1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/UseListOrder.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Program.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cctype> 33 #include <map> 34 using namespace llvm; 35 36 /// These are manifest constants used by the bitcode writer. They do not need to 37 /// be kept in sync with the reader, but need to be consistent within this file. 38 enum { 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 105 switch (Op) { 106 default: llvm_unreachable("Unknown RMW operation!"); 107 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 108 case AtomicRMWInst::Add: return bitc::RMW_ADD; 109 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 110 case AtomicRMWInst::And: return bitc::RMW_AND; 111 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 112 case AtomicRMWInst::Or: return bitc::RMW_OR; 113 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 114 case AtomicRMWInst::Max: return bitc::RMW_MAX; 115 case AtomicRMWInst::Min: return bitc::RMW_MIN; 116 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 117 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 118 } 119 } 120 121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 122 switch (Ordering) { 123 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 124 case Unordered: return bitc::ORDERING_UNORDERED; 125 case Monotonic: return bitc::ORDERING_MONOTONIC; 126 case Acquire: return bitc::ORDERING_ACQUIRE; 127 case Release: return bitc::ORDERING_RELEASE; 128 case AcquireRelease: return bitc::ORDERING_ACQREL; 129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 130 } 131 llvm_unreachable("Invalid ordering"); 132 } 133 134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 135 switch (SynchScope) { 136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 138 } 139 llvm_unreachable("Invalid synch scope"); 140 } 141 142 static void WriteStringRecord(unsigned Code, StringRef Str, 143 unsigned AbbrevToUse, BitstreamWriter &Stream) { 144 SmallVector<unsigned, 64> Vals; 145 146 // Code: [strchar x N] 147 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 148 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 149 AbbrevToUse = 0; 150 Vals.push_back(Str[i]); 151 } 152 153 // Emit the finished record. 154 Stream.EmitRecord(Code, Vals, AbbrevToUse); 155 } 156 157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 158 switch (Kind) { 159 case Attribute::Alignment: 160 return bitc::ATTR_KIND_ALIGNMENT; 161 case Attribute::AlwaysInline: 162 return bitc::ATTR_KIND_ALWAYS_INLINE; 163 case Attribute::Builtin: 164 return bitc::ATTR_KIND_BUILTIN; 165 case Attribute::ByVal: 166 return bitc::ATTR_KIND_BY_VAL; 167 case Attribute::InAlloca: 168 return bitc::ATTR_KIND_IN_ALLOCA; 169 case Attribute::Cold: 170 return bitc::ATTR_KIND_COLD; 171 case Attribute::InlineHint: 172 return bitc::ATTR_KIND_INLINE_HINT; 173 case Attribute::InReg: 174 return bitc::ATTR_KIND_IN_REG; 175 case Attribute::JumpTable: 176 return bitc::ATTR_KIND_JUMP_TABLE; 177 case Attribute::MinSize: 178 return bitc::ATTR_KIND_MIN_SIZE; 179 case Attribute::Naked: 180 return bitc::ATTR_KIND_NAKED; 181 case Attribute::Nest: 182 return bitc::ATTR_KIND_NEST; 183 case Attribute::NoAlias: 184 return bitc::ATTR_KIND_NO_ALIAS; 185 case Attribute::NoBuiltin: 186 return bitc::ATTR_KIND_NO_BUILTIN; 187 case Attribute::NoCapture: 188 return bitc::ATTR_KIND_NO_CAPTURE; 189 case Attribute::NoDuplicate: 190 return bitc::ATTR_KIND_NO_DUPLICATE; 191 case Attribute::NoImplicitFloat: 192 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 193 case Attribute::NoInline: 194 return bitc::ATTR_KIND_NO_INLINE; 195 case Attribute::NonLazyBind: 196 return bitc::ATTR_KIND_NON_LAZY_BIND; 197 case Attribute::NonNull: 198 return bitc::ATTR_KIND_NON_NULL; 199 case Attribute::Dereferenceable: 200 return bitc::ATTR_KIND_DEREFERENCEABLE; 201 case Attribute::NoRedZone: 202 return bitc::ATTR_KIND_NO_RED_ZONE; 203 case Attribute::NoReturn: 204 return bitc::ATTR_KIND_NO_RETURN; 205 case Attribute::NoUnwind: 206 return bitc::ATTR_KIND_NO_UNWIND; 207 case Attribute::OptimizeForSize: 208 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 209 case Attribute::OptimizeNone: 210 return bitc::ATTR_KIND_OPTIMIZE_NONE; 211 case Attribute::ReadNone: 212 return bitc::ATTR_KIND_READ_NONE; 213 case Attribute::ReadOnly: 214 return bitc::ATTR_KIND_READ_ONLY; 215 case Attribute::Returned: 216 return bitc::ATTR_KIND_RETURNED; 217 case Attribute::ReturnsTwice: 218 return bitc::ATTR_KIND_RETURNS_TWICE; 219 case Attribute::SExt: 220 return bitc::ATTR_KIND_S_EXT; 221 case Attribute::StackAlignment: 222 return bitc::ATTR_KIND_STACK_ALIGNMENT; 223 case Attribute::StackProtect: 224 return bitc::ATTR_KIND_STACK_PROTECT; 225 case Attribute::StackProtectReq: 226 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 227 case Attribute::StackProtectStrong: 228 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 229 case Attribute::StructRet: 230 return bitc::ATTR_KIND_STRUCT_RET; 231 case Attribute::SanitizeAddress: 232 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 233 case Attribute::SanitizeThread: 234 return bitc::ATTR_KIND_SANITIZE_THREAD; 235 case Attribute::SanitizeMemory: 236 return bitc::ATTR_KIND_SANITIZE_MEMORY; 237 case Attribute::UWTable: 238 return bitc::ATTR_KIND_UW_TABLE; 239 case Attribute::ZExt: 240 return bitc::ATTR_KIND_Z_EXT; 241 case Attribute::EndAttrKinds: 242 llvm_unreachable("Can not encode end-attribute kinds marker."); 243 case Attribute::None: 244 llvm_unreachable("Can not encode none-attribute."); 245 } 246 247 llvm_unreachable("Trying to encode unknown attribute"); 248 } 249 250 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 251 BitstreamWriter &Stream) { 252 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 253 if (AttrGrps.empty()) return; 254 255 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 256 257 SmallVector<uint64_t, 64> Record; 258 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 259 AttributeSet AS = AttrGrps[i]; 260 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 261 AttributeSet A = AS.getSlotAttributes(i); 262 263 Record.push_back(VE.getAttributeGroupID(A)); 264 Record.push_back(AS.getSlotIndex(i)); 265 266 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 267 I != E; ++I) { 268 Attribute Attr = *I; 269 if (Attr.isEnumAttribute()) { 270 Record.push_back(0); 271 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 272 } else if (Attr.isIntAttribute()) { 273 Record.push_back(1); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 Record.push_back(Attr.getValueAsInt()); 276 } else { 277 StringRef Kind = Attr.getKindAsString(); 278 StringRef Val = Attr.getValueAsString(); 279 280 Record.push_back(Val.empty() ? 3 : 4); 281 Record.append(Kind.begin(), Kind.end()); 282 Record.push_back(0); 283 if (!Val.empty()) { 284 Record.append(Val.begin(), Val.end()); 285 Record.push_back(0); 286 } 287 } 288 } 289 290 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 291 Record.clear(); 292 } 293 } 294 295 Stream.ExitBlock(); 296 } 297 298 static void WriteAttributeTable(const ValueEnumerator &VE, 299 BitstreamWriter &Stream) { 300 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 301 if (Attrs.empty()) return; 302 303 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 304 305 SmallVector<uint64_t, 64> Record; 306 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 307 const AttributeSet &A = Attrs[i]; 308 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 309 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 310 311 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 312 Record.clear(); 313 } 314 315 Stream.ExitBlock(); 316 } 317 318 /// WriteTypeTable - Write out the type table for a module. 319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 320 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 321 322 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 323 SmallVector<uint64_t, 64> TypeVals; 324 325 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 326 327 // Abbrev for TYPE_CODE_POINTER. 328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 329 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 331 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 332 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 333 334 // Abbrev for TYPE_CODE_FUNCTION. 335 Abbv = new BitCodeAbbrev(); 336 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 340 341 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 342 343 // Abbrev for TYPE_CODE_STRUCT_ANON. 344 Abbv = new BitCodeAbbrev(); 345 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 349 350 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 351 352 // Abbrev for TYPE_CODE_STRUCT_NAME. 353 Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 357 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_STRUCT_NAMED. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_ARRAY. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Emit an entry count so the reader can reserve space. 377 TypeVals.push_back(TypeList.size()); 378 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 379 TypeVals.clear(); 380 381 // Loop over all of the types, emitting each in turn. 382 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 383 Type *T = TypeList[i]; 384 int AbbrevToUse = 0; 385 unsigned Code = 0; 386 387 switch (T->getTypeID()) { 388 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 389 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 390 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 391 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 392 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 393 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 394 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 395 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 396 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 397 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 398 case Type::IntegerTyID: 399 // INTEGER: [width] 400 Code = bitc::TYPE_CODE_INTEGER; 401 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 402 break; 403 case Type::PointerTyID: { 404 PointerType *PTy = cast<PointerType>(T); 405 // POINTER: [pointee type, address space] 406 Code = bitc::TYPE_CODE_POINTER; 407 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 408 unsigned AddressSpace = PTy->getAddressSpace(); 409 TypeVals.push_back(AddressSpace); 410 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 411 break; 412 } 413 case Type::FunctionTyID: { 414 FunctionType *FT = cast<FunctionType>(T); 415 // FUNCTION: [isvararg, retty, paramty x N] 416 Code = bitc::TYPE_CODE_FUNCTION; 417 TypeVals.push_back(FT->isVarArg()); 418 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 419 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 420 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 421 AbbrevToUse = FunctionAbbrev; 422 break; 423 } 424 case Type::StructTyID: { 425 StructType *ST = cast<StructType>(T); 426 // STRUCT: [ispacked, eltty x N] 427 TypeVals.push_back(ST->isPacked()); 428 // Output all of the element types. 429 for (StructType::element_iterator I = ST->element_begin(), 430 E = ST->element_end(); I != E; ++I) 431 TypeVals.push_back(VE.getTypeID(*I)); 432 433 if (ST->isLiteral()) { 434 Code = bitc::TYPE_CODE_STRUCT_ANON; 435 AbbrevToUse = StructAnonAbbrev; 436 } else { 437 if (ST->isOpaque()) { 438 Code = bitc::TYPE_CODE_OPAQUE; 439 } else { 440 Code = bitc::TYPE_CODE_STRUCT_NAMED; 441 AbbrevToUse = StructNamedAbbrev; 442 } 443 444 // Emit the name if it is present. 445 if (!ST->getName().empty()) 446 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 447 StructNameAbbrev, Stream); 448 } 449 break; 450 } 451 case Type::ArrayTyID: { 452 ArrayType *AT = cast<ArrayType>(T); 453 // ARRAY: [numelts, eltty] 454 Code = bitc::TYPE_CODE_ARRAY; 455 TypeVals.push_back(AT->getNumElements()); 456 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 457 AbbrevToUse = ArrayAbbrev; 458 break; 459 } 460 case Type::VectorTyID: { 461 VectorType *VT = cast<VectorType>(T); 462 // VECTOR [numelts, eltty] 463 Code = bitc::TYPE_CODE_VECTOR; 464 TypeVals.push_back(VT->getNumElements()); 465 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 466 break; 467 } 468 } 469 470 // Emit the finished record. 471 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 472 TypeVals.clear(); 473 } 474 475 Stream.ExitBlock(); 476 } 477 478 static unsigned getEncodedLinkage(const GlobalValue &GV) { 479 switch (GV.getLinkage()) { 480 case GlobalValue::ExternalLinkage: return 0; 481 case GlobalValue::WeakAnyLinkage: return 1; 482 case GlobalValue::AppendingLinkage: return 2; 483 case GlobalValue::InternalLinkage: return 3; 484 case GlobalValue::LinkOnceAnyLinkage: return 4; 485 case GlobalValue::ExternalWeakLinkage: return 7; 486 case GlobalValue::CommonLinkage: return 8; 487 case GlobalValue::PrivateLinkage: return 9; 488 case GlobalValue::WeakODRLinkage: return 10; 489 case GlobalValue::LinkOnceODRLinkage: return 11; 490 case GlobalValue::AvailableExternallyLinkage: return 12; 491 } 492 llvm_unreachable("Invalid linkage"); 493 } 494 495 static unsigned getEncodedVisibility(const GlobalValue &GV) { 496 switch (GV.getVisibility()) { 497 case GlobalValue::DefaultVisibility: return 0; 498 case GlobalValue::HiddenVisibility: return 1; 499 case GlobalValue::ProtectedVisibility: return 2; 500 } 501 llvm_unreachable("Invalid visibility"); 502 } 503 504 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 505 switch (GV.getDLLStorageClass()) { 506 case GlobalValue::DefaultStorageClass: return 0; 507 case GlobalValue::DLLImportStorageClass: return 1; 508 case GlobalValue::DLLExportStorageClass: return 2; 509 } 510 llvm_unreachable("Invalid DLL storage class"); 511 } 512 513 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 514 switch (GV.getThreadLocalMode()) { 515 case GlobalVariable::NotThreadLocal: return 0; 516 case GlobalVariable::GeneralDynamicTLSModel: return 1; 517 case GlobalVariable::LocalDynamicTLSModel: return 2; 518 case GlobalVariable::InitialExecTLSModel: return 3; 519 case GlobalVariable::LocalExecTLSModel: return 4; 520 } 521 llvm_unreachable("Invalid TLS model"); 522 } 523 524 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 525 switch (C.getSelectionKind()) { 526 case Comdat::Any: 527 return bitc::COMDAT_SELECTION_KIND_ANY; 528 case Comdat::ExactMatch: 529 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 530 case Comdat::Largest: 531 return bitc::COMDAT_SELECTION_KIND_LARGEST; 532 case Comdat::NoDuplicates: 533 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 534 case Comdat::SameSize: 535 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 536 } 537 llvm_unreachable("Invalid selection kind"); 538 } 539 540 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 541 SmallVector<uint8_t, 64> Vals; 542 for (const Comdat *C : VE.getComdats()) { 543 // COMDAT: [selection_kind, name] 544 Vals.push_back(getEncodedComdatSelectionKind(*C)); 545 Vals.push_back(C->getName().size()); 546 for (char Chr : C->getName()) 547 Vals.push_back((unsigned char)Chr); 548 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 549 Vals.clear(); 550 } 551 } 552 553 // Emit top-level description of module, including target triple, inline asm, 554 // descriptors for global variables, and function prototype info. 555 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 556 BitstreamWriter &Stream) { 557 // Emit various pieces of data attached to a module. 558 if (!M->getTargetTriple().empty()) 559 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 560 0/*TODO*/, Stream); 561 const std::string &DL = M->getDataLayoutStr(); 562 if (!DL.empty()) 563 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 564 if (!M->getModuleInlineAsm().empty()) 565 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 566 0/*TODO*/, Stream); 567 568 // Emit information about sections and GC, computing how many there are. Also 569 // compute the maximum alignment value. 570 std::map<std::string, unsigned> SectionMap; 571 std::map<std::string, unsigned> GCMap; 572 unsigned MaxAlignment = 0; 573 unsigned MaxGlobalType = 0; 574 for (const GlobalValue &GV : M->globals()) { 575 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 576 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 577 if (GV.hasSection()) { 578 // Give section names unique ID's. 579 unsigned &Entry = SectionMap[GV.getSection()]; 580 if (!Entry) { 581 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 582 0/*TODO*/, Stream); 583 Entry = SectionMap.size(); 584 } 585 } 586 } 587 for (const Function &F : *M) { 588 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 589 if (F.hasSection()) { 590 // Give section names unique ID's. 591 unsigned &Entry = SectionMap[F.getSection()]; 592 if (!Entry) { 593 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 594 0/*TODO*/, Stream); 595 Entry = SectionMap.size(); 596 } 597 } 598 if (F.hasGC()) { 599 // Same for GC names. 600 unsigned &Entry = GCMap[F.getGC()]; 601 if (!Entry) { 602 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 603 0/*TODO*/, Stream); 604 Entry = GCMap.size(); 605 } 606 } 607 } 608 609 // Emit abbrev for globals, now that we know # sections and max alignment. 610 unsigned SimpleGVarAbbrev = 0; 611 if (!M->global_empty()) { 612 // Add an abbrev for common globals with no visibility or thread localness. 613 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 614 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 616 Log2_32_Ceil(MaxGlobalType+1))); 617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 620 if (MaxAlignment == 0) // Alignment. 621 Abbv->Add(BitCodeAbbrevOp(0)); 622 else { 623 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 625 Log2_32_Ceil(MaxEncAlignment+1))); 626 } 627 if (SectionMap.empty()) // Section. 628 Abbv->Add(BitCodeAbbrevOp(0)); 629 else 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 631 Log2_32_Ceil(SectionMap.size()+1))); 632 // Don't bother emitting vis + thread local. 633 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 634 } 635 636 // Emit the global variable information. 637 SmallVector<unsigned, 64> Vals; 638 for (const GlobalVariable &GV : M->globals()) { 639 unsigned AbbrevToUse = 0; 640 641 // GLOBALVAR: [type, isconst, initid, 642 // linkage, alignment, section, visibility, threadlocal, 643 // unnamed_addr, externally_initialized, dllstorageclass] 644 Vals.push_back(VE.getTypeID(GV.getType())); 645 Vals.push_back(GV.isConstant()); 646 Vals.push_back(GV.isDeclaration() ? 0 : 647 (VE.getValueID(GV.getInitializer()) + 1)); 648 Vals.push_back(getEncodedLinkage(GV)); 649 Vals.push_back(Log2_32(GV.getAlignment())+1); 650 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 651 if (GV.isThreadLocal() || 652 GV.getVisibility() != GlobalValue::DefaultVisibility || 653 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 654 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 655 GV.hasComdat()) { 656 Vals.push_back(getEncodedVisibility(GV)); 657 Vals.push_back(getEncodedThreadLocalMode(GV)); 658 Vals.push_back(GV.hasUnnamedAddr()); 659 Vals.push_back(GV.isExternallyInitialized()); 660 Vals.push_back(getEncodedDLLStorageClass(GV)); 661 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 662 } else { 663 AbbrevToUse = SimpleGVarAbbrev; 664 } 665 666 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 667 Vals.clear(); 668 } 669 670 // Emit the function proto information. 671 for (const Function &F : *M) { 672 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 673 // section, visibility, gc, unnamed_addr, prologuedata, 674 // dllstorageclass, comdat, prefixdata] 675 Vals.push_back(VE.getTypeID(F.getType())); 676 Vals.push_back(F.getCallingConv()); 677 Vals.push_back(F.isDeclaration()); 678 Vals.push_back(getEncodedLinkage(F)); 679 Vals.push_back(VE.getAttributeID(F.getAttributes())); 680 Vals.push_back(Log2_32(F.getAlignment())+1); 681 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 682 Vals.push_back(getEncodedVisibility(F)); 683 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 684 Vals.push_back(F.hasUnnamedAddr()); 685 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 686 : 0); 687 Vals.push_back(getEncodedDLLStorageClass(F)); 688 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 689 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 690 : 0); 691 692 unsigned AbbrevToUse = 0; 693 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 694 Vals.clear(); 695 } 696 697 // Emit the alias information. 698 for (const GlobalAlias &A : M->aliases()) { 699 // ALIAS: [alias type, aliasee val#, linkage, visibility] 700 Vals.push_back(VE.getTypeID(A.getType())); 701 Vals.push_back(VE.getValueID(A.getAliasee())); 702 Vals.push_back(getEncodedLinkage(A)); 703 Vals.push_back(getEncodedVisibility(A)); 704 Vals.push_back(getEncodedDLLStorageClass(A)); 705 Vals.push_back(getEncodedThreadLocalMode(A)); 706 Vals.push_back(A.hasUnnamedAddr()); 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 } 712 713 static uint64_t GetOptimizationFlags(const Value *V) { 714 uint64_t Flags = 0; 715 716 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 717 if (OBO->hasNoSignedWrap()) 718 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 719 if (OBO->hasNoUnsignedWrap()) 720 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 721 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 722 if (PEO->isExact()) 723 Flags |= 1 << bitc::PEO_EXACT; 724 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 725 if (FPMO->hasUnsafeAlgebra()) 726 Flags |= FastMathFlags::UnsafeAlgebra; 727 if (FPMO->hasNoNaNs()) 728 Flags |= FastMathFlags::NoNaNs; 729 if (FPMO->hasNoInfs()) 730 Flags |= FastMathFlags::NoInfs; 731 if (FPMO->hasNoSignedZeros()) 732 Flags |= FastMathFlags::NoSignedZeros; 733 if (FPMO->hasAllowReciprocal()) 734 Flags |= FastMathFlags::AllowReciprocal; 735 } 736 737 return Flags; 738 } 739 740 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 741 const ValueEnumerator &VE, 742 BitstreamWriter &Stream, 743 SmallVectorImpl<uint64_t> &Record) { 744 // Mimic an MDNode with a value as one operand. 745 Value *V = MD->getValue(); 746 Record.push_back(VE.getTypeID(V->getType())); 747 Record.push_back(VE.getValueID(V)); 748 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 749 Record.clear(); 750 } 751 752 static void WriteMDNode(const MDNode *N, 753 const ValueEnumerator &VE, 754 BitstreamWriter &Stream, 755 SmallVectorImpl<uint64_t> &Record) { 756 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 757 Metadata *MD = N->getOperand(i); 758 if (!MD) { 759 Record.push_back(0); 760 continue; 761 } 762 assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata"); 763 Record.push_back(VE.getMetadataID(MD) + 1); 764 } 765 Stream.EmitRecord(bitc::METADATA_NODE, Record); 766 Record.clear(); 767 } 768 769 static void WriteModuleMetadata(const Module *M, 770 const ValueEnumerator &VE, 771 BitstreamWriter &Stream) { 772 const auto &MDs = VE.getMDs(); 773 bool StartedMetadataBlock = false; 774 unsigned MDSAbbrev = 0; 775 SmallVector<uint64_t, 64> Record; 776 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 777 if (const MDNode *N = dyn_cast<MDNode>(MDs[i])) { 778 if (!StartedMetadataBlock) { 779 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 780 StartedMetadataBlock = true; 781 } 782 WriteMDNode(N, VE, Stream, Record); 783 } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MDs[i])) { 784 if (!StartedMetadataBlock) { 785 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 786 StartedMetadataBlock = true; 787 } 788 WriteValueAsMetadata(MDC, VE, Stream, Record); 789 } else if (const MDString *MDS = dyn_cast<MDString>(MDs[i])) { 790 if (!StartedMetadataBlock) { 791 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 792 793 // Abbrev for METADATA_STRING. 794 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 795 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 798 MDSAbbrev = Stream.EmitAbbrev(Abbv); 799 StartedMetadataBlock = true; 800 } 801 802 // Code: [strchar x N] 803 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 804 805 // Emit the finished record. 806 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 807 Record.clear(); 808 } 809 } 810 811 // Write named metadata. 812 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 813 E = M->named_metadata_end(); I != E; ++I) { 814 const NamedMDNode *NMD = I; 815 if (!StartedMetadataBlock) { 816 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 817 StartedMetadataBlock = true; 818 } 819 820 // Write name. 821 StringRef Str = NMD->getName(); 822 for (unsigned i = 0, e = Str.size(); i != e; ++i) 823 Record.push_back(Str[i]); 824 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 825 Record.clear(); 826 827 // Write named metadata operands. 828 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 829 Record.push_back(VE.getMetadataID(NMD->getOperand(i))); 830 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 831 Record.clear(); 832 } 833 834 if (StartedMetadataBlock) 835 Stream.ExitBlock(); 836 } 837 838 static void WriteFunctionLocalMetadata(const Function &F, 839 const ValueEnumerator &VE, 840 BitstreamWriter &Stream) { 841 bool StartedMetadataBlock = false; 842 SmallVector<uint64_t, 64> Record; 843 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 844 VE.getFunctionLocalMDs(); 845 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 846 assert(MDs[i] && "Expected valid function-local metadata"); 847 if (!StartedMetadataBlock) { 848 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 849 StartedMetadataBlock = true; 850 } 851 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 852 } 853 854 if (StartedMetadataBlock) 855 Stream.ExitBlock(); 856 } 857 858 static void WriteMetadataAttachment(const Function &F, 859 const ValueEnumerator &VE, 860 BitstreamWriter &Stream) { 861 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 862 863 SmallVector<uint64_t, 64> Record; 864 865 // Write metadata attachments 866 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 867 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 868 869 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 870 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 871 I != E; ++I) { 872 MDs.clear(); 873 I->getAllMetadataOtherThanDebugLoc(MDs); 874 875 // If no metadata, ignore instruction. 876 if (MDs.empty()) continue; 877 878 Record.push_back(VE.getInstructionID(I)); 879 880 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 881 Record.push_back(MDs[i].first); 882 Record.push_back(VE.getMetadataID(MDs[i].second)); 883 } 884 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 885 Record.clear(); 886 } 887 888 Stream.ExitBlock(); 889 } 890 891 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 892 SmallVector<uint64_t, 64> Record; 893 894 // Write metadata kinds 895 // METADATA_KIND - [n x [id, name]] 896 SmallVector<StringRef, 8> Names; 897 M->getMDKindNames(Names); 898 899 if (Names.empty()) return; 900 901 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 902 903 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 904 Record.push_back(MDKindID); 905 StringRef KName = Names[MDKindID]; 906 Record.append(KName.begin(), KName.end()); 907 908 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 909 Record.clear(); 910 } 911 912 Stream.ExitBlock(); 913 } 914 915 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 916 if ((int64_t)V >= 0) 917 Vals.push_back(V << 1); 918 else 919 Vals.push_back((-V << 1) | 1); 920 } 921 922 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 923 const ValueEnumerator &VE, 924 BitstreamWriter &Stream, bool isGlobal) { 925 if (FirstVal == LastVal) return; 926 927 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 928 929 unsigned AggregateAbbrev = 0; 930 unsigned String8Abbrev = 0; 931 unsigned CString7Abbrev = 0; 932 unsigned CString6Abbrev = 0; 933 // If this is a constant pool for the module, emit module-specific abbrevs. 934 if (isGlobal) { 935 // Abbrev for CST_CODE_AGGREGATE. 936 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 937 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 940 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 941 942 // Abbrev for CST_CODE_STRING. 943 Abbv = new BitCodeAbbrev(); 944 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 947 String8Abbrev = Stream.EmitAbbrev(Abbv); 948 // Abbrev for CST_CODE_CSTRING. 949 Abbv = new BitCodeAbbrev(); 950 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 953 CString7Abbrev = Stream.EmitAbbrev(Abbv); 954 // Abbrev for CST_CODE_CSTRING. 955 Abbv = new BitCodeAbbrev(); 956 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 959 CString6Abbrev = Stream.EmitAbbrev(Abbv); 960 } 961 962 SmallVector<uint64_t, 64> Record; 963 964 const ValueEnumerator::ValueList &Vals = VE.getValues(); 965 Type *LastTy = nullptr; 966 for (unsigned i = FirstVal; i != LastVal; ++i) { 967 const Value *V = Vals[i].first; 968 // If we need to switch types, do so now. 969 if (V->getType() != LastTy) { 970 LastTy = V->getType(); 971 Record.push_back(VE.getTypeID(LastTy)); 972 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 973 CONSTANTS_SETTYPE_ABBREV); 974 Record.clear(); 975 } 976 977 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 978 Record.push_back(unsigned(IA->hasSideEffects()) | 979 unsigned(IA->isAlignStack()) << 1 | 980 unsigned(IA->getDialect()&1) << 2); 981 982 // Add the asm string. 983 const std::string &AsmStr = IA->getAsmString(); 984 Record.push_back(AsmStr.size()); 985 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 986 Record.push_back(AsmStr[i]); 987 988 // Add the constraint string. 989 const std::string &ConstraintStr = IA->getConstraintString(); 990 Record.push_back(ConstraintStr.size()); 991 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 992 Record.push_back(ConstraintStr[i]); 993 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 994 Record.clear(); 995 continue; 996 } 997 const Constant *C = cast<Constant>(V); 998 unsigned Code = -1U; 999 unsigned AbbrevToUse = 0; 1000 if (C->isNullValue()) { 1001 Code = bitc::CST_CODE_NULL; 1002 } else if (isa<UndefValue>(C)) { 1003 Code = bitc::CST_CODE_UNDEF; 1004 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1005 if (IV->getBitWidth() <= 64) { 1006 uint64_t V = IV->getSExtValue(); 1007 emitSignedInt64(Record, V); 1008 Code = bitc::CST_CODE_INTEGER; 1009 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1010 } else { // Wide integers, > 64 bits in size. 1011 // We have an arbitrary precision integer value to write whose 1012 // bit width is > 64. However, in canonical unsigned integer 1013 // format it is likely that the high bits are going to be zero. 1014 // So, we only write the number of active words. 1015 unsigned NWords = IV->getValue().getActiveWords(); 1016 const uint64_t *RawWords = IV->getValue().getRawData(); 1017 for (unsigned i = 0; i != NWords; ++i) { 1018 emitSignedInt64(Record, RawWords[i]); 1019 } 1020 Code = bitc::CST_CODE_WIDE_INTEGER; 1021 } 1022 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1023 Code = bitc::CST_CODE_FLOAT; 1024 Type *Ty = CFP->getType(); 1025 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1026 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1027 } else if (Ty->isX86_FP80Ty()) { 1028 // api needed to prevent premature destruction 1029 // bits are not in the same order as a normal i80 APInt, compensate. 1030 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1031 const uint64_t *p = api.getRawData(); 1032 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1033 Record.push_back(p[0] & 0xffffLL); 1034 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1035 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1036 const uint64_t *p = api.getRawData(); 1037 Record.push_back(p[0]); 1038 Record.push_back(p[1]); 1039 } else { 1040 assert (0 && "Unknown FP type!"); 1041 } 1042 } else if (isa<ConstantDataSequential>(C) && 1043 cast<ConstantDataSequential>(C)->isString()) { 1044 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1045 // Emit constant strings specially. 1046 unsigned NumElts = Str->getNumElements(); 1047 // If this is a null-terminated string, use the denser CSTRING encoding. 1048 if (Str->isCString()) { 1049 Code = bitc::CST_CODE_CSTRING; 1050 --NumElts; // Don't encode the null, which isn't allowed by char6. 1051 } else { 1052 Code = bitc::CST_CODE_STRING; 1053 AbbrevToUse = String8Abbrev; 1054 } 1055 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1056 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1057 for (unsigned i = 0; i != NumElts; ++i) { 1058 unsigned char V = Str->getElementAsInteger(i); 1059 Record.push_back(V); 1060 isCStr7 &= (V & 128) == 0; 1061 if (isCStrChar6) 1062 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1063 } 1064 1065 if (isCStrChar6) 1066 AbbrevToUse = CString6Abbrev; 1067 else if (isCStr7) 1068 AbbrevToUse = CString7Abbrev; 1069 } else if (const ConstantDataSequential *CDS = 1070 dyn_cast<ConstantDataSequential>(C)) { 1071 Code = bitc::CST_CODE_DATA; 1072 Type *EltTy = CDS->getType()->getElementType(); 1073 if (isa<IntegerType>(EltTy)) { 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1075 Record.push_back(CDS->getElementAsInteger(i)); 1076 } else if (EltTy->isFloatTy()) { 1077 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1078 union { float F; uint32_t I; }; 1079 F = CDS->getElementAsFloat(i); 1080 Record.push_back(I); 1081 } 1082 } else { 1083 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1084 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1085 union { double F; uint64_t I; }; 1086 F = CDS->getElementAsDouble(i); 1087 Record.push_back(I); 1088 } 1089 } 1090 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1091 isa<ConstantVector>(C)) { 1092 Code = bitc::CST_CODE_AGGREGATE; 1093 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1094 Record.push_back(VE.getValueID(C->getOperand(i))); 1095 AbbrevToUse = AggregateAbbrev; 1096 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1097 switch (CE->getOpcode()) { 1098 default: 1099 if (Instruction::isCast(CE->getOpcode())) { 1100 Code = bitc::CST_CODE_CE_CAST; 1101 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1102 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1103 Record.push_back(VE.getValueID(C->getOperand(0))); 1104 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1105 } else { 1106 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1107 Code = bitc::CST_CODE_CE_BINOP; 1108 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1109 Record.push_back(VE.getValueID(C->getOperand(0))); 1110 Record.push_back(VE.getValueID(C->getOperand(1))); 1111 uint64_t Flags = GetOptimizationFlags(CE); 1112 if (Flags != 0) 1113 Record.push_back(Flags); 1114 } 1115 break; 1116 case Instruction::GetElementPtr: 1117 Code = bitc::CST_CODE_CE_GEP; 1118 if (cast<GEPOperator>(C)->isInBounds()) 1119 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1120 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1121 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1122 Record.push_back(VE.getValueID(C->getOperand(i))); 1123 } 1124 break; 1125 case Instruction::Select: 1126 Code = bitc::CST_CODE_CE_SELECT; 1127 Record.push_back(VE.getValueID(C->getOperand(0))); 1128 Record.push_back(VE.getValueID(C->getOperand(1))); 1129 Record.push_back(VE.getValueID(C->getOperand(2))); 1130 break; 1131 case Instruction::ExtractElement: 1132 Code = bitc::CST_CODE_CE_EXTRACTELT; 1133 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1134 Record.push_back(VE.getValueID(C->getOperand(0))); 1135 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1136 Record.push_back(VE.getValueID(C->getOperand(1))); 1137 break; 1138 case Instruction::InsertElement: 1139 Code = bitc::CST_CODE_CE_INSERTELT; 1140 Record.push_back(VE.getValueID(C->getOperand(0))); 1141 Record.push_back(VE.getValueID(C->getOperand(1))); 1142 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1143 Record.push_back(VE.getValueID(C->getOperand(2))); 1144 break; 1145 case Instruction::ShuffleVector: 1146 // If the return type and argument types are the same, this is a 1147 // standard shufflevector instruction. If the types are different, 1148 // then the shuffle is widening or truncating the input vectors, and 1149 // the argument type must also be encoded. 1150 if (C->getType() == C->getOperand(0)->getType()) { 1151 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1152 } else { 1153 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1154 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1155 } 1156 Record.push_back(VE.getValueID(C->getOperand(0))); 1157 Record.push_back(VE.getValueID(C->getOperand(1))); 1158 Record.push_back(VE.getValueID(C->getOperand(2))); 1159 break; 1160 case Instruction::ICmp: 1161 case Instruction::FCmp: 1162 Code = bitc::CST_CODE_CE_CMP; 1163 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1164 Record.push_back(VE.getValueID(C->getOperand(0))); 1165 Record.push_back(VE.getValueID(C->getOperand(1))); 1166 Record.push_back(CE->getPredicate()); 1167 break; 1168 } 1169 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1170 Code = bitc::CST_CODE_BLOCKADDRESS; 1171 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1172 Record.push_back(VE.getValueID(BA->getFunction())); 1173 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1174 } else { 1175 #ifndef NDEBUG 1176 C->dump(); 1177 #endif 1178 llvm_unreachable("Unknown constant!"); 1179 } 1180 Stream.EmitRecord(Code, Record, AbbrevToUse); 1181 Record.clear(); 1182 } 1183 1184 Stream.ExitBlock(); 1185 } 1186 1187 static void WriteModuleConstants(const ValueEnumerator &VE, 1188 BitstreamWriter &Stream) { 1189 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1190 1191 // Find the first constant to emit, which is the first non-globalvalue value. 1192 // We know globalvalues have been emitted by WriteModuleInfo. 1193 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1194 if (!isa<GlobalValue>(Vals[i].first)) { 1195 WriteConstants(i, Vals.size(), VE, Stream, true); 1196 return; 1197 } 1198 } 1199 } 1200 1201 /// PushValueAndType - The file has to encode both the value and type id for 1202 /// many values, because we need to know what type to create for forward 1203 /// references. However, most operands are not forward references, so this type 1204 /// field is not needed. 1205 /// 1206 /// This function adds V's value ID to Vals. If the value ID is higher than the 1207 /// instruction ID, then it is a forward reference, and it also includes the 1208 /// type ID. The value ID that is written is encoded relative to the InstID. 1209 static bool PushValueAndType(const Value *V, unsigned InstID, 1210 SmallVectorImpl<unsigned> &Vals, 1211 ValueEnumerator &VE) { 1212 unsigned ValID = VE.getValueID(V); 1213 // Make encoding relative to the InstID. 1214 Vals.push_back(InstID - ValID); 1215 if (ValID >= InstID) { 1216 Vals.push_back(VE.getTypeID(V->getType())); 1217 return true; 1218 } 1219 return false; 1220 } 1221 1222 /// pushValue - Like PushValueAndType, but where the type of the value is 1223 /// omitted (perhaps it was already encoded in an earlier operand). 1224 static void pushValue(const Value *V, unsigned InstID, 1225 SmallVectorImpl<unsigned> &Vals, 1226 ValueEnumerator &VE) { 1227 unsigned ValID = VE.getValueID(V); 1228 Vals.push_back(InstID - ValID); 1229 } 1230 1231 static void pushValueSigned(const Value *V, unsigned InstID, 1232 SmallVectorImpl<uint64_t> &Vals, 1233 ValueEnumerator &VE) { 1234 unsigned ValID = VE.getValueID(V); 1235 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1236 emitSignedInt64(Vals, diff); 1237 } 1238 1239 /// WriteInstruction - Emit an instruction to the specified stream. 1240 static void WriteInstruction(const Instruction &I, unsigned InstID, 1241 ValueEnumerator &VE, BitstreamWriter &Stream, 1242 SmallVectorImpl<unsigned> &Vals) { 1243 unsigned Code = 0; 1244 unsigned AbbrevToUse = 0; 1245 VE.setInstructionID(&I); 1246 switch (I.getOpcode()) { 1247 default: 1248 if (Instruction::isCast(I.getOpcode())) { 1249 Code = bitc::FUNC_CODE_INST_CAST; 1250 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1251 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1252 Vals.push_back(VE.getTypeID(I.getType())); 1253 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1254 } else { 1255 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1256 Code = bitc::FUNC_CODE_INST_BINOP; 1257 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1258 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1259 pushValue(I.getOperand(1), InstID, Vals, VE); 1260 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1261 uint64_t Flags = GetOptimizationFlags(&I); 1262 if (Flags != 0) { 1263 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1264 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1265 Vals.push_back(Flags); 1266 } 1267 } 1268 break; 1269 1270 case Instruction::GetElementPtr: 1271 Code = bitc::FUNC_CODE_INST_GEP; 1272 if (cast<GEPOperator>(&I)->isInBounds()) 1273 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1274 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1275 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1276 break; 1277 case Instruction::ExtractValue: { 1278 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1279 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1280 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1281 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1282 Vals.push_back(*i); 1283 break; 1284 } 1285 case Instruction::InsertValue: { 1286 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1287 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1288 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1289 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1290 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1291 Vals.push_back(*i); 1292 break; 1293 } 1294 case Instruction::Select: 1295 Code = bitc::FUNC_CODE_INST_VSELECT; 1296 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1297 pushValue(I.getOperand(2), InstID, Vals, VE); 1298 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1299 break; 1300 case Instruction::ExtractElement: 1301 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1302 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1303 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1304 break; 1305 case Instruction::InsertElement: 1306 Code = bitc::FUNC_CODE_INST_INSERTELT; 1307 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1308 pushValue(I.getOperand(1), InstID, Vals, VE); 1309 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1310 break; 1311 case Instruction::ShuffleVector: 1312 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1313 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1314 pushValue(I.getOperand(1), InstID, Vals, VE); 1315 pushValue(I.getOperand(2), InstID, Vals, VE); 1316 break; 1317 case Instruction::ICmp: 1318 case Instruction::FCmp: 1319 // compare returning Int1Ty or vector of Int1Ty 1320 Code = bitc::FUNC_CODE_INST_CMP2; 1321 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1322 pushValue(I.getOperand(1), InstID, Vals, VE); 1323 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1324 break; 1325 1326 case Instruction::Ret: 1327 { 1328 Code = bitc::FUNC_CODE_INST_RET; 1329 unsigned NumOperands = I.getNumOperands(); 1330 if (NumOperands == 0) 1331 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1332 else if (NumOperands == 1) { 1333 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1334 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1335 } else { 1336 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1337 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1338 } 1339 } 1340 break; 1341 case Instruction::Br: 1342 { 1343 Code = bitc::FUNC_CODE_INST_BR; 1344 const BranchInst &II = cast<BranchInst>(I); 1345 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1346 if (II.isConditional()) { 1347 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1348 pushValue(II.getCondition(), InstID, Vals, VE); 1349 } 1350 } 1351 break; 1352 case Instruction::Switch: 1353 { 1354 Code = bitc::FUNC_CODE_INST_SWITCH; 1355 const SwitchInst &SI = cast<SwitchInst>(I); 1356 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1357 pushValue(SI.getCondition(), InstID, Vals, VE); 1358 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1359 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1360 i != e; ++i) { 1361 Vals.push_back(VE.getValueID(i.getCaseValue())); 1362 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1363 } 1364 } 1365 break; 1366 case Instruction::IndirectBr: 1367 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1368 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1369 // Encode the address operand as relative, but not the basic blocks. 1370 pushValue(I.getOperand(0), InstID, Vals, VE); 1371 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1372 Vals.push_back(VE.getValueID(I.getOperand(i))); 1373 break; 1374 1375 case Instruction::Invoke: { 1376 const InvokeInst *II = cast<InvokeInst>(&I); 1377 const Value *Callee(II->getCalledValue()); 1378 PointerType *PTy = cast<PointerType>(Callee->getType()); 1379 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1380 Code = bitc::FUNC_CODE_INST_INVOKE; 1381 1382 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1383 Vals.push_back(II->getCallingConv()); 1384 Vals.push_back(VE.getValueID(II->getNormalDest())); 1385 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1386 PushValueAndType(Callee, InstID, Vals, VE); 1387 1388 // Emit value #'s for the fixed parameters. 1389 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1390 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1391 1392 // Emit type/value pairs for varargs params. 1393 if (FTy->isVarArg()) { 1394 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1395 i != e; ++i) 1396 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1397 } 1398 break; 1399 } 1400 case Instruction::Resume: 1401 Code = bitc::FUNC_CODE_INST_RESUME; 1402 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1403 break; 1404 case Instruction::Unreachable: 1405 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1406 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1407 break; 1408 1409 case Instruction::PHI: { 1410 const PHINode &PN = cast<PHINode>(I); 1411 Code = bitc::FUNC_CODE_INST_PHI; 1412 // With the newer instruction encoding, forward references could give 1413 // negative valued IDs. This is most common for PHIs, so we use 1414 // signed VBRs. 1415 SmallVector<uint64_t, 128> Vals64; 1416 Vals64.push_back(VE.getTypeID(PN.getType())); 1417 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1418 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1419 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1420 } 1421 // Emit a Vals64 vector and exit. 1422 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1423 Vals64.clear(); 1424 return; 1425 } 1426 1427 case Instruction::LandingPad: { 1428 const LandingPadInst &LP = cast<LandingPadInst>(I); 1429 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1430 Vals.push_back(VE.getTypeID(LP.getType())); 1431 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1432 Vals.push_back(LP.isCleanup()); 1433 Vals.push_back(LP.getNumClauses()); 1434 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1435 if (LP.isCatch(I)) 1436 Vals.push_back(LandingPadInst::Catch); 1437 else 1438 Vals.push_back(LandingPadInst::Filter); 1439 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1440 } 1441 break; 1442 } 1443 1444 case Instruction::Alloca: { 1445 Code = bitc::FUNC_CODE_INST_ALLOCA; 1446 Vals.push_back(VE.getTypeID(I.getType())); 1447 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1448 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1449 const AllocaInst &AI = cast<AllocaInst>(I); 1450 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1451 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1452 "not enough bits for maximum alignment"); 1453 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1454 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1455 Vals.push_back(AlignRecord); 1456 break; 1457 } 1458 1459 case Instruction::Load: 1460 if (cast<LoadInst>(I).isAtomic()) { 1461 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1462 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1463 } else { 1464 Code = bitc::FUNC_CODE_INST_LOAD; 1465 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1466 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1467 } 1468 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1469 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1470 if (cast<LoadInst>(I).isAtomic()) { 1471 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1472 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1473 } 1474 break; 1475 case Instruction::Store: 1476 if (cast<StoreInst>(I).isAtomic()) 1477 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1478 else 1479 Code = bitc::FUNC_CODE_INST_STORE; 1480 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1481 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1482 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1483 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1484 if (cast<StoreInst>(I).isAtomic()) { 1485 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1486 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1487 } 1488 break; 1489 case Instruction::AtomicCmpXchg: 1490 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1491 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1492 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1493 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1494 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1495 Vals.push_back(GetEncodedOrdering( 1496 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1497 Vals.push_back(GetEncodedSynchScope( 1498 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1499 Vals.push_back(GetEncodedOrdering( 1500 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1501 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1502 break; 1503 case Instruction::AtomicRMW: 1504 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1505 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1506 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1507 Vals.push_back(GetEncodedRMWOperation( 1508 cast<AtomicRMWInst>(I).getOperation())); 1509 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1510 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1511 Vals.push_back(GetEncodedSynchScope( 1512 cast<AtomicRMWInst>(I).getSynchScope())); 1513 break; 1514 case Instruction::Fence: 1515 Code = bitc::FUNC_CODE_INST_FENCE; 1516 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1517 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1518 break; 1519 case Instruction::Call: { 1520 const CallInst &CI = cast<CallInst>(I); 1521 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1522 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1523 1524 Code = bitc::FUNC_CODE_INST_CALL; 1525 1526 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1527 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1528 unsigned(CI.isMustTailCall()) << 14); 1529 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1530 1531 // Emit value #'s for the fixed parameters. 1532 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1533 // Check for labels (can happen with asm labels). 1534 if (FTy->getParamType(i)->isLabelTy()) 1535 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1536 else 1537 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1538 } 1539 1540 // Emit type/value pairs for varargs params. 1541 if (FTy->isVarArg()) { 1542 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1543 i != e; ++i) 1544 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1545 } 1546 break; 1547 } 1548 case Instruction::VAArg: 1549 Code = bitc::FUNC_CODE_INST_VAARG; 1550 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1551 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1552 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1553 break; 1554 } 1555 1556 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1557 Vals.clear(); 1558 } 1559 1560 // Emit names for globals/functions etc. 1561 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1562 const ValueEnumerator &VE, 1563 BitstreamWriter &Stream) { 1564 if (VST.empty()) return; 1565 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1566 1567 // FIXME: Set up the abbrev, we know how many values there are! 1568 // FIXME: We know if the type names can use 7-bit ascii. 1569 SmallVector<unsigned, 64> NameVals; 1570 1571 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1572 SI != SE; ++SI) { 1573 1574 const ValueName &Name = *SI; 1575 1576 // Figure out the encoding to use for the name. 1577 bool is7Bit = true; 1578 bool isChar6 = true; 1579 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1580 C != E; ++C) { 1581 if (isChar6) 1582 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1583 if ((unsigned char)*C & 128) { 1584 is7Bit = false; 1585 break; // don't bother scanning the rest. 1586 } 1587 } 1588 1589 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1590 1591 // VST_ENTRY: [valueid, namechar x N] 1592 // VST_BBENTRY: [bbid, namechar x N] 1593 unsigned Code; 1594 if (isa<BasicBlock>(SI->getValue())) { 1595 Code = bitc::VST_CODE_BBENTRY; 1596 if (isChar6) 1597 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1598 } else { 1599 Code = bitc::VST_CODE_ENTRY; 1600 if (isChar6) 1601 AbbrevToUse = VST_ENTRY_6_ABBREV; 1602 else if (is7Bit) 1603 AbbrevToUse = VST_ENTRY_7_ABBREV; 1604 } 1605 1606 NameVals.push_back(VE.getValueID(SI->getValue())); 1607 for (const char *P = Name.getKeyData(), 1608 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1609 NameVals.push_back((unsigned char)*P); 1610 1611 // Emit the finished record. 1612 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1613 NameVals.clear(); 1614 } 1615 Stream.ExitBlock(); 1616 } 1617 1618 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1619 BitstreamWriter &Stream) { 1620 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1621 unsigned Code; 1622 if (isa<BasicBlock>(Order.V)) 1623 Code = bitc::USELIST_CODE_BB; 1624 else 1625 Code = bitc::USELIST_CODE_DEFAULT; 1626 1627 SmallVector<uint64_t, 64> Record; 1628 for (unsigned I : Order.Shuffle) 1629 Record.push_back(I); 1630 Record.push_back(VE.getValueID(Order.V)); 1631 Stream.EmitRecord(Code, Record); 1632 } 1633 1634 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1635 BitstreamWriter &Stream) { 1636 auto hasMore = [&]() { 1637 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1638 }; 1639 if (!hasMore()) 1640 // Nothing to do. 1641 return; 1642 1643 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1644 while (hasMore()) { 1645 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1646 VE.UseListOrders.pop_back(); 1647 } 1648 Stream.ExitBlock(); 1649 } 1650 1651 /// WriteFunction - Emit a function body to the module stream. 1652 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1653 BitstreamWriter &Stream) { 1654 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1655 VE.incorporateFunction(F); 1656 1657 SmallVector<unsigned, 64> Vals; 1658 1659 // Emit the number of basic blocks, so the reader can create them ahead of 1660 // time. 1661 Vals.push_back(VE.getBasicBlocks().size()); 1662 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1663 Vals.clear(); 1664 1665 // If there are function-local constants, emit them now. 1666 unsigned CstStart, CstEnd; 1667 VE.getFunctionConstantRange(CstStart, CstEnd); 1668 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1669 1670 // If there is function-local metadata, emit it now. 1671 WriteFunctionLocalMetadata(F, VE, Stream); 1672 1673 // Keep a running idea of what the instruction ID is. 1674 unsigned InstID = CstEnd; 1675 1676 bool NeedsMetadataAttachment = false; 1677 1678 DebugLoc LastDL; 1679 1680 // Finally, emit all the instructions, in order. 1681 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1682 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1683 I != E; ++I) { 1684 WriteInstruction(*I, InstID, VE, Stream, Vals); 1685 1686 if (!I->getType()->isVoidTy()) 1687 ++InstID; 1688 1689 // If the instruction has metadata, write a metadata attachment later. 1690 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1691 1692 // If the instruction has a debug location, emit it. 1693 DebugLoc DL = I->getDebugLoc(); 1694 if (DL.isUnknown()) { 1695 // nothing todo. 1696 } else if (DL == LastDL) { 1697 // Just repeat the same debug loc as last time. 1698 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1699 } else { 1700 MDNode *Scope, *IA; 1701 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1702 assert(Scope && "Expected valid scope"); 1703 1704 Vals.push_back(DL.getLine()); 1705 Vals.push_back(DL.getCol()); 1706 Vals.push_back(Scope ? VE.getMetadataID(Scope) + 1 : 0); 1707 Vals.push_back(IA ? VE.getMetadataID(IA) + 1 : 0); 1708 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1709 Vals.clear(); 1710 1711 LastDL = DL; 1712 } 1713 } 1714 1715 // Emit names for all the instructions etc. 1716 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1717 1718 if (NeedsMetadataAttachment) 1719 WriteMetadataAttachment(F, VE, Stream); 1720 if (shouldPreserveBitcodeUseListOrder()) 1721 WriteUseListBlock(&F, VE, Stream); 1722 VE.purgeFunction(); 1723 Stream.ExitBlock(); 1724 } 1725 1726 // Emit blockinfo, which defines the standard abbreviations etc. 1727 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1728 // We only want to emit block info records for blocks that have multiple 1729 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1730 // Other blocks can define their abbrevs inline. 1731 Stream.EnterBlockInfoBlock(2); 1732 1733 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1734 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1739 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1740 Abbv) != VST_ENTRY_8_ABBREV) 1741 llvm_unreachable("Unexpected abbrev ordering!"); 1742 } 1743 1744 { // 7-bit fixed width VST_ENTRY strings. 1745 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1746 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1750 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1751 Abbv) != VST_ENTRY_7_ABBREV) 1752 llvm_unreachable("Unexpected abbrev ordering!"); 1753 } 1754 { // 6-bit char6 VST_ENTRY strings. 1755 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1756 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1760 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1761 Abbv) != VST_ENTRY_6_ABBREV) 1762 llvm_unreachable("Unexpected abbrev ordering!"); 1763 } 1764 { // 6-bit char6 VST_BBENTRY strings. 1765 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1766 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1770 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1771 Abbv) != VST_BBENTRY_6_ABBREV) 1772 llvm_unreachable("Unexpected abbrev ordering!"); 1773 } 1774 1775 1776 1777 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1778 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1779 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1781 Log2_32_Ceil(VE.getTypes().size()+1))); 1782 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1783 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1784 llvm_unreachable("Unexpected abbrev ordering!"); 1785 } 1786 1787 { // INTEGER abbrev for CONSTANTS_BLOCK. 1788 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1789 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1791 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1792 Abbv) != CONSTANTS_INTEGER_ABBREV) 1793 llvm_unreachable("Unexpected abbrev ordering!"); 1794 } 1795 1796 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1797 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1798 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1801 Log2_32_Ceil(VE.getTypes().size()+1))); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1803 1804 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1805 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1806 llvm_unreachable("Unexpected abbrev ordering!"); 1807 } 1808 { // NULL abbrev for CONSTANTS_BLOCK. 1809 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1810 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1811 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1812 Abbv) != CONSTANTS_NULL_Abbrev) 1813 llvm_unreachable("Unexpected abbrev ordering!"); 1814 } 1815 1816 // FIXME: This should only use space for first class types! 1817 1818 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1819 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1820 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1824 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1825 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1826 llvm_unreachable("Unexpected abbrev ordering!"); 1827 } 1828 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1829 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1830 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1834 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1835 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1836 llvm_unreachable("Unexpected abbrev ordering!"); 1837 } 1838 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1839 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1840 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1845 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1846 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1847 llvm_unreachable("Unexpected abbrev ordering!"); 1848 } 1849 { // INST_CAST abbrev for FUNCTION_BLOCK. 1850 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1851 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1854 Log2_32_Ceil(VE.getTypes().size()+1))); 1855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1856 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1857 Abbv) != FUNCTION_INST_CAST_ABBREV) 1858 llvm_unreachable("Unexpected abbrev ordering!"); 1859 } 1860 1861 { // INST_RET abbrev for FUNCTION_BLOCK. 1862 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1863 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1864 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1865 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1866 llvm_unreachable("Unexpected abbrev ordering!"); 1867 } 1868 { // INST_RET abbrev for FUNCTION_BLOCK. 1869 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1870 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1872 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1873 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1874 llvm_unreachable("Unexpected abbrev ordering!"); 1875 } 1876 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1877 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1878 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1879 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1880 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1881 llvm_unreachable("Unexpected abbrev ordering!"); 1882 } 1883 1884 Stream.ExitBlock(); 1885 } 1886 1887 /// WriteModule - Emit the specified module to the bitstream. 1888 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1889 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1890 1891 SmallVector<unsigned, 1> Vals; 1892 unsigned CurVersion = 1; 1893 Vals.push_back(CurVersion); 1894 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1895 1896 // Analyze the module, enumerating globals, functions, etc. 1897 ValueEnumerator VE(*M); 1898 1899 // Emit blockinfo, which defines the standard abbreviations etc. 1900 WriteBlockInfo(VE, Stream); 1901 1902 // Emit information about attribute groups. 1903 WriteAttributeGroupTable(VE, Stream); 1904 1905 // Emit information about parameter attributes. 1906 WriteAttributeTable(VE, Stream); 1907 1908 // Emit information describing all of the types in the module. 1909 WriteTypeTable(VE, Stream); 1910 1911 writeComdats(VE, Stream); 1912 1913 // Emit top-level description of module, including target triple, inline asm, 1914 // descriptors for global variables, and function prototype info. 1915 WriteModuleInfo(M, VE, Stream); 1916 1917 // Emit constants. 1918 WriteModuleConstants(VE, Stream); 1919 1920 // Emit metadata. 1921 WriteModuleMetadata(M, VE, Stream); 1922 1923 // Emit metadata. 1924 WriteModuleMetadataStore(M, Stream); 1925 1926 // Emit names for globals/functions etc. 1927 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1928 1929 // Emit module-level use-lists. 1930 if (shouldPreserveBitcodeUseListOrder()) 1931 WriteUseListBlock(nullptr, VE, Stream); 1932 1933 // Emit function bodies. 1934 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1935 if (!F->isDeclaration()) 1936 WriteFunction(*F, VE, Stream); 1937 1938 Stream.ExitBlock(); 1939 } 1940 1941 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1942 /// header and trailer to make it compatible with the system archiver. To do 1943 /// this we emit the following header, and then emit a trailer that pads the 1944 /// file out to be a multiple of 16 bytes. 1945 /// 1946 /// struct bc_header { 1947 /// uint32_t Magic; // 0x0B17C0DE 1948 /// uint32_t Version; // Version, currently always 0. 1949 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1950 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1951 /// uint32_t CPUType; // CPU specifier. 1952 /// ... potentially more later ... 1953 /// }; 1954 enum { 1955 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1956 DarwinBCHeaderSize = 5*4 1957 }; 1958 1959 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1960 uint32_t &Position) { 1961 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1962 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1963 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1964 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1965 Position += 4; 1966 } 1967 1968 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1969 const Triple &TT) { 1970 unsigned CPUType = ~0U; 1971 1972 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1973 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1974 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1975 // specific constants here because they are implicitly part of the Darwin ABI. 1976 enum { 1977 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1978 DARWIN_CPU_TYPE_X86 = 7, 1979 DARWIN_CPU_TYPE_ARM = 12, 1980 DARWIN_CPU_TYPE_POWERPC = 18 1981 }; 1982 1983 Triple::ArchType Arch = TT.getArch(); 1984 if (Arch == Triple::x86_64) 1985 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1986 else if (Arch == Triple::x86) 1987 CPUType = DARWIN_CPU_TYPE_X86; 1988 else if (Arch == Triple::ppc) 1989 CPUType = DARWIN_CPU_TYPE_POWERPC; 1990 else if (Arch == Triple::ppc64) 1991 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1992 else if (Arch == Triple::arm || Arch == Triple::thumb) 1993 CPUType = DARWIN_CPU_TYPE_ARM; 1994 1995 // Traditional Bitcode starts after header. 1996 assert(Buffer.size() >= DarwinBCHeaderSize && 1997 "Expected header size to be reserved"); 1998 unsigned BCOffset = DarwinBCHeaderSize; 1999 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2000 2001 // Write the magic and version. 2002 unsigned Position = 0; 2003 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2004 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2005 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2006 WriteInt32ToBuffer(BCSize , Buffer, Position); 2007 WriteInt32ToBuffer(CPUType , Buffer, Position); 2008 2009 // If the file is not a multiple of 16 bytes, insert dummy padding. 2010 while (Buffer.size() & 15) 2011 Buffer.push_back(0); 2012 } 2013 2014 /// WriteBitcodeToFile - Write the specified module to the specified output 2015 /// stream. 2016 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2017 SmallVector<char, 0> Buffer; 2018 Buffer.reserve(256*1024); 2019 2020 // If this is darwin or another generic macho target, reserve space for the 2021 // header. 2022 Triple TT(M->getTargetTriple()); 2023 if (TT.isOSDarwin()) 2024 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2025 2026 // Emit the module into the buffer. 2027 { 2028 BitstreamWriter Stream(Buffer); 2029 2030 // Emit the file header. 2031 Stream.Emit((unsigned)'B', 8); 2032 Stream.Emit((unsigned)'C', 8); 2033 Stream.Emit(0x0, 4); 2034 Stream.Emit(0xC, 4); 2035 Stream.Emit(0xE, 4); 2036 Stream.Emit(0xD, 4); 2037 2038 // Emit the module. 2039 WriteModule(M, Stream); 2040 } 2041 2042 if (TT.isOSDarwin()) 2043 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2044 2045 // Write the generated bitstream to "Out". 2046 Out.write((char*)&Buffer.front(), Buffer.size()); 2047 } 2048