1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitstreamWriter.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/UseListOrder.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Program.h"
34 #include "llvm/Support/SHA1.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cctype>
37 #include <map>
38 using namespace llvm;
39 
40 namespace {
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44   // VALUE_SYMTAB_BLOCK abbrev id's.
45   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   VST_ENTRY_7_ABBREV,
47   VST_ENTRY_6_ABBREV,
48   VST_BBENTRY_6_ABBREV,
49 
50   // CONSTANTS_BLOCK abbrev id's.
51   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   CONSTANTS_INTEGER_ABBREV,
53   CONSTANTS_CE_CAST_Abbrev,
54   CONSTANTS_NULL_Abbrev,
55 
56   // FUNCTION_BLOCK abbrev id's.
57   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   FUNCTION_INST_BINOP_ABBREV,
59   FUNCTION_INST_BINOP_FLAGS_ABBREV,
60   FUNCTION_INST_CAST_ABBREV,
61   FUNCTION_INST_RET_VOID_ABBREV,
62   FUNCTION_INST_RET_VAL_ABBREV,
63   FUNCTION_INST_UNREACHABLE_ABBREV,
64   FUNCTION_INST_GEP_ABBREV,
65 };
66 
67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
68 /// file type.
69 class BitcodeWriterBase {
70 protected:
71   /// The stream created and owned by the client.
72   BitstreamWriter &Stream;
73 
74   /// Saves the offset of the VSTOffset record that must eventually be
75   /// backpatched with the offset of the actual VST.
76   uint64_t VSTOffsetPlaceholder = 0;
77 
78 public:
79   /// Constructs a BitcodeWriterBase object that writes to the provided
80   /// \p Stream.
81   BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {}
82 
83 protected:
84   bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
85   void writeValueSymbolTableForwardDecl();
86   void writeBitcodeHeader();
87 };
88 
89 /// Class to manage the bitcode writing for a module.
90 class ModuleBitcodeWriter : public BitcodeWriterBase {
91   /// Pointer to the buffer allocated by caller for bitcode writing.
92   const SmallVectorImpl<char> &Buffer;
93 
94   /// The Module to write to bitcode.
95   const Module &M;
96 
97   /// Enumerates ids for all values in the module.
98   ValueEnumerator VE;
99 
100   /// Optional per-module index to write for ThinLTO.
101   const ModuleSummaryIndex *Index;
102 
103   /// True if a module hash record should be written.
104   bool GenerateHash;
105 
106   /// The start bit of the identification block.
107   uint64_t BitcodeStartBit;
108 
109   /// Map that holds the correspondence between GUIDs in the summary index,
110   /// that came from indirect call profiles, and a value id generated by this
111   /// class to use in the VST and summary block records.
112   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
113 
114   /// Tracks the last value id recorded in the GUIDToValueMap.
115   unsigned GlobalValueId;
116 
117 public:
118   /// Constructs a ModuleBitcodeWriter object for the given Module,
119   /// writing to the provided \p Buffer.
120   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
121                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
122                       const ModuleSummaryIndex *Index, bool GenerateHash)
123       : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M),
124         VE(*M, ShouldPreserveUseListOrder), Index(Index),
125         GenerateHash(GenerateHash), BitcodeStartBit(Stream.GetCurrentBitNo()) {
126     // Assign ValueIds to any callee values in the index that came from
127     // indirect call profiles and were recorded as a GUID not a Value*
128     // (which would have been assigned an ID by the ValueEnumerator).
129     // The starting ValueId is just after the number of values in the
130     // ValueEnumerator, so that they can be emitted in the VST.
131     GlobalValueId = VE.getValues().size();
132     if (!Index)
133       return;
134     for (const auto &GUIDSummaryLists : *Index)
135       // Examine all summaries for this GUID.
136       for (auto &Summary : GUIDSummaryLists.second)
137         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
138           // For each call in the function summary, see if the call
139           // is to a GUID (which means it is for an indirect call,
140           // otherwise we would have a Value for it). If so, synthesize
141           // a value id.
142           for (auto &CallEdge : FS->calls())
143             if (CallEdge.first.isGUID())
144               assignValueId(CallEdge.first.getGUID());
145   }
146 
147   /// Emit the current module to the bitstream.
148   void write();
149 
150 private:
151   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
152 
153   void writeAttributeGroupTable();
154   void writeAttributeTable();
155   void writeTypeTable();
156   void writeComdats();
157   void writeModuleInfo();
158   void writeValueAsMetadata(const ValueAsMetadata *MD,
159                             SmallVectorImpl<uint64_t> &Record);
160   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
161                     unsigned Abbrev);
162   unsigned createDILocationAbbrev();
163   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
164                        unsigned &Abbrev);
165   unsigned createGenericDINodeAbbrev();
166   void writeGenericDINode(const GenericDINode *N,
167                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
168   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
169                        unsigned Abbrev);
170   void writeDIEnumerator(const DIEnumerator *N,
171                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
172   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
173                         unsigned Abbrev);
174   void writeDIDerivedType(const DIDerivedType *N,
175                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
176   void writeDICompositeType(const DICompositeType *N,
177                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
178   void writeDISubroutineType(const DISubroutineType *N,
179                              SmallVectorImpl<uint64_t> &Record,
180                              unsigned Abbrev);
181   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
182                    unsigned Abbrev);
183   void writeDICompileUnit(const DICompileUnit *N,
184                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
185   void writeDISubprogram(const DISubprogram *N,
186                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
187   void writeDILexicalBlock(const DILexicalBlock *N,
188                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
189   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
190                                SmallVectorImpl<uint64_t> &Record,
191                                unsigned Abbrev);
192   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
193                         unsigned Abbrev);
194   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
195                     unsigned Abbrev);
196   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
197                         unsigned Abbrev);
198   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
199                      unsigned Abbrev);
200   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
201                                     SmallVectorImpl<uint64_t> &Record,
202                                     unsigned Abbrev);
203   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
204                                      SmallVectorImpl<uint64_t> &Record,
205                                      unsigned Abbrev);
206   void writeDIGlobalVariable(const DIGlobalVariable *N,
207                              SmallVectorImpl<uint64_t> &Record,
208                              unsigned Abbrev);
209   void writeDILocalVariable(const DILocalVariable *N,
210                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
211   void writeDIExpression(const DIExpression *N,
212                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
213   void writeDIObjCProperty(const DIObjCProperty *N,
214                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
215   void writeDIImportedEntity(const DIImportedEntity *N,
216                              SmallVectorImpl<uint64_t> &Record,
217                              unsigned Abbrev);
218   unsigned createNamedMetadataAbbrev();
219   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
220   unsigned createMetadataStringsAbbrev();
221   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
222                             SmallVectorImpl<uint64_t> &Record);
223   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
224                             SmallVectorImpl<uint64_t> &Record);
225   void writeModuleMetadata();
226   void writeFunctionMetadata(const Function &F);
227   void writeFunctionMetadataAttachment(const Function &F);
228   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
229   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
230                                     const GlobalObject &GO);
231   void writeModuleMetadataKinds();
232   void writeOperandBundleTags();
233   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
234   void writeModuleConstants();
235   bool pushValueAndType(const Value *V, unsigned InstID,
236                         SmallVectorImpl<unsigned> &Vals);
237   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
238   void pushValue(const Value *V, unsigned InstID,
239                  SmallVectorImpl<unsigned> &Vals);
240   void pushValueSigned(const Value *V, unsigned InstID,
241                        SmallVectorImpl<uint64_t> &Vals);
242   void writeInstruction(const Instruction &I, unsigned InstID,
243                         SmallVectorImpl<unsigned> &Vals);
244   void writeValueSymbolTable(
245       const ValueSymbolTable &VST, bool IsModuleLevel = false,
246       DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
247   void writeUseList(UseListOrder &&Order);
248   void writeUseListBlock(const Function *F);
249   void
250   writeFunction(const Function &F,
251                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
252   void writeBlockInfo();
253   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
254                                            GlobalValueSummary *Summary,
255                                            unsigned ValueID,
256                                            unsigned FSCallsAbbrev,
257                                            unsigned FSCallsProfileAbbrev,
258                                            const Function &F);
259   void writeModuleLevelReferences(const GlobalVariable &V,
260                                   SmallVector<uint64_t, 64> &NameVals,
261                                   unsigned FSModRefsAbbrev);
262   void writePerModuleGlobalValueSummary();
263   void writeModuleHash(size_t BlockStartPos);
264 
265   void assignValueId(GlobalValue::GUID ValGUID) {
266     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
267   }
268   unsigned getValueId(GlobalValue::GUID ValGUID) {
269     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
270     // Expect that any GUID value had a value Id assigned by an
271     // earlier call to assignValueId.
272     assert(VMI != GUIDToValueIdMap.end() &&
273            "GUID does not have assigned value Id");
274     return VMI->second;
275   }
276   // Helper to get the valueId for the type of value recorded in VI.
277   unsigned getValueId(ValueInfo VI) {
278     if (VI.isGUID())
279       return getValueId(VI.getGUID());
280     return VE.getValueID(VI.getValue());
281   }
282   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
283 };
284 
285 /// Class to manage the bitcode writing for a combined index.
286 class IndexBitcodeWriter : public BitcodeWriterBase {
287   /// The combined index to write to bitcode.
288   const ModuleSummaryIndex &Index;
289 
290   /// When writing a subset of the index for distributed backends, client
291   /// provides a map of modules to the corresponding GUIDs/summaries to write.
292   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
293 
294   /// Map that holds the correspondence between the GUID used in the combined
295   /// index and a value id generated by this class to use in references.
296   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
297 
298   /// Tracks the last value id recorded in the GUIDToValueMap.
299   unsigned GlobalValueId = 0;
300 
301 public:
302   /// Constructs a IndexBitcodeWriter object for the given combined index,
303   /// writing to the provided \p Buffer. When writing a subset of the index
304   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
305   IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index,
306                      const std::map<std::string, GVSummaryMapTy>
307                          *ModuleToSummariesForIndex = nullptr)
308       : BitcodeWriterBase(Stream), Index(Index),
309         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
310     // Assign unique value ids to all summaries to be written, for use
311     // in writing out the call graph edges. Save the mapping from GUID
312     // to the new global value id to use when writing those edges, which
313     // are currently saved in the index in terms of GUID.
314     for (const auto &I : *this)
315       GUIDToValueIdMap[I.first] = ++GlobalValueId;
316   }
317 
318   /// The below iterator returns the GUID and associated summary.
319   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
320 
321   /// Iterator over the value GUID and summaries to be written to bitcode,
322   /// hides the details of whether they are being pulled from the entire
323   /// index or just those in a provided ModuleToSummariesForIndex map.
324   class iterator
325       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
326                                           GVInfo> {
327     /// Enables access to parent class.
328     const IndexBitcodeWriter &Writer;
329 
330     // Iterators used when writing only those summaries in a provided
331     // ModuleToSummariesForIndex map:
332 
333     /// Points to the last element in outer ModuleToSummariesForIndex map.
334     std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack;
335     /// Iterator on outer ModuleToSummariesForIndex map.
336     std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter;
337     /// Iterator on an inner global variable summary map.
338     GVSummaryMapTy::const_iterator ModuleGVSummariesIter;
339 
340     // Iterators used when writing all summaries in the index:
341 
342     /// Points to the last element in the Index outer GlobalValueMap.
343     const_gvsummary_iterator IndexSummariesBack;
344     /// Iterator on outer GlobalValueMap.
345     const_gvsummary_iterator IndexSummariesIter;
346     /// Iterator on an inner GlobalValueSummaryList.
347     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
348 
349   public:
350     /// Construct iterator from parent \p Writer and indicate if we are
351     /// constructing the end iterator.
352     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
353       // Set up the appropriate set of iterators given whether we are writing
354       // the full index or just a subset.
355       // Can't setup the Back or inner iterators if the corresponding map
356       // is empty. This will be handled specially in operator== as well.
357       if (Writer.ModuleToSummariesForIndex &&
358           !Writer.ModuleToSummariesForIndex->empty()) {
359         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
360              std::next(ModuleSummariesBack) !=
361              Writer.ModuleToSummariesForIndex->end();
362              ModuleSummariesBack++)
363           ;
364         ModuleSummariesIter = !IsAtEnd
365                                   ? Writer.ModuleToSummariesForIndex->begin()
366                                   : ModuleSummariesBack;
367         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
368                                          : ModuleSummariesBack->second.end();
369       } else if (!Writer.ModuleToSummariesForIndex &&
370                  Writer.Index.begin() != Writer.Index.end()) {
371         for (IndexSummariesBack = Writer.Index.begin();
372              std::next(IndexSummariesBack) != Writer.Index.end();
373              IndexSummariesBack++)
374           ;
375         IndexSummariesIter =
376             !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
377         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
378                                         : IndexSummariesBack->second.end();
379       }
380     }
381 
382     /// Increment the appropriate set of iterators.
383     iterator &operator++() {
384       // First the inner iterator is incremented, then if it is at the end
385       // and there are more outer iterations to go, the inner is reset to
386       // the start of the next inner list.
387       if (Writer.ModuleToSummariesForIndex) {
388         ++ModuleGVSummariesIter;
389         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
390             ModuleSummariesIter != ModuleSummariesBack) {
391           ++ModuleSummariesIter;
392           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
393         }
394       } else {
395         ++IndexGVSummariesIter;
396         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
397             IndexSummariesIter != IndexSummariesBack) {
398           ++IndexSummariesIter;
399           IndexGVSummariesIter = IndexSummariesIter->second.begin();
400         }
401       }
402       return *this;
403     }
404 
405     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
406     /// outer and inner iterator positions.
407     GVInfo operator*() {
408       if (Writer.ModuleToSummariesForIndex)
409         return std::make_pair(ModuleGVSummariesIter->first,
410                               ModuleGVSummariesIter->second);
411       return std::make_pair(IndexSummariesIter->first,
412                             IndexGVSummariesIter->get());
413     }
414 
415     /// Checks if the iterators are equal, with special handling for empty
416     /// indexes.
417     bool operator==(const iterator &RHS) const {
418       if (Writer.ModuleToSummariesForIndex) {
419         // First ensure that both are writing the same subset.
420         if (Writer.ModuleToSummariesForIndex !=
421             RHS.Writer.ModuleToSummariesForIndex)
422           return false;
423         // Already determined above that maps are the same, so if one is
424         // empty, they both are.
425         if (Writer.ModuleToSummariesForIndex->empty())
426           return true;
427         // Ensure the ModuleGVSummariesIter are iterating over the same
428         // container before checking them below.
429         if (ModuleSummariesIter != RHS.ModuleSummariesIter)
430           return false;
431         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
432       }
433       // First ensure RHS also writing the full index, and that both are
434       // writing the same full index.
435       if (RHS.Writer.ModuleToSummariesForIndex ||
436           &Writer.Index != &RHS.Writer.Index)
437         return false;
438       // Already determined above that maps are the same, so if one is
439       // empty, they both are.
440       if (Writer.Index.begin() == Writer.Index.end())
441         return true;
442       // Ensure the IndexGVSummariesIter are iterating over the same
443       // container before checking them below.
444       if (IndexSummariesIter != RHS.IndexSummariesIter)
445         return false;
446       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
447     }
448   };
449 
450   /// Obtain the start iterator over the summaries to be written.
451   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
452   /// Obtain the end iterator over the summaries to be written.
453   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
454 
455   /// Main entry point for writing a combined index to bitcode.
456   void write();
457 
458 private:
459   void writeIndex();
460   void writeModStrings();
461   void writeCombinedValueSymbolTable();
462   void writeCombinedGlobalValueSummary();
463 
464   /// Indicates whether the provided \p ModulePath should be written into
465   /// the module string table, e.g. if full index written or if it is in
466   /// the provided subset.
467   bool doIncludeModule(StringRef ModulePath) {
468     return !ModuleToSummariesForIndex ||
469            ModuleToSummariesForIndex->count(ModulePath);
470   }
471 
472   bool hasValueId(GlobalValue::GUID ValGUID) {
473     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
474     return VMI != GUIDToValueIdMap.end();
475   }
476   unsigned getValueId(GlobalValue::GUID ValGUID) {
477     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
478     // If this GUID doesn't have an entry, assign one.
479     if (VMI == GUIDToValueIdMap.end()) {
480       GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
481       return GlobalValueId;
482     } else {
483       return VMI->second;
484     }
485   }
486   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
487 };
488 } // end anonymous namespace
489 
490 static unsigned getEncodedCastOpcode(unsigned Opcode) {
491   switch (Opcode) {
492   default: llvm_unreachable("Unknown cast instruction!");
493   case Instruction::Trunc   : return bitc::CAST_TRUNC;
494   case Instruction::ZExt    : return bitc::CAST_ZEXT;
495   case Instruction::SExt    : return bitc::CAST_SEXT;
496   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
497   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
498   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
499   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
500   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
501   case Instruction::FPExt   : return bitc::CAST_FPEXT;
502   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
503   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
504   case Instruction::BitCast : return bitc::CAST_BITCAST;
505   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
506   }
507 }
508 
509 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
510   switch (Opcode) {
511   default: llvm_unreachable("Unknown binary instruction!");
512   case Instruction::Add:
513   case Instruction::FAdd: return bitc::BINOP_ADD;
514   case Instruction::Sub:
515   case Instruction::FSub: return bitc::BINOP_SUB;
516   case Instruction::Mul:
517   case Instruction::FMul: return bitc::BINOP_MUL;
518   case Instruction::UDiv: return bitc::BINOP_UDIV;
519   case Instruction::FDiv:
520   case Instruction::SDiv: return bitc::BINOP_SDIV;
521   case Instruction::URem: return bitc::BINOP_UREM;
522   case Instruction::FRem:
523   case Instruction::SRem: return bitc::BINOP_SREM;
524   case Instruction::Shl:  return bitc::BINOP_SHL;
525   case Instruction::LShr: return bitc::BINOP_LSHR;
526   case Instruction::AShr: return bitc::BINOP_ASHR;
527   case Instruction::And:  return bitc::BINOP_AND;
528   case Instruction::Or:   return bitc::BINOP_OR;
529   case Instruction::Xor:  return bitc::BINOP_XOR;
530   }
531 }
532 
533 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
534   switch (Op) {
535   default: llvm_unreachable("Unknown RMW operation!");
536   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
537   case AtomicRMWInst::Add: return bitc::RMW_ADD;
538   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
539   case AtomicRMWInst::And: return bitc::RMW_AND;
540   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
541   case AtomicRMWInst::Or: return bitc::RMW_OR;
542   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
543   case AtomicRMWInst::Max: return bitc::RMW_MAX;
544   case AtomicRMWInst::Min: return bitc::RMW_MIN;
545   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
546   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
547   }
548 }
549 
550 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
551   switch (Ordering) {
552   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
553   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
554   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
555   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
556   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
557   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
558   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
559   }
560   llvm_unreachable("Invalid ordering");
561 }
562 
563 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
564   switch (SynchScope) {
565   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
566   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
567   }
568   llvm_unreachable("Invalid synch scope");
569 }
570 
571 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
572                               StringRef Str, unsigned AbbrevToUse) {
573   SmallVector<unsigned, 64> Vals;
574 
575   // Code: [strchar x N]
576   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
577     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
578       AbbrevToUse = 0;
579     Vals.push_back(Str[i]);
580   }
581 
582   // Emit the finished record.
583   Stream.EmitRecord(Code, Vals, AbbrevToUse);
584 }
585 
586 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
587   switch (Kind) {
588   case Attribute::Alignment:
589     return bitc::ATTR_KIND_ALIGNMENT;
590   case Attribute::AllocSize:
591     return bitc::ATTR_KIND_ALLOC_SIZE;
592   case Attribute::AlwaysInline:
593     return bitc::ATTR_KIND_ALWAYS_INLINE;
594   case Attribute::ArgMemOnly:
595     return bitc::ATTR_KIND_ARGMEMONLY;
596   case Attribute::Builtin:
597     return bitc::ATTR_KIND_BUILTIN;
598   case Attribute::ByVal:
599     return bitc::ATTR_KIND_BY_VAL;
600   case Attribute::Convergent:
601     return bitc::ATTR_KIND_CONVERGENT;
602   case Attribute::InAlloca:
603     return bitc::ATTR_KIND_IN_ALLOCA;
604   case Attribute::Cold:
605     return bitc::ATTR_KIND_COLD;
606   case Attribute::InaccessibleMemOnly:
607     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
608   case Attribute::InaccessibleMemOrArgMemOnly:
609     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
610   case Attribute::InlineHint:
611     return bitc::ATTR_KIND_INLINE_HINT;
612   case Attribute::InReg:
613     return bitc::ATTR_KIND_IN_REG;
614   case Attribute::JumpTable:
615     return bitc::ATTR_KIND_JUMP_TABLE;
616   case Attribute::MinSize:
617     return bitc::ATTR_KIND_MIN_SIZE;
618   case Attribute::Naked:
619     return bitc::ATTR_KIND_NAKED;
620   case Attribute::Nest:
621     return bitc::ATTR_KIND_NEST;
622   case Attribute::NoAlias:
623     return bitc::ATTR_KIND_NO_ALIAS;
624   case Attribute::NoBuiltin:
625     return bitc::ATTR_KIND_NO_BUILTIN;
626   case Attribute::NoCapture:
627     return bitc::ATTR_KIND_NO_CAPTURE;
628   case Attribute::NoDuplicate:
629     return bitc::ATTR_KIND_NO_DUPLICATE;
630   case Attribute::NoImplicitFloat:
631     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
632   case Attribute::NoInline:
633     return bitc::ATTR_KIND_NO_INLINE;
634   case Attribute::NoRecurse:
635     return bitc::ATTR_KIND_NO_RECURSE;
636   case Attribute::NonLazyBind:
637     return bitc::ATTR_KIND_NON_LAZY_BIND;
638   case Attribute::NonNull:
639     return bitc::ATTR_KIND_NON_NULL;
640   case Attribute::Dereferenceable:
641     return bitc::ATTR_KIND_DEREFERENCEABLE;
642   case Attribute::DereferenceableOrNull:
643     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
644   case Attribute::NoRedZone:
645     return bitc::ATTR_KIND_NO_RED_ZONE;
646   case Attribute::NoReturn:
647     return bitc::ATTR_KIND_NO_RETURN;
648   case Attribute::NoUnwind:
649     return bitc::ATTR_KIND_NO_UNWIND;
650   case Attribute::OptimizeForSize:
651     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
652   case Attribute::OptimizeNone:
653     return bitc::ATTR_KIND_OPTIMIZE_NONE;
654   case Attribute::ReadNone:
655     return bitc::ATTR_KIND_READ_NONE;
656   case Attribute::ReadOnly:
657     return bitc::ATTR_KIND_READ_ONLY;
658   case Attribute::Returned:
659     return bitc::ATTR_KIND_RETURNED;
660   case Attribute::ReturnsTwice:
661     return bitc::ATTR_KIND_RETURNS_TWICE;
662   case Attribute::SExt:
663     return bitc::ATTR_KIND_S_EXT;
664   case Attribute::StackAlignment:
665     return bitc::ATTR_KIND_STACK_ALIGNMENT;
666   case Attribute::StackProtect:
667     return bitc::ATTR_KIND_STACK_PROTECT;
668   case Attribute::StackProtectReq:
669     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
670   case Attribute::StackProtectStrong:
671     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
672   case Attribute::SafeStack:
673     return bitc::ATTR_KIND_SAFESTACK;
674   case Attribute::StructRet:
675     return bitc::ATTR_KIND_STRUCT_RET;
676   case Attribute::SanitizeAddress:
677     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
678   case Attribute::SanitizeThread:
679     return bitc::ATTR_KIND_SANITIZE_THREAD;
680   case Attribute::SanitizeMemory:
681     return bitc::ATTR_KIND_SANITIZE_MEMORY;
682   case Attribute::SwiftError:
683     return bitc::ATTR_KIND_SWIFT_ERROR;
684   case Attribute::SwiftSelf:
685     return bitc::ATTR_KIND_SWIFT_SELF;
686   case Attribute::UWTable:
687     return bitc::ATTR_KIND_UW_TABLE;
688   case Attribute::WriteOnly:
689     return bitc::ATTR_KIND_WRITEONLY;
690   case Attribute::ZExt:
691     return bitc::ATTR_KIND_Z_EXT;
692   case Attribute::EndAttrKinds:
693     llvm_unreachable("Can not encode end-attribute kinds marker.");
694   case Attribute::None:
695     llvm_unreachable("Can not encode none-attribute.");
696   }
697 
698   llvm_unreachable("Trying to encode unknown attribute");
699 }
700 
701 void ModuleBitcodeWriter::writeAttributeGroupTable() {
702   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
703   if (AttrGrps.empty()) return;
704 
705   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
706 
707   SmallVector<uint64_t, 64> Record;
708   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
709     AttributeSet AS = AttrGrps[i];
710     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
711       AttributeSet A = AS.getSlotAttributes(i);
712 
713       Record.push_back(VE.getAttributeGroupID(A));
714       Record.push_back(AS.getSlotIndex(i));
715 
716       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
717            I != E; ++I) {
718         Attribute Attr = *I;
719         if (Attr.isEnumAttribute()) {
720           Record.push_back(0);
721           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
722         } else if (Attr.isIntAttribute()) {
723           Record.push_back(1);
724           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
725           Record.push_back(Attr.getValueAsInt());
726         } else {
727           StringRef Kind = Attr.getKindAsString();
728           StringRef Val = Attr.getValueAsString();
729 
730           Record.push_back(Val.empty() ? 3 : 4);
731           Record.append(Kind.begin(), Kind.end());
732           Record.push_back(0);
733           if (!Val.empty()) {
734             Record.append(Val.begin(), Val.end());
735             Record.push_back(0);
736           }
737         }
738       }
739 
740       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
741       Record.clear();
742     }
743   }
744 
745   Stream.ExitBlock();
746 }
747 
748 void ModuleBitcodeWriter::writeAttributeTable() {
749   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
750   if (Attrs.empty()) return;
751 
752   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
753 
754   SmallVector<uint64_t, 64> Record;
755   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
756     const AttributeSet &A = Attrs[i];
757     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
758       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
759 
760     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
761     Record.clear();
762   }
763 
764   Stream.ExitBlock();
765 }
766 
767 /// WriteTypeTable - Write out the type table for a module.
768 void ModuleBitcodeWriter::writeTypeTable() {
769   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
770 
771   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
772   SmallVector<uint64_t, 64> TypeVals;
773 
774   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
775 
776   // Abbrev for TYPE_CODE_POINTER.
777   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
778   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
780   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
781   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
782 
783   // Abbrev for TYPE_CODE_FUNCTION.
784   Abbv = new BitCodeAbbrev();
785   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
786   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
787   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
788   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
789 
790   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
791 
792   // Abbrev for TYPE_CODE_STRUCT_ANON.
793   Abbv = new BitCodeAbbrev();
794   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
795   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
796   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
797   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
798 
799   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
800 
801   // Abbrev for TYPE_CODE_STRUCT_NAME.
802   Abbv = new BitCodeAbbrev();
803   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
804   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
805   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
806   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
807 
808   // Abbrev for TYPE_CODE_STRUCT_NAMED.
809   Abbv = new BitCodeAbbrev();
810   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
811   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
812   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
813   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
814 
815   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
816 
817   // Abbrev for TYPE_CODE_ARRAY.
818   Abbv = new BitCodeAbbrev();
819   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
820   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
821   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
822 
823   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
824 
825   // Emit an entry count so the reader can reserve space.
826   TypeVals.push_back(TypeList.size());
827   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
828   TypeVals.clear();
829 
830   // Loop over all of the types, emitting each in turn.
831   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
832     Type *T = TypeList[i];
833     int AbbrevToUse = 0;
834     unsigned Code = 0;
835 
836     switch (T->getTypeID()) {
837     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
838     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
839     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
840     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
841     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
842     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
843     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
844     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
845     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
846     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
847     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
848     case Type::IntegerTyID:
849       // INTEGER: [width]
850       Code = bitc::TYPE_CODE_INTEGER;
851       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
852       break;
853     case Type::PointerTyID: {
854       PointerType *PTy = cast<PointerType>(T);
855       // POINTER: [pointee type, address space]
856       Code = bitc::TYPE_CODE_POINTER;
857       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
858       unsigned AddressSpace = PTy->getAddressSpace();
859       TypeVals.push_back(AddressSpace);
860       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
861       break;
862     }
863     case Type::FunctionTyID: {
864       FunctionType *FT = cast<FunctionType>(T);
865       // FUNCTION: [isvararg, retty, paramty x N]
866       Code = bitc::TYPE_CODE_FUNCTION;
867       TypeVals.push_back(FT->isVarArg());
868       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
869       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
870         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
871       AbbrevToUse = FunctionAbbrev;
872       break;
873     }
874     case Type::StructTyID: {
875       StructType *ST = cast<StructType>(T);
876       // STRUCT: [ispacked, eltty x N]
877       TypeVals.push_back(ST->isPacked());
878       // Output all of the element types.
879       for (StructType::element_iterator I = ST->element_begin(),
880            E = ST->element_end(); I != E; ++I)
881         TypeVals.push_back(VE.getTypeID(*I));
882 
883       if (ST->isLiteral()) {
884         Code = bitc::TYPE_CODE_STRUCT_ANON;
885         AbbrevToUse = StructAnonAbbrev;
886       } else {
887         if (ST->isOpaque()) {
888           Code = bitc::TYPE_CODE_OPAQUE;
889         } else {
890           Code = bitc::TYPE_CODE_STRUCT_NAMED;
891           AbbrevToUse = StructNamedAbbrev;
892         }
893 
894         // Emit the name if it is present.
895         if (!ST->getName().empty())
896           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
897                             StructNameAbbrev);
898       }
899       break;
900     }
901     case Type::ArrayTyID: {
902       ArrayType *AT = cast<ArrayType>(T);
903       // ARRAY: [numelts, eltty]
904       Code = bitc::TYPE_CODE_ARRAY;
905       TypeVals.push_back(AT->getNumElements());
906       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
907       AbbrevToUse = ArrayAbbrev;
908       break;
909     }
910     case Type::VectorTyID: {
911       VectorType *VT = cast<VectorType>(T);
912       // VECTOR [numelts, eltty]
913       Code = bitc::TYPE_CODE_VECTOR;
914       TypeVals.push_back(VT->getNumElements());
915       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
916       break;
917     }
918     }
919 
920     // Emit the finished record.
921     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
922     TypeVals.clear();
923   }
924 
925   Stream.ExitBlock();
926 }
927 
928 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
929   switch (Linkage) {
930   case GlobalValue::ExternalLinkage:
931     return 0;
932   case GlobalValue::WeakAnyLinkage:
933     return 16;
934   case GlobalValue::AppendingLinkage:
935     return 2;
936   case GlobalValue::InternalLinkage:
937     return 3;
938   case GlobalValue::LinkOnceAnyLinkage:
939     return 18;
940   case GlobalValue::ExternalWeakLinkage:
941     return 7;
942   case GlobalValue::CommonLinkage:
943     return 8;
944   case GlobalValue::PrivateLinkage:
945     return 9;
946   case GlobalValue::WeakODRLinkage:
947     return 17;
948   case GlobalValue::LinkOnceODRLinkage:
949     return 19;
950   case GlobalValue::AvailableExternallyLinkage:
951     return 12;
952   }
953   llvm_unreachable("Invalid linkage");
954 }
955 
956 static unsigned getEncodedLinkage(const GlobalValue &GV) {
957   return getEncodedLinkage(GV.getLinkage());
958 }
959 
960 // Decode the flags for GlobalValue in the summary
961 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
962   uint64_t RawFlags = 0;
963 
964   RawFlags |= Flags.NoRename; // bool
965   RawFlags |= (Flags.IsNotViableToInline << 1);
966   RawFlags |= (Flags.HasInlineAsmMaybeReferencingInternal << 2);
967   // Linkage don't need to be remapped at that time for the summary. Any future
968   // change to the getEncodedLinkage() function will need to be taken into
969   // account here as well.
970   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
971 
972   return RawFlags;
973 }
974 
975 static unsigned getEncodedVisibility(const GlobalValue &GV) {
976   switch (GV.getVisibility()) {
977   case GlobalValue::DefaultVisibility:   return 0;
978   case GlobalValue::HiddenVisibility:    return 1;
979   case GlobalValue::ProtectedVisibility: return 2;
980   }
981   llvm_unreachable("Invalid visibility");
982 }
983 
984 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
985   switch (GV.getDLLStorageClass()) {
986   case GlobalValue::DefaultStorageClass:   return 0;
987   case GlobalValue::DLLImportStorageClass: return 1;
988   case GlobalValue::DLLExportStorageClass: return 2;
989   }
990   llvm_unreachable("Invalid DLL storage class");
991 }
992 
993 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
994   switch (GV.getThreadLocalMode()) {
995     case GlobalVariable::NotThreadLocal:         return 0;
996     case GlobalVariable::GeneralDynamicTLSModel: return 1;
997     case GlobalVariable::LocalDynamicTLSModel:   return 2;
998     case GlobalVariable::InitialExecTLSModel:    return 3;
999     case GlobalVariable::LocalExecTLSModel:      return 4;
1000   }
1001   llvm_unreachable("Invalid TLS model");
1002 }
1003 
1004 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1005   switch (C.getSelectionKind()) {
1006   case Comdat::Any:
1007     return bitc::COMDAT_SELECTION_KIND_ANY;
1008   case Comdat::ExactMatch:
1009     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1010   case Comdat::Largest:
1011     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1012   case Comdat::NoDuplicates:
1013     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1014   case Comdat::SameSize:
1015     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1016   }
1017   llvm_unreachable("Invalid selection kind");
1018 }
1019 
1020 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1021   switch (GV.getUnnamedAddr()) {
1022   case GlobalValue::UnnamedAddr::None:   return 0;
1023   case GlobalValue::UnnamedAddr::Local:  return 2;
1024   case GlobalValue::UnnamedAddr::Global: return 1;
1025   }
1026   llvm_unreachable("Invalid unnamed_addr");
1027 }
1028 
1029 void ModuleBitcodeWriter::writeComdats() {
1030   SmallVector<unsigned, 64> Vals;
1031   for (const Comdat *C : VE.getComdats()) {
1032     // COMDAT: [selection_kind, name]
1033     Vals.push_back(getEncodedComdatSelectionKind(*C));
1034     size_t Size = C->getName().size();
1035     assert(isUInt<32>(Size));
1036     Vals.push_back(Size);
1037     for (char Chr : C->getName())
1038       Vals.push_back((unsigned char)Chr);
1039     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1040     Vals.clear();
1041   }
1042 }
1043 
1044 /// Write a record that will eventually hold the word offset of the
1045 /// module-level VST. For now the offset is 0, which will be backpatched
1046 /// after the real VST is written. Saves the bit offset to backpatch.
1047 void BitcodeWriterBase::writeValueSymbolTableForwardDecl() {
1048   // Write a placeholder value in for the offset of the real VST,
1049   // which is written after the function blocks so that it can include
1050   // the offset of each function. The placeholder offset will be
1051   // updated when the real VST is written.
1052   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1053   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1054   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1055   // hold the real VST offset. Must use fixed instead of VBR as we don't
1056   // know how many VBR chunks to reserve ahead of time.
1057   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1058   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
1059 
1060   // Emit the placeholder
1061   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1062   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1063 
1064   // Compute and save the bit offset to the placeholder, which will be
1065   // patched when the real VST is written. We can simply subtract the 32-bit
1066   // fixed size from the current bit number to get the location to backpatch.
1067   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1068 }
1069 
1070 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1071 
1072 /// Determine the encoding to use for the given string name and length.
1073 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1074   bool isChar6 = true;
1075   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1076     if (isChar6)
1077       isChar6 = BitCodeAbbrevOp::isChar6(*C);
1078     if ((unsigned char)*C & 128)
1079       // don't bother scanning the rest.
1080       return SE_Fixed8;
1081   }
1082   if (isChar6)
1083     return SE_Char6;
1084   else
1085     return SE_Fixed7;
1086 }
1087 
1088 /// Emit top-level description of module, including target triple, inline asm,
1089 /// descriptors for global variables, and function prototype info.
1090 /// Returns the bit offset to backpatch with the location of the real VST.
1091 void ModuleBitcodeWriter::writeModuleInfo() {
1092   // Emit various pieces of data attached to a module.
1093   if (!M.getTargetTriple().empty())
1094     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1095                       0 /*TODO*/);
1096   const std::string &DL = M.getDataLayoutStr();
1097   if (!DL.empty())
1098     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1099   if (!M.getModuleInlineAsm().empty())
1100     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1101                       0 /*TODO*/);
1102 
1103   // Emit information about sections and GC, computing how many there are. Also
1104   // compute the maximum alignment value.
1105   std::map<std::string, unsigned> SectionMap;
1106   std::map<std::string, unsigned> GCMap;
1107   unsigned MaxAlignment = 0;
1108   unsigned MaxGlobalType = 0;
1109   for (const GlobalValue &GV : M.globals()) {
1110     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1111     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1112     if (GV.hasSection()) {
1113       // Give section names unique ID's.
1114       unsigned &Entry = SectionMap[GV.getSection()];
1115       if (!Entry) {
1116         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1117                           0 /*TODO*/);
1118         Entry = SectionMap.size();
1119       }
1120     }
1121   }
1122   for (const Function &F : M) {
1123     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1124     if (F.hasSection()) {
1125       // Give section names unique ID's.
1126       unsigned &Entry = SectionMap[F.getSection()];
1127       if (!Entry) {
1128         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1129                           0 /*TODO*/);
1130         Entry = SectionMap.size();
1131       }
1132     }
1133     if (F.hasGC()) {
1134       // Same for GC names.
1135       unsigned &Entry = GCMap[F.getGC()];
1136       if (!Entry) {
1137         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1138                           0 /*TODO*/);
1139         Entry = GCMap.size();
1140       }
1141     }
1142   }
1143 
1144   // Emit abbrev for globals, now that we know # sections and max alignment.
1145   unsigned SimpleGVarAbbrev = 0;
1146   if (!M.global_empty()) {
1147     // Add an abbrev for common globals with no visibility or thread localness.
1148     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1149     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1150     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1151                               Log2_32_Ceil(MaxGlobalType+1)));
1152     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1153                                                            //| explicitType << 1
1154                                                            //| constant
1155     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1156     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1157     if (MaxAlignment == 0)                                 // Alignment.
1158       Abbv->Add(BitCodeAbbrevOp(0));
1159     else {
1160       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1161       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1162                                Log2_32_Ceil(MaxEncAlignment+1)));
1163     }
1164     if (SectionMap.empty())                                    // Section.
1165       Abbv->Add(BitCodeAbbrevOp(0));
1166     else
1167       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1168                                Log2_32_Ceil(SectionMap.size()+1)));
1169     // Don't bother emitting vis + thread local.
1170     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
1171   }
1172 
1173   // Emit the global variable information.
1174   SmallVector<unsigned, 64> Vals;
1175   for (const GlobalVariable &GV : M.globals()) {
1176     unsigned AbbrevToUse = 0;
1177 
1178     // GLOBALVAR: [type, isconst, initid,
1179     //             linkage, alignment, section, visibility, threadlocal,
1180     //             unnamed_addr, externally_initialized, dllstorageclass,
1181     //             comdat]
1182     Vals.push_back(VE.getTypeID(GV.getValueType()));
1183     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1184     Vals.push_back(GV.isDeclaration() ? 0 :
1185                    (VE.getValueID(GV.getInitializer()) + 1));
1186     Vals.push_back(getEncodedLinkage(GV));
1187     Vals.push_back(Log2_32(GV.getAlignment())+1);
1188     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1189     if (GV.isThreadLocal() ||
1190         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1191         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1192         GV.isExternallyInitialized() ||
1193         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1194         GV.hasComdat()) {
1195       Vals.push_back(getEncodedVisibility(GV));
1196       Vals.push_back(getEncodedThreadLocalMode(GV));
1197       Vals.push_back(getEncodedUnnamedAddr(GV));
1198       Vals.push_back(GV.isExternallyInitialized());
1199       Vals.push_back(getEncodedDLLStorageClass(GV));
1200       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1201     } else {
1202       AbbrevToUse = SimpleGVarAbbrev;
1203     }
1204 
1205     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1206     Vals.clear();
1207   }
1208 
1209   // Emit the function proto information.
1210   for (const Function &F : M) {
1211     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1212     //             section, visibility, gc, unnamed_addr, prologuedata,
1213     //             dllstorageclass, comdat, prefixdata, personalityfn]
1214     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1215     Vals.push_back(F.getCallingConv());
1216     Vals.push_back(F.isDeclaration());
1217     Vals.push_back(getEncodedLinkage(F));
1218     Vals.push_back(VE.getAttributeID(F.getAttributes()));
1219     Vals.push_back(Log2_32(F.getAlignment())+1);
1220     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1221     Vals.push_back(getEncodedVisibility(F));
1222     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1223     Vals.push_back(getEncodedUnnamedAddr(F));
1224     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1225                                        : 0);
1226     Vals.push_back(getEncodedDLLStorageClass(F));
1227     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1228     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1229                                      : 0);
1230     Vals.push_back(
1231         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1232 
1233     unsigned AbbrevToUse = 0;
1234     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1235     Vals.clear();
1236   }
1237 
1238   // Emit the alias information.
1239   for (const GlobalAlias &A : M.aliases()) {
1240     // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass,
1241     //         threadlocal, unnamed_addr]
1242     Vals.push_back(VE.getTypeID(A.getValueType()));
1243     Vals.push_back(A.getType()->getAddressSpace());
1244     Vals.push_back(VE.getValueID(A.getAliasee()));
1245     Vals.push_back(getEncodedLinkage(A));
1246     Vals.push_back(getEncodedVisibility(A));
1247     Vals.push_back(getEncodedDLLStorageClass(A));
1248     Vals.push_back(getEncodedThreadLocalMode(A));
1249     Vals.push_back(getEncodedUnnamedAddr(A));
1250     unsigned AbbrevToUse = 0;
1251     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1252     Vals.clear();
1253   }
1254 
1255   // Emit the ifunc information.
1256   for (const GlobalIFunc &I : M.ifuncs()) {
1257     // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
1258     Vals.push_back(VE.getTypeID(I.getValueType()));
1259     Vals.push_back(I.getType()->getAddressSpace());
1260     Vals.push_back(VE.getValueID(I.getResolver()));
1261     Vals.push_back(getEncodedLinkage(I));
1262     Vals.push_back(getEncodedVisibility(I));
1263     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1264     Vals.clear();
1265   }
1266 
1267   // Emit the module's source file name.
1268   {
1269     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1270                                             M.getSourceFileName().size());
1271     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1272     if (Bits == SE_Char6)
1273       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1274     else if (Bits == SE_Fixed7)
1275       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1276 
1277     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1278     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1279     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1281     Abbv->Add(AbbrevOpToUse);
1282     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
1283 
1284     for (const auto P : M.getSourceFileName())
1285       Vals.push_back((unsigned char)P);
1286 
1287     // Emit the finished record.
1288     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1289     Vals.clear();
1290   }
1291 
1292   // If we have a VST, write the VSTOFFSET record placeholder.
1293   if (M.getValueSymbolTable().empty())
1294     return;
1295   writeValueSymbolTableForwardDecl();
1296 }
1297 
1298 static uint64_t getOptimizationFlags(const Value *V) {
1299   uint64_t Flags = 0;
1300 
1301   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1302     if (OBO->hasNoSignedWrap())
1303       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1304     if (OBO->hasNoUnsignedWrap())
1305       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1306   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1307     if (PEO->isExact())
1308       Flags |= 1 << bitc::PEO_EXACT;
1309   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1310     if (FPMO->hasUnsafeAlgebra())
1311       Flags |= FastMathFlags::UnsafeAlgebra;
1312     if (FPMO->hasNoNaNs())
1313       Flags |= FastMathFlags::NoNaNs;
1314     if (FPMO->hasNoInfs())
1315       Flags |= FastMathFlags::NoInfs;
1316     if (FPMO->hasNoSignedZeros())
1317       Flags |= FastMathFlags::NoSignedZeros;
1318     if (FPMO->hasAllowReciprocal())
1319       Flags |= FastMathFlags::AllowReciprocal;
1320   }
1321 
1322   return Flags;
1323 }
1324 
1325 void ModuleBitcodeWriter::writeValueAsMetadata(
1326     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1327   // Mimic an MDNode with a value as one operand.
1328   Value *V = MD->getValue();
1329   Record.push_back(VE.getTypeID(V->getType()));
1330   Record.push_back(VE.getValueID(V));
1331   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1332   Record.clear();
1333 }
1334 
1335 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1336                                        SmallVectorImpl<uint64_t> &Record,
1337                                        unsigned Abbrev) {
1338   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1339     Metadata *MD = N->getOperand(i);
1340     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1341            "Unexpected function-local metadata");
1342     Record.push_back(VE.getMetadataOrNullID(MD));
1343   }
1344   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1345                                     : bitc::METADATA_NODE,
1346                     Record, Abbrev);
1347   Record.clear();
1348 }
1349 
1350 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1351   // Assume the column is usually under 128, and always output the inlined-at
1352   // location (it's never more expensive than building an array size 1).
1353   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1354   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1358   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1360   return Stream.EmitAbbrev(Abbv);
1361 }
1362 
1363 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1364                                           SmallVectorImpl<uint64_t> &Record,
1365                                           unsigned &Abbrev) {
1366   if (!Abbrev)
1367     Abbrev = createDILocationAbbrev();
1368 
1369   Record.push_back(N->isDistinct());
1370   Record.push_back(N->getLine());
1371   Record.push_back(N->getColumn());
1372   Record.push_back(VE.getMetadataID(N->getScope()));
1373   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1374 
1375   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1376   Record.clear();
1377 }
1378 
1379 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1380   // Assume the column is usually under 128, and always output the inlined-at
1381   // location (it's never more expensive than building an array size 1).
1382   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1383   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1384   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1385   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1386   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1390   return Stream.EmitAbbrev(Abbv);
1391 }
1392 
1393 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1394                                              SmallVectorImpl<uint64_t> &Record,
1395                                              unsigned &Abbrev) {
1396   if (!Abbrev)
1397     Abbrev = createGenericDINodeAbbrev();
1398 
1399   Record.push_back(N->isDistinct());
1400   Record.push_back(N->getTag());
1401   Record.push_back(0); // Per-tag version field; unused for now.
1402 
1403   for (auto &I : N->operands())
1404     Record.push_back(VE.getMetadataOrNullID(I));
1405 
1406   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1407   Record.clear();
1408 }
1409 
1410 static uint64_t rotateSign(int64_t I) {
1411   uint64_t U = I;
1412   return I < 0 ? ~(U << 1) : U << 1;
1413 }
1414 
1415 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1416                                           SmallVectorImpl<uint64_t> &Record,
1417                                           unsigned Abbrev) {
1418   Record.push_back(N->isDistinct());
1419   Record.push_back(N->getCount());
1420   Record.push_back(rotateSign(N->getLowerBound()));
1421 
1422   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1423   Record.clear();
1424 }
1425 
1426 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1427                                             SmallVectorImpl<uint64_t> &Record,
1428                                             unsigned Abbrev) {
1429   Record.push_back(N->isDistinct());
1430   Record.push_back(rotateSign(N->getValue()));
1431   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1432 
1433   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1434   Record.clear();
1435 }
1436 
1437 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1438                                            SmallVectorImpl<uint64_t> &Record,
1439                                            unsigned Abbrev) {
1440   Record.push_back(N->isDistinct());
1441   Record.push_back(N->getTag());
1442   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1443   Record.push_back(N->getSizeInBits());
1444   Record.push_back(N->getAlignInBits());
1445   Record.push_back(N->getEncoding());
1446 
1447   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1448   Record.clear();
1449 }
1450 
1451 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1452                                              SmallVectorImpl<uint64_t> &Record,
1453                                              unsigned Abbrev) {
1454   Record.push_back(N->isDistinct());
1455   Record.push_back(N->getTag());
1456   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1457   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1458   Record.push_back(N->getLine());
1459   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1460   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1461   Record.push_back(N->getSizeInBits());
1462   Record.push_back(N->getAlignInBits());
1463   Record.push_back(N->getOffsetInBits());
1464   Record.push_back(N->getFlags());
1465   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1466 
1467   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1468   Record.clear();
1469 }
1470 
1471 void ModuleBitcodeWriter::writeDICompositeType(
1472     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1473     unsigned Abbrev) {
1474   const unsigned IsNotUsedInOldTypeRef = 0x2;
1475   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1476   Record.push_back(N->getTag());
1477   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1478   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1479   Record.push_back(N->getLine());
1480   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1481   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1482   Record.push_back(N->getSizeInBits());
1483   Record.push_back(N->getAlignInBits());
1484   Record.push_back(N->getOffsetInBits());
1485   Record.push_back(N->getFlags());
1486   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1487   Record.push_back(N->getRuntimeLang());
1488   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1489   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1490   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1491 
1492   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1493   Record.clear();
1494 }
1495 
1496 void ModuleBitcodeWriter::writeDISubroutineType(
1497     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1498     unsigned Abbrev) {
1499   const unsigned HasNoOldTypeRefs = 0x2;
1500   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1501   Record.push_back(N->getFlags());
1502   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1503   Record.push_back(N->getCC());
1504 
1505   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1506   Record.clear();
1507 }
1508 
1509 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1510                                       SmallVectorImpl<uint64_t> &Record,
1511                                       unsigned Abbrev) {
1512   Record.push_back(N->isDistinct());
1513   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1514   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1515 
1516   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1517   Record.clear();
1518 }
1519 
1520 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1521                                              SmallVectorImpl<uint64_t> &Record,
1522                                              unsigned Abbrev) {
1523   assert(N->isDistinct() && "Expected distinct compile units");
1524   Record.push_back(/* IsDistinct */ true);
1525   Record.push_back(N->getSourceLanguage());
1526   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1527   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1528   Record.push_back(N->isOptimized());
1529   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1530   Record.push_back(N->getRuntimeVersion());
1531   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1532   Record.push_back(N->getEmissionKind());
1533   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1534   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1535   Record.push_back(/* subprograms */ 0);
1536   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1537   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1538   Record.push_back(N->getDWOId());
1539   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1540   Record.push_back(N->getSplitDebugInlining());
1541 
1542   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1543   Record.clear();
1544 }
1545 
1546 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1547                                             SmallVectorImpl<uint64_t> &Record,
1548                                             unsigned Abbrev) {
1549   uint64_t HasUnitFlag = 1 << 1;
1550   Record.push_back(N->isDistinct() | HasUnitFlag);
1551   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1552   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1553   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1554   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1555   Record.push_back(N->getLine());
1556   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1557   Record.push_back(N->isLocalToUnit());
1558   Record.push_back(N->isDefinition());
1559   Record.push_back(N->getScopeLine());
1560   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1561   Record.push_back(N->getVirtuality());
1562   Record.push_back(N->getVirtualIndex());
1563   Record.push_back(N->getFlags());
1564   Record.push_back(N->isOptimized());
1565   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1566   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1567   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1568   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1569   Record.push_back(N->getThisAdjustment());
1570 
1571   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1572   Record.clear();
1573 }
1574 
1575 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1576                                               SmallVectorImpl<uint64_t> &Record,
1577                                               unsigned Abbrev) {
1578   Record.push_back(N->isDistinct());
1579   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1580   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1581   Record.push_back(N->getLine());
1582   Record.push_back(N->getColumn());
1583 
1584   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1585   Record.clear();
1586 }
1587 
1588 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1589     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1590     unsigned Abbrev) {
1591   Record.push_back(N->isDistinct());
1592   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1593   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1594   Record.push_back(N->getDiscriminator());
1595 
1596   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1597   Record.clear();
1598 }
1599 
1600 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1601                                            SmallVectorImpl<uint64_t> &Record,
1602                                            unsigned Abbrev) {
1603   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1604   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1605   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1606   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1607   Record.push_back(N->getLine());
1608 
1609   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1610   Record.clear();
1611 }
1612 
1613 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1614                                        SmallVectorImpl<uint64_t> &Record,
1615                                        unsigned Abbrev) {
1616   Record.push_back(N->isDistinct());
1617   Record.push_back(N->getMacinfoType());
1618   Record.push_back(N->getLine());
1619   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1620   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1621 
1622   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1623   Record.clear();
1624 }
1625 
1626 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1627                                            SmallVectorImpl<uint64_t> &Record,
1628                                            unsigned Abbrev) {
1629   Record.push_back(N->isDistinct());
1630   Record.push_back(N->getMacinfoType());
1631   Record.push_back(N->getLine());
1632   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1633   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1634 
1635   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1636   Record.clear();
1637 }
1638 
1639 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1640                                         SmallVectorImpl<uint64_t> &Record,
1641                                         unsigned Abbrev) {
1642   Record.push_back(N->isDistinct());
1643   for (auto &I : N->operands())
1644     Record.push_back(VE.getMetadataOrNullID(I));
1645 
1646   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1647   Record.clear();
1648 }
1649 
1650 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1651     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1652     unsigned Abbrev) {
1653   Record.push_back(N->isDistinct());
1654   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1655   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1656 
1657   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1658   Record.clear();
1659 }
1660 
1661 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1662     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1663     unsigned Abbrev) {
1664   Record.push_back(N->isDistinct());
1665   Record.push_back(N->getTag());
1666   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1667   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1668   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1669 
1670   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1671   Record.clear();
1672 }
1673 
1674 void ModuleBitcodeWriter::writeDIGlobalVariable(
1675     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1676     unsigned Abbrev) {
1677   Record.push_back(N->isDistinct());
1678   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1679   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1680   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1681   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1682   Record.push_back(N->getLine());
1683   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1684   Record.push_back(N->isLocalToUnit());
1685   Record.push_back(N->isDefinition());
1686   Record.push_back(VE.getMetadataOrNullID(N->getRawExpr()));
1687   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1688   Record.push_back(N->getAlignInBits());
1689 
1690   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1691   Record.clear();
1692 }
1693 
1694 void ModuleBitcodeWriter::writeDILocalVariable(
1695     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1696     unsigned Abbrev) {
1697   // In order to support all possible bitcode formats in BitcodeReader we need
1698   // to distinguish the following cases:
1699   // 1) Record has no artificial tag (Record[1]),
1700   //   has no obsolete inlinedAt field (Record[9]).
1701   //   In this case Record size will be 8, HasAlignment flag is false.
1702   // 2) Record has artificial tag (Record[1]),
1703   //   has no obsolete inlignedAt field (Record[9]).
1704   //   In this case Record size will be 9, HasAlignment flag is false.
1705   // 3) Record has both artificial tag (Record[1]) and
1706   //   obsolete inlignedAt field (Record[9]).
1707   //   In this case Record size will be 10, HasAlignment flag is false.
1708   // 4) Record has neither artificial tag, nor inlignedAt field, but
1709   //   HasAlignment flag is true and Record[8] contains alignment value.
1710   const uint64_t HasAlignmentFlag = 1 << 1;
1711   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1712   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1713   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1714   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1715   Record.push_back(N->getLine());
1716   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1717   Record.push_back(N->getArg());
1718   Record.push_back(N->getFlags());
1719   Record.push_back(N->getAlignInBits());
1720 
1721   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1722   Record.clear();
1723 }
1724 
1725 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1726                                             SmallVectorImpl<uint64_t> &Record,
1727                                             unsigned Abbrev) {
1728   Record.reserve(N->getElements().size() + 1);
1729 
1730   Record.push_back(N->isDistinct());
1731   Record.append(N->elements_begin(), N->elements_end());
1732 
1733   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1734   Record.clear();
1735 }
1736 
1737 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1738                                               SmallVectorImpl<uint64_t> &Record,
1739                                               unsigned Abbrev) {
1740   Record.push_back(N->isDistinct());
1741   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1742   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1743   Record.push_back(N->getLine());
1744   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1745   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1746   Record.push_back(N->getAttributes());
1747   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1748 
1749   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1750   Record.clear();
1751 }
1752 
1753 void ModuleBitcodeWriter::writeDIImportedEntity(
1754     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1755     unsigned Abbrev) {
1756   Record.push_back(N->isDistinct());
1757   Record.push_back(N->getTag());
1758   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1759   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1760   Record.push_back(N->getLine());
1761   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1762 
1763   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1764   Record.clear();
1765 }
1766 
1767 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1768   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1769   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1770   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1771   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1772   return Stream.EmitAbbrev(Abbv);
1773 }
1774 
1775 void ModuleBitcodeWriter::writeNamedMetadata(
1776     SmallVectorImpl<uint64_t> &Record) {
1777   if (M.named_metadata_empty())
1778     return;
1779 
1780   unsigned Abbrev = createNamedMetadataAbbrev();
1781   for (const NamedMDNode &NMD : M.named_metadata()) {
1782     // Write name.
1783     StringRef Str = NMD.getName();
1784     Record.append(Str.bytes_begin(), Str.bytes_end());
1785     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1786     Record.clear();
1787 
1788     // Write named metadata operands.
1789     for (const MDNode *N : NMD.operands())
1790       Record.push_back(VE.getMetadataID(N));
1791     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1792     Record.clear();
1793   }
1794 }
1795 
1796 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1797   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1798   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1799   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1800   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1801   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1802   return Stream.EmitAbbrev(Abbv);
1803 }
1804 
1805 /// Write out a record for MDString.
1806 ///
1807 /// All the metadata strings in a metadata block are emitted in a single
1808 /// record.  The sizes and strings themselves are shoved into a blob.
1809 void ModuleBitcodeWriter::writeMetadataStrings(
1810     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1811   if (Strings.empty())
1812     return;
1813 
1814   // Start the record with the number of strings.
1815   Record.push_back(bitc::METADATA_STRINGS);
1816   Record.push_back(Strings.size());
1817 
1818   // Emit the sizes of the strings in the blob.
1819   SmallString<256> Blob;
1820   {
1821     BitstreamWriter W(Blob);
1822     for (const Metadata *MD : Strings)
1823       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1824     W.FlushToWord();
1825   }
1826 
1827   // Add the offset to the strings to the record.
1828   Record.push_back(Blob.size());
1829 
1830   // Add the strings to the blob.
1831   for (const Metadata *MD : Strings)
1832     Blob.append(cast<MDString>(MD)->getString());
1833 
1834   // Emit the final record.
1835   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1836   Record.clear();
1837 }
1838 
1839 void ModuleBitcodeWriter::writeMetadataRecords(
1840     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
1841   if (MDs.empty())
1842     return;
1843 
1844   // Initialize MDNode abbreviations.
1845 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1846 #include "llvm/IR/Metadata.def"
1847 
1848   for (const Metadata *MD : MDs) {
1849     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1850       assert(N->isResolved() && "Expected forward references to be resolved");
1851 
1852       switch (N->getMetadataID()) {
1853       default:
1854         llvm_unreachable("Invalid MDNode subclass");
1855 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1856   case Metadata::CLASS##Kind:                                                  \
1857     write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                       \
1858     continue;
1859 #include "llvm/IR/Metadata.def"
1860       }
1861     }
1862     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1863   }
1864 }
1865 
1866 void ModuleBitcodeWriter::writeModuleMetadata() {
1867   if (!VE.hasMDs() && M.named_metadata_empty())
1868     return;
1869 
1870   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1871   SmallVector<uint64_t, 64> Record;
1872   writeMetadataStrings(VE.getMDStrings(), Record);
1873   writeMetadataRecords(VE.getNonMDStrings(), Record);
1874   writeNamedMetadata(Record);
1875 
1876   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
1877     SmallVector<uint64_t, 4> Record;
1878     Record.push_back(VE.getValueID(&GO));
1879     pushGlobalMetadataAttachment(Record, GO);
1880     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
1881   };
1882   for (const Function &F : M)
1883     if (F.isDeclaration() && F.hasMetadata())
1884       AddDeclAttachedMetadata(F);
1885   // FIXME: Only store metadata for declarations here, and move data for global
1886   // variable definitions to a separate block (PR28134).
1887   for (const GlobalVariable &GV : M.globals())
1888     if (GV.hasMetadata())
1889       AddDeclAttachedMetadata(GV);
1890 
1891   Stream.ExitBlock();
1892 }
1893 
1894 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
1895   if (!VE.hasMDs())
1896     return;
1897 
1898   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1899   SmallVector<uint64_t, 64> Record;
1900   writeMetadataStrings(VE.getMDStrings(), Record);
1901   writeMetadataRecords(VE.getNonMDStrings(), Record);
1902   Stream.ExitBlock();
1903 }
1904 
1905 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
1906     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
1907   // [n x [id, mdnode]]
1908   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1909   GO.getAllMetadata(MDs);
1910   for (const auto &I : MDs) {
1911     Record.push_back(I.first);
1912     Record.push_back(VE.getMetadataID(I.second));
1913   }
1914 }
1915 
1916 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1917   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1918 
1919   SmallVector<uint64_t, 64> Record;
1920 
1921   if (F.hasMetadata()) {
1922     pushGlobalMetadataAttachment(Record, F);
1923     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1924     Record.clear();
1925   }
1926 
1927   // Write metadata attachments
1928   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1929   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1930   for (const BasicBlock &BB : F)
1931     for (const Instruction &I : BB) {
1932       MDs.clear();
1933       I.getAllMetadataOtherThanDebugLoc(MDs);
1934 
1935       // If no metadata, ignore instruction.
1936       if (MDs.empty()) continue;
1937 
1938       Record.push_back(VE.getInstructionID(&I));
1939 
1940       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1941         Record.push_back(MDs[i].first);
1942         Record.push_back(VE.getMetadataID(MDs[i].second));
1943       }
1944       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1945       Record.clear();
1946     }
1947 
1948   Stream.ExitBlock();
1949 }
1950 
1951 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
1952   SmallVector<uint64_t, 64> Record;
1953 
1954   // Write metadata kinds
1955   // METADATA_KIND - [n x [id, name]]
1956   SmallVector<StringRef, 8> Names;
1957   M.getMDKindNames(Names);
1958 
1959   if (Names.empty()) return;
1960 
1961   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1962 
1963   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1964     Record.push_back(MDKindID);
1965     StringRef KName = Names[MDKindID];
1966     Record.append(KName.begin(), KName.end());
1967 
1968     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1969     Record.clear();
1970   }
1971 
1972   Stream.ExitBlock();
1973 }
1974 
1975 void ModuleBitcodeWriter::writeOperandBundleTags() {
1976   // Write metadata kinds
1977   //
1978   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1979   //
1980   // OPERAND_BUNDLE_TAG - [strchr x N]
1981 
1982   SmallVector<StringRef, 8> Tags;
1983   M.getOperandBundleTags(Tags);
1984 
1985   if (Tags.empty())
1986     return;
1987 
1988   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1989 
1990   SmallVector<uint64_t, 64> Record;
1991 
1992   for (auto Tag : Tags) {
1993     Record.append(Tag.begin(), Tag.end());
1994 
1995     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1996     Record.clear();
1997   }
1998 
1999   Stream.ExitBlock();
2000 }
2001 
2002 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2003   if ((int64_t)V >= 0)
2004     Vals.push_back(V << 1);
2005   else
2006     Vals.push_back((-V << 1) | 1);
2007 }
2008 
2009 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2010                                          bool isGlobal) {
2011   if (FirstVal == LastVal) return;
2012 
2013   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2014 
2015   unsigned AggregateAbbrev = 0;
2016   unsigned String8Abbrev = 0;
2017   unsigned CString7Abbrev = 0;
2018   unsigned CString6Abbrev = 0;
2019   // If this is a constant pool for the module, emit module-specific abbrevs.
2020   if (isGlobal) {
2021     // Abbrev for CST_CODE_AGGREGATE.
2022     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2023     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2024     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2025     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2026     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
2027 
2028     // Abbrev for CST_CODE_STRING.
2029     Abbv = new BitCodeAbbrev();
2030     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2031     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2032     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2033     String8Abbrev = Stream.EmitAbbrev(Abbv);
2034     // Abbrev for CST_CODE_CSTRING.
2035     Abbv = new BitCodeAbbrev();
2036     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2037     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2038     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2039     CString7Abbrev = Stream.EmitAbbrev(Abbv);
2040     // Abbrev for CST_CODE_CSTRING.
2041     Abbv = new BitCodeAbbrev();
2042     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2043     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2044     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2045     CString6Abbrev = Stream.EmitAbbrev(Abbv);
2046   }
2047 
2048   SmallVector<uint64_t, 64> Record;
2049 
2050   const ValueEnumerator::ValueList &Vals = VE.getValues();
2051   Type *LastTy = nullptr;
2052   for (unsigned i = FirstVal; i != LastVal; ++i) {
2053     const Value *V = Vals[i].first;
2054     // If we need to switch types, do so now.
2055     if (V->getType() != LastTy) {
2056       LastTy = V->getType();
2057       Record.push_back(VE.getTypeID(LastTy));
2058       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2059                         CONSTANTS_SETTYPE_ABBREV);
2060       Record.clear();
2061     }
2062 
2063     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2064       Record.push_back(unsigned(IA->hasSideEffects()) |
2065                        unsigned(IA->isAlignStack()) << 1 |
2066                        unsigned(IA->getDialect()&1) << 2);
2067 
2068       // Add the asm string.
2069       const std::string &AsmStr = IA->getAsmString();
2070       Record.push_back(AsmStr.size());
2071       Record.append(AsmStr.begin(), AsmStr.end());
2072 
2073       // Add the constraint string.
2074       const std::string &ConstraintStr = IA->getConstraintString();
2075       Record.push_back(ConstraintStr.size());
2076       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2077       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2078       Record.clear();
2079       continue;
2080     }
2081     const Constant *C = cast<Constant>(V);
2082     unsigned Code = -1U;
2083     unsigned AbbrevToUse = 0;
2084     if (C->isNullValue()) {
2085       Code = bitc::CST_CODE_NULL;
2086     } else if (isa<UndefValue>(C)) {
2087       Code = bitc::CST_CODE_UNDEF;
2088     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2089       if (IV->getBitWidth() <= 64) {
2090         uint64_t V = IV->getSExtValue();
2091         emitSignedInt64(Record, V);
2092         Code = bitc::CST_CODE_INTEGER;
2093         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2094       } else {                             // Wide integers, > 64 bits in size.
2095         // We have an arbitrary precision integer value to write whose
2096         // bit width is > 64. However, in canonical unsigned integer
2097         // format it is likely that the high bits are going to be zero.
2098         // So, we only write the number of active words.
2099         unsigned NWords = IV->getValue().getActiveWords();
2100         const uint64_t *RawWords = IV->getValue().getRawData();
2101         for (unsigned i = 0; i != NWords; ++i) {
2102           emitSignedInt64(Record, RawWords[i]);
2103         }
2104         Code = bitc::CST_CODE_WIDE_INTEGER;
2105       }
2106     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2107       Code = bitc::CST_CODE_FLOAT;
2108       Type *Ty = CFP->getType();
2109       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2110         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2111       } else if (Ty->isX86_FP80Ty()) {
2112         // api needed to prevent premature destruction
2113         // bits are not in the same order as a normal i80 APInt, compensate.
2114         APInt api = CFP->getValueAPF().bitcastToAPInt();
2115         const uint64_t *p = api.getRawData();
2116         Record.push_back((p[1] << 48) | (p[0] >> 16));
2117         Record.push_back(p[0] & 0xffffLL);
2118       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2119         APInt api = CFP->getValueAPF().bitcastToAPInt();
2120         const uint64_t *p = api.getRawData();
2121         Record.push_back(p[0]);
2122         Record.push_back(p[1]);
2123       } else {
2124         assert (0 && "Unknown FP type!");
2125       }
2126     } else if (isa<ConstantDataSequential>(C) &&
2127                cast<ConstantDataSequential>(C)->isString()) {
2128       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2129       // Emit constant strings specially.
2130       unsigned NumElts = Str->getNumElements();
2131       // If this is a null-terminated string, use the denser CSTRING encoding.
2132       if (Str->isCString()) {
2133         Code = bitc::CST_CODE_CSTRING;
2134         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2135       } else {
2136         Code = bitc::CST_CODE_STRING;
2137         AbbrevToUse = String8Abbrev;
2138       }
2139       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2140       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2141       for (unsigned i = 0; i != NumElts; ++i) {
2142         unsigned char V = Str->getElementAsInteger(i);
2143         Record.push_back(V);
2144         isCStr7 &= (V & 128) == 0;
2145         if (isCStrChar6)
2146           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2147       }
2148 
2149       if (isCStrChar6)
2150         AbbrevToUse = CString6Abbrev;
2151       else if (isCStr7)
2152         AbbrevToUse = CString7Abbrev;
2153     } else if (const ConstantDataSequential *CDS =
2154                   dyn_cast<ConstantDataSequential>(C)) {
2155       Code = bitc::CST_CODE_DATA;
2156       Type *EltTy = CDS->getType()->getElementType();
2157       if (isa<IntegerType>(EltTy)) {
2158         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2159           Record.push_back(CDS->getElementAsInteger(i));
2160       } else {
2161         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2162           Record.push_back(
2163               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2164       }
2165     } else if (isa<ConstantAggregate>(C)) {
2166       Code = bitc::CST_CODE_AGGREGATE;
2167       for (const Value *Op : C->operands())
2168         Record.push_back(VE.getValueID(Op));
2169       AbbrevToUse = AggregateAbbrev;
2170     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2171       switch (CE->getOpcode()) {
2172       default:
2173         if (Instruction::isCast(CE->getOpcode())) {
2174           Code = bitc::CST_CODE_CE_CAST;
2175           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2176           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2177           Record.push_back(VE.getValueID(C->getOperand(0)));
2178           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2179         } else {
2180           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2181           Code = bitc::CST_CODE_CE_BINOP;
2182           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2183           Record.push_back(VE.getValueID(C->getOperand(0)));
2184           Record.push_back(VE.getValueID(C->getOperand(1)));
2185           uint64_t Flags = getOptimizationFlags(CE);
2186           if (Flags != 0)
2187             Record.push_back(Flags);
2188         }
2189         break;
2190       case Instruction::GetElementPtr: {
2191         Code = bitc::CST_CODE_CE_GEP;
2192         const auto *GO = cast<GEPOperator>(C);
2193         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2194         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2195           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2196           Record.push_back((*Idx << 1) | GO->isInBounds());
2197         } else if (GO->isInBounds())
2198           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2199         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2200           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2201           Record.push_back(VE.getValueID(C->getOperand(i)));
2202         }
2203         break;
2204       }
2205       case Instruction::Select:
2206         Code = bitc::CST_CODE_CE_SELECT;
2207         Record.push_back(VE.getValueID(C->getOperand(0)));
2208         Record.push_back(VE.getValueID(C->getOperand(1)));
2209         Record.push_back(VE.getValueID(C->getOperand(2)));
2210         break;
2211       case Instruction::ExtractElement:
2212         Code = bitc::CST_CODE_CE_EXTRACTELT;
2213         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2214         Record.push_back(VE.getValueID(C->getOperand(0)));
2215         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2216         Record.push_back(VE.getValueID(C->getOperand(1)));
2217         break;
2218       case Instruction::InsertElement:
2219         Code = bitc::CST_CODE_CE_INSERTELT;
2220         Record.push_back(VE.getValueID(C->getOperand(0)));
2221         Record.push_back(VE.getValueID(C->getOperand(1)));
2222         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2223         Record.push_back(VE.getValueID(C->getOperand(2)));
2224         break;
2225       case Instruction::ShuffleVector:
2226         // If the return type and argument types are the same, this is a
2227         // standard shufflevector instruction.  If the types are different,
2228         // then the shuffle is widening or truncating the input vectors, and
2229         // the argument type must also be encoded.
2230         if (C->getType() == C->getOperand(0)->getType()) {
2231           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2232         } else {
2233           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2234           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2235         }
2236         Record.push_back(VE.getValueID(C->getOperand(0)));
2237         Record.push_back(VE.getValueID(C->getOperand(1)));
2238         Record.push_back(VE.getValueID(C->getOperand(2)));
2239         break;
2240       case Instruction::ICmp:
2241       case Instruction::FCmp:
2242         Code = bitc::CST_CODE_CE_CMP;
2243         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2244         Record.push_back(VE.getValueID(C->getOperand(0)));
2245         Record.push_back(VE.getValueID(C->getOperand(1)));
2246         Record.push_back(CE->getPredicate());
2247         break;
2248       }
2249     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2250       Code = bitc::CST_CODE_BLOCKADDRESS;
2251       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2252       Record.push_back(VE.getValueID(BA->getFunction()));
2253       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2254     } else {
2255 #ifndef NDEBUG
2256       C->dump();
2257 #endif
2258       llvm_unreachable("Unknown constant!");
2259     }
2260     Stream.EmitRecord(Code, Record, AbbrevToUse);
2261     Record.clear();
2262   }
2263 
2264   Stream.ExitBlock();
2265 }
2266 
2267 void ModuleBitcodeWriter::writeModuleConstants() {
2268   const ValueEnumerator::ValueList &Vals = VE.getValues();
2269 
2270   // Find the first constant to emit, which is the first non-globalvalue value.
2271   // We know globalvalues have been emitted by WriteModuleInfo.
2272   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2273     if (!isa<GlobalValue>(Vals[i].first)) {
2274       writeConstants(i, Vals.size(), true);
2275       return;
2276     }
2277   }
2278 }
2279 
2280 /// pushValueAndType - The file has to encode both the value and type id for
2281 /// many values, because we need to know what type to create for forward
2282 /// references.  However, most operands are not forward references, so this type
2283 /// field is not needed.
2284 ///
2285 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2286 /// instruction ID, then it is a forward reference, and it also includes the
2287 /// type ID.  The value ID that is written is encoded relative to the InstID.
2288 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2289                                            SmallVectorImpl<unsigned> &Vals) {
2290   unsigned ValID = VE.getValueID(V);
2291   // Make encoding relative to the InstID.
2292   Vals.push_back(InstID - ValID);
2293   if (ValID >= InstID) {
2294     Vals.push_back(VE.getTypeID(V->getType()));
2295     return true;
2296   }
2297   return false;
2298 }
2299 
2300 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2301                                               unsigned InstID) {
2302   SmallVector<unsigned, 64> Record;
2303   LLVMContext &C = CS.getInstruction()->getContext();
2304 
2305   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2306     const auto &Bundle = CS.getOperandBundleAt(i);
2307     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2308 
2309     for (auto &Input : Bundle.Inputs)
2310       pushValueAndType(Input, InstID, Record);
2311 
2312     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2313     Record.clear();
2314   }
2315 }
2316 
2317 /// pushValue - Like pushValueAndType, but where the type of the value is
2318 /// omitted (perhaps it was already encoded in an earlier operand).
2319 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2320                                     SmallVectorImpl<unsigned> &Vals) {
2321   unsigned ValID = VE.getValueID(V);
2322   Vals.push_back(InstID - ValID);
2323 }
2324 
2325 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2326                                           SmallVectorImpl<uint64_t> &Vals) {
2327   unsigned ValID = VE.getValueID(V);
2328   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2329   emitSignedInt64(Vals, diff);
2330 }
2331 
2332 /// WriteInstruction - Emit an instruction to the specified stream.
2333 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2334                                            unsigned InstID,
2335                                            SmallVectorImpl<unsigned> &Vals) {
2336   unsigned Code = 0;
2337   unsigned AbbrevToUse = 0;
2338   VE.setInstructionID(&I);
2339   switch (I.getOpcode()) {
2340   default:
2341     if (Instruction::isCast(I.getOpcode())) {
2342       Code = bitc::FUNC_CODE_INST_CAST;
2343       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2344         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2345       Vals.push_back(VE.getTypeID(I.getType()));
2346       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2347     } else {
2348       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2349       Code = bitc::FUNC_CODE_INST_BINOP;
2350       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2351         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2352       pushValue(I.getOperand(1), InstID, Vals);
2353       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2354       uint64_t Flags = getOptimizationFlags(&I);
2355       if (Flags != 0) {
2356         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2357           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2358         Vals.push_back(Flags);
2359       }
2360     }
2361     break;
2362 
2363   case Instruction::GetElementPtr: {
2364     Code = bitc::FUNC_CODE_INST_GEP;
2365     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2366     auto &GEPInst = cast<GetElementPtrInst>(I);
2367     Vals.push_back(GEPInst.isInBounds());
2368     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2369     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2370       pushValueAndType(I.getOperand(i), InstID, Vals);
2371     break;
2372   }
2373   case Instruction::ExtractValue: {
2374     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2375     pushValueAndType(I.getOperand(0), InstID, Vals);
2376     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2377     Vals.append(EVI->idx_begin(), EVI->idx_end());
2378     break;
2379   }
2380   case Instruction::InsertValue: {
2381     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2382     pushValueAndType(I.getOperand(0), InstID, Vals);
2383     pushValueAndType(I.getOperand(1), InstID, Vals);
2384     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2385     Vals.append(IVI->idx_begin(), IVI->idx_end());
2386     break;
2387   }
2388   case Instruction::Select:
2389     Code = bitc::FUNC_CODE_INST_VSELECT;
2390     pushValueAndType(I.getOperand(1), InstID, Vals);
2391     pushValue(I.getOperand(2), InstID, Vals);
2392     pushValueAndType(I.getOperand(0), InstID, Vals);
2393     break;
2394   case Instruction::ExtractElement:
2395     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2396     pushValueAndType(I.getOperand(0), InstID, Vals);
2397     pushValueAndType(I.getOperand(1), InstID, Vals);
2398     break;
2399   case Instruction::InsertElement:
2400     Code = bitc::FUNC_CODE_INST_INSERTELT;
2401     pushValueAndType(I.getOperand(0), InstID, Vals);
2402     pushValue(I.getOperand(1), InstID, Vals);
2403     pushValueAndType(I.getOperand(2), InstID, Vals);
2404     break;
2405   case Instruction::ShuffleVector:
2406     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2407     pushValueAndType(I.getOperand(0), InstID, Vals);
2408     pushValue(I.getOperand(1), InstID, Vals);
2409     pushValue(I.getOperand(2), InstID, Vals);
2410     break;
2411   case Instruction::ICmp:
2412   case Instruction::FCmp: {
2413     // compare returning Int1Ty or vector of Int1Ty
2414     Code = bitc::FUNC_CODE_INST_CMP2;
2415     pushValueAndType(I.getOperand(0), InstID, Vals);
2416     pushValue(I.getOperand(1), InstID, Vals);
2417     Vals.push_back(cast<CmpInst>(I).getPredicate());
2418     uint64_t Flags = getOptimizationFlags(&I);
2419     if (Flags != 0)
2420       Vals.push_back(Flags);
2421     break;
2422   }
2423 
2424   case Instruction::Ret:
2425     {
2426       Code = bitc::FUNC_CODE_INST_RET;
2427       unsigned NumOperands = I.getNumOperands();
2428       if (NumOperands == 0)
2429         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2430       else if (NumOperands == 1) {
2431         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2432           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2433       } else {
2434         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2435           pushValueAndType(I.getOperand(i), InstID, Vals);
2436       }
2437     }
2438     break;
2439   case Instruction::Br:
2440     {
2441       Code = bitc::FUNC_CODE_INST_BR;
2442       const BranchInst &II = cast<BranchInst>(I);
2443       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2444       if (II.isConditional()) {
2445         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2446         pushValue(II.getCondition(), InstID, Vals);
2447       }
2448     }
2449     break;
2450   case Instruction::Switch:
2451     {
2452       Code = bitc::FUNC_CODE_INST_SWITCH;
2453       const SwitchInst &SI = cast<SwitchInst>(I);
2454       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2455       pushValue(SI.getCondition(), InstID, Vals);
2456       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2457       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
2458         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2459         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2460       }
2461     }
2462     break;
2463   case Instruction::IndirectBr:
2464     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2465     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2466     // Encode the address operand as relative, but not the basic blocks.
2467     pushValue(I.getOperand(0), InstID, Vals);
2468     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2469       Vals.push_back(VE.getValueID(I.getOperand(i)));
2470     break;
2471 
2472   case Instruction::Invoke: {
2473     const InvokeInst *II = cast<InvokeInst>(&I);
2474     const Value *Callee = II->getCalledValue();
2475     FunctionType *FTy = II->getFunctionType();
2476 
2477     if (II->hasOperandBundles())
2478       writeOperandBundles(II, InstID);
2479 
2480     Code = bitc::FUNC_CODE_INST_INVOKE;
2481 
2482     Vals.push_back(VE.getAttributeID(II->getAttributes()));
2483     Vals.push_back(II->getCallingConv() | 1 << 13);
2484     Vals.push_back(VE.getValueID(II->getNormalDest()));
2485     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2486     Vals.push_back(VE.getTypeID(FTy));
2487     pushValueAndType(Callee, InstID, Vals);
2488 
2489     // Emit value #'s for the fixed parameters.
2490     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2491       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2492 
2493     // Emit type/value pairs for varargs params.
2494     if (FTy->isVarArg()) {
2495       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2496            i != e; ++i)
2497         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2498     }
2499     break;
2500   }
2501   case Instruction::Resume:
2502     Code = bitc::FUNC_CODE_INST_RESUME;
2503     pushValueAndType(I.getOperand(0), InstID, Vals);
2504     break;
2505   case Instruction::CleanupRet: {
2506     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2507     const auto &CRI = cast<CleanupReturnInst>(I);
2508     pushValue(CRI.getCleanupPad(), InstID, Vals);
2509     if (CRI.hasUnwindDest())
2510       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2511     break;
2512   }
2513   case Instruction::CatchRet: {
2514     Code = bitc::FUNC_CODE_INST_CATCHRET;
2515     const auto &CRI = cast<CatchReturnInst>(I);
2516     pushValue(CRI.getCatchPad(), InstID, Vals);
2517     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2518     break;
2519   }
2520   case Instruction::CleanupPad:
2521   case Instruction::CatchPad: {
2522     const auto &FuncletPad = cast<FuncletPadInst>(I);
2523     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2524                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2525     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2526 
2527     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2528     Vals.push_back(NumArgOperands);
2529     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2530       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2531     break;
2532   }
2533   case Instruction::CatchSwitch: {
2534     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2535     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2536 
2537     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2538 
2539     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2540     Vals.push_back(NumHandlers);
2541     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2542       Vals.push_back(VE.getValueID(CatchPadBB));
2543 
2544     if (CatchSwitch.hasUnwindDest())
2545       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2546     break;
2547   }
2548   case Instruction::Unreachable:
2549     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2550     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2551     break;
2552 
2553   case Instruction::PHI: {
2554     const PHINode &PN = cast<PHINode>(I);
2555     Code = bitc::FUNC_CODE_INST_PHI;
2556     // With the newer instruction encoding, forward references could give
2557     // negative valued IDs.  This is most common for PHIs, so we use
2558     // signed VBRs.
2559     SmallVector<uint64_t, 128> Vals64;
2560     Vals64.push_back(VE.getTypeID(PN.getType()));
2561     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2562       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2563       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2564     }
2565     // Emit a Vals64 vector and exit.
2566     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2567     Vals64.clear();
2568     return;
2569   }
2570 
2571   case Instruction::LandingPad: {
2572     const LandingPadInst &LP = cast<LandingPadInst>(I);
2573     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2574     Vals.push_back(VE.getTypeID(LP.getType()));
2575     Vals.push_back(LP.isCleanup());
2576     Vals.push_back(LP.getNumClauses());
2577     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2578       if (LP.isCatch(I))
2579         Vals.push_back(LandingPadInst::Catch);
2580       else
2581         Vals.push_back(LandingPadInst::Filter);
2582       pushValueAndType(LP.getClause(I), InstID, Vals);
2583     }
2584     break;
2585   }
2586 
2587   case Instruction::Alloca: {
2588     Code = bitc::FUNC_CODE_INST_ALLOCA;
2589     const AllocaInst &AI = cast<AllocaInst>(I);
2590     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2591     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2592     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2593     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2594     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2595            "not enough bits for maximum alignment");
2596     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2597     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2598     AlignRecord |= 1 << 6;
2599     AlignRecord |= AI.isSwiftError() << 7;
2600     Vals.push_back(AlignRecord);
2601     break;
2602   }
2603 
2604   case Instruction::Load:
2605     if (cast<LoadInst>(I).isAtomic()) {
2606       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2607       pushValueAndType(I.getOperand(0), InstID, Vals);
2608     } else {
2609       Code = bitc::FUNC_CODE_INST_LOAD;
2610       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2611         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2612     }
2613     Vals.push_back(VE.getTypeID(I.getType()));
2614     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2615     Vals.push_back(cast<LoadInst>(I).isVolatile());
2616     if (cast<LoadInst>(I).isAtomic()) {
2617       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2618       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2619     }
2620     break;
2621   case Instruction::Store:
2622     if (cast<StoreInst>(I).isAtomic())
2623       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2624     else
2625       Code = bitc::FUNC_CODE_INST_STORE;
2626     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2627     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2628     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2629     Vals.push_back(cast<StoreInst>(I).isVolatile());
2630     if (cast<StoreInst>(I).isAtomic()) {
2631       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2632       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2633     }
2634     break;
2635   case Instruction::AtomicCmpXchg:
2636     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2637     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2638     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2639     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2640     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2641     Vals.push_back(
2642         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2643     Vals.push_back(
2644         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2645     Vals.push_back(
2646         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2647     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2648     break;
2649   case Instruction::AtomicRMW:
2650     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2651     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2652     pushValue(I.getOperand(1), InstID, Vals);        // val.
2653     Vals.push_back(
2654         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2655     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2656     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2657     Vals.push_back(
2658         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2659     break;
2660   case Instruction::Fence:
2661     Code = bitc::FUNC_CODE_INST_FENCE;
2662     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2663     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2664     break;
2665   case Instruction::Call: {
2666     const CallInst &CI = cast<CallInst>(I);
2667     FunctionType *FTy = CI.getFunctionType();
2668 
2669     if (CI.hasOperandBundles())
2670       writeOperandBundles(&CI, InstID);
2671 
2672     Code = bitc::FUNC_CODE_INST_CALL;
2673 
2674     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2675 
2676     unsigned Flags = getOptimizationFlags(&I);
2677     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2678                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2679                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2680                    1 << bitc::CALL_EXPLICIT_TYPE |
2681                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2682                    unsigned(Flags != 0) << bitc::CALL_FMF);
2683     if (Flags != 0)
2684       Vals.push_back(Flags);
2685 
2686     Vals.push_back(VE.getTypeID(FTy));
2687     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2688 
2689     // Emit value #'s for the fixed parameters.
2690     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2691       // Check for labels (can happen with asm labels).
2692       if (FTy->getParamType(i)->isLabelTy())
2693         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2694       else
2695         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2696     }
2697 
2698     // Emit type/value pairs for varargs params.
2699     if (FTy->isVarArg()) {
2700       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2701            i != e; ++i)
2702         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2703     }
2704     break;
2705   }
2706   case Instruction::VAArg:
2707     Code = bitc::FUNC_CODE_INST_VAARG;
2708     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2709     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2710     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2711     break;
2712   }
2713 
2714   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2715   Vals.clear();
2716 }
2717 
2718 /// Emit names for globals/functions etc. \p IsModuleLevel is true when
2719 /// we are writing the module-level VST, where we are including a function
2720 /// bitcode index and need to backpatch the VST forward declaration record.
2721 void ModuleBitcodeWriter::writeValueSymbolTable(
2722     const ValueSymbolTable &VST, bool IsModuleLevel,
2723     DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
2724   if (VST.empty()) {
2725     // writeValueSymbolTableForwardDecl should have returned early as
2726     // well. Ensure this handling remains in sync by asserting that
2727     // the placeholder offset is not set.
2728     assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
2729     return;
2730   }
2731 
2732   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2733     // Get the offset of the VST we are writing, and backpatch it into
2734     // the VST forward declaration record.
2735     uint64_t VSTOffset = Stream.GetCurrentBitNo();
2736     // The BitcodeStartBit was the stream offset of the identification block.
2737     VSTOffset -= bitcodeStartBit();
2738     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2739     // Note that we add 1 here because the offset is relative to one word
2740     // before the start of the identification block, which was historically
2741     // always the start of the regular bitcode header.
2742     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
2743   }
2744 
2745   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2746 
2747   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2748   // records, which are not used in the per-function VSTs.
2749   unsigned FnEntry8BitAbbrev;
2750   unsigned FnEntry7BitAbbrev;
2751   unsigned FnEntry6BitAbbrev;
2752   unsigned GUIDEntryAbbrev;
2753   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2754     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2755     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2756     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2757     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2758     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2759     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2760     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2761     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2762 
2763     // 7-bit fixed width VST_CODE_FNENTRY function strings.
2764     Abbv = new BitCodeAbbrev();
2765     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2766     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2767     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2768     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2769     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2770     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2771 
2772     // 6-bit char6 VST_CODE_FNENTRY function strings.
2773     Abbv = new BitCodeAbbrev();
2774     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2775     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2776     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2777     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2778     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2779     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2780 
2781     // FIXME: Change the name of this record as it is now used by
2782     // the per-module index as well.
2783     Abbv = new BitCodeAbbrev();
2784     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2785     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2786     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2787     GUIDEntryAbbrev = Stream.EmitAbbrev(Abbv);
2788   }
2789 
2790   // FIXME: Set up the abbrev, we know how many values there are!
2791   // FIXME: We know if the type names can use 7-bit ascii.
2792   SmallVector<uint64_t, 64> NameVals;
2793 
2794   for (const ValueName &Name : VST) {
2795     // Figure out the encoding to use for the name.
2796     StringEncoding Bits =
2797         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2798 
2799     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2800     NameVals.push_back(VE.getValueID(Name.getValue()));
2801 
2802     Function *F = dyn_cast<Function>(Name.getValue());
2803     if (!F) {
2804       // If value is an alias, need to get the aliased base object to
2805       // see if it is a function.
2806       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2807       if (GA && GA->getBaseObject())
2808         F = dyn_cast<Function>(GA->getBaseObject());
2809     }
2810 
2811     // VST_CODE_ENTRY:   [valueid, namechar x N]
2812     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2813     // VST_CODE_BBENTRY: [bbid, namechar x N]
2814     unsigned Code;
2815     if (isa<BasicBlock>(Name.getValue())) {
2816       Code = bitc::VST_CODE_BBENTRY;
2817       if (Bits == SE_Char6)
2818         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2819     } else if (F && !F->isDeclaration()) {
2820       // Must be the module-level VST, where we pass in the Index and
2821       // have a VSTOffsetPlaceholder. The function-level VST should not
2822       // contain any Function symbols.
2823       assert(FunctionToBitcodeIndex);
2824       assert(hasVSTOffsetPlaceholder());
2825 
2826       // Save the word offset of the function (from the start of the
2827       // actual bitcode written to the stream).
2828       uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
2829       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2830       // Note that we add 1 here because the offset is relative to one word
2831       // before the start of the identification block, which was historically
2832       // always the start of the regular bitcode header.
2833       NameVals.push_back(BitcodeIndex / 32 + 1);
2834 
2835       Code = bitc::VST_CODE_FNENTRY;
2836       AbbrevToUse = FnEntry8BitAbbrev;
2837       if (Bits == SE_Char6)
2838         AbbrevToUse = FnEntry6BitAbbrev;
2839       else if (Bits == SE_Fixed7)
2840         AbbrevToUse = FnEntry7BitAbbrev;
2841     } else {
2842       Code = bitc::VST_CODE_ENTRY;
2843       if (Bits == SE_Char6)
2844         AbbrevToUse = VST_ENTRY_6_ABBREV;
2845       else if (Bits == SE_Fixed7)
2846         AbbrevToUse = VST_ENTRY_7_ABBREV;
2847     }
2848 
2849     for (const auto P : Name.getKey())
2850       NameVals.push_back((unsigned char)P);
2851 
2852     // Emit the finished record.
2853     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2854     NameVals.clear();
2855   }
2856   // Emit any GUID valueIDs created for indirect call edges into the
2857   // module-level VST.
2858   if (IsModuleLevel && hasVSTOffsetPlaceholder())
2859     for (const auto &GI : valueIds()) {
2860       NameVals.push_back(GI.second);
2861       NameVals.push_back(GI.first);
2862       Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals,
2863                         GUIDEntryAbbrev);
2864       NameVals.clear();
2865     }
2866   Stream.ExitBlock();
2867 }
2868 
2869 /// Emit function names and summary offsets for the combined index
2870 /// used by ThinLTO.
2871 void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
2872   assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
2873   // Get the offset of the VST we are writing, and backpatch it into
2874   // the VST forward declaration record.
2875   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2876   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2877   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2878 
2879   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2880 
2881   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2882   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2883   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2884   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2885   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
2886 
2887   SmallVector<uint64_t, 64> NameVals;
2888   for (const auto &GVI : valueIds()) {
2889     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
2890     NameVals.push_back(GVI.second);
2891     NameVals.push_back(GVI.first);
2892 
2893     // Emit the finished record.
2894     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
2895     NameVals.clear();
2896   }
2897   Stream.ExitBlock();
2898 }
2899 
2900 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2901   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2902   unsigned Code;
2903   if (isa<BasicBlock>(Order.V))
2904     Code = bitc::USELIST_CODE_BB;
2905   else
2906     Code = bitc::USELIST_CODE_DEFAULT;
2907 
2908   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2909   Record.push_back(VE.getValueID(Order.V));
2910   Stream.EmitRecord(Code, Record);
2911 }
2912 
2913 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2914   assert(VE.shouldPreserveUseListOrder() &&
2915          "Expected to be preserving use-list order");
2916 
2917   auto hasMore = [&]() {
2918     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2919   };
2920   if (!hasMore())
2921     // Nothing to do.
2922     return;
2923 
2924   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2925   while (hasMore()) {
2926     writeUseList(std::move(VE.UseListOrders.back()));
2927     VE.UseListOrders.pop_back();
2928   }
2929   Stream.ExitBlock();
2930 }
2931 
2932 /// Emit a function body to the module stream.
2933 void ModuleBitcodeWriter::writeFunction(
2934     const Function &F,
2935     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2936   // Save the bitcode index of the start of this function block for recording
2937   // in the VST.
2938   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2939 
2940   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2941   VE.incorporateFunction(F);
2942 
2943   SmallVector<unsigned, 64> Vals;
2944 
2945   // Emit the number of basic blocks, so the reader can create them ahead of
2946   // time.
2947   Vals.push_back(VE.getBasicBlocks().size());
2948   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2949   Vals.clear();
2950 
2951   // If there are function-local constants, emit them now.
2952   unsigned CstStart, CstEnd;
2953   VE.getFunctionConstantRange(CstStart, CstEnd);
2954   writeConstants(CstStart, CstEnd, false);
2955 
2956   // If there is function-local metadata, emit it now.
2957   writeFunctionMetadata(F);
2958 
2959   // Keep a running idea of what the instruction ID is.
2960   unsigned InstID = CstEnd;
2961 
2962   bool NeedsMetadataAttachment = F.hasMetadata();
2963 
2964   DILocation *LastDL = nullptr;
2965   // Finally, emit all the instructions, in order.
2966   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2967     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2968          I != E; ++I) {
2969       writeInstruction(*I, InstID, Vals);
2970 
2971       if (!I->getType()->isVoidTy())
2972         ++InstID;
2973 
2974       // If the instruction has metadata, write a metadata attachment later.
2975       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2976 
2977       // If the instruction has a debug location, emit it.
2978       DILocation *DL = I->getDebugLoc();
2979       if (!DL)
2980         continue;
2981 
2982       if (DL == LastDL) {
2983         // Just repeat the same debug loc as last time.
2984         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2985         continue;
2986       }
2987 
2988       Vals.push_back(DL->getLine());
2989       Vals.push_back(DL->getColumn());
2990       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2991       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2992       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2993       Vals.clear();
2994 
2995       LastDL = DL;
2996     }
2997 
2998   // Emit names for all the instructions etc.
2999   if (auto *Symtab = F.getValueSymbolTable())
3000     writeValueSymbolTable(*Symtab);
3001 
3002   if (NeedsMetadataAttachment)
3003     writeFunctionMetadataAttachment(F);
3004   if (VE.shouldPreserveUseListOrder())
3005     writeUseListBlock(&F);
3006   VE.purgeFunction();
3007   Stream.ExitBlock();
3008 }
3009 
3010 // Emit blockinfo, which defines the standard abbreviations etc.
3011 void ModuleBitcodeWriter::writeBlockInfo() {
3012   // We only want to emit block info records for blocks that have multiple
3013   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3014   // Other blocks can define their abbrevs inline.
3015   Stream.EnterBlockInfoBlock();
3016 
3017   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3018     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3019     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3020     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3021     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3022     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3023     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3024         VST_ENTRY_8_ABBREV)
3025       llvm_unreachable("Unexpected abbrev ordering!");
3026   }
3027 
3028   { // 7-bit fixed width VST_CODE_ENTRY strings.
3029     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3030     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3031     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3032     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3033     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3034     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3035         VST_ENTRY_7_ABBREV)
3036       llvm_unreachable("Unexpected abbrev ordering!");
3037   }
3038   { // 6-bit char6 VST_CODE_ENTRY strings.
3039     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3040     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3041     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3042     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3043     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3044     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3045         VST_ENTRY_6_ABBREV)
3046       llvm_unreachable("Unexpected abbrev ordering!");
3047   }
3048   { // 6-bit char6 VST_CODE_BBENTRY strings.
3049     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3050     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3051     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3052     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3053     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3054     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3055         VST_BBENTRY_6_ABBREV)
3056       llvm_unreachable("Unexpected abbrev ordering!");
3057   }
3058 
3059 
3060 
3061   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3062     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3063     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3064     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3065                               VE.computeBitsRequiredForTypeIndicies()));
3066     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3067         CONSTANTS_SETTYPE_ABBREV)
3068       llvm_unreachable("Unexpected abbrev ordering!");
3069   }
3070 
3071   { // INTEGER abbrev for CONSTANTS_BLOCK.
3072     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3073     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3074     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3075     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3076         CONSTANTS_INTEGER_ABBREV)
3077       llvm_unreachable("Unexpected abbrev ordering!");
3078   }
3079 
3080   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3081     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3082     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3083     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3084     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3085                               VE.computeBitsRequiredForTypeIndicies()));
3086     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3087 
3088     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3089         CONSTANTS_CE_CAST_Abbrev)
3090       llvm_unreachable("Unexpected abbrev ordering!");
3091   }
3092   { // NULL abbrev for CONSTANTS_BLOCK.
3093     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3094     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3095     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3096         CONSTANTS_NULL_Abbrev)
3097       llvm_unreachable("Unexpected abbrev ordering!");
3098   }
3099 
3100   // FIXME: This should only use space for first class types!
3101 
3102   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3103     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3104     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3105     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3106     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3107                               VE.computeBitsRequiredForTypeIndicies()));
3108     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3109     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3110     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3111         FUNCTION_INST_LOAD_ABBREV)
3112       llvm_unreachable("Unexpected abbrev ordering!");
3113   }
3114   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3115     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3116     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3117     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3118     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3119     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3120     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3121         FUNCTION_INST_BINOP_ABBREV)
3122       llvm_unreachable("Unexpected abbrev ordering!");
3123   }
3124   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3125     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3126     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3127     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3128     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3129     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3130     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3131     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3132         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3133       llvm_unreachable("Unexpected abbrev ordering!");
3134   }
3135   { // INST_CAST abbrev for FUNCTION_BLOCK.
3136     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3137     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3138     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3139     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3140                               VE.computeBitsRequiredForTypeIndicies()));
3141     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3142     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3143         FUNCTION_INST_CAST_ABBREV)
3144       llvm_unreachable("Unexpected abbrev ordering!");
3145   }
3146 
3147   { // INST_RET abbrev for FUNCTION_BLOCK.
3148     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3149     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3150     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3151         FUNCTION_INST_RET_VOID_ABBREV)
3152       llvm_unreachable("Unexpected abbrev ordering!");
3153   }
3154   { // INST_RET abbrev for FUNCTION_BLOCK.
3155     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3156     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3157     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3158     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3159         FUNCTION_INST_RET_VAL_ABBREV)
3160       llvm_unreachable("Unexpected abbrev ordering!");
3161   }
3162   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3163     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3164     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3165     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3166         FUNCTION_INST_UNREACHABLE_ABBREV)
3167       llvm_unreachable("Unexpected abbrev ordering!");
3168   }
3169   {
3170     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3171     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3172     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3173     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3174                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3175     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3176     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3177     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3178         FUNCTION_INST_GEP_ABBREV)
3179       llvm_unreachable("Unexpected abbrev ordering!");
3180   }
3181 
3182   Stream.ExitBlock();
3183 }
3184 
3185 /// Write the module path strings, currently only used when generating
3186 /// a combined index file.
3187 void IndexBitcodeWriter::writeModStrings() {
3188   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3189 
3190   // TODO: See which abbrev sizes we actually need to emit
3191 
3192   // 8-bit fixed-width MST_ENTRY strings.
3193   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3194   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3195   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3196   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3197   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3198   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
3199 
3200   // 7-bit fixed width MST_ENTRY strings.
3201   Abbv = new BitCodeAbbrev();
3202   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3203   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3204   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3205   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3206   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
3207 
3208   // 6-bit char6 MST_ENTRY strings.
3209   Abbv = new BitCodeAbbrev();
3210   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3211   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3212   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3213   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3214   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
3215 
3216   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3217   Abbv = new BitCodeAbbrev();
3218   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3219   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3220   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3221   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3222   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3223   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3224   unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
3225 
3226   SmallVector<unsigned, 64> Vals;
3227   for (const auto &MPSE : Index.modulePaths()) {
3228     if (!doIncludeModule(MPSE.getKey()))
3229       continue;
3230     StringEncoding Bits =
3231         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3232     unsigned AbbrevToUse = Abbrev8Bit;
3233     if (Bits == SE_Char6)
3234       AbbrevToUse = Abbrev6Bit;
3235     else if (Bits == SE_Fixed7)
3236       AbbrevToUse = Abbrev7Bit;
3237 
3238     Vals.push_back(MPSE.getValue().first);
3239 
3240     for (const auto P : MPSE.getKey())
3241       Vals.push_back((unsigned char)P);
3242 
3243     // Emit the finished record.
3244     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3245 
3246     Vals.clear();
3247     // Emit an optional hash for the module now
3248     auto &Hash = MPSE.getValue().second;
3249     bool AllZero = true; // Detect if the hash is empty, and do not generate it
3250     for (auto Val : Hash) {
3251       if (Val)
3252         AllZero = false;
3253       Vals.push_back(Val);
3254     }
3255     if (!AllZero) {
3256       // Emit the hash record.
3257       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3258     }
3259 
3260     Vals.clear();
3261   }
3262   Stream.ExitBlock();
3263 }
3264 
3265 // Helper to emit a single function summary record.
3266 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3267     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3268     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3269     const Function &F) {
3270   NameVals.push_back(ValueID);
3271 
3272   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3273   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3274   NameVals.push_back(FS->instCount());
3275   NameVals.push_back(FS->refs().size());
3276 
3277   unsigned SizeBeforeRefs = NameVals.size();
3278   for (auto &RI : FS->refs())
3279     NameVals.push_back(VE.getValueID(RI.getValue()));
3280   // Sort the refs for determinism output, the vector returned by FS->refs() has
3281   // been initialized from a DenseSet.
3282   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3283 
3284   std::vector<FunctionSummary::EdgeTy> Calls = FS->calls();
3285   std::sort(Calls.begin(), Calls.end(),
3286             [this](const FunctionSummary::EdgeTy &L,
3287                    const FunctionSummary::EdgeTy &R) {
3288               return getValueId(L.first) < getValueId(R.first);
3289             });
3290   bool HasProfileData = F.getEntryCount().hasValue();
3291   for (auto &ECI : Calls) {
3292     NameVals.push_back(getValueId(ECI.first));
3293     if (HasProfileData)
3294       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3295   }
3296 
3297   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3298   unsigned Code =
3299       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3300 
3301   // Emit the finished record.
3302   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3303   NameVals.clear();
3304 }
3305 
3306 // Collect the global value references in the given variable's initializer,
3307 // and emit them in a summary record.
3308 void ModuleBitcodeWriter::writeModuleLevelReferences(
3309     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3310     unsigned FSModRefsAbbrev) {
3311   auto Summaries =
3312       Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName()));
3313   if (Summaries == Index->end()) {
3314     // Only declarations should not have a summary (a declaration might however
3315     // have a summary if the def was in module level asm).
3316     assert(V.isDeclaration());
3317     return;
3318   }
3319   auto *Summary = Summaries->second.front().get();
3320   NameVals.push_back(VE.getValueID(&V));
3321   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3322   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3323 
3324   unsigned SizeBeforeRefs = NameVals.size();
3325   for (auto &RI : VS->refs())
3326     NameVals.push_back(VE.getValueID(RI.getValue()));
3327   // Sort the refs for determinism output, the vector returned by FS->refs() has
3328   // been initialized from a DenseSet.
3329   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3330 
3331   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3332                     FSModRefsAbbrev);
3333   NameVals.clear();
3334 }
3335 
3336 // Current version for the summary.
3337 // This is bumped whenever we introduce changes in the way some record are
3338 // interpreted, like flags for instance.
3339 static const uint64_t INDEX_VERSION = 2;
3340 
3341 /// Emit the per-module summary section alongside the rest of
3342 /// the module's bitcode.
3343 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3344   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3345 
3346   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3347 
3348   if (Index->begin() == Index->end()) {
3349     Stream.ExitBlock();
3350     return;
3351   }
3352 
3353   // Abbrev for FS_PERMODULE.
3354   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3355   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3358   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3360   // numrefs x valueid, n x (valueid)
3361   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3363   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3364 
3365   // Abbrev for FS_PERMODULE_PROFILE.
3366   Abbv = new BitCodeAbbrev();
3367   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3369   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3370   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3372   // numrefs x valueid, n x (valueid, hotness)
3373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3374   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3375   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3376 
3377   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3378   Abbv = new BitCodeAbbrev();
3379   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3380   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3382   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3383   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3384   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3385 
3386   // Abbrev for FS_ALIAS.
3387   Abbv = new BitCodeAbbrev();
3388   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3390   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3391   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3392   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3393 
3394   SmallVector<uint64_t, 64> NameVals;
3395   // Iterate over the list of functions instead of the Index to
3396   // ensure the ordering is stable.
3397   for (const Function &F : M) {
3398     // Summary emission does not support anonymous functions, they have to
3399     // renamed using the anonymous function renaming pass.
3400     if (!F.hasName())
3401       report_fatal_error("Unexpected anonymous function when writing summary");
3402 
3403     auto Summaries =
3404         Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName()));
3405     if (Summaries == Index->end()) {
3406       // Only declarations should not have a summary (a declaration might
3407       // however have a summary if the def was in module level asm).
3408       assert(F.isDeclaration());
3409       continue;
3410     }
3411     auto *Summary = Summaries->second.front().get();
3412     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3413                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3414   }
3415 
3416   // Capture references from GlobalVariable initializers, which are outside
3417   // of a function scope.
3418   for (const GlobalVariable &G : M.globals())
3419     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3420 
3421   for (const GlobalAlias &A : M.aliases()) {
3422     auto *Aliasee = A.getBaseObject();
3423     if (!Aliasee->hasName())
3424       // Nameless function don't have an entry in the summary, skip it.
3425       continue;
3426     auto AliasId = VE.getValueID(&A);
3427     auto AliaseeId = VE.getValueID(Aliasee);
3428     NameVals.push_back(AliasId);
3429     auto *Summary = Index->getGlobalValueSummary(A);
3430     AliasSummary *AS = cast<AliasSummary>(Summary);
3431     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3432     NameVals.push_back(AliaseeId);
3433     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3434     NameVals.clear();
3435   }
3436 
3437   Stream.ExitBlock();
3438 }
3439 
3440 /// Emit the combined summary section into the combined index file.
3441 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3442   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3443   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3444 
3445   // Abbrev for FS_COMBINED.
3446   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3447   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3448   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3449   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3450   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3451   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3452   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3453   // numrefs x valueid, n x (valueid)
3454   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3455   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3456   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3457 
3458   // Abbrev for FS_COMBINED_PROFILE.
3459   Abbv = new BitCodeAbbrev();
3460   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3461   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3462   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3463   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3464   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3465   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3466   // numrefs x valueid, n x (valueid, hotness)
3467   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3468   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3469   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3470 
3471   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3472   Abbv = new BitCodeAbbrev();
3473   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3474   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3475   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3476   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3477   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3478   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3479   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3480 
3481   // Abbrev for FS_COMBINED_ALIAS.
3482   Abbv = new BitCodeAbbrev();
3483   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3484   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3485   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3486   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3487   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3488   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3489 
3490   // The aliases are emitted as a post-pass, and will point to the value
3491   // id of the aliasee. Save them in a vector for post-processing.
3492   SmallVector<AliasSummary *, 64> Aliases;
3493 
3494   // Save the value id for each summary for alias emission.
3495   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3496 
3497   SmallVector<uint64_t, 64> NameVals;
3498 
3499   // For local linkage, we also emit the original name separately
3500   // immediately after the record.
3501   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3502     if (!GlobalValue::isLocalLinkage(S.linkage()))
3503       return;
3504     NameVals.push_back(S.getOriginalName());
3505     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3506     NameVals.clear();
3507   };
3508 
3509   for (const auto &I : *this) {
3510     GlobalValueSummary *S = I.second;
3511     assert(S);
3512 
3513     assert(hasValueId(I.first));
3514     unsigned ValueId = getValueId(I.first);
3515     SummaryToValueIdMap[S] = ValueId;
3516 
3517     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3518       // Will process aliases as a post-pass because the reader wants all
3519       // global to be loaded first.
3520       Aliases.push_back(AS);
3521       continue;
3522     }
3523 
3524     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3525       NameVals.push_back(ValueId);
3526       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3527       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3528       for (auto &RI : VS->refs()) {
3529         NameVals.push_back(getValueId(RI.getGUID()));
3530       }
3531 
3532       // Emit the finished record.
3533       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3534                         FSModRefsAbbrev);
3535       NameVals.clear();
3536       MaybeEmitOriginalName(*S);
3537       continue;
3538     }
3539 
3540     auto *FS = cast<FunctionSummary>(S);
3541     NameVals.push_back(ValueId);
3542     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3543     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3544     NameVals.push_back(FS->instCount());
3545     NameVals.push_back(FS->refs().size());
3546 
3547     for (auto &RI : FS->refs()) {
3548       NameVals.push_back(getValueId(RI.getGUID()));
3549     }
3550 
3551     bool HasProfileData = false;
3552     for (auto &EI : FS->calls()) {
3553       HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown;
3554       if (HasProfileData)
3555         break;
3556     }
3557 
3558     for (auto &EI : FS->calls()) {
3559       // If this GUID doesn't have a value id, it doesn't have a function
3560       // summary and we don't need to record any calls to it.
3561       if (!hasValueId(EI.first.getGUID()))
3562         continue;
3563       NameVals.push_back(getValueId(EI.first.getGUID()));
3564       if (HasProfileData)
3565         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3566     }
3567 
3568     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3569     unsigned Code =
3570         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3571 
3572     // Emit the finished record.
3573     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3574     NameVals.clear();
3575     MaybeEmitOriginalName(*S);
3576   }
3577 
3578   for (auto *AS : Aliases) {
3579     auto AliasValueId = SummaryToValueIdMap[AS];
3580     assert(AliasValueId);
3581     NameVals.push_back(AliasValueId);
3582     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3583     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3584     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3585     assert(AliaseeValueId);
3586     NameVals.push_back(AliaseeValueId);
3587 
3588     // Emit the finished record.
3589     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3590     NameVals.clear();
3591     MaybeEmitOriginalName(*AS);
3592   }
3593 
3594   Stream.ExitBlock();
3595 }
3596 
3597 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3598 /// current llvm version, and a record for the epoch number.
3599 void writeIdentificationBlock(BitstreamWriter &Stream) {
3600   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3601 
3602   // Write the "user readable" string identifying the bitcode producer
3603   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3604   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3605   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3606   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3607   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
3608   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
3609                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3610 
3611   // Write the epoch version
3612   Abbv = new BitCodeAbbrev();
3613   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3614   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3615   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
3616   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3617   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3618   Stream.ExitBlock();
3619 }
3620 
3621 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3622   // Emit the module's hash.
3623   // MODULE_CODE_HASH: [5*i32]
3624   SHA1 Hasher;
3625   Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3626                                   Buffer.size() - BlockStartPos));
3627   StringRef Hash = Hasher.result();
3628   uint32_t Vals[5];
3629   for (int Pos = 0; Pos < 20; Pos += 4) {
3630     Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
3631   }
3632 
3633   // Emit the finished record.
3634   Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3635 }
3636 
3637 void ModuleBitcodeWriter::write() {
3638   writeIdentificationBlock(Stream);
3639 
3640   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3641   size_t BlockStartPos = Buffer.size();
3642 
3643   SmallVector<unsigned, 1> Vals;
3644   unsigned CurVersion = 1;
3645   Vals.push_back(CurVersion);
3646   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3647 
3648   // Emit blockinfo, which defines the standard abbreviations etc.
3649   writeBlockInfo();
3650 
3651   // Emit information about attribute groups.
3652   writeAttributeGroupTable();
3653 
3654   // Emit information about parameter attributes.
3655   writeAttributeTable();
3656 
3657   // Emit information describing all of the types in the module.
3658   writeTypeTable();
3659 
3660   writeComdats();
3661 
3662   // Emit top-level description of module, including target triple, inline asm,
3663   // descriptors for global variables, and function prototype info.
3664   writeModuleInfo();
3665 
3666   // Emit constants.
3667   writeModuleConstants();
3668 
3669   // Emit metadata kind names.
3670   writeModuleMetadataKinds();
3671 
3672   // Emit metadata.
3673   writeModuleMetadata();
3674 
3675   // Emit module-level use-lists.
3676   if (VE.shouldPreserveUseListOrder())
3677     writeUseListBlock(nullptr);
3678 
3679   writeOperandBundleTags();
3680 
3681   // Emit function bodies.
3682   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3683   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3684     if (!F->isDeclaration())
3685       writeFunction(*F, FunctionToBitcodeIndex);
3686 
3687   // Need to write after the above call to WriteFunction which populates
3688   // the summary information in the index.
3689   if (Index)
3690     writePerModuleGlobalValueSummary();
3691 
3692   writeValueSymbolTable(M.getValueSymbolTable(),
3693                         /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
3694 
3695   if (GenerateHash) {
3696     writeModuleHash(BlockStartPos);
3697   }
3698 
3699   Stream.ExitBlock();
3700 }
3701 
3702 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3703                                uint32_t &Position) {
3704   support::endian::write32le(&Buffer[Position], Value);
3705   Position += 4;
3706 }
3707 
3708 /// If generating a bc file on darwin, we have to emit a
3709 /// header and trailer to make it compatible with the system archiver.  To do
3710 /// this we emit the following header, and then emit a trailer that pads the
3711 /// file out to be a multiple of 16 bytes.
3712 ///
3713 /// struct bc_header {
3714 ///   uint32_t Magic;         // 0x0B17C0DE
3715 ///   uint32_t Version;       // Version, currently always 0.
3716 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3717 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3718 ///   uint32_t CPUType;       // CPU specifier.
3719 ///   ... potentially more later ...
3720 /// };
3721 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3722                                          const Triple &TT) {
3723   unsigned CPUType = ~0U;
3724 
3725   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3726   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3727   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3728   // specific constants here because they are implicitly part of the Darwin ABI.
3729   enum {
3730     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3731     DARWIN_CPU_TYPE_X86        = 7,
3732     DARWIN_CPU_TYPE_ARM        = 12,
3733     DARWIN_CPU_TYPE_POWERPC    = 18
3734   };
3735 
3736   Triple::ArchType Arch = TT.getArch();
3737   if (Arch == Triple::x86_64)
3738     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3739   else if (Arch == Triple::x86)
3740     CPUType = DARWIN_CPU_TYPE_X86;
3741   else if (Arch == Triple::ppc)
3742     CPUType = DARWIN_CPU_TYPE_POWERPC;
3743   else if (Arch == Triple::ppc64)
3744     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3745   else if (Arch == Triple::arm || Arch == Triple::thumb)
3746     CPUType = DARWIN_CPU_TYPE_ARM;
3747 
3748   // Traditional Bitcode starts after header.
3749   assert(Buffer.size() >= BWH_HeaderSize &&
3750          "Expected header size to be reserved");
3751   unsigned BCOffset = BWH_HeaderSize;
3752   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3753 
3754   // Write the magic and version.
3755   unsigned Position = 0;
3756   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3757   writeInt32ToBuffer(0, Buffer, Position); // Version.
3758   writeInt32ToBuffer(BCOffset, Buffer, Position);
3759   writeInt32ToBuffer(BCSize, Buffer, Position);
3760   writeInt32ToBuffer(CPUType, Buffer, Position);
3761 
3762   // If the file is not a multiple of 16 bytes, insert dummy padding.
3763   while (Buffer.size() & 15)
3764     Buffer.push_back(0);
3765 }
3766 
3767 /// Helper to write the header common to all bitcode files.
3768 static void writeBitcodeHeader(BitstreamWriter &Stream) {
3769   // Emit the file header.
3770   Stream.Emit((unsigned)'B', 8);
3771   Stream.Emit((unsigned)'C', 8);
3772   Stream.Emit(0x0, 4);
3773   Stream.Emit(0xC, 4);
3774   Stream.Emit(0xE, 4);
3775   Stream.Emit(0xD, 4);
3776 }
3777 
3778 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
3779     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
3780   writeBitcodeHeader(*Stream);
3781 }
3782 
3783 BitcodeWriter::~BitcodeWriter() = default;
3784 
3785 void BitcodeWriter::writeModule(const Module *M,
3786                                 bool ShouldPreserveUseListOrder,
3787                                 const ModuleSummaryIndex *Index,
3788                                 bool GenerateHash) {
3789   ModuleBitcodeWriter ModuleWriter(
3790       M, Buffer, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash);
3791   ModuleWriter.write();
3792 }
3793 
3794 /// WriteBitcodeToFile - Write the specified module to the specified output
3795 /// stream.
3796 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3797                               bool ShouldPreserveUseListOrder,
3798                               const ModuleSummaryIndex *Index,
3799                               bool GenerateHash) {
3800   SmallVector<char, 0> Buffer;
3801   Buffer.reserve(256*1024);
3802 
3803   // If this is darwin or another generic macho target, reserve space for the
3804   // header.
3805   Triple TT(M->getTargetTriple());
3806   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3807     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3808 
3809   BitcodeWriter Writer(Buffer);
3810   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash);
3811 
3812   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3813     emitDarwinBCHeaderAndTrailer(Buffer, TT);
3814 
3815   // Write the generated bitstream to "Out".
3816   Out.write((char*)&Buffer.front(), Buffer.size());
3817 }
3818 
3819 void IndexBitcodeWriter::write() {
3820   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3821 
3822   SmallVector<unsigned, 1> Vals;
3823   unsigned CurVersion = 1;
3824   Vals.push_back(CurVersion);
3825   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3826 
3827   // If we have a VST, write the VSTOFFSET record placeholder.
3828   writeValueSymbolTableForwardDecl();
3829 
3830   // Write the module paths in the combined index.
3831   writeModStrings();
3832 
3833   // Write the summary combined index records.
3834   writeCombinedGlobalValueSummary();
3835 
3836   // Need a special VST writer for the combined index (we don't have a
3837   // real VST and real values when this is invoked).
3838   writeCombinedValueSymbolTable();
3839 
3840   Stream.ExitBlock();
3841 }
3842 
3843 // Write the specified module summary index to the given raw output stream,
3844 // where it will be written in a new bitcode block. This is used when
3845 // writing the combined index file for ThinLTO. When writing a subset of the
3846 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
3847 void llvm::WriteIndexToFile(
3848     const ModuleSummaryIndex &Index, raw_ostream &Out,
3849     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
3850   SmallVector<char, 0> Buffer;
3851   Buffer.reserve(256 * 1024);
3852 
3853   BitstreamWriter Stream(Buffer);
3854   writeBitcodeHeader(Stream);
3855 
3856   IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex);
3857   IndexWriter.write();
3858 
3859   Out.write((char *)&Buffer.front(), Buffer.size());
3860 }
3861