDebugInlining()); 1697 Record.push_back(N->getDebugInfoForProfiling()); 1698 Record.push_back((unsigned)N->getNameTableKind()); 1699 Record.push_back(N->getRangesBaseAddress()); 1700 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1701 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1702 1703 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1704 Record.clear(); 1705 } 1706 1707 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1708 SmallVectorImpl<uint64_t> &Record, 1709 unsigned Abbrev) { 1710 const uint64_t HasUnitFlag = 1 << 1; 1711 const uint64_t HasSPFlagsFlag = 1 << 2; 1712 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1713 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1717 Record.push_back(N->getLine()); 1718 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1719 Record.push_back(N->getScopeLine()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1721 Record.push_back(N->getSPFlags()); 1722 Record.push_back(N->getVirtualIndex()); 1723 Record.push_back(N->getFlags()); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1728 Record.push_back(N->getThisAdjustment()); 1729 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1730 1731 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1732 Record.clear(); 1733 } 1734 1735 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1736 SmallVectorImpl<uint64_t> &Record, 1737 unsigned Abbrev) { 1738 Record.push_back(N->isDistinct()); 1739 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1741 Record.push_back(N->getLine()); 1742 Record.push_back(N->getColumn()); 1743 1744 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1745 Record.clear(); 1746 } 1747 1748 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1749 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1750 unsigned Abbrev) { 1751 Record.push_back(N->isDistinct()); 1752 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1754 Record.push_back(N->getDiscriminator()); 1755 1756 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1757 Record.clear(); 1758 } 1759 1760 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1761 SmallVectorImpl<uint64_t> &Record, 1762 unsigned Abbrev) { 1763 Record.push_back(N->isDistinct()); 1764 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1766 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1768 Record.push_back(N->getLineNo()); 1769 1770 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1771 Record.clear(); 1772 } 1773 1774 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1775 SmallVectorImpl<uint64_t> &Record, 1776 unsigned Abbrev) { 1777 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1778 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1780 1781 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1782 Record.clear(); 1783 } 1784 1785 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1786 SmallVectorImpl<uint64_t> &Record, 1787 unsigned Abbrev) { 1788 Record.push_back(N->isDistinct()); 1789 Record.push_back(N->getMacinfoType()); 1790 Record.push_back(N->getLine()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1793 1794 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1795 Record.clear(); 1796 } 1797 1798 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1799 SmallVectorImpl<uint64_t> &Record, 1800 unsigned Abbrev) { 1801 Record.push_back(N->isDistinct()); 1802 Record.push_back(N->getMacinfoType()); 1803 Record.push_back(N->getLine()); 1804 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1806 1807 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1808 Record.clear(); 1809 } 1810 1811 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1812 SmallVectorImpl<uint64_t> &Record, 1813 unsigned Abbrev) { 1814 Record.push_back(N->isDistinct()); 1815 for (auto &I : N->operands()) 1816 Record.push_back(VE.getMetadataOrNullID(I)); 1817 Record.push_back(N->getLineNo()); 1818 1819 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1824 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 Record.push_back(N->isDistinct()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1829 Record.push_back(N->isDefault()); 1830 1831 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1832 Record.clear(); 1833 } 1834 1835 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1836 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1837 unsigned Abbrev) { 1838 Record.push_back(N->isDistinct()); 1839 Record.push_back(N->getTag()); 1840 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1842 Record.push_back(N->isDefault()); 1843 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1844 1845 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1846 Record.clear(); 1847 } 1848 1849 void ModuleBitcodeWriter::writeDIGlobalVariable( 1850 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1851 unsigned Abbrev) { 1852 const uint64_t Version = 2 << 1; 1853 Record.push_back((uint64_t)N->isDistinct() | Version); 1854 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1858 Record.push_back(N->getLine()); 1859 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1860 Record.push_back(N->isLocalToUnit()); 1861 Record.push_back(N->isDefinition()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1864 Record.push_back(N->getAlignInBits()); 1865 1866 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1867 Record.clear(); 1868 } 1869 1870 void ModuleBitcodeWriter::writeDILocalVariable( 1871 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1872 unsigned Abbrev) { 1873 // In order to support all possible bitcode formats in BitcodeReader we need 1874 // to distinguish the following cases: 1875 // 1) Record has no artificial tag (Record[1]), 1876 // has no obsolete inlinedAt field (Record[9]). 1877 // In this case Record size will be 8, HasAlignment flag is false. 1878 // 2) Record has artificial tag (Record[1]), 1879 // has no obsolete inlignedAt field (Record[9]). 1880 // In this case Record size will be 9, HasAlignment flag is false. 1881 // 3) Record has both artificial tag (Record[1]) and 1882 // obsolete inlignedAt field (Record[9]). 1883 // In this case Record size will be 10, HasAlignment flag is false. 1884 // 4) Record has neither artificial tag, nor inlignedAt field, but 1885 // HasAlignment flag is true and Record[8] contains alignment value. 1886 const uint64_t HasAlignmentFlag = 1 << 1; 1887 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1888 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1891 Record.push_back(N->getLine()); 1892 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1893 Record.push_back(N->getArg()); 1894 Record.push_back(N->getFlags()); 1895 Record.push_back(N->getAlignInBits()); 1896 1897 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1898 Record.clear(); 1899 } 1900 1901 void ModuleBitcodeWriter::writeDILabel( 1902 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1903 unsigned Abbrev) { 1904 Record.push_back((uint64_t)N->isDistinct()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1906 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1907 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1908 Record.push_back(N->getLine()); 1909 1910 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1911 Record.clear(); 1912 } 1913 1914 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1915 SmallVectorImpl<uint64_t> &Record, 1916 unsigned Abbrev) { 1917 Record.reserve(N->getElements().size() + 1); 1918 const uint64_t Version = 3 << 1; 1919 Record.push_back((uint64_t)N->isDistinct() | Version); 1920 Record.append(N->elements_begin(), N->elements_end()); 1921 1922 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1923 Record.clear(); 1924 } 1925 1926 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1927 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1928 unsigned Abbrev) { 1929 Record.push_back(N->isDistinct()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1932 1933 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1934 Record.clear(); 1935 } 1936 1937 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1938 SmallVectorImpl<uint64_t> &Record, 1939 unsigned Abbrev) { 1940 Record.push_back(N->isDistinct()); 1941 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1942 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1943 Record.push_back(N->getLine()); 1944 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1945 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1946 Record.push_back(N->getAttributes()); 1947 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1948 1949 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1950 Record.clear(); 1951 } 1952 1953 void ModuleBitcodeWriter::writeDIImportedEntity( 1954 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1955 unsigned Abbrev) { 1956 Record.push_back(N->isDistinct()); 1957 Record.push_back(N->getTag()); 1958 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1960 Record.push_back(N->getLine()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1963 1964 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1965 Record.clear(); 1966 } 1967 1968 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1969 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1970 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1973 return Stream.EmitAbbrev(std::move(Abbv)); 1974 } 1975 1976 void ModuleBitcodeWriter::writeNamedMetadata( 1977 SmallVectorImpl<uint64_t> &Record) { 1978 if (M.named_metadata_empty()) 1979 return; 1980 1981 unsigned Abbrev = createNamedMetadataAbbrev(); 1982 for (const NamedMDNode &NMD : M.named_metadata()) { 1983 // Write name. 1984 StringRef Str = NMD.getName(); 1985 Record.append(Str.bytes_begin(), Str.bytes_end()); 1986 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1987 Record.clear(); 1988 1989 // Write named metadata operands. 1990 for (const MDNode *N : NMD.operands()) 1991 Record.push_back(VE.getMetadataID(N)); 1992 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1993 Record.clear(); 1994 } 1995 } 1996 1997 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1998 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1999 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2003 return Stream.EmitAbbrev(std::move(Abbv)); 2004 } 2005 2006 /// Write out a record for MDString. 2007 /// 2008 /// All the metadata strings in a metadata block are emitted in a single 2009 /// record. The sizes and strings themselves are shoved into a blob. 2010 void ModuleBitcodeWriter::writeMetadataStrings( 2011 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2012 if (Strings.empty()) 2013 return; 2014 2015 // Start the record with the number of strings. 2016 Record.push_back(bitc::METADATA_STRINGS); 2017 Record.push_back(Strings.size()); 2018 2019 // Emit the sizes of the strings in the blob. 2020 SmallString<256> Blob; 2021 { 2022 BitstreamWriter W(Blob); 2023 for (const Metadata *MD : Strings) 2024 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2025 W.FlushToWord(); 2026 } 2027 2028 // Add the offset to the strings to the record. 2029 Record.push_back(Blob.size()); 2030 2031 // Add the strings to the blob. 2032 for (const Metadata *MD : Strings) 2033 Blob.append(cast<MDString>(MD)->getString()); 2034 2035 // Emit the final record. 2036 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2037 Record.clear(); 2038 } 2039 2040 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2041 enum MetadataAbbrev : unsigned { 2042 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2043 #include "llvm/IR/Metadata.def" 2044 LastPlusOne 2045 }; 2046 2047 void ModuleBitcodeWriter::writeMetadataRecords( 2048 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2049 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2050 if (MDs.empty()) 2051 return; 2052 2053 // Initialize MDNode abbreviations. 2054 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2055 #include "llvm/IR/Metadata.def" 2056 2057 for (const Metadata *MD : MDs) { 2058 if (IndexPos) 2059 IndexPos->push_back(Stream.GetCurrentBitNo()); 2060 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2061 assert(N->isResolved() && "Expected forward references to be resolved"); 2062 2063 switch (N->getMetadataID()) { 2064 default: 2065 llvm_unreachable("Invalid MDNode subclass"); 2066 #define HANDLE_MDNODE_LEAF(CLASS) \ 2067 case Metadata::CLASS##Kind: \ 2068 if (MDAbbrevs) \ 2069 write##CLASS(cast<CLASS>(N), Record, \ 2070 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2071 else \ 2072 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2073 continue; 2074 #include "llvm/IR/Metadata.def" 2075 } 2076 } 2077 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2078 } 2079 } 2080 2081 void ModuleBitcodeWriter::writeModuleMetadata() { 2082 if (!VE.hasMDs() && M.named_metadata_empty()) 2083 return; 2084 2085 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2086 SmallVector<uint64_t, 64> Record; 2087 2088 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2089 // block and load any metadata. 2090 std::vector<unsigned> MDAbbrevs; 2091 2092 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2093 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2094 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2095 createGenericDINodeAbbrev(); 2096 2097 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2098 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2101 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2102 2103 Abbv = std::make_shared<BitCodeAbbrev>(); 2104 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2107 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2108 2109 // Emit MDStrings together upfront. 2110 writeMetadataStrings(VE.getMDStrings(), Record); 2111 2112 // We only emit an index for the metadata record if we have more than a given 2113 // (naive) threshold of metadatas, otherwise it is not worth it. 2114 if (VE.getNonMDStrings().size() > IndexThreshold) { 2115 // Write a placeholder value in for the offset of the metadata index, 2116 // which is written after the records, so that it can include 2117 // the offset of each entry. The placeholder offset will be 2118 // updated after all records are emitted. 2119 uint64_t Vals[] = {0, 0}; 2120 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2121 } 2122 2123 // Compute and save the bit offset to the current position, which will be 2124 // patched when we emit the index later. We can simply subtract the 64-bit 2125 // fixed size from the current bit number to get the location to backpatch. 2126 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2127 2128 // This index will contain the bitpos for each individual record. 2129 std::vector<uint64_t> IndexPos; 2130 IndexPos.reserve(VE.getNonMDStrings().size()); 2131 2132 // Write all the records 2133 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2134 2135 if (VE.getNonMDStrings().size() > IndexThreshold) { 2136 // Now that we have emitted all the records we will emit the index. But 2137 // first 2138 // backpatch the forward reference so that the reader can skip the records 2139 // efficiently. 2140 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2141 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2142 2143 // Delta encode the index. 2144 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2145 for (auto &Elt : IndexPos) { 2146 auto EltDelta = Elt - PreviousValue; 2147 PreviousValue = Elt; 2148 Elt = EltDelta; 2149 } 2150 // Emit the index record. 2151 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2152 IndexPos.clear(); 2153 } 2154 2155 // Write the named metadata now. 2156 writeNamedMetadata(Record); 2157 2158 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2159 SmallVector<uint64_t, 4> Record; 2160 Record.push_back(VE.getValueID(&GO)); 2161 pushGlobalMetadataAttachment(Record, GO); 2162 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2163 }; 2164 for (const Function &F : M) 2165 if (F.isDeclaration() && F.hasMetadata()) 2166 AddDeclAttachedMetadata(F); 2167 // FIXME: Only store metadata for declarations here, and move data for global 2168 // variable definitions to a separate block (PR28134). 2169 for (const GlobalVariable &GV : M.globals()) 2170 if (GV.hasMetadata()) 2171 AddDeclAttachedMetadata(GV); 2172 2173 Stream.ExitBlock(); 2174 } 2175 2176 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2177 if (!VE.hasMDs()) 2178 return; 2179 2180 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2181 SmallVector<uint64_t, 64> Record; 2182 writeMetadataStrings(VE.getMDStrings(), Record); 2183 writeMetadataRecords(VE.getNonMDStrings(), Record); 2184 Stream.ExitBlock(); 2185 } 2186 2187 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2188 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2189 // [n x [id, mdnode]] 2190 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2191 GO.getAllMetadata(MDs); 2192 for (const auto &I : MDs) { 2193 Record.push_back(I.first); 2194 Record.push_back(VE.getMetadataID(I.second)); 2195 } 2196 } 2197 2198 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2199 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2200 2201 SmallVector<uint64_t, 64> Record; 2202 2203 if (F.hasMetadata()) { 2204 pushGlobalMetadataAttachment(Record, F); 2205 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2206 Record.clear(); 2207 } 2208 2209 // Write metadata attachments 2210 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2211 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2212 for (const BasicBlock &BB : F) 2213 for (const Instruction &I : BB) { 2214 MDs.clear(); 2215 I.getAllMetadataOtherThanDebugLoc(MDs); 2216 2217 // If no metadata, ignore instruction. 2218 if (MDs.empty()) continue; 2219 2220 Record.push_back(VE.getInstructionID(&I)); 2221 2222 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2223 Record.push_back(MDs[i].first); 2224 Record.push_back(VE.getMetadataID(MDs[i].second)); 2225 } 2226 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2227 Record.clear(); 2228 } 2229 2230 Stream.ExitBlock(); 2231 } 2232 2233 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2234 SmallVector<uint64_t, 64> Record; 2235 2236 // Write metadata kinds 2237 // METADATA_KIND - [n x [id, name]] 2238 SmallVector<StringRef, 8> Names; 2239 M.getMDKindNames(Names); 2240 2241 if (Names.empty()) return; 2242 2243 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2244 2245 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2246 Record.push_back(MDKindID); 2247 StringRef KName = Names[MDKindID]; 2248 Record.append(KName.begin(), KName.end()); 2249 2250 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2251 Record.clear(); 2252 } 2253 2254 Stream.ExitBlock(); 2255 } 2256 2257 void ModuleBitcodeWriter::writeOperandBundleTags() { 2258 // Write metadata kinds 2259 // 2260 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2261 // 2262 // OPERAND_BUNDLE_TAG - [strchr x N] 2263 2264 SmallVector<StringRef, 8> Tags; 2265 M.getOperandBundleTags(Tags); 2266 2267 if (Tags.empty()) 2268 return; 2269 2270 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2271 2272 SmallVector<uint64_t, 64> Record; 2273 2274 for (auto Tag : Tags) { 2275 Record.append(Tag.begin(), Tag.end()); 2276 2277 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2278 Record.clear(); 2279 } 2280 2281 Stream.ExitBlock(); 2282 } 2283 2284 void ModuleBitcodeWriter::writeSyncScopeNames() { 2285 SmallVector<StringRef, 8> SSNs; 2286 M.getContext().getSyncScopeNames(SSNs); 2287 if (SSNs.empty()) 2288 return; 2289 2290 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2291 2292 SmallVector<uint64_t, 64> Record; 2293 for (auto SSN : SSNs) { 2294 Record.append(SSN.begin(), SSN.end()); 2295 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2296 Record.clear(); 2297 } 2298 2299 Stream.ExitBlock(); 2300 } 2301 2302 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2303 bool isGlobal) { 2304 if (FirstVal == LastVal) return; 2305 2306 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2307 2308 unsigned AggregateAbbrev = 0; 2309 unsigned String8Abbrev = 0; 2310 unsigned CString7Abbrev = 0; 2311 unsigned CString6Abbrev = 0; 2312 // If this is a constant pool for the module, emit module-specific abbrevs. 2313 if (isGlobal) { 2314 // Abbrev for CST_CODE_AGGREGATE. 2315 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2316 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2319 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2320 2321 // Abbrev for CST_CODE_STRING. 2322 Abbv = std::make_shared<BitCodeAbbrev>(); 2323 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2326 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2327 // Abbrev for CST_CODE_CSTRING. 2328 Abbv = std::make_shared<BitCodeAbbrev>(); 2329 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2332 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2333 // Abbrev for CST_CODE_CSTRING. 2334 Abbv = std::make_shared<BitCodeAbbrev>(); 2335 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2338 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2339 } 2340 2341 SmallVector<uint64_t, 64> Record; 2342 2343 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2344 Type *LastTy = nullptr; 2345 for (unsigned i = FirstVal; i != LastVal; ++i) { 2346 const Value *V = Vals[i].first; 2347 // If we need to switch types, do so now. 2348 if (V->getType() != LastTy) { 2349 LastTy = V->getType(); 2350 Record.push_back(VE.getTypeID(LastTy)); 2351 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2352 CONSTANTS_SETTYPE_ABBREV); 2353 Record.clear(); 2354 } 2355 2356 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2357 Record.push_back(unsigned(IA->hasSideEffects()) | 2358 unsigned(IA->isAlignStack()) << 1 | 2359 unsigned(IA->getDialect()&1) << 2); 2360 2361 // Add the asm string. 2362 const std::string &AsmStr = IA->getAsmString(); 2363 Record.push_back(AsmStr.size()); 2364 Record.append(AsmStr.begin(), AsmStr.end()); 2365 2366 // Add the constraint string. 2367 const std::string &ConstraintStr = IA->getConstraintString(); 2368 Record.push_back(ConstraintStr.size()); 2369 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2370 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2371 Record.clear(); 2372 continue; 2373 } 2374 const Constant *C = cast<Constant>(V); 2375 unsigned Code = -1U; 2376 unsigned AbbrevToUse = 0; 2377 if (C->isNullValue()) { 2378 Code = bitc::CST_CODE_NULL; 2379 } else if (isa<UndefValue>(C)) { 2380 Code = bitc::CST_CODE_UNDEF; 2381 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2382 if (IV->getBitWidth() <= 64) { 2383 uint64_t V = IV->getSExtValue(); 2384 emitSignedInt64(Record, V); 2385 Code = bitc::CST_CODE_INTEGER; 2386 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2387 } else { // Wide integers, > 64 bits in size. 2388 emitWideAPInt(Record, IV->getValue()); 2389 Code = bitc::CST_CODE_WIDE_INTEGER; 2390 } 2391 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2392 Code = bitc::CST_CODE_FLOAT; 2393 Type *Ty = CFP->getType(); 2394 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2395 Ty->isDoubleTy()) { 2396 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2397 } else if (Ty->isX86_FP80Ty()) { 2398 // api needed to prevent premature destruction 2399 // bits are not in the same order as a normal i80 APInt, compensate. 2400 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2401 const uint64_t *p = api.getRawData(); 2402 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2403 Record.push_back(p[0] & 0xffffLL); 2404 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2405 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2406 const uint64_t *p = api.getRawData(); 2407 Record.push_back(p[0]); 2408 Record.push_back(p[1]); 2409 } else { 2410 assert(0 && "Unknown FP type!"); 2411 } 2412 } else if (isa<ConstantDataSequential>(C) && 2413 cast<ConstantDataSequential>(C)->isString()) { 2414 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2415 // Emit constant strings specially. 2416 unsigned NumElts = Str->getNumElements(); 2417 // If this is a null-terminated string, use the denser CSTRING encoding. 2418 if (Str->isCString()) { 2419 Code = bitc::CST_CODE_CSTRING; 2420 --NumElts; // Don't encode the null, which isn't allowed by char6. 2421 } else { 2422 Code = bitc::CST_CODE_STRING; 2423 AbbrevToUse = String8Abbrev; 2424 } 2425 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2426 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2427 for (unsigned i = 0; i != NumElts; ++i) { 2428 unsigned char V = Str->getElementAsInteger(i); 2429 Record.push_back(V); 2430 isCStr7 &= (V & 128) == 0; 2431 if (isCStrChar6) 2432 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2433 } 2434 2435 if (isCStrChar6) 2436 AbbrevToUse = CString6Abbrev; 2437 else if (isCStr7) 2438 AbbrevToUse = CString7Abbrev; 2439 } else if (const ConstantDataSequential *CDS = 2440 dyn_cast<ConstantDataSequential>(C)) { 2441 Code = bitc::CST_CODE_DATA; 2442 Type *EltTy = CDS->getElementType(); 2443 if (isa<IntegerType>(EltTy)) { 2444 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2445 Record.push_back(CDS->getElementAsInteger(i)); 2446 } else { 2447 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2448 Record.push_back( 2449 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2450 } 2451 } else if (isa<ConstantAggregate>(C)) { 2452 Code = bitc::CST_CODE_AGGREGATE; 2453 for (const Value *Op : C->operands()) 2454 Record.push_back(VE.getValueID(Op)); 2455 AbbrevToUse = AggregateAbbrev; 2456 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2457 switch (CE->getOpcode()) { 2458 default: 2459 if (Instruction::isCast(CE->getOpcode())) { 2460 Code = bitc::CST_CODE_CE_CAST; 2461 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2462 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2463 Record.push_back(VE.getValueID(C->getOperand(0))); 2464 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2465 } else { 2466 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2467 Code = bitc::CST_CODE_CE_BINOP; 2468 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2469 Record.push_back(VE.getValueID(C->getOperand(0))); 2470 Record.push_back(VE.getValueID(C->getOperand(1))); 2471 uint64_t Flags = getOptimizationFlags(CE); 2472 if (Flags != 0) 2473 Record.push_back(Flags); 2474 } 2475 break; 2476 case Instruction::FNeg: { 2477 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2478 Code = bitc::CST_CODE_CE_UNOP; 2479 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2480 Record.push_back(VE.getValueID(C->getOperand(0))); 2481 uint64_t Flags = getOptimizationFlags(CE); 2482 if (Flags != 0) 2483 Record.push_back(Flags); 2484 break; 2485 } 2486 case Instruction::GetElementPtr: { 2487 Code = bitc::CST_CODE_CE_GEP; 2488 const auto *GO = cast<GEPOperator>(C); 2489 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2490 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2491 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2492 Record.push_back((*Idx << 1) | GO->isInBounds()); 2493 } else if (GO->isInBounds()) 2494 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2495 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2496 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2497 Record.push_back(VE.getValueID(C->getOperand(i))); 2498 } 2499 break; 2500 } 2501 case Instruction::Select: 2502 Code = bitc::CST_CODE_CE_SELECT; 2503 Record.push_back(VE.getValueID(C->getOperand(0))); 2504 Record.push_back(VE.getValueID(C->getOperand(1))); 2505 Record.push_back(VE.getValueID(C->getOperand(2))); 2506 break; 2507 case Instruction::ExtractElement: 2508 Code = bitc::CST_CODE_CE_EXTRACTELT; 2509 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2510 Record.push_back(VE.getValueID(C->getOperand(0))); 2511 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2512 Record.push_back(VE.getValueID(C->getOperand(1))); 2513 break; 2514 case Instruction::InsertElement: 2515 Code = bitc::CST_CODE_CE_INSERTELT; 2516 Record.push_back(VE.getValueID(C->getOperand(0))); 2517 Record.push_back(VE.getValueID(C->getOperand(1))); 2518 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2519 Record.push_back(VE.getValueID(C->getOperand(2))); 2520 break; 2521 case Instruction::ShuffleVector: 2522 // If the return type and argument types are the same, this is a 2523 // standard shufflevector instruction. If the types are different, 2524 // then the shuffle is widening or truncating the input vectors, and 2525 // the argument type must also be encoded. 2526 if (C->getType() == C->getOperand(0)->getType()) { 2527 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2528 } else { 2529 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2530 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2531 } 2532 Record.push_back(VE.getValueID(C->getOperand(0))); 2533 Record.push_back(VE.getValueID(C->getOperand(1))); 2534 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2535 break; 2536 case Instruction::ICmp: 2537 case Instruction::FCmp: 2538 Code = bitc::CST_CODE_CE_CMP; 2539 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2540 Record.push_back(VE.getValueID(C->getOperand(0))); 2541 Record.push_back(VE.getValueID(C->getOperand(1))); 2542 Record.push_back(CE->getPredicate()); 2543 break; 2544 } 2545 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2546 Code = bitc::CST_CODE_BLOCKADDRESS; 2547 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2548 Record.push_back(VE.getValueID(BA->getFunction())); 2549 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2550 } else { 2551 #ifndef NDEBUG 2552 C->dump(); 2553 #endif 2554 llvm_unreachable("Unknown constant!"); 2555 } 2556 Stream.EmitRecord(Code, Record, AbbrevToUse); 2557 Record.clear(); 2558 } 2559 2560 Stream.ExitBlock(); 2561 } 2562 2563 void ModuleBitcodeWriter::writeModuleConstants() { 2564 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2565 2566 // Find the first constant to emit, which is the first non-globalvalue value. 2567 // We know globalvalues have been emitted by WriteModuleInfo. 2568 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2569 if (!isa<GlobalValue>(Vals[i].first)) { 2570 writeConstants(i, Vals.size(), true); 2571 return; 2572 } 2573 } 2574 } 2575 2576 /// pushValueAndType - The file has to encode both the value and type id for 2577 /// many values, because we need to know what type to create for forward 2578 /// references. However, most operands are not forward references, so this type 2579 /// field is not needed. 2580 /// 2581 /// This function adds V's value ID to Vals. If the value ID is higher than the 2582 /// instruction ID, then it is a forward reference, and it also includes the 2583 /// type ID. The value ID that is written is encoded relative to the InstID. 2584 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2585 SmallVectorImpl<unsigned> &Vals) { 2586 unsigned ValID = VE.getValueID(V); 2587 // Make encoding relative to the InstID. 2588 Vals.push_back(InstID - ValID); 2589 if (ValID >= InstID) { 2590 Vals.push_back(VE.getTypeID(V->getType())); 2591 return true; 2592 } 2593 return false; 2594 } 2595 2596 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2597 unsigned InstID) { 2598 SmallVector<unsigned, 64> Record; 2599 LLVMContext &C = CS.getContext(); 2600 2601 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2602 const auto &Bundle = CS.getOperandBundleAt(i); 2603 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2604 2605 for (auto &Input : Bundle.Inputs) 2606 pushValueAndType(Input, InstID, Record); 2607 2608 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2609 Record.clear(); 2610 } 2611 } 2612 2613 /// pushValue - Like pushValueAndType, but where the type of the value is 2614 /// omitted (perhaps it was already encoded in an earlier operand). 2615 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2616 SmallVectorImpl<unsigned> &Vals) { 2617 unsigned ValID = VE.getValueID(V); 2618 Vals.push_back(InstID - ValID); 2619 } 2620 2621 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2622 SmallVectorImpl<uint64_t> &Vals) { 2623 unsigned ValID = VE.getValueID(V); 2624 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2625 emitSignedInt64(Vals, diff); 2626 } 2627 2628 /// WriteInstruction - Emit an instruction to the specified stream. 2629 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2630 unsigned InstID, 2631 SmallVectorImpl<unsigned> &Vals) { 2632 unsigned Code = 0; 2633 unsigned AbbrevToUse = 0; 2634 VE.setInstructionID(&I); 2635 switch (I.getOpcode()) { 2636 default: 2637 if (Instruction::isCast(I.getOpcode())) { 2638 Code = bitc::FUNC_CODE_INST_CAST; 2639 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2640 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2641 Vals.push_back(VE.getTypeID(I.getType())); 2642 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2643 } else { 2644 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2645 Code = bitc::FUNC_CODE_INST_BINOP; 2646 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2647 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2648 pushValue(I.getOperand(1), InstID, Vals); 2649 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2650 uint64_t Flags = getOptimizationFlags(&I); 2651 if (Flags != 0) { 2652 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2653 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2654 Vals.push_back(Flags); 2655 } 2656 } 2657 break; 2658 case Instruction::FNeg: { 2659 Code = bitc::FUNC_CODE_INST_UNOP; 2660 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2661 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2662 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2663 uint64_t Flags = getOptimizationFlags(&I); 2664 if (Flags != 0) { 2665 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2666 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2667 Vals.push_back(Flags); 2668 } 2669 break; 2670 } 2671 case Instruction::GetElementPtr: { 2672 Code = bitc::FUNC_CODE_INST_GEP; 2673 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2674 auto &GEPInst = cast<GetElementPtrInst>(I); 2675 Vals.push_back(GEPInst.isInBounds()); 2676 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2677 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2678 pushValueAndType(I.getOperand(i), InstID, Vals); 2679 break; 2680 } 2681 case Instruction::ExtractValue: { 2682 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2683 pushValueAndType(I.getOperand(0), InstID, Vals); 2684 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2685 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2686 break; 2687 } 2688 case Instruction::InsertValue: { 2689 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2690 pushValueAndType(I.getOperand(0), InstID, Vals); 2691 pushValueAndType(I.getOperand(1), InstID, Vals); 2692 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2693 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2694 break; 2695 } 2696 case Instruction::Select: { 2697 Code = bitc::FUNC_CODE_INST_VSELECT; 2698 pushValueAndType(I.getOperand(1), InstID, Vals); 2699 pushValue(I.getOperand(2), InstID, Vals); 2700 pushValueAndType(I.getOperand(0), InstID, Vals); 2701 uint64_t Flags = getOptimizationFlags(&I); 2702 if (Flags != 0) 2703 Vals.push_back(Flags); 2704 break; 2705 } 2706 case Instruction::ExtractElement: 2707 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2708 pushValueAndType(I.getOperand(0), InstID, Vals); 2709 pushValueAndType(I.getOperand(1), InstID, Vals); 2710 break; 2711 case Instruction::InsertElement: 2712 Code = bitc::FUNC_CODE_INST_INSERTELT; 2713 pushValueAndType(I.getOperand(0), InstID, Vals); 2714 pushValue(I.getOperand(1), InstID, Vals); 2715 pushValueAndType(I.getOperand(2), InstID, Vals); 2716 break; 2717 case Instruction::ShuffleVector: 2718 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2719 pushValueAndType(I.getOperand(0), InstID, Vals); 2720 pushValue(I.getOperand(1), InstID, Vals); 2721 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2722 Vals); 2723 break; 2724 case Instruction::ICmp: 2725 case Instruction::FCmp: { 2726 // compare returning Int1Ty or vector of Int1Ty 2727 Code = bitc::FUNC_CODE_INST_CMP2; 2728 pushValueAndType(I.getOperand(0), InstID, Vals); 2729 pushValue(I.getOperand(1), InstID, Vals); 2730 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2731 uint64_t Flags = getOptimizationFlags(&I); 2732 if (Flags != 0) 2733 Vals.push_back(Flags); 2734 break; 2735 } 2736 2737 case Instruction::Ret: 2738 { 2739 Code = bitc::FUNC_CODE_INST_RET; 2740 unsigned NumOperands = I.getNumOperands(); 2741 if (NumOperands == 0) 2742 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2743 else if (NumOperands == 1) { 2744 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2745 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2746 } else { 2747 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2748 pushValueAndType(I.getOperand(i), InstID, Vals); 2749 } 2750 } 2751 break; 2752 case Instruction::Br: 2753 { 2754 Code = bitc::FUNC_CODE_INST_BR; 2755 const BranchInst &II = cast<BranchInst>(I); 2756 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2757 if (II.isConditional()) { 2758 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2759 pushValue(II.getCondition(), InstID, Vals); 2760 } 2761 } 2762 break; 2763 case Instruction::Switch: 2764 { 2765 Code = bitc::FUNC_CODE_INST_SWITCH; 2766 const SwitchInst &SI = cast<SwitchInst>(I); 2767 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2768 pushValue(SI.getCondition(), InstID, Vals); 2769 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2770 for (auto Case : SI.cases()) { 2771 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2772 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2773 } 2774 } 2775 break; 2776 case Instruction::IndirectBr: 2777 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2778 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2779 // Encode the address operand as relative, but not the basic blocks. 2780 pushValue(I.getOperand(0), InstID, Vals); 2781 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2782 Vals.push_back(VE.getValueID(I.getOperand(i))); 2783 break; 2784 2785 case Instruction::Invoke: { 2786 const InvokeInst *II = cast<InvokeInst>(&I); 2787 const Value *Callee = II->getCalledOperand(); 2788 FunctionType *FTy = II->getFunctionType(); 2789 2790 if (II->hasOperandBundles()) 2791 writeOperandBundles(*II, InstID); 2792 2793 Code = bitc::FUNC_CODE_INST_INVOKE; 2794 2795 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2796 Vals.push_back(II->getCallingConv() | 1 << 13); 2797 Vals.push_back(VE.getValueID(II->getNormalDest())); 2798 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2799 Vals.push_back(VE.getTypeID(FTy)); 2800 pushValueAndType(Callee, InstID, Vals); 2801 2802 // Emit value #'s for the fixed parameters. 2803 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2804 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2805 2806 // Emit type/value pairs for varargs params. 2807 if (FTy->isVarArg()) { 2808 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2809 i != e; ++i) 2810 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2811 } 2812 break; 2813 } 2814 case Instruction::Resume: 2815 Code = bitc::FUNC_CODE_INST_RESUME; 2816 pushValueAndType(I.getOperand(0), InstID, Vals); 2817 break; 2818 case Instruction::CleanupRet: { 2819 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2820 const auto &CRI = cast<CleanupReturnInst>(I); 2821 pushValue(CRI.getCleanupPad(), InstID, Vals); 2822 if (CRI.hasUnwindDest()) 2823 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2824 break; 2825 } 2826 case Instruction::CatchRet: { 2827 Code = bitc::FUNC_CODE_INST_CATCHRET; 2828 const auto &CRI = cast<CatchReturnInst>(I); 2829 pushValue(CRI.getCatchPad(), InstID, Vals); 2830 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2831 break; 2832 } 2833 case Instruction::CleanupPad: 2834 case Instruction::CatchPad: { 2835 const auto &FuncletPad = cast<FuncletPadInst>(I); 2836 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2837 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2838 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2839 2840 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2841 Vals.push_back(NumArgOperands); 2842 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2843 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2844 break; 2845 } 2846 case Instruction::CatchSwitch: { 2847 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2848 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2849 2850 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2851 2852 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2853 Vals.push_back(NumHandlers); 2854 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2855 Vals.push_back(VE.getValueID(CatchPadBB)); 2856 2857 if (CatchSwitch.hasUnwindDest()) 2858 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2859 break; 2860 } 2861 case Instruction::CallBr: { 2862 const CallBrInst *CBI = cast<CallBrInst>(&I); 2863 const Value *Callee = CBI->getCalledOperand(); 2864 FunctionType *FTy = CBI->getFunctionType(); 2865 2866 if (CBI->hasOperandBundles()) 2867 writeOperandBundles(*CBI, InstID); 2868 2869 Code = bitc::FUNC_CODE_INST_CALLBR; 2870 2871 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2872 2873 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2874 1 << bitc::CALL_EXPLICIT_TYPE); 2875 2876 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2877 Vals.push_back(CBI->getNumIndirectDests()); 2878 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2879 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2880 2881 Vals.push_back(VE.getTypeID(FTy)); 2882 pushValueAndType(Callee, InstID, Vals); 2883 2884 // Emit value #'s for the fixed parameters. 2885 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2886 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2887 2888 // Emit type/value pairs for varargs params. 2889 if (FTy->isVarArg()) { 2890 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2891 i != e; ++i) 2892 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2893 } 2894 break; 2895 } 2896 case Instruction::Unreachable: 2897 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2898 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2899 break; 2900 2901 case Instruction::PHI: { 2902 const PHINode &PN = cast<PHINode>(I); 2903 Code = bitc::FUNC_CODE_INST_PHI; 2904 // With the newer instruction encoding, forward references could give 2905 // negative valued IDs. This is most common for PHIs, so we use 2906 // signed VBRs. 2907 SmallVector<uint64_t, 128> Vals64; 2908 Vals64.push_back(VE.getTypeID(PN.getType())); 2909 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2910 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2911 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2912 } 2913 2914 uint64_t Flags = getOptimizationFlags(&I); 2915 if (Flags != 0) 2916 Vals64.push_back(Flags); 2917 2918 // Emit a Vals64 vector and exit. 2919 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2920 Vals64.clear(); 2921 return; 2922 } 2923 2924 case Instruction::LandingPad: { 2925 const LandingPadInst &LP = cast<LandingPadInst>(I); 2926 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2927 Vals.push_back(VE.getTypeID(LP.getType())); 2928 Vals.push_back(LP.isCleanup()); 2929 Vals.push_back(LP.getNumClauses()); 2930 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2931 if (LP.isCatch(I)) 2932 Vals.push_back(LandingPadInst::Catch); 2933 else 2934 Vals.push_back(LandingPadInst::Filter); 2935 pushValueAndType(LP.getClause(I), InstID, Vals); 2936 } 2937 break; 2938 } 2939 2940 case Instruction::Alloca: { 2941 Code = bitc::FUNC_CODE_INST_ALLOCA; 2942 const AllocaInst &AI = cast<AllocaInst>(I); 2943 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2944 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2945 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2946 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2947 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2948 "not enough bits for maximum alignment"); 2949 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2950 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2951 AlignRecord |= 1 << 6; 2952 AlignRecord |= AI.isSwiftError() << 7; 2953 Vals.push_back(AlignRecord); 2954 break; 2955 } 2956 2957 case Instruction::Load: 2958 if (cast<LoadInst>(I).isAtomic()) { 2959 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2960 pushValueAndType(I.getOperand(0), InstID, Vals); 2961 } else { 2962 Code = bitc::FUNC_CODE_INST_LOAD; 2963 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2964 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2965 } 2966 Vals.push_back(VE.getTypeID(I.getType())); 2967 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2968 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2969 if (cast<LoadInst>(I).isAtomic()) { 2970 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2971 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2972 } 2973 break; 2974 case Instruction::Store: 2975 if (cast<StoreInst>(I).isAtomic()) 2976 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2977 else 2978 Code = bitc::FUNC_CODE_INST_STORE; 2979 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2980 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2981 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2982 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2983 if (cast<StoreInst>(I).isAtomic()) { 2984 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2985 Vals.push_back( 2986 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2987 } 2988 break; 2989 case Instruction::AtomicCmpXchg: 2990 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2991 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2992 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2993 pushValue(I.getOperand(2), InstID, Vals); // newval. 2994 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2995 Vals.push_back( 2996 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2997 Vals.push_back( 2998 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2999 Vals.push_back( 3000 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3001 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3002 break; 3003 case Instruction::AtomicRMW: 3004 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3005 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3006 pushValue(I.getOperand(1), InstID, Vals); // val. 3007 Vals.push_back( 3008 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3009 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3010 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3011 Vals.push_back( 3012 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3013 break; 3014 case Instruction::Fence: 3015 Code = bitc::FUNC_CODE_INST_FENCE; 3016 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3017 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3018 break; 3019 case Instruction::Call: { 3020 const CallInst &CI = cast<CallInst>(I); 3021 FunctionType *FTy = CI.getFunctionType(); 3022 3023 if (CI.hasOperandBundles()) 3024 writeOperandBundles(CI, InstID); 3025 3026 Code = bitc::FUNC_CODE_INST_CALL; 3027 3028 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3029 3030 unsigned Flags = getOptimizationFlags(&I); 3031 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3032 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3033 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3034 1 << bitc::CALL_EXPLICIT_TYPE | 3035 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3036 unsigned(Flags != 0) << bitc::CALL_FMF); 3037 if (Flags != 0) 3038 Vals.push_back(Flags); 3039 3040 Vals.push_back(VE.getTypeID(FTy)); 3041 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3042 3043 // Emit value #'s for the fixed parameters. 3044 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3045 // Check for labels (can happen with asm labels). 3046 if (FTy->getParamType(i)->isLabelTy()) 3047 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3048 else 3049 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3050 } 3051 3052 // Emit type/value pairs for varargs params. 3053 if (FTy->isVarArg()) { 3054 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3055 i != e; ++i) 3056 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3057 } 3058 break; 3059 } 3060 case Instruction::VAArg: 3061 Code = bitc::FUNC_CODE_INST_VAARG; 3062 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3063 pushValue(I.getOperand(0), InstID, Vals); // valist. 3064 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3065 break; 3066 case Instruction::Freeze: 3067 Code = bitc::FUNC_CODE_INST_FREEZE; 3068 pushValueAndType(I.getOperand(0), InstID, Vals); 3069 break; 3070 } 3071 3072 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3073 Vals.clear(); 3074 } 3075 3076 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3077 /// to allow clients to efficiently find the function body. 3078 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3079 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3080 // Get the offset of the VST we are writing, and backpatch it into 3081 // the VST forward declaration record. 3082 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3083 // The BitcodeStartBit was the stream offset of the identification block. 3084 VSTOffset -= bitcodeStartBit(); 3085 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3086 // Note that we add 1 here because the offset is relative to one word 3087 // before the start of the identification block, which was historically 3088 // always the start of the regular bitcode header. 3089 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3090 3091 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3092 3093 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3094 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3097 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3098 3099 for (const Function &F : M) { 3100 uint64_t Record[2]; 3101 3102 if (F.isDeclaration()) 3103 continue; 3104 3105 Record[0] = VE.getValueID(&F); 3106 3107 // Save the word offset of the function (from the start of the 3108 // actual bitcode written to the stream). 3109 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3110 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3111 // Note that we add 1 here because the offset is relative to one word 3112 // before the start of the identification block, which was historically 3113 // always the start of the regular bitcode header. 3114 Record[1] = BitcodeIndex / 32 + 1; 3115 3116 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3117 } 3118 3119 Stream.ExitBlock(); 3120 } 3121 3122 /// Emit names for arguments, instructions and basic blocks in a function. 3123 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3124 const ValueSymbolTable &VST) { 3125 if (VST.empty()) 3126 return; 3127 3128 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3129 3130 // FIXME: Set up the abbrev, we know how many values there are! 3131 // FIXME: We know if the type names can use 7-bit ascii. 3132 SmallVector<uint64_t, 64> NameVals; 3133 3134 for (const ValueName &Name : VST) { 3135 // Figure out the encoding to use for the name. 3136 StringEncoding Bits = getStringEncoding(Name.getKey()); 3137 3138 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3139 NameVals.push_back(VE.getValueID(Name.getValue())); 3140 3141 // VST_CODE_ENTRY: [valueid, namechar x N] 3142 // VST_CODE_BBENTRY: [bbid, namechar x N] 3143 unsigned Code; 3144 if (isa<BasicBlock>(Name.getValue())) { 3145 Code = bitc::VST_CODE_BBENTRY; 3146 if (Bits == SE_Char6) 3147 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3148 } else { 3149 Code = bitc::VST_CODE_ENTRY; 3150 if (Bits == SE_Char6) 3151 AbbrevToUse = VST_ENTRY_6_ABBREV; 3152 else if (Bits == SE_Fixed7) 3153 AbbrevToUse = VST_ENTRY_7_ABBREV; 3154 } 3155 3156 for (const auto P : Name.getKey()) 3157 NameVals.push_back((unsigned char)P); 3158 3159 // Emit the finished record. 3160 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3161 NameVals.clear(); 3162 } 3163 3164 Stream.ExitBlock(); 3165 } 3166 3167 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3168 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3169 unsigned Code; 3170 if (isa<BasicBlock>(Order.V)) 3171 Code = bitc::USELIST_CODE_BB; 3172 else 3173 Code = bitc::USELIST_CODE_DEFAULT; 3174 3175 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3176 Record.push_back(VE.getValueID(Order.V)); 3177 Stream.EmitRecord(Code, Record); 3178 } 3179 3180 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3181 assert(VE.shouldPreserveUseListOrder() && 3182 "Expected to be preserving use-list order"); 3183 3184 auto hasMore = [&]() { 3185 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3186 }; 3187 if (!hasMore()) 3188 // Nothing to do. 3189 return; 3190 3191 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3192 while (hasMore()) { 3193 writeUseList(std::move(VE.UseListOrders.back())); 3194 VE.UseListOrders.pop_back(); 3195 } 3196 Stream.ExitBlock(); 3197 } 3198 3199 /// Emit a function body to the module stream. 3200 void ModuleBitcodeWriter::writeFunction( 3201 const Function &F, 3202 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3203 // Save the bitcode index of the start of this function block for recording 3204 // in the VST. 3205 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3206 3207 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3208 VE.incorporateFunction(F); 3209 3210 SmallVector<unsigned, 64> Vals; 3211 3212 // Emit the number of basic blocks, so the reader can create them ahead of 3213 // time. 3214 Vals.push_back(VE.getBasicBlocks().size()); 3215 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3216 Vals.clear(); 3217 3218 // If there are function-local constants, emit them now. 3219 unsigned CstStart, CstEnd; 3220 VE.getFunctionConstantRange(CstStart, CstEnd); 3221 writeConstants(CstStart, CstEnd, false); 3222 3223 // If there is function-local metadata, emit it now. 3224 writeFunctionMetadata(F); 3225 3226 // Keep a running idea of what the instruction ID is. 3227 unsigned InstID = CstEnd; 3228 3229 bool NeedsMetadataAttachment = F.hasMetadata(); 3230 3231 DILocation *LastDL = nullptr; 3232 // Finally, emit all the instructions, in order. 3233 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3234 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3235 I != E; ++I) { 3236 writeInstruction(*I, InstID, Vals); 3237 3238 if (!I->getType()->isVoidTy()) 3239 ++InstID; 3240 3241 // If the instruction has metadata, write a metadata attachment later. 3242 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3243 3244 // If the instruction has a debug location, emit it. 3245 DILocation *DL = I->getDebugLoc(); 3246 if (!DL) 3247 continue; 3248 3249 if (DL == LastDL) { 3250 // Just repeat the same debug loc as last time. 3251 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3252 continue; 3253 } 3254 3255 Vals.push_back(DL->getLine()); 3256 Vals.push_back(DL->getColumn()); 3257 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3258 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3259 Vals.push_back(DL->isImplicitCode()); 3260 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3261 Vals.clear(); 3262 3263 LastDL = DL; 3264 } 3265 3266 // Emit names for all the instructions etc. 3267 if (auto *Symtab = F.getValueSymbolTable()) 3268 writeFunctionLevelValueSymbolTable(*Symtab); 3269 3270 if (NeedsMetadataAttachment) 3271 writeFunctionMetadataAttachment(F); 3272 if (VE.shouldPreserveUseListOrder()) 3273 writeUseListBlock(&F); 3274 VE.purgeFunction(); 3275 Stream.ExitBlock(); 3276 } 3277 3278 // Emit blockinfo, which defines the standard abbreviations etc. 3279 void ModuleBitcodeWriter::writeBlockInfo() { 3280 // We only want to emit block info records for blocks that have multiple 3281 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3282 // Other blocks can define their abbrevs inline. 3283 Stream.EnterBlockInfoBlock(); 3284 3285 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3286 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3291 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3292 VST_ENTRY_8_ABBREV) 3293 llvm_unreachable("Unexpected abbrev ordering!"); 3294 } 3295 3296 { // 7-bit fixed width VST_CODE_ENTRY strings. 3297 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3298 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3302 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3303 VST_ENTRY_7_ABBREV) 3304 llvm_unreachable("Unexpected abbrev ordering!"); 3305 } 3306 { // 6-bit char6 VST_CODE_ENTRY strings. 3307 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3308 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3312 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3313 VST_ENTRY_6_ABBREV) 3314 llvm_unreachable("Unexpected abbrev ordering!"); 3315 } 3316 { // 6-bit char6 VST_CODE_BBENTRY strings. 3317 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3318 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3322 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3323 VST_BBENTRY_6_ABBREV) 3324 llvm_unreachable("Unexpected abbrev ordering!"); 3325 } 3326 3327 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3328 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3329 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3331 VE.computeBitsRequiredForTypeIndicies())); 3332 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3333 CONSTANTS_SETTYPE_ABBREV) 3334 llvm_unreachable("Unexpected abbrev ordering!"); 3335 } 3336 3337 { // INTEGER abbrev for CONSTANTS_BLOCK. 3338 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3339 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3341 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3342 CONSTANTS_INTEGER_ABBREV) 3343 llvm_unreachable("Unexpected abbrev ordering!"); 3344 } 3345 3346 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3347 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3348 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3351 VE.computeBitsRequiredForTypeIndicies())); 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3353 3354 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3355 CONSTANTS_CE_CAST_Abbrev) 3356 llvm_unreachable("Unexpected abbrev ordering!"); 3357 } 3358 { // NULL abbrev for CONSTANTS_BLOCK. 3359 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3360 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3361 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3362 CONSTANTS_NULL_Abbrev) 3363 llvm_unreachable("Unexpected abbrev ordering!"); 3364 } 3365 3366 // FIXME: This should only use space for first class types! 3367 3368 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3369 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3370 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3373 VE.computeBitsRequiredForTypeIndicies())); 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3376 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3377 FUNCTION_INST_LOAD_ABBREV) 3378 llvm_unreachable("Unexpected abbrev ordering!"); 3379 } 3380 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3381 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3382 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3385 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3386 FUNCTION_INST_UNOP_ABBREV) 3387 llvm_unreachable("Unexpected abbrev ordering!"); 3388 } 3389 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3390 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3391 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3395 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3396 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3397 llvm_unreachable("Unexpected abbrev ordering!"); 3398 } 3399 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3400 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3401 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3405 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3406 FUNCTION_INST_BINOP_ABBREV) 3407 llvm_unreachable("Unexpected abbrev ordering!"); 3408 } 3409 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3410 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3411 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3416 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3417 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3418 llvm_unreachable("Unexpected abbrev ordering!"); 3419 } 3420 { // INST_CAST abbrev for FUNCTION_BLOCK. 3421 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3422 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3425 VE.computeBitsRequiredForTypeIndicies())); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3427 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3428 FUNCTION_INST_CAST_ABBREV) 3429 llvm_unreachable("Unexpected abbrev ordering!"); 3430 } 3431 3432 { // INST_RET abbrev for FUNCTION_BLOCK. 3433 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3434 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3435 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3436 FUNCTION_INST_RET_VOID_ABBREV) 3437 llvm_unreachable("Unexpected abbrev ordering!"); 3438 } 3439 { // INST_RET abbrev for FUNCTION_BLOCK. 3440 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3441 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3443 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3444 FUNCTION_INST_RET_VAL_ABBREV) 3445 llvm_unreachable("Unexpected abbrev ordering!"); 3446 } 3447 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3448 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3449 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3450 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3451 FUNCTION_INST_UNREACHABLE_ABBREV) 3452 llvm_unreachable("Unexpected abbrev ordering!"); 3453 } 3454 { 3455 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3456 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3459 Log2_32_Ceil(VE.getTypes().size() + 1))); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3462 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3463 FUNCTION_INST_GEP_ABBREV) 3464 llvm_unreachable("Unexpected abbrev ordering!"); 3465 } 3466 3467 Stream.ExitBlock(); 3468 } 3469 3470 /// Write the module path strings, currently only used when generating 3471 /// a combined index file. 3472 void IndexBitcodeWriter::writeModStrings() { 3473 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3474 3475 // TODO: See which abbrev sizes we actually need to emit 3476 3477 // 8-bit fixed-width MST_ENTRY strings. 3478 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3479 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3483 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3484 3485 // 7-bit fixed width MST_ENTRY strings. 3486 Abbv = std::make_shared<BitCodeAbbrev>(); 3487 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3491 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3492 3493 // 6-bit char6 MST_ENTRY strings. 3494 Abbv = std::make_shared<BitCodeAbbrev>(); 3495 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3499 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3500 3501 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3502 Abbv = std::make_shared<BitCodeAbbrev>(); 3503 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3509 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3510 3511 SmallVector<unsigned, 64> Vals; 3512 forEachModule( 3513 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3514 StringRef Key = MPSE.getKey(); 3515 const auto &Value = MPSE.getValue(); 3516 StringEncoding Bits = getStringEncoding(Key); 3517 unsigned AbbrevToUse = Abbrev8Bit; 3518 if (Bits == SE_Char6) 3519 AbbrevToUse = Abbrev6Bit; 3520 else if (Bits == SE_Fixed7) 3521 AbbrevToUse = Abbrev7Bit; 3522 3523 Vals.push_back(Value.first); 3524 Vals.append(Key.begin(), Key.end()); 3525 3526 // Emit the finished record. 3527 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3528 3529 // Emit an optional hash for the module now 3530 const auto &Hash = Value.second; 3531 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3532 Vals.assign(Hash.begin(), Hash.end()); 3533 // Emit the hash record. 3534 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3535 } 3536 3537 Vals.clear(); 3538 }); 3539 Stream.ExitBlock(); 3540 } 3541 3542 /// Write the function type metadata related records that need to appear before 3543 /// a function summary entry (whether per-module or combined). 3544 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3545 FunctionSummary *FS) { 3546 if (!FS->type_tests().empty()) 3547 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3548 3549 SmallVector<uint64_t, 64> Record; 3550 3551 auto WriteVFuncIdVec = [&](uint64_t Ty, 3552 ArrayRef<FunctionSummary::VFuncId> VFs) { 3553 if (VFs.empty()) 3554 return; 3555 Record.clear(); 3556 for (auto &VF : VFs) { 3557 Record.push_back(VF.GUID); 3558 Record.push_back(VF.Offset); 3559 } 3560 Stream.EmitRecord(Ty, Record); 3561 }; 3562 3563 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3564 FS->type_test_assume_vcalls()); 3565 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3566 FS->type_checked_load_vcalls()); 3567 3568 auto WriteConstVCallVec = [&](uint64_t Ty, 3569 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3570 for (auto &VC : VCs) { 3571 Record.clear(); 3572 Record.push_back(VC.VFunc.GUID); 3573 Record.push_back(VC.VFunc.Offset); 3574 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3575 Stream.EmitRecord(Ty, Record); 3576 } 3577 }; 3578 3579 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3580 FS->type_test_assume_const_vcalls()); 3581 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3582 FS->type_checked_load_const_vcalls()); 3583 3584 auto WriteRange = [&](ConstantRange Range) { 3585 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3586 assert(Range.getLower().getNumWords() == 1); 3587 assert(Range.getUpper().getNumWords() == 1); 3588 emitSignedInt64(Record, *Range.getLower().getRawData()); 3589 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3590 }; 3591 3592 if (!FS->paramAccesses().empty()) { 3593 Record.clear(); 3594 for (auto &Arg : FS->paramAccesses()) { 3595 Record.push_back(Arg.ParamNo); 3596 WriteRange(Arg.Use); 3597 Record.push_back(Arg.Calls.size()); 3598 for (auto &Call : Arg.Calls) { 3599 Record.push_back(Call.ParamNo); 3600 Record.push_back(Call.Callee); 3601 WriteRange(Call.Offsets); 3602 } 3603 } 3604 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3605 } 3606 } 3607 3608 /// Collect type IDs from type tests used by function. 3609 static void 3610 getReferencedTypeIds(FunctionSummary *FS, 3611 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3612 if (!FS->type_tests().empty()) 3613 for (auto &TT : FS->type_tests()) 3614 ReferencedTypeIds.insert(TT); 3615 3616 auto GetReferencedTypesFromVFuncIdVec = 3617 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3618 for (auto &VF : VFs) 3619 ReferencedTypeIds.insert(VF.GUID); 3620 }; 3621 3622 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3623 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3624 3625 auto GetReferencedTypesFromConstVCallVec = 3626 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3627 for (auto &VC : VCs) 3628 ReferencedTypeIds.insert(VC.VFunc.GUID); 3629 }; 3630 3631 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3632 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3633 } 3634 3635 static void writeWholeProgramDevirtResolutionByArg( 3636 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3637 const WholeProgramDevirtResolution::ByArg &ByArg) { 3638 NameVals.push_back(args.size()); 3639 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3640 3641 NameVals.push_back(ByArg.TheKind); 3642 NameVals.push_back(ByArg.Info); 3643 NameVals.push_back(ByArg.Byte); 3644 NameVals.push_back(ByArg.Bit); 3645 } 3646 3647 static void writeWholeProgramDevirtResolution( 3648 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3649 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3650 NameVals.push_back(Id); 3651 3652 NameVals.push_back(Wpd.TheKind); 3653 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3654 NameVals.push_back(Wpd.SingleImplName.size()); 3655 3656 NameVals.push_back(Wpd.ResByArg.size()); 3657 for (auto &A : Wpd.ResByArg) 3658 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3659 } 3660 3661 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3662 StringTableBuilder &StrtabBuilder, 3663 const std::string &Id, 3664 const TypeIdSummary &Summary) { 3665 NameVals.push_back(StrtabBuilder.add(Id)); 3666 NameVals.push_back(Id.size()); 3667 3668 NameVals.push_back(Summary.TTRes.TheKind); 3669 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3670 NameVals.push_back(Summary.TTRes.AlignLog2); 3671 NameVals.push_back(Summary.TTRes.SizeM1); 3672 NameVals.push_back(Summary.TTRes.BitMask); 3673 NameVals.push_back(Summary.TTRes.InlineBits); 3674 3675 for (auto &W : Summary.WPDRes) 3676 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3677 W.second); 3678 } 3679 3680 static void writeTypeIdCompatibleVtableSummaryRecord( 3681 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3682 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3683 ValueEnumerator &VE) { 3684 NameVals.push_back(StrtabBuilder.add(Id)); 3685 NameVals.push_back(Id.size()); 3686 3687 for (auto &P : Summary) { 3688 NameVals.push_back(P.AddressPointOffset); 3689 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3690 } 3691 } 3692 3693 // Helper to emit a single function summary record. 3694 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3695 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3696 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3697 const Function &F) { 3698 NameVals.push_back(ValueID); 3699 3700 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3701 writeFunctionTypeMetadataRecords(Stream, FS); 3702 3703 auto SpecialRefCnts = FS->specialRefCounts(); 3704 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3705 NameVals.push_back(FS->instCount()); 3706 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3707 NameVals.push_back(FS->refs().size()); 3708 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3709 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3710 3711 for (auto &RI : FS->refs()) 3712 NameVals.push_back(VE.getValueID(RI.getValue())); 3713 3714 bool HasProfileData = 3715 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3716 for (auto &ECI : FS->calls()) { 3717 NameVals.push_back(getValueId(ECI.first)); 3718 if (HasProfileData) 3719 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3720 else if (WriteRelBFToSummary) 3721 NameVals.push_back(ECI.second.RelBlockFreq); 3722 } 3723 3724 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3725 unsigned Code = 3726 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3727 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3728 : bitc::FS_PERMODULE)); 3729 3730 // Emit the finished record. 3731 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3732 NameVals.clear(); 3733 } 3734 3735 // Collect the global value references in the given variable's initializer, 3736 // and emit them in a summary record. 3737 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3738 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3739 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3740 auto VI = Index->getValueInfo(V.getGUID()); 3741 if (!VI || VI.getSummaryList().empty()) { 3742 // Only declarations should not have a summary (a declaration might however 3743 // have a summary if the def was in module level asm). 3744 assert(V.isDeclaration()); 3745 return; 3746 } 3747 auto *Summary = VI.getSummaryList()[0].get(); 3748 NameVals.push_back(VE.getValueID(&V)); 3749 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3750 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3751 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3752 3753 auto VTableFuncs = VS->vTableFuncs(); 3754 if (!VTableFuncs.empty()) 3755 NameVals.push_back(VS->refs().size()); 3756 3757 unsigned SizeBeforeRefs = NameVals.size(); 3758 for (auto &RI : VS->refs()) 3759 NameVals.push_back(VE.getValueID(RI.getValue())); 3760 // Sort the refs for determinism output, the vector returned by FS->refs() has 3761 // been initialized from a DenseSet. 3762 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3763 3764 if (VTableFuncs.empty()) 3765 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3766 FSModRefsAbbrev); 3767 else { 3768 // VTableFuncs pairs should already be sorted by offset. 3769 for (auto &P : VTableFuncs) { 3770 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3771 NameVals.push_back(P.VTableOffset); 3772 } 3773 3774 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3775 FSModVTableRefsAbbrev); 3776 } 3777 NameVals.clear(); 3778 } 3779 3780 /// Emit the per-module summary section alongside the rest of 3781 /// the module's bitcode. 3782 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3783 // By default we compile with ThinLTO if the module has a summary, but the 3784 // client can request full LTO with a module flag. 3785 bool IsThinLTO = true; 3786 if (auto *MD = 3787 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3788 IsThinLTO = MD->getZExtValue(); 3789 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3790 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3791 4); 3792 3793 Stream.EmitRecord( 3794 bitc::FS_VERSION, 3795 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3796 3797 // Write the index flags. 3798 uint64_t Flags = 0; 3799 // Bits 1-3 are set only in the combined index, skip them. 3800 if (Index->enableSplitLTOUnit()) 3801 Flags |= 0x8; 3802 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3803 3804 if (Index->begin() == Index->end()) { 3805 Stream.ExitBlock(); 3806 return; 3807 } 3808 3809 for (const auto &GVI : valueIds()) { 3810 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3811 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3812 } 3813 3814 // Abbrev for FS_PERMODULE_PROFILE. 3815 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3816 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3824 // numrefs x valueid, n x (valueid, hotness) 3825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3827 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3828 3829 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3830 Abbv = std::make_shared<BitCodeAbbrev>(); 3831 if (WriteRelBFToSummary) 3832 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3833 else 3834 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3842 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3845 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3846 3847 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3848 Abbv = std::make_shared<BitCodeAbbrev>(); 3849 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3854 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3855 3856 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3857 Abbv = std::make_shared<BitCodeAbbrev>(); 3858 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3862 // numrefs x valueid, n x (valueid , offset) 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3865 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3866 3867 // Abbrev for FS_ALIAS. 3868 Abbv = std::make_shared<BitCodeAbbrev>(); 3869 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3873 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3874 3875 // Abbrev for FS_TYPE_ID_METADATA 3876 Abbv = std::make_shared<BitCodeAbbrev>(); 3877 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3880 // n x (valueid , offset) 3881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3883 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3884 3885 SmallVector<uint64_t, 64> NameVals; 3886 // Iterate over the list of functions instead of the Index to 3887 // ensure the ordering is stable. 3888 for (const Function &F : M) { 3889 // Summary emission does not support anonymous functions, they have to 3890 // renamed using the anonymous function renaming pass. 3891 if (!F.hasName()) 3892 report_fatal_error("Unexpected anonymous function when writing summary"); 3893 3894 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3895 if (!VI || VI.getSummaryList().empty()) { 3896 // Only declarations should not have a summary (a declaration might 3897 // however have a summary if the def was in module level asm). 3898 assert(F.isDeclaration()); 3899 continue; 3900 } 3901 auto *Summary = VI.getSummaryList()[0].get(); 3902 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3903 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3904 } 3905 3906 // Capture references from GlobalVariable initializers, which are outside 3907 // of a function scope. 3908 for (const GlobalVariable &G : M.globals()) 3909 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3910 FSModVTableRefsAbbrev); 3911 3912 for (const GlobalAlias &A : M.aliases()) { 3913 auto *Aliasee = A.getBaseObject(); 3914 if (!Aliasee->hasName()) 3915 // Nameless function don't have an entry in the summary, skip it. 3916 continue; 3917 auto AliasId = VE.getValueID(&A); 3918 auto AliaseeId = VE.getValueID(Aliasee); 3919 NameVals.push_back(AliasId); 3920 auto *Summary = Index->getGlobalValueSummary(A); 3921 AliasSummary *AS = cast<AliasSummary>(Summary); 3922 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3923 NameVals.push_back(AliaseeId); 3924 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3925 NameVals.clear(); 3926 } 3927 3928 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3929 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3930 S.second, VE); 3931 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3932 TypeIdCompatibleVtableAbbrev); 3933 NameVals.clear(); 3934 } 3935 3936 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 3937 ArrayRef<uint64_t>{Index->getBlockCount()}); 3938 3939 Stream.ExitBlock(); 3940 } 3941 3942 /// Emit the combined summary section into the combined index file. 3943 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3944 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3945 Stream.EmitRecord( 3946 bitc::FS_VERSION, 3947 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3948 3949 // Write the index flags. 3950 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3951 3952 for (const auto &GVI : valueIds()) { 3953 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3954 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3955 } 3956 3957 // Abbrev for FS_COMBINED. 3958 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3959 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3969 // numrefs x valueid, n x (valueid) 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3972 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3973 3974 // Abbrev for FS_COMBINED_PROFILE. 3975 Abbv = std::make_shared<BitCodeAbbrev>(); 3976 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3986 // numrefs x valueid, n x (valueid, hotness) 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3989 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3990 3991 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3992 Abbv = std::make_shared<BitCodeAbbrev>(); 3993 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3999 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4000 4001 // Abbrev for FS_COMBINED_ALIAS. 4002 Abbv = std::make_shared<BitCodeAbbrev>(); 4003 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4008 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4009 4010 // The aliases are emitted as a post-pass, and will point to the value 4011 // id of the aliasee. Save them in a vector for post-processing. 4012 SmallVector<AliasSummary *, 64> Aliases; 4013 4014 // Save the value id for each summary for alias emission. 4015 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4016 4017 SmallVector<uint64_t, 64> NameVals; 4018 4019 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4020 // with the type ids referenced by this index file. 4021 std::set<GlobalValue::GUID> ReferencedTypeIds; 4022 4023 // For local linkage, we also emit the original name separately 4024 // immediately after the record. 4025 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4026 if (!GlobalValue::isLocalLinkage(S.linkage())) 4027 return; 4028 NameVals.push_back(S.getOriginalName()); 4029 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4030 NameVals.clear(); 4031 }; 4032 4033 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4034 forEachSummary([&](GVInfo I, bool IsAliasee) { 4035 GlobalValueSummary *S = I.second; 4036 assert(S); 4037 DefOrUseGUIDs.insert(I.first); 4038 for (const ValueInfo &VI : S->refs()) 4039 DefOrUseGUIDs.insert(VI.getGUID()); 4040 4041 auto ValueId = getValueId(I.first); 4042 assert(ValueId); 4043 SummaryToValueIdMap[S] = *ValueId; 4044 4045 // If this is invoked for an aliasee, we want to record the above 4046 // mapping, but then not emit a summary entry (if the aliasee is 4047 // to be imported, we will invoke this separately with IsAliasee=false). 4048 if (IsAliasee) 4049 return; 4050 4051 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4052 // Will process aliases as a post-pass because the reader wants all 4053 // global to be loaded first. 4054 Aliases.push_back(AS); 4055 return; 4056 } 4057 4058 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4059 NameVals.push_back(*ValueId); 4060 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4061 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4062 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4063 for (auto &RI : VS->refs()) { 4064 auto RefValueId = getValueId(RI.getGUID()); 4065 if (!RefValueId) 4066 continue; 4067 NameVals.push_back(*RefValueId); 4068 } 4069 4070 // Emit the finished record. 4071 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4072 FSModRefsAbbrev); 4073 NameVals.clear(); 4074 MaybeEmitOriginalName(*S); 4075 return; 4076 } 4077 4078 auto *FS = cast<FunctionSummary>(S); 4079 writeFunctionTypeMetadataRecords(Stream, FS); 4080 getReferencedTypeIds(FS, ReferencedTypeIds); 4081 4082 NameVals.push_back(*ValueId); 4083 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4084 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4085 NameVals.push_back(FS->instCount()); 4086 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4087 NameVals.push_back(FS->entryCount()); 4088 4089 // Fill in below 4090 NameVals.push_back(0); // numrefs 4091 NameVals.push_back(0); // rorefcnt 4092 NameVals.push_back(0); // worefcnt 4093 4094 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4095 for (auto &RI : FS->refs()) { 4096 auto RefValueId = getValueId(RI.getGUID()); 4097 if (!RefValueId) 4098 continue; 4099 NameVals.push_back(*RefValueId); 4100 if (RI.isReadOnly()) 4101 RORefCnt++; 4102 else if (RI.isWriteOnly()) 4103 WORefCnt++; 4104 Count++; 4105 } 4106 NameVals[6] = Count; 4107 NameVals[7] = RORefCnt; 4108 NameVals[8] = WORefCnt; 4109 4110 bool HasProfileData = false; 4111 for (auto &EI : FS->calls()) { 4112 HasProfileData |= 4113 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4114 if (HasProfileData) 4115 break; 4116 } 4117 4118 for (auto &EI : FS->calls()) { 4119 // If this GUID doesn't have a value id, it doesn't have a function 4120 // summary and we don't need to record any calls to it. 4121 GlobalValue::GUID GUID = EI.first.getGUID(); 4122 auto CallValueId = getValueId(GUID); 4123 if (!CallValueId) { 4124 // For SamplePGO, the indirect call targets for local functions will 4125 // have its original name annotated in profile. We try to find the 4126 // corresponding PGOFuncName as the GUID. 4127 GUID = Index.getGUIDFromOriginalID(GUID); 4128 if (GUID == 0) 4129 continue; 4130 CallValueId = getValueId(GUID); 4131 if (!CallValueId) 4132 continue; 4133 // The mapping from OriginalId to GUID may return a GUID 4134 // that corresponds to a static variable. Filter it out here. 4135 // This can happen when 4136 // 1) There is a call to a library function which does not have 4137 // a CallValidId; 4138 // 2) There is a static variable with the OriginalGUID identical 4139 // to the GUID of the library function in 1); 4140 // When this happens, the logic for SamplePGO kicks in and 4141 // the static variable in 2) will be found, which needs to be 4142 // filtered out. 4143 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4144 if (GVSum && 4145 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4146 continue; 4147 } 4148 NameVals.push_back(*CallValueId); 4149 if (HasProfileData) 4150 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4151 } 4152 4153 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4154 unsigned Code = 4155 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4156 4157 // Emit the finished record. 4158 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4159 NameVals.clear(); 4160 MaybeEmitOriginalName(*S); 4161 }); 4162 4163 for (auto *AS : Aliases) { 4164 auto AliasValueId = SummaryToValueIdMap[AS]; 4165 assert(AliasValueId); 4166 NameVals.push_back(AliasValueId); 4167 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4168 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4169 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4170 assert(AliaseeValueId); 4171 NameVals.push_back(AliaseeValueId); 4172 4173 // Emit the finished record. 4174 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4175 NameVals.clear(); 4176 MaybeEmitOriginalName(*AS); 4177 4178 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4179 getReferencedTypeIds(FS, ReferencedTypeIds); 4180 } 4181 4182 if (!Index.cfiFunctionDefs().empty()) { 4183 for (auto &S : Index.cfiFunctionDefs()) { 4184 if (DefOrUseGUIDs.count( 4185 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4186 NameVals.push_back(StrtabBuilder.add(S)); 4187 NameVals.push_back(S.size()); 4188 } 4189 } 4190 if (!NameVals.empty()) { 4191 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4192 NameVals.clear(); 4193 } 4194 } 4195 4196 if (!Index.cfiFunctionDecls().empty()) { 4197 for (auto &S : Index.cfiFunctionDecls()) { 4198 if (DefOrUseGUIDs.count( 4199 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4200 NameVals.push_back(StrtabBuilder.add(S)); 4201 NameVals.push_back(S.size()); 4202 } 4203 } 4204 if (!NameVals.empty()) { 4205 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4206 NameVals.clear(); 4207 } 4208 } 4209 4210 // Walk the GUIDs that were referenced, and write the 4211 // corresponding type id records. 4212 for (auto &T : ReferencedTypeIds) { 4213 auto TidIter = Index.typeIds().equal_range(T); 4214 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4215 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4216 It->second.second); 4217 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4218 NameVals.clear(); 4219 } 4220 } 4221 4222 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4223 ArrayRef<uint64_t>{Index.getBlockCount()}); 4224 4225 Stream.ExitBlock(); 4226 } 4227 4228 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4229 /// current llvm version, and a record for the epoch number. 4230 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4231 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4232 4233 // Write the "user readable" string identifying the bitcode producer 4234 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4235 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4238 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4239 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4240 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4241 4242 // Write the epoch version 4243 Abbv = std::make_shared<BitCodeAbbrev>(); 4244 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4246 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4247 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4248 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4249 Stream.ExitBlock(); 4250 } 4251 4252 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4253 // Emit the module's hash. 4254 // MODULE_CODE_HASH: [5*i32] 4255 if (GenerateHash) { 4256 uint32_t Vals[5]; 4257 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4258 Buffer.size() - BlockStartPos)); 4259 StringRef Hash = Hasher.result(); 4260 for (int Pos = 0; Pos < 20; Pos += 4) { 4261 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4262 } 4263 4264 // Emit the finished record. 4265 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4266 4267 if (ModHash) 4268 // Save the written hash value. 4269 llvm::copy(Vals, std::begin(*ModHash)); 4270 } 4271 } 4272 4273 void ModuleBitcodeWriter::write() { 4274 writeIdentificationBlock(Stream); 4275 4276 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4277 size_t BlockStartPos = Buffer.size(); 4278 4279 writeModuleVersion(); 4280 4281 // Emit blockinfo, which defines the standard abbreviations etc. 4282 writeBlockInfo(); 4283 4284 // Emit information describing all of the types in the module. 4285 writeTypeTable(); 4286 4287 // Emit information about attribute groups. 4288 writeAttributeGroupTable(); 4289 4290 // Emit information about parameter attributes. 4291 writeAttributeTable(); 4292 4293 writeComdats(); 4294 4295 // Emit top-level description of module, including target triple, inline asm, 4296 // descriptors for global variables, and function prototype info. 4297 writeModuleInfo(); 4298 4299 // Emit constants. 4300 writeModuleConstants(); 4301 4302 // Emit metadata kind names. 4303 writeModuleMetadataKinds(); 4304 4305 // Emit metadata. 4306 writeModuleMetadata(); 4307 4308 // Emit module-level use-lists. 4309 if (VE.shouldPreserveUseListOrder()) 4310 writeUseListBlock(nullptr); 4311 4312 writeOperandBundleTags(); 4313 writeSyncScopeNames(); 4314 4315 // Emit function bodies. 4316 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4317 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4318 if (!F->isDeclaration()) 4319 writeFunction(*F, FunctionToBitcodeIndex); 4320 4321 // Need to write after the above call to WriteFunction which populates 4322 // the summary information in the index. 4323 if (Index) 4324 writePerModuleGlobalValueSummary(); 4325 4326 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4327 4328 writeModuleHash(BlockStartPos); 4329 4330 Stream.ExitBlock(); 4331 } 4332 4333 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4334 uint32_t &Position) { 4335 support::endian::write32le(&Buffer[Position], Value); 4336 Position += 4; 4337 } 4338 4339 /// If generating a bc file on darwin, we have to emit a 4340 /// header and trailer to make it compatible with the system archiver. To do 4341 /// this we emit the following header, and then emit a trailer that pads the 4342 /// file out to be a multiple of 16 bytes. 4343 /// 4344 /// struct bc_header { 4345 /// uint32_t Magic; // 0x0B17C0DE 4346 /// uint32_t Version; // Version, currently always 0. 4347 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4348 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4349 /// uint32_t CPUType; // CPU specifier. 4350 /// ... potentially more later ... 4351 /// }; 4352 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4353 const Triple &TT) { 4354 unsigned CPUType = ~0U; 4355 4356 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4357 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4358 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4359 // specific constants here because they are implicitly part of the Darwin ABI. 4360 enum { 4361 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4362 DARWIN_CPU_TYPE_X86 = 7, 4363 DARWIN_CPU_TYPE_ARM = 12, 4364 DARWIN_CPU_TYPE_POWERPC = 18 4365 }; 4366 4367 Triple::ArchType Arch = TT.getArch(); 4368 if (Arch == Triple::x86_64) 4369 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4370 else if (Arch == Triple::x86) 4371 CPUType = DARWIN_CPU_TYPE_X86; 4372 else if (Arch == Triple::ppc) 4373 CPUType = DARWIN_CPU_TYPE_POWERPC; 4374 else if (Arch == Triple::ppc64) 4375 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4376 else if (Arch == Triple::arm || Arch == Triple::thumb) 4377 CPUType = DARWIN_CPU_TYPE_ARM; 4378 4379 // Traditional Bitcode starts after header. 4380 assert(Buffer.size() >= BWH_HeaderSize && 4381 "Expected header size to be reserved"); 4382 unsigned BCOffset = BWH_HeaderSize; 4383 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4384 4385 // Write the magic and version. 4386 unsigned Position = 0; 4387 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4388 writeInt32ToBuffer(0, Buffer, Position); // Version. 4389 writeInt32ToBuffer(BCOffset, Buffer, Position); 4390 writeInt32ToBuffer(BCSize, Buffer, Position); 4391 writeInt32ToBuffer(CPUType, Buffer, Position); 4392 4393 // If the file is not a multiple of 16 bytes, insert dummy padding. 4394 while (Buffer.size() & 15) 4395 Buffer.push_back(0); 4396 } 4397 4398 /// Helper to write the header common to all bitcode files. 4399 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4400 // Emit the file header. 4401 Stream.Emit((unsigned)'B', 8); 4402 Stream.Emit((unsigned)'C', 8); 4403 Stream.Emit(0x0, 4); 4404 Stream.Emit(0xC, 4); 4405 Stream.Emit(0xE, 4); 4406 Stream.Emit(0xD, 4); 4407 } 4408 4409 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4410 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4411 writeBitcodeHeader(*Stream); 4412 } 4413 4414 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4415 4416 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4417 Stream->EnterSubblock(Block, 3); 4418 4419 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4420 Abbv->Add(BitCodeAbbrevOp(Record)); 4421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4422 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4423 4424 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4425 4426 Stream->ExitBlock(); 4427 } 4428 4429 void BitcodeWriter::writeSymtab() { 4430 assert(!WroteStrtab && !WroteSymtab); 4431 4432 // If any module has module-level inline asm, we will require a registered asm 4433 // parser for the target so that we can create an accurate symbol table for 4434 // the module. 4435 for (Module *M : Mods) { 4436 if (M->getModuleInlineAsm().empty()) 4437 continue; 4438 4439 std::string Err; 4440 const Triple TT(M->getTargetTriple()); 4441 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4442 if (!T || !T->hasMCAsmParser()) 4443 return; 4444 } 4445 4446 WroteSymtab = true; 4447 SmallVector<char, 0> Symtab; 4448 // The irsymtab::build function may be unable to create a symbol table if the 4449 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4450 // table is not required for correctness, but we still want to be able to 4451 // write malformed modules to bitcode files, so swallow the error. 4452 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4453 consumeError(std::move(E)); 4454 return; 4455 } 4456 4457 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4458 {Symtab.data(), Symtab.size()}); 4459 } 4460 4461 void BitcodeWriter::writeStrtab() { 4462 assert(!WroteStrtab); 4463 4464 std::vector<char> Strtab; 4465 StrtabBuilder.finalizeInOrder(); 4466 Strtab.resize(StrtabBuilder.getSize()); 4467 StrtabBuilder.write((uint8_t *)Strtab.data()); 4468 4469 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4470 {Strtab.data(), Strtab.size()}); 4471 4472 WroteStrtab = true; 4473 } 4474 4475 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4476 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4477 WroteStrtab = true; 4478 } 4479 4480 void BitcodeWriter::writeModule(const Module &M, 4481 bool ShouldPreserveUseListOrder, 4482 const ModuleSummaryIndex *Index, 4483 bool GenerateHash, ModuleHash *ModHash) { 4484 assert(!WroteStrtab); 4485 4486 // The Mods vector is used by irsymtab::build, which requires non-const 4487 // Modules in case it needs to materialize metadata. But the bitcode writer 4488 // requires that the module is materialized, so we can cast to non-const here, 4489 // after checking that it is in fact materialized. 4490 assert(M.isMaterialized()); 4491 Mods.push_back(const_cast<Module *>(&M)); 4492 4493 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4494 ShouldPreserveUseListOrder, Index, 4495 GenerateHash, ModHash); 4496 ModuleWriter.write(); 4497 } 4498 4499 void BitcodeWriter::writeIndex( 4500 const ModuleSummaryIndex *Index, 4501 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4502 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4503 ModuleToSummariesForIndex); 4504 IndexWriter.write(); 4505 } 4506 4507 /// Write the specified module to the specified output stream. 4508 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4509 bool ShouldPreserveUseListOrder, 4510 const ModuleSummaryIndex *Index, 4511 bool GenerateHash, ModuleHash *ModHash) { 4512 SmallVector<char, 0> Buffer; 4513 Buffer.reserve(256*1024); 4514 4515 // If this is darwin or another generic macho target, reserve space for the 4516 // header. 4517 Triple TT(M.getTargetTriple()); 4518 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4519 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4520 4521 BitcodeWriter Writer(Buffer); 4522 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4523 ModHash); 4524 Writer.writeSymtab(); 4525 Writer.writeStrtab(); 4526 4527 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4528 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4529 4530 // Write the generated bitstream to "Out". 4531 Out.write((char*)&Buffer.front(), Buffer.size()); 4532 } 4533 4534 void IndexBitcodeWriter::write() { 4535 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4536 4537 writeModuleVersion(); 4538 4539 // Write the module paths in the combined index. 4540 writeModStrings(); 4541 4542 // Write the summary combined index records. 4543 writeCombinedGlobalValueSummary(); 4544 4545 Stream.ExitBlock(); 4546 } 4547 4548 // Write the specified module summary index to the given raw output stream, 4549 // where it will be written in a new bitcode block. This is used when 4550 // writing the combined index file for ThinLTO. When writing a subset of the 4551 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4552 void llvm::WriteIndexToFile( 4553 const ModuleSummaryIndex &Index, raw_ostream &Out, 4554 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4555 SmallVector<char, 0> Buffer; 4556 Buffer.reserve(256 * 1024); 4557 4558 BitcodeWriter Writer(Buffer); 4559 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4560 Writer.writeStrtab(); 4561 4562 Out.write((char *)&Buffer.front(), Buffer.size()); 4563 } 4564 4565 namespace { 4566 4567 /// Class to manage the bitcode writing for a thin link bitcode file. 4568 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4569 /// ModHash is for use in ThinLTO incremental build, generated while writing 4570 /// the module bitcode file. 4571 const ModuleHash *ModHash; 4572 4573 public: 4574 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4575 BitstreamWriter &Stream, 4576 const ModuleSummaryIndex &Index, 4577 const ModuleHash &ModHash) 4578 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4579 /*ShouldPreserveUseListOrder=*/false, &Index), 4580 ModHash(&ModHash) {} 4581 4582 void write(); 4583 4584 private: 4585 void writeSimplifiedModuleInfo(); 4586 }; 4587 4588 } // end anonymous namespace 4589 4590 // This function writes a simpilified module info for thin link bitcode file. 4591 // It only contains the source file name along with the name(the offset and 4592 // size in strtab) and linkage for global values. For the global value info 4593 // entry, in order to keep linkage at offset 5, there are three zeros used 4594 // as padding. 4595 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4596 SmallVector<unsigned, 64> Vals; 4597 // Emit the module's source file name. 4598 { 4599 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4600 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4601 if (Bits == SE_Char6) 4602 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4603 else if (Bits == SE_Fixed7) 4604 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4605 4606 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4607 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4608 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4610 Abbv->Add(AbbrevOpToUse); 4611 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4612 4613 for (const auto P : M.getSourceFileName()) 4614 Vals.push_back((unsigned char)P); 4615 4616 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4617 Vals.clear(); 4618 } 4619 4620 // Emit the global variable information. 4621 for (const GlobalVariable &GV : M.globals()) { 4622 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4623 Vals.push_back(StrtabBuilder.add(GV.getName())); 4624 Vals.push_back(GV.getName().size()); 4625 Vals.push_back(0); 4626 Vals.push_back(0); 4627 Vals.push_back(0); 4628 Vals.push_back(getEncodedLinkage(GV)); 4629 4630 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4631 Vals.clear(); 4632 } 4633 4634 // Emit the function proto information. 4635 for (const Function &F : M) { 4636 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4637 Vals.push_back(StrtabBuilder.add(F.getName())); 4638 Vals.push_back(F.getName().size()); 4639 Vals.push_back(0); 4640 Vals.push_back(0); 4641 Vals.push_back(0); 4642 Vals.push_back(getEncodedLinkage(F)); 4643 4644 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4645 Vals.clear(); 4646 } 4647 4648 // Emit the alias information. 4649 for (const GlobalAlias &A : M.aliases()) { 4650 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4651 Vals.push_back(StrtabBuilder.add(A.getName())); 4652 Vals.push_back(A.getName().size()); 4653 Vals.push_back(0); 4654 Vals.push_back(0); 4655 Vals.push_back(0); 4656 Vals.push_back(getEncodedLinkage(A)); 4657 4658 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4659 Vals.clear(); 4660 } 4661 4662 // Emit the ifunc information. 4663 for (const GlobalIFunc &I : M.ifuncs()) { 4664 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4665 Vals.push_back(StrtabBuilder.add(I.getName())); 4666 Vals.push_back(I.getName().size()); 4667 Vals.push_back(0); 4668 Vals.push_back(0); 4669 Vals.push_back(0); 4670 Vals.push_back(getEncodedLinkage(I)); 4671 4672 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4673 Vals.clear(); 4674 } 4675 } 4676 4677 void ThinLinkBitcodeWriter::write() { 4678 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4679 4680 writeModuleVersion(); 4681 4682 writeSimplifiedModuleInfo(); 4683 4684 writePerModuleGlobalValueSummary(); 4685 4686 // Write module hash. 4687 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4688 4689 Stream.ExitBlock(); 4690 } 4691 4692 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4693 const ModuleSummaryIndex &Index, 4694 const ModuleHash &ModHash) { 4695 assert(!WroteStrtab); 4696 4697 // The Mods vector is used by irsymtab::build, which requires non-const 4698 // Modules in case it needs to materialize metadata. But the bitcode writer 4699 // requires that the module is materialized, so we can cast to non-const here, 4700 // after checking that it is in fact materialized. 4701 assert(M.isMaterialized()); 4702 Mods.push_back(const_cast<Module *>(&M)); 4703 4704 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4705 ModHash); 4706 ThinLinkWriter.write(); 4707 } 4708 4709 // Write the specified thin link bitcode file to the given raw output stream, 4710 // where it will be written in a new bitcode block. This is used when 4711 // writing the per-module index file for ThinLTO. 4712 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4713 const ModuleSummaryIndex &Index, 4714 const ModuleHash &ModHash) { 4715 SmallVector<char, 0> Buffer; 4716 Buffer.reserve(256 * 1024); 4717 4718 BitcodeWriter Writer(Buffer); 4719 Writer.writeThinLinkBitcode(M, Index, ModHash); 4720 Writer.writeSymtab(); 4721 Writer.writeStrtab(); 4722 4723 Out.write((char *)&Buffer.front(), Buffer.size()); 4724 } 4725 4726 static const char *getSectionNameForBitcode(const Triple &T) { 4727 switch (T.getObjectFormat()) { 4728 case Triple::MachO: 4729 return "__LLVM,__bitcode"; 4730 case Triple::COFF: 4731 case Triple::ELF: 4732 case Triple::Wasm: 4733 case Triple::UnknownObjectFormat: 4734 return ".llvmbc"; 4735 case Triple::XCOFF: 4736 llvm_unreachable("XCOFF is not yet implemented"); 4737 break; 4738 } 4739 llvm_unreachable("Unimplemented ObjectFormatType"); 4740 } 4741 4742 static const char *getSectionNameForCommandline(const Triple &T) { 4743 switch (T.getObjectFormat()) { 4744 case Triple::MachO: 4745 return "__LLVM,__cmdline"; 4746 case Triple::COFF: 4747 case Triple::ELF: 4748 case Triple::Wasm: 4749 case Triple::UnknownObjectFormat: 4750 return ".llvmcmd"; 4751 case Triple::XCOFF: 4752 llvm_unreachable("XCOFF is not yet implemented"); 4753 break; 4754 } 4755 llvm_unreachable("Unimplemented ObjectFormatType"); 4756 } 4757 4758 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4759 bool EmbedBitcode, bool EmbedMarker, 4760 const std::vector<uint8_t> *CmdArgs) { 4761 // Save llvm.compiler.used and remove it. 4762 SmallVector<Constant *, 2> UsedArray; 4763 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4764 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4765 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4766 for (auto *GV : UsedGlobals) { 4767 if (GV->getName() != "llvm.embedded.module" && 4768 GV->getName() != "llvm.cmdline") 4769 UsedArray.push_back( 4770 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4771 } 4772 if (Used) 4773 Used->eraseFromParent(); 4774 4775 // Embed the bitcode for the llvm module. 4776 std::string Data; 4777 ArrayRef<uint8_t> ModuleData; 4778 Triple T(M.getTargetTriple()); 4779 // Create a constant that contains the bitcode. 4780 // In case of embedding a marker, ignore the input Buf and use the empty 4781 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4782 if (EmbedBitcode) { 4783 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4784 (const unsigned char *)Buf.getBufferEnd())) { 4785 // If the input is LLVM Assembly, bitcode is produced by serializing 4786 // the module. Use-lists order need to be preserved in this case. 4787 llvm::raw_string_ostream OS(Data); 4788 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4789 ModuleData = 4790 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4791 } else 4792 // If the input is LLVM bitcode, write the input byte stream directly. 4793 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4794 Buf.getBufferSize()); 4795 } 4796 llvm::Constant *ModuleConstant = 4797 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4798 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4799 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4800 ModuleConstant); 4801 GV->setSection(getSectionNameForBitcode(T)); 4802 UsedArray.push_back( 4803 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4804 if (llvm::GlobalVariable *Old = 4805 M.getGlobalVariable("llvm.embedded.module", true)) { 4806 assert(Old->hasOneUse() && 4807 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4808 GV->takeName(Old); 4809 Old->eraseFromParent(); 4810 } else { 4811 GV->setName("llvm.embedded.module"); 4812 } 4813 4814 // Skip if only bitcode needs to be embedded. 4815 if (EmbedMarker) { 4816 // Embed command-line options. 4817 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4818 CmdArgs->size()); 4819 llvm::Constant *CmdConstant = 4820 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4821 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4822 llvm::GlobalValue::PrivateLinkage, 4823 CmdConstant); 4824 GV->setSection(getSectionNameForCommandline(T)); 4825 UsedArray.push_back( 4826 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4827 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4828 assert(Old->hasOneUse() && 4829 "llvm.cmdline can only be used once in llvm.compiler.used"); 4830 GV->takeName(Old); 4831 Old->eraseFromParent(); 4832 } else { 4833 GV->setName("llvm.cmdline"); 4834 } 4835 } 4836 4837 if (UsedArray.empty()) 4838 return; 4839 4840 // Recreate llvm.compiler.used. 4841 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4842 auto *NewUsed = new GlobalVariable( 4843 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4844 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4845 NewUsed->setSection("llvm.metadata"); 4846 } 4847