1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/ValueSymbolTable.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Program.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 // VALUE_SYMTAB_BLOCK abbrev id's. 45 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 VST_ENTRY_7_ABBREV, 47 VST_ENTRY_6_ABBREV, 48 VST_BBENTRY_6_ABBREV, 49 50 // CONSTANTS_BLOCK abbrev id's. 51 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 CONSTANTS_INTEGER_ABBREV, 53 CONSTANTS_CE_CAST_Abbrev, 54 CONSTANTS_NULL_Abbrev, 55 56 // FUNCTION_BLOCK abbrev id's. 57 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 FUNCTION_INST_BINOP_ABBREV, 59 FUNCTION_INST_BINOP_FLAGS_ABBREV, 60 FUNCTION_INST_CAST_ABBREV, 61 FUNCTION_INST_RET_VOID_ABBREV, 62 FUNCTION_INST_RET_VAL_ABBREV, 63 FUNCTION_INST_UNREACHABLE_ABBREV 64 }; 65 66 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 67 switch (Opcode) { 68 default: llvm_unreachable("Unknown cast instruction!"); 69 case Instruction::Trunc : return bitc::CAST_TRUNC; 70 case Instruction::ZExt : return bitc::CAST_ZEXT; 71 case Instruction::SExt : return bitc::CAST_SEXT; 72 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 73 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 74 case Instruction::UIToFP : return bitc::CAST_UITOFP; 75 case Instruction::SIToFP : return bitc::CAST_SITOFP; 76 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 77 case Instruction::FPExt : return bitc::CAST_FPEXT; 78 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 79 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 80 case Instruction::BitCast : return bitc::CAST_BITCAST; 81 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 82 } 83 } 84 85 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 86 switch (Opcode) { 87 default: llvm_unreachable("Unknown binary instruction!"); 88 case Instruction::Add: 89 case Instruction::FAdd: return bitc::BINOP_ADD; 90 case Instruction::Sub: 91 case Instruction::FSub: return bitc::BINOP_SUB; 92 case Instruction::Mul: 93 case Instruction::FMul: return bitc::BINOP_MUL; 94 case Instruction::UDiv: return bitc::BINOP_UDIV; 95 case Instruction::FDiv: 96 case Instruction::SDiv: return bitc::BINOP_SDIV; 97 case Instruction::URem: return bitc::BINOP_UREM; 98 case Instruction::FRem: 99 case Instruction::SRem: return bitc::BINOP_SREM; 100 case Instruction::Shl: return bitc::BINOP_SHL; 101 case Instruction::LShr: return bitc::BINOP_LSHR; 102 case Instruction::AShr: return bitc::BINOP_ASHR; 103 case Instruction::And: return bitc::BINOP_AND; 104 case Instruction::Or: return bitc::BINOP_OR; 105 case Instruction::Xor: return bitc::BINOP_XOR; 106 } 107 } 108 109 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 110 switch (Op) { 111 default: llvm_unreachable("Unknown RMW operation!"); 112 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 113 case AtomicRMWInst::Add: return bitc::RMW_ADD; 114 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 115 case AtomicRMWInst::And: return bitc::RMW_AND; 116 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 117 case AtomicRMWInst::Or: return bitc::RMW_OR; 118 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 119 case AtomicRMWInst::Max: return bitc::RMW_MAX; 120 case AtomicRMWInst::Min: return bitc::RMW_MIN; 121 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 122 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 123 } 124 } 125 126 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 127 switch (Ordering) { 128 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 129 case Unordered: return bitc::ORDERING_UNORDERED; 130 case Monotonic: return bitc::ORDERING_MONOTONIC; 131 case Acquire: return bitc::ORDERING_ACQUIRE; 132 case Release: return bitc::ORDERING_RELEASE; 133 case AcquireRelease: return bitc::ORDERING_ACQREL; 134 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 135 } 136 llvm_unreachable("Invalid ordering"); 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 llvm_unreachable("Invalid synch scope"); 145 } 146 147 static void WriteStringRecord(unsigned Code, StringRef Str, 148 unsigned AbbrevToUse, BitstreamWriter &Stream) { 149 SmallVector<unsigned, 64> Vals; 150 151 // Code: [strchar x N] 152 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 153 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 154 AbbrevToUse = 0; 155 Vals.push_back(Str[i]); 156 } 157 158 // Emit the finished record. 159 Stream.EmitRecord(Code, Vals, AbbrevToUse); 160 } 161 162 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 163 switch (Kind) { 164 case Attribute::Alignment: 165 return bitc::ATTR_KIND_ALIGNMENT; 166 case Attribute::AlwaysInline: 167 return bitc::ATTR_KIND_ALWAYS_INLINE; 168 case Attribute::Builtin: 169 return bitc::ATTR_KIND_BUILTIN; 170 case Attribute::ByVal: 171 return bitc::ATTR_KIND_BY_VAL; 172 case Attribute::InAlloca: 173 return bitc::ATTR_KIND_IN_ALLOCA; 174 case Attribute::Cold: 175 return bitc::ATTR_KIND_COLD; 176 case Attribute::InlineHint: 177 return bitc::ATTR_KIND_INLINE_HINT; 178 case Attribute::InReg: 179 return bitc::ATTR_KIND_IN_REG; 180 case Attribute::MinSize: 181 return bitc::ATTR_KIND_MIN_SIZE; 182 case Attribute::Naked: 183 return bitc::ATTR_KIND_NAKED; 184 case Attribute::Nest: 185 return bitc::ATTR_KIND_NEST; 186 case Attribute::NoAlias: 187 return bitc::ATTR_KIND_NO_ALIAS; 188 case Attribute::NoBuiltin: 189 return bitc::ATTR_KIND_NO_BUILTIN; 190 case Attribute::NoCapture: 191 return bitc::ATTR_KIND_NO_CAPTURE; 192 case Attribute::NoDuplicate: 193 return bitc::ATTR_KIND_NO_DUPLICATE; 194 case Attribute::NoImplicitFloat: 195 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 196 case Attribute::NoInline: 197 return bitc::ATTR_KIND_NO_INLINE; 198 case Attribute::NonLazyBind: 199 return bitc::ATTR_KIND_NON_LAZY_BIND; 200 case Attribute::NonNull: 201 return bitc::ATTR_KIND_NON_NULL; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isAlignAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: return 0; 482 case GlobalValue::WeakAnyLinkage: return 1; 483 case GlobalValue::AppendingLinkage: return 2; 484 case GlobalValue::InternalLinkage: return 3; 485 case GlobalValue::LinkOnceAnyLinkage: return 4; 486 case GlobalValue::ExternalWeakLinkage: return 7; 487 case GlobalValue::CommonLinkage: return 8; 488 case GlobalValue::PrivateLinkage: return 9; 489 case GlobalValue::WeakODRLinkage: return 10; 490 case GlobalValue::LinkOnceODRLinkage: return 11; 491 case GlobalValue::AvailableExternallyLinkage: return 12; 492 } 493 llvm_unreachable("Invalid linkage"); 494 } 495 496 static unsigned getEncodedVisibility(const GlobalValue &GV) { 497 switch (GV.getVisibility()) { 498 case GlobalValue::DefaultVisibility: return 0; 499 case GlobalValue::HiddenVisibility: return 1; 500 case GlobalValue::ProtectedVisibility: return 2; 501 } 502 llvm_unreachable("Invalid visibility"); 503 } 504 505 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 506 switch (GV.getDLLStorageClass()) { 507 case GlobalValue::DefaultStorageClass: return 0; 508 case GlobalValue::DLLImportStorageClass: return 1; 509 case GlobalValue::DLLExportStorageClass: return 2; 510 } 511 llvm_unreachable("Invalid DLL storage class"); 512 } 513 514 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 515 switch (GV.getThreadLocalMode()) { 516 case GlobalVariable::NotThreadLocal: return 0; 517 case GlobalVariable::GeneralDynamicTLSModel: return 1; 518 case GlobalVariable::LocalDynamicTLSModel: return 2; 519 case GlobalVariable::InitialExecTLSModel: return 3; 520 case GlobalVariable::LocalExecTLSModel: return 4; 521 } 522 llvm_unreachable("Invalid TLS model"); 523 } 524 525 // Emit top-level description of module, including target triple, inline asm, 526 // descriptors for global variables, and function prototype info. 527 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 528 BitstreamWriter &Stream) { 529 // Emit various pieces of data attached to a module. 530 if (!M->getTargetTriple().empty()) 531 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 532 0/*TODO*/, Stream); 533 const std::string &DL = M->getDataLayoutStr(); 534 if (!DL.empty()) 535 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 536 if (!M->getModuleInlineAsm().empty()) 537 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 538 0/*TODO*/, Stream); 539 540 // Emit information about sections and GC, computing how many there are. Also 541 // compute the maximum alignment value. 542 std::map<std::string, unsigned> SectionMap; 543 std::map<std::string, unsigned> GCMap; 544 unsigned MaxAlignment = 0; 545 unsigned MaxGlobalType = 0; 546 for (const GlobalValue &GV : M->globals()) { 547 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 548 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 549 if (GV.hasSection()) { 550 // Give section names unique ID's. 551 unsigned &Entry = SectionMap[GV.getSection()]; 552 if (!Entry) { 553 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 554 0/*TODO*/, Stream); 555 Entry = SectionMap.size(); 556 } 557 } 558 } 559 for (const Function &F : *M) { 560 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 561 if (F.hasSection()) { 562 // Give section names unique ID's. 563 unsigned &Entry = SectionMap[F.getSection()]; 564 if (!Entry) { 565 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 566 0/*TODO*/, Stream); 567 Entry = SectionMap.size(); 568 } 569 } 570 if (F.hasGC()) { 571 // Same for GC names. 572 unsigned &Entry = GCMap[F.getGC()]; 573 if (!Entry) { 574 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 575 0/*TODO*/, Stream); 576 Entry = GCMap.size(); 577 } 578 } 579 } 580 581 // Emit abbrev for globals, now that we know # sections and max alignment. 582 unsigned SimpleGVarAbbrev = 0; 583 if (!M->global_empty()) { 584 // Add an abbrev for common globals with no visibility or thread localness. 585 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 586 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 588 Log2_32_Ceil(MaxGlobalType+1))); 589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 592 if (MaxAlignment == 0) // Alignment. 593 Abbv->Add(BitCodeAbbrevOp(0)); 594 else { 595 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 597 Log2_32_Ceil(MaxEncAlignment+1))); 598 } 599 if (SectionMap.empty()) // Section. 600 Abbv->Add(BitCodeAbbrevOp(0)); 601 else 602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 603 Log2_32_Ceil(SectionMap.size()+1))); 604 // Don't bother emitting vis + thread local. 605 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 606 } 607 608 // Emit the global variable information. 609 SmallVector<unsigned, 64> Vals; 610 for (const GlobalVariable &GV : M->globals()) { 611 unsigned AbbrevToUse = 0; 612 613 // GLOBALVAR: [type, isconst, initid, 614 // linkage, alignment, section, visibility, threadlocal, 615 // unnamed_addr, externally_initialized, dllstorageclass] 616 Vals.push_back(VE.getTypeID(GV.getType())); 617 Vals.push_back(GV.isConstant()); 618 Vals.push_back(GV.isDeclaration() ? 0 : 619 (VE.getValueID(GV.getInitializer()) + 1)); 620 Vals.push_back(getEncodedLinkage(GV)); 621 Vals.push_back(Log2_32(GV.getAlignment())+1); 622 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 623 if (GV.isThreadLocal() || 624 GV.getVisibility() != GlobalValue::DefaultVisibility || 625 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 626 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass) { 627 Vals.push_back(getEncodedVisibility(GV)); 628 Vals.push_back(getEncodedThreadLocalMode(GV)); 629 Vals.push_back(GV.hasUnnamedAddr()); 630 Vals.push_back(GV.isExternallyInitialized()); 631 Vals.push_back(getEncodedDLLStorageClass(GV)); 632 } else { 633 AbbrevToUse = SimpleGVarAbbrev; 634 } 635 636 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 637 Vals.clear(); 638 } 639 640 // Emit the function proto information. 641 for (const Function &F : *M) { 642 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 643 // section, visibility, gc, unnamed_addr, prefix] 644 Vals.push_back(VE.getTypeID(F.getType())); 645 Vals.push_back(F.getCallingConv()); 646 Vals.push_back(F.isDeclaration()); 647 Vals.push_back(getEncodedLinkage(F)); 648 Vals.push_back(VE.getAttributeID(F.getAttributes())); 649 Vals.push_back(Log2_32(F.getAlignment())+1); 650 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 651 Vals.push_back(getEncodedVisibility(F)); 652 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 653 Vals.push_back(F.hasUnnamedAddr()); 654 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 655 : 0); 656 Vals.push_back(getEncodedDLLStorageClass(F)); 657 658 unsigned AbbrevToUse = 0; 659 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 660 Vals.clear(); 661 } 662 663 // Emit the alias information. 664 for (const GlobalAlias &A : M->aliases()) { 665 // ALIAS: [alias type, aliasee val#, linkage, visibility] 666 Vals.push_back(VE.getTypeID(A.getType())); 667 Vals.push_back(VE.getValueID(A.getAliasee())); 668 Vals.push_back(getEncodedLinkage(A)); 669 Vals.push_back(getEncodedVisibility(A)); 670 Vals.push_back(getEncodedDLLStorageClass(A)); 671 if (A.isThreadLocal()) 672 Vals.push_back(getEncodedThreadLocalMode(A)); 673 unsigned AbbrevToUse = 0; 674 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 675 Vals.clear(); 676 } 677 } 678 679 static uint64_t GetOptimizationFlags(const Value *V) { 680 uint64_t Flags = 0; 681 682 if (const OverflowingBinaryOperator *OBO = 683 dyn_cast<OverflowingBinaryOperator>(V)) { 684 if (OBO->hasNoSignedWrap()) 685 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 686 if (OBO->hasNoUnsignedWrap()) 687 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 688 } else if (const PossiblyExactOperator *PEO = 689 dyn_cast<PossiblyExactOperator>(V)) { 690 if (PEO->isExact()) 691 Flags |= 1 << bitc::PEO_EXACT; 692 } else if (const FPMathOperator *FPMO = 693 dyn_cast<const FPMathOperator>(V)) { 694 if (FPMO->hasUnsafeAlgebra()) 695 Flags |= FastMathFlags::UnsafeAlgebra; 696 if (FPMO->hasNoNaNs()) 697 Flags |= FastMathFlags::NoNaNs; 698 if (FPMO->hasNoInfs()) 699 Flags |= FastMathFlags::NoInfs; 700 if (FPMO->hasNoSignedZeros()) 701 Flags |= FastMathFlags::NoSignedZeros; 702 if (FPMO->hasAllowReciprocal()) 703 Flags |= FastMathFlags::AllowReciprocal; 704 } 705 706 return Flags; 707 } 708 709 static void WriteMDNode(const MDNode *N, 710 const ValueEnumerator &VE, 711 BitstreamWriter &Stream, 712 SmallVectorImpl<uint64_t> &Record) { 713 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 714 if (N->getOperand(i)) { 715 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 716 Record.push_back(VE.getValueID(N->getOperand(i))); 717 } else { 718 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 719 Record.push_back(0); 720 } 721 } 722 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 723 bitc::METADATA_NODE; 724 Stream.EmitRecord(MDCode, Record, 0); 725 Record.clear(); 726 } 727 728 static void WriteModuleMetadata(const Module *M, 729 const ValueEnumerator &VE, 730 BitstreamWriter &Stream) { 731 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 732 bool StartedMetadataBlock = false; 733 unsigned MDSAbbrev = 0; 734 SmallVector<uint64_t, 64> Record; 735 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 736 737 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 738 if (!N->isFunctionLocal() || !N->getFunction()) { 739 if (!StartedMetadataBlock) { 740 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 741 StartedMetadataBlock = true; 742 } 743 WriteMDNode(N, VE, Stream, Record); 744 } 745 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 746 if (!StartedMetadataBlock) { 747 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 748 749 // Abbrev for METADATA_STRING. 750 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 751 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 754 MDSAbbrev = Stream.EmitAbbrev(Abbv); 755 StartedMetadataBlock = true; 756 } 757 758 // Code: [strchar x N] 759 Record.append(MDS->begin(), MDS->end()); 760 761 // Emit the finished record. 762 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 763 Record.clear(); 764 } 765 } 766 767 // Write named metadata. 768 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 769 E = M->named_metadata_end(); I != E; ++I) { 770 const NamedMDNode *NMD = I; 771 if (!StartedMetadataBlock) { 772 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 773 StartedMetadataBlock = true; 774 } 775 776 // Write name. 777 StringRef Str = NMD->getName(); 778 for (unsigned i = 0, e = Str.size(); i != e; ++i) 779 Record.push_back(Str[i]); 780 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 781 Record.clear(); 782 783 // Write named metadata operands. 784 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 785 Record.push_back(VE.getValueID(NMD->getOperand(i))); 786 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 787 Record.clear(); 788 } 789 790 if (StartedMetadataBlock) 791 Stream.ExitBlock(); 792 } 793 794 static void WriteFunctionLocalMetadata(const Function &F, 795 const ValueEnumerator &VE, 796 BitstreamWriter &Stream) { 797 bool StartedMetadataBlock = false; 798 SmallVector<uint64_t, 64> Record; 799 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 800 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 801 if (const MDNode *N = Vals[i]) 802 if (N->isFunctionLocal() && N->getFunction() == &F) { 803 if (!StartedMetadataBlock) { 804 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 805 StartedMetadataBlock = true; 806 } 807 WriteMDNode(N, VE, Stream, Record); 808 } 809 810 if (StartedMetadataBlock) 811 Stream.ExitBlock(); 812 } 813 814 static void WriteMetadataAttachment(const Function &F, 815 const ValueEnumerator &VE, 816 BitstreamWriter &Stream) { 817 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 818 819 SmallVector<uint64_t, 64> Record; 820 821 // Write metadata attachments 822 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 823 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 824 825 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 826 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 827 I != E; ++I) { 828 MDs.clear(); 829 I->getAllMetadataOtherThanDebugLoc(MDs); 830 831 // If no metadata, ignore instruction. 832 if (MDs.empty()) continue; 833 834 Record.push_back(VE.getInstructionID(I)); 835 836 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 837 Record.push_back(MDs[i].first); 838 Record.push_back(VE.getValueID(MDs[i].second)); 839 } 840 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 841 Record.clear(); 842 } 843 844 Stream.ExitBlock(); 845 } 846 847 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 848 SmallVector<uint64_t, 64> Record; 849 850 // Write metadata kinds 851 // METADATA_KIND - [n x [id, name]] 852 SmallVector<StringRef, 8> Names; 853 M->getMDKindNames(Names); 854 855 if (Names.empty()) return; 856 857 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 858 859 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 860 Record.push_back(MDKindID); 861 StringRef KName = Names[MDKindID]; 862 Record.append(KName.begin(), KName.end()); 863 864 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 865 Record.clear(); 866 } 867 868 Stream.ExitBlock(); 869 } 870 871 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 872 if ((int64_t)V >= 0) 873 Vals.push_back(V << 1); 874 else 875 Vals.push_back((-V << 1) | 1); 876 } 877 878 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, bool isGlobal) { 881 if (FirstVal == LastVal) return; 882 883 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 884 885 unsigned AggregateAbbrev = 0; 886 unsigned String8Abbrev = 0; 887 unsigned CString7Abbrev = 0; 888 unsigned CString6Abbrev = 0; 889 // If this is a constant pool for the module, emit module-specific abbrevs. 890 if (isGlobal) { 891 // Abbrev for CST_CODE_AGGREGATE. 892 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 893 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 896 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 897 898 // Abbrev for CST_CODE_STRING. 899 Abbv = new BitCodeAbbrev(); 900 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 903 String8Abbrev = Stream.EmitAbbrev(Abbv); 904 // Abbrev for CST_CODE_CSTRING. 905 Abbv = new BitCodeAbbrev(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 909 CString7Abbrev = Stream.EmitAbbrev(Abbv); 910 // Abbrev for CST_CODE_CSTRING. 911 Abbv = new BitCodeAbbrev(); 912 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 915 CString6Abbrev = Stream.EmitAbbrev(Abbv); 916 } 917 918 SmallVector<uint64_t, 64> Record; 919 920 const ValueEnumerator::ValueList &Vals = VE.getValues(); 921 Type *LastTy = nullptr; 922 for (unsigned i = FirstVal; i != LastVal; ++i) { 923 const Value *V = Vals[i].first; 924 // If we need to switch types, do so now. 925 if (V->getType() != LastTy) { 926 LastTy = V->getType(); 927 Record.push_back(VE.getTypeID(LastTy)); 928 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 929 CONSTANTS_SETTYPE_ABBREV); 930 Record.clear(); 931 } 932 933 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 934 Record.push_back(unsigned(IA->hasSideEffects()) | 935 unsigned(IA->isAlignStack()) << 1 | 936 unsigned(IA->getDialect()&1) << 2); 937 938 // Add the asm string. 939 const std::string &AsmStr = IA->getAsmString(); 940 Record.push_back(AsmStr.size()); 941 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 942 Record.push_back(AsmStr[i]); 943 944 // Add the constraint string. 945 const std::string &ConstraintStr = IA->getConstraintString(); 946 Record.push_back(ConstraintStr.size()); 947 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 948 Record.push_back(ConstraintStr[i]); 949 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 950 Record.clear(); 951 continue; 952 } 953 const Constant *C = cast<Constant>(V); 954 unsigned Code = -1U; 955 unsigned AbbrevToUse = 0; 956 if (C->isNullValue()) { 957 Code = bitc::CST_CODE_NULL; 958 } else if (isa<UndefValue>(C)) { 959 Code = bitc::CST_CODE_UNDEF; 960 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 961 if (IV->getBitWidth() <= 64) { 962 uint64_t V = IV->getSExtValue(); 963 emitSignedInt64(Record, V); 964 Code = bitc::CST_CODE_INTEGER; 965 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 966 } else { // Wide integers, > 64 bits in size. 967 // We have an arbitrary precision integer value to write whose 968 // bit width is > 64. However, in canonical unsigned integer 969 // format it is likely that the high bits are going to be zero. 970 // So, we only write the number of active words. 971 unsigned NWords = IV->getValue().getActiveWords(); 972 const uint64_t *RawWords = IV->getValue().getRawData(); 973 for (unsigned i = 0; i != NWords; ++i) { 974 emitSignedInt64(Record, RawWords[i]); 975 } 976 Code = bitc::CST_CODE_WIDE_INTEGER; 977 } 978 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 979 Code = bitc::CST_CODE_FLOAT; 980 Type *Ty = CFP->getType(); 981 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 982 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 983 } else if (Ty->isX86_FP80Ty()) { 984 // api needed to prevent premature destruction 985 // bits are not in the same order as a normal i80 APInt, compensate. 986 APInt api = CFP->getValueAPF().bitcastToAPInt(); 987 const uint64_t *p = api.getRawData(); 988 Record.push_back((p[1] << 48) | (p[0] >> 16)); 989 Record.push_back(p[0] & 0xffffLL); 990 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 991 APInt api = CFP->getValueAPF().bitcastToAPInt(); 992 const uint64_t *p = api.getRawData(); 993 Record.push_back(p[0]); 994 Record.push_back(p[1]); 995 } else { 996 assert (0 && "Unknown FP type!"); 997 } 998 } else if (isa<ConstantDataSequential>(C) && 999 cast<ConstantDataSequential>(C)->isString()) { 1000 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1001 // Emit constant strings specially. 1002 unsigned NumElts = Str->getNumElements(); 1003 // If this is a null-terminated string, use the denser CSTRING encoding. 1004 if (Str->isCString()) { 1005 Code = bitc::CST_CODE_CSTRING; 1006 --NumElts; // Don't encode the null, which isn't allowed by char6. 1007 } else { 1008 Code = bitc::CST_CODE_STRING; 1009 AbbrevToUse = String8Abbrev; 1010 } 1011 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1012 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1013 for (unsigned i = 0; i != NumElts; ++i) { 1014 unsigned char V = Str->getElementAsInteger(i); 1015 Record.push_back(V); 1016 isCStr7 &= (V & 128) == 0; 1017 if (isCStrChar6) 1018 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1019 } 1020 1021 if (isCStrChar6) 1022 AbbrevToUse = CString6Abbrev; 1023 else if (isCStr7) 1024 AbbrevToUse = CString7Abbrev; 1025 } else if (const ConstantDataSequential *CDS = 1026 dyn_cast<ConstantDataSequential>(C)) { 1027 Code = bitc::CST_CODE_DATA; 1028 Type *EltTy = CDS->getType()->getElementType(); 1029 if (isa<IntegerType>(EltTy)) { 1030 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1031 Record.push_back(CDS->getElementAsInteger(i)); 1032 } else if (EltTy->isFloatTy()) { 1033 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1034 union { float F; uint32_t I; }; 1035 F = CDS->getElementAsFloat(i); 1036 Record.push_back(I); 1037 } 1038 } else { 1039 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1040 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1041 union { double F; uint64_t I; }; 1042 F = CDS->getElementAsDouble(i); 1043 Record.push_back(I); 1044 } 1045 } 1046 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1047 isa<ConstantVector>(C)) { 1048 Code = bitc::CST_CODE_AGGREGATE; 1049 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1050 Record.push_back(VE.getValueID(C->getOperand(i))); 1051 AbbrevToUse = AggregateAbbrev; 1052 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1053 switch (CE->getOpcode()) { 1054 default: 1055 if (Instruction::isCast(CE->getOpcode())) { 1056 Code = bitc::CST_CODE_CE_CAST; 1057 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1058 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1059 Record.push_back(VE.getValueID(C->getOperand(0))); 1060 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1061 } else { 1062 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1063 Code = bitc::CST_CODE_CE_BINOP; 1064 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1065 Record.push_back(VE.getValueID(C->getOperand(0))); 1066 Record.push_back(VE.getValueID(C->getOperand(1))); 1067 uint64_t Flags = GetOptimizationFlags(CE); 1068 if (Flags != 0) 1069 Record.push_back(Flags); 1070 } 1071 break; 1072 case Instruction::GetElementPtr: 1073 Code = bitc::CST_CODE_CE_GEP; 1074 if (cast<GEPOperator>(C)->isInBounds()) 1075 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1076 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1077 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1078 Record.push_back(VE.getValueID(C->getOperand(i))); 1079 } 1080 break; 1081 case Instruction::Select: 1082 Code = bitc::CST_CODE_CE_SELECT; 1083 Record.push_back(VE.getValueID(C->getOperand(0))); 1084 Record.push_back(VE.getValueID(C->getOperand(1))); 1085 Record.push_back(VE.getValueID(C->getOperand(2))); 1086 break; 1087 case Instruction::ExtractElement: 1088 Code = bitc::CST_CODE_CE_EXTRACTELT; 1089 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1090 Record.push_back(VE.getValueID(C->getOperand(0))); 1091 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1092 Record.push_back(VE.getValueID(C->getOperand(1))); 1093 break; 1094 case Instruction::InsertElement: 1095 Code = bitc::CST_CODE_CE_INSERTELT; 1096 Record.push_back(VE.getValueID(C->getOperand(0))); 1097 Record.push_back(VE.getValueID(C->getOperand(1))); 1098 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1099 Record.push_back(VE.getValueID(C->getOperand(2))); 1100 break; 1101 case Instruction::ShuffleVector: 1102 // If the return type and argument types are the same, this is a 1103 // standard shufflevector instruction. If the types are different, 1104 // then the shuffle is widening or truncating the input vectors, and 1105 // the argument type must also be encoded. 1106 if (C->getType() == C->getOperand(0)->getType()) { 1107 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1108 } else { 1109 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1110 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1111 } 1112 Record.push_back(VE.getValueID(C->getOperand(0))); 1113 Record.push_back(VE.getValueID(C->getOperand(1))); 1114 Record.push_back(VE.getValueID(C->getOperand(2))); 1115 break; 1116 case Instruction::ICmp: 1117 case Instruction::FCmp: 1118 Code = bitc::CST_CODE_CE_CMP; 1119 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1120 Record.push_back(VE.getValueID(C->getOperand(0))); 1121 Record.push_back(VE.getValueID(C->getOperand(1))); 1122 Record.push_back(CE->getPredicate()); 1123 break; 1124 } 1125 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1126 Code = bitc::CST_CODE_BLOCKADDRESS; 1127 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1128 Record.push_back(VE.getValueID(BA->getFunction())); 1129 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1130 } else { 1131 #ifndef NDEBUG 1132 C->dump(); 1133 #endif 1134 llvm_unreachable("Unknown constant!"); 1135 } 1136 Stream.EmitRecord(Code, Record, AbbrevToUse); 1137 Record.clear(); 1138 } 1139 1140 Stream.ExitBlock(); 1141 } 1142 1143 static void WriteModuleConstants(const ValueEnumerator &VE, 1144 BitstreamWriter &Stream) { 1145 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1146 1147 // Find the first constant to emit, which is the first non-globalvalue value. 1148 // We know globalvalues have been emitted by WriteModuleInfo. 1149 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1150 if (!isa<GlobalValue>(Vals[i].first)) { 1151 WriteConstants(i, Vals.size(), VE, Stream, true); 1152 return; 1153 } 1154 } 1155 } 1156 1157 /// PushValueAndType - The file has to encode both the value and type id for 1158 /// many values, because we need to know what type to create for forward 1159 /// references. However, most operands are not forward references, so this type 1160 /// field is not needed. 1161 /// 1162 /// This function adds V's value ID to Vals. If the value ID is higher than the 1163 /// instruction ID, then it is a forward reference, and it also includes the 1164 /// type ID. The value ID that is written is encoded relative to the InstID. 1165 static bool PushValueAndType(const Value *V, unsigned InstID, 1166 SmallVectorImpl<unsigned> &Vals, 1167 ValueEnumerator &VE) { 1168 unsigned ValID = VE.getValueID(V); 1169 // Make encoding relative to the InstID. 1170 Vals.push_back(InstID - ValID); 1171 if (ValID >= InstID) { 1172 Vals.push_back(VE.getTypeID(V->getType())); 1173 return true; 1174 } 1175 return false; 1176 } 1177 1178 /// pushValue - Like PushValueAndType, but where the type of the value is 1179 /// omitted (perhaps it was already encoded in an earlier operand). 1180 static void pushValue(const Value *V, unsigned InstID, 1181 SmallVectorImpl<unsigned> &Vals, 1182 ValueEnumerator &VE) { 1183 unsigned ValID = VE.getValueID(V); 1184 Vals.push_back(InstID - ValID); 1185 } 1186 1187 static void pushValueSigned(const Value *V, unsigned InstID, 1188 SmallVectorImpl<uint64_t> &Vals, 1189 ValueEnumerator &VE) { 1190 unsigned ValID = VE.getValueID(V); 1191 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1192 emitSignedInt64(Vals, diff); 1193 } 1194 1195 /// WriteInstruction - Emit an instruction to the specified stream. 1196 static void WriteInstruction(const Instruction &I, unsigned InstID, 1197 ValueEnumerator &VE, BitstreamWriter &Stream, 1198 SmallVectorImpl<unsigned> &Vals) { 1199 unsigned Code = 0; 1200 unsigned AbbrevToUse = 0; 1201 VE.setInstructionID(&I); 1202 switch (I.getOpcode()) { 1203 default: 1204 if (Instruction::isCast(I.getOpcode())) { 1205 Code = bitc::FUNC_CODE_INST_CAST; 1206 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1207 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1208 Vals.push_back(VE.getTypeID(I.getType())); 1209 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1210 } else { 1211 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1212 Code = bitc::FUNC_CODE_INST_BINOP; 1213 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1214 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1215 pushValue(I.getOperand(1), InstID, Vals, VE); 1216 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1217 uint64_t Flags = GetOptimizationFlags(&I); 1218 if (Flags != 0) { 1219 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1220 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1221 Vals.push_back(Flags); 1222 } 1223 } 1224 break; 1225 1226 case Instruction::GetElementPtr: 1227 Code = bitc::FUNC_CODE_INST_GEP; 1228 if (cast<GEPOperator>(&I)->isInBounds()) 1229 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1230 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1231 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1232 break; 1233 case Instruction::ExtractValue: { 1234 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1235 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1236 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1237 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1238 Vals.push_back(*i); 1239 break; 1240 } 1241 case Instruction::InsertValue: { 1242 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1243 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1244 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1245 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1246 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1247 Vals.push_back(*i); 1248 break; 1249 } 1250 case Instruction::Select: 1251 Code = bitc::FUNC_CODE_INST_VSELECT; 1252 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1253 pushValue(I.getOperand(2), InstID, Vals, VE); 1254 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1255 break; 1256 case Instruction::ExtractElement: 1257 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1258 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1259 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1260 break; 1261 case Instruction::InsertElement: 1262 Code = bitc::FUNC_CODE_INST_INSERTELT; 1263 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1264 pushValue(I.getOperand(1), InstID, Vals, VE); 1265 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1266 break; 1267 case Instruction::ShuffleVector: 1268 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1269 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1270 pushValue(I.getOperand(1), InstID, Vals, VE); 1271 pushValue(I.getOperand(2), InstID, Vals, VE); 1272 break; 1273 case Instruction::ICmp: 1274 case Instruction::FCmp: 1275 // compare returning Int1Ty or vector of Int1Ty 1276 Code = bitc::FUNC_CODE_INST_CMP2; 1277 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1278 pushValue(I.getOperand(1), InstID, Vals, VE); 1279 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1280 break; 1281 1282 case Instruction::Ret: 1283 { 1284 Code = bitc::FUNC_CODE_INST_RET; 1285 unsigned NumOperands = I.getNumOperands(); 1286 if (NumOperands == 0) 1287 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1288 else if (NumOperands == 1) { 1289 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1290 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1291 } else { 1292 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1293 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1294 } 1295 } 1296 break; 1297 case Instruction::Br: 1298 { 1299 Code = bitc::FUNC_CODE_INST_BR; 1300 const BranchInst &II = cast<BranchInst>(I); 1301 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1302 if (II.isConditional()) { 1303 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1304 pushValue(II.getCondition(), InstID, Vals, VE); 1305 } 1306 } 1307 break; 1308 case Instruction::Switch: 1309 { 1310 Code = bitc::FUNC_CODE_INST_SWITCH; 1311 const SwitchInst &SI = cast<SwitchInst>(I); 1312 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1313 pushValue(SI.getCondition(), InstID, Vals, VE); 1314 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1315 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1316 i != e; ++i) { 1317 Vals.push_back(VE.getValueID(i.getCaseValue())); 1318 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1319 } 1320 } 1321 break; 1322 case Instruction::IndirectBr: 1323 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1324 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1325 // Encode the address operand as relative, but not the basic blocks. 1326 pushValue(I.getOperand(0), InstID, Vals, VE); 1327 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1328 Vals.push_back(VE.getValueID(I.getOperand(i))); 1329 break; 1330 1331 case Instruction::Invoke: { 1332 const InvokeInst *II = cast<InvokeInst>(&I); 1333 const Value *Callee(II->getCalledValue()); 1334 PointerType *PTy = cast<PointerType>(Callee->getType()); 1335 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1336 Code = bitc::FUNC_CODE_INST_INVOKE; 1337 1338 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1339 Vals.push_back(II->getCallingConv()); 1340 Vals.push_back(VE.getValueID(II->getNormalDest())); 1341 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1342 PushValueAndType(Callee, InstID, Vals, VE); 1343 1344 // Emit value #'s for the fixed parameters. 1345 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1346 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1347 1348 // Emit type/value pairs for varargs params. 1349 if (FTy->isVarArg()) { 1350 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1351 i != e; ++i) 1352 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1353 } 1354 break; 1355 } 1356 case Instruction::Resume: 1357 Code = bitc::FUNC_CODE_INST_RESUME; 1358 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1359 break; 1360 case Instruction::Unreachable: 1361 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1362 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1363 break; 1364 1365 case Instruction::PHI: { 1366 const PHINode &PN = cast<PHINode>(I); 1367 Code = bitc::FUNC_CODE_INST_PHI; 1368 // With the newer instruction encoding, forward references could give 1369 // negative valued IDs. This is most common for PHIs, so we use 1370 // signed VBRs. 1371 SmallVector<uint64_t, 128> Vals64; 1372 Vals64.push_back(VE.getTypeID(PN.getType())); 1373 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1374 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1375 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1376 } 1377 // Emit a Vals64 vector and exit. 1378 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1379 Vals64.clear(); 1380 return; 1381 } 1382 1383 case Instruction::LandingPad: { 1384 const LandingPadInst &LP = cast<LandingPadInst>(I); 1385 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1386 Vals.push_back(VE.getTypeID(LP.getType())); 1387 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1388 Vals.push_back(LP.isCleanup()); 1389 Vals.push_back(LP.getNumClauses()); 1390 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1391 if (LP.isCatch(I)) 1392 Vals.push_back(LandingPadInst::Catch); 1393 else 1394 Vals.push_back(LandingPadInst::Filter); 1395 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1396 } 1397 break; 1398 } 1399 1400 case Instruction::Alloca: 1401 Code = bitc::FUNC_CODE_INST_ALLOCA; 1402 Vals.push_back(VE.getTypeID(I.getType())); 1403 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1404 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1405 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1406 break; 1407 1408 case Instruction::Load: 1409 if (cast<LoadInst>(I).isAtomic()) { 1410 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1411 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1412 } else { 1413 Code = bitc::FUNC_CODE_INST_LOAD; 1414 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1415 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1416 } 1417 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1418 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1419 if (cast<LoadInst>(I).isAtomic()) { 1420 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1421 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1422 } 1423 break; 1424 case Instruction::Store: 1425 if (cast<StoreInst>(I).isAtomic()) 1426 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1427 else 1428 Code = bitc::FUNC_CODE_INST_STORE; 1429 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1430 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1431 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1432 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1433 if (cast<StoreInst>(I).isAtomic()) { 1434 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1435 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1436 } 1437 break; 1438 case Instruction::AtomicCmpXchg: 1439 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1440 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1441 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1442 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1443 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1444 Vals.push_back(GetEncodedOrdering( 1445 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1446 Vals.push_back(GetEncodedSynchScope( 1447 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1448 Vals.push_back(GetEncodedOrdering( 1449 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1450 break; 1451 case Instruction::AtomicRMW: 1452 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1453 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1454 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1455 Vals.push_back(GetEncodedRMWOperation( 1456 cast<AtomicRMWInst>(I).getOperation())); 1457 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1458 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1459 Vals.push_back(GetEncodedSynchScope( 1460 cast<AtomicRMWInst>(I).getSynchScope())); 1461 break; 1462 case Instruction::Fence: 1463 Code = bitc::FUNC_CODE_INST_FENCE; 1464 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1465 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1466 break; 1467 case Instruction::Call: { 1468 const CallInst &CI = cast<CallInst>(I); 1469 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1470 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1471 1472 Code = bitc::FUNC_CODE_INST_CALL; 1473 1474 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1475 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1476 unsigned(CI.isMustTailCall()) << 14); 1477 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1478 1479 // Emit value #'s for the fixed parameters. 1480 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1481 // Check for labels (can happen with asm labels). 1482 if (FTy->getParamType(i)->isLabelTy()) 1483 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1484 else 1485 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1486 } 1487 1488 // Emit type/value pairs for varargs params. 1489 if (FTy->isVarArg()) { 1490 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1491 i != e; ++i) 1492 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1493 } 1494 break; 1495 } 1496 case Instruction::VAArg: 1497 Code = bitc::FUNC_CODE_INST_VAARG; 1498 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1499 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1500 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1501 break; 1502 } 1503 1504 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1505 Vals.clear(); 1506 } 1507 1508 // Emit names for globals/functions etc. 1509 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1510 const ValueEnumerator &VE, 1511 BitstreamWriter &Stream) { 1512 if (VST.empty()) return; 1513 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1514 1515 // FIXME: Set up the abbrev, we know how many values there are! 1516 // FIXME: We know if the type names can use 7-bit ascii. 1517 SmallVector<unsigned, 64> NameVals; 1518 1519 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1520 SI != SE; ++SI) { 1521 1522 const ValueName &Name = *SI; 1523 1524 // Figure out the encoding to use for the name. 1525 bool is7Bit = true; 1526 bool isChar6 = true; 1527 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1528 C != E; ++C) { 1529 if (isChar6) 1530 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1531 if ((unsigned char)*C & 128) { 1532 is7Bit = false; 1533 break; // don't bother scanning the rest. 1534 } 1535 } 1536 1537 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1538 1539 // VST_ENTRY: [valueid, namechar x N] 1540 // VST_BBENTRY: [bbid, namechar x N] 1541 unsigned Code; 1542 if (isa<BasicBlock>(SI->getValue())) { 1543 Code = bitc::VST_CODE_BBENTRY; 1544 if (isChar6) 1545 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1546 } else { 1547 Code = bitc::VST_CODE_ENTRY; 1548 if (isChar6) 1549 AbbrevToUse = VST_ENTRY_6_ABBREV; 1550 else if (is7Bit) 1551 AbbrevToUse = VST_ENTRY_7_ABBREV; 1552 } 1553 1554 NameVals.push_back(VE.getValueID(SI->getValue())); 1555 for (const char *P = Name.getKeyData(), 1556 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1557 NameVals.push_back((unsigned char)*P); 1558 1559 // Emit the finished record. 1560 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1561 NameVals.clear(); 1562 } 1563 Stream.ExitBlock(); 1564 } 1565 1566 /// WriteFunction - Emit a function body to the module stream. 1567 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1568 BitstreamWriter &Stream) { 1569 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1570 VE.incorporateFunction(F); 1571 1572 SmallVector<unsigned, 64> Vals; 1573 1574 // Emit the number of basic blocks, so the reader can create them ahead of 1575 // time. 1576 Vals.push_back(VE.getBasicBlocks().size()); 1577 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1578 Vals.clear(); 1579 1580 // If there are function-local constants, emit them now. 1581 unsigned CstStart, CstEnd; 1582 VE.getFunctionConstantRange(CstStart, CstEnd); 1583 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1584 1585 // If there is function-local metadata, emit it now. 1586 WriteFunctionLocalMetadata(F, VE, Stream); 1587 1588 // Keep a running idea of what the instruction ID is. 1589 unsigned InstID = CstEnd; 1590 1591 bool NeedsMetadataAttachment = false; 1592 1593 DebugLoc LastDL; 1594 1595 // Finally, emit all the instructions, in order. 1596 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1597 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1598 I != E; ++I) { 1599 WriteInstruction(*I, InstID, VE, Stream, Vals); 1600 1601 if (!I->getType()->isVoidTy()) 1602 ++InstID; 1603 1604 // If the instruction has metadata, write a metadata attachment later. 1605 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1606 1607 // If the instruction has a debug location, emit it. 1608 DebugLoc DL = I->getDebugLoc(); 1609 if (DL.isUnknown()) { 1610 // nothing todo. 1611 } else if (DL == LastDL) { 1612 // Just repeat the same debug loc as last time. 1613 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1614 } else { 1615 MDNode *Scope, *IA; 1616 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1617 1618 Vals.push_back(DL.getLine()); 1619 Vals.push_back(DL.getCol()); 1620 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1621 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1622 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1623 Vals.clear(); 1624 1625 LastDL = DL; 1626 } 1627 } 1628 1629 // Emit names for all the instructions etc. 1630 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1631 1632 if (NeedsMetadataAttachment) 1633 WriteMetadataAttachment(F, VE, Stream); 1634 VE.purgeFunction(); 1635 Stream.ExitBlock(); 1636 } 1637 1638 // Emit blockinfo, which defines the standard abbreviations etc. 1639 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1640 // We only want to emit block info records for blocks that have multiple 1641 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1642 // Other blocks can define their abbrevs inline. 1643 Stream.EnterBlockInfoBlock(2); 1644 1645 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1646 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1651 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1652 Abbv) != VST_ENTRY_8_ABBREV) 1653 llvm_unreachable("Unexpected abbrev ordering!"); 1654 } 1655 1656 { // 7-bit fixed width VST_ENTRY strings. 1657 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1658 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1662 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1663 Abbv) != VST_ENTRY_7_ABBREV) 1664 llvm_unreachable("Unexpected abbrev ordering!"); 1665 } 1666 { // 6-bit char6 VST_ENTRY strings. 1667 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1668 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1672 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1673 Abbv) != VST_ENTRY_6_ABBREV) 1674 llvm_unreachable("Unexpected abbrev ordering!"); 1675 } 1676 { // 6-bit char6 VST_BBENTRY strings. 1677 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1678 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1682 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1683 Abbv) != VST_BBENTRY_6_ABBREV) 1684 llvm_unreachable("Unexpected abbrev ordering!"); 1685 } 1686 1687 1688 1689 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1690 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1691 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1693 Log2_32_Ceil(VE.getTypes().size()+1))); 1694 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1695 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1696 llvm_unreachable("Unexpected abbrev ordering!"); 1697 } 1698 1699 { // INTEGER abbrev for CONSTANTS_BLOCK. 1700 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1701 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1703 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1704 Abbv) != CONSTANTS_INTEGER_ABBREV) 1705 llvm_unreachable("Unexpected abbrev ordering!"); 1706 } 1707 1708 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1709 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1710 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1713 Log2_32_Ceil(VE.getTypes().size()+1))); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1715 1716 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1717 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1718 llvm_unreachable("Unexpected abbrev ordering!"); 1719 } 1720 { // NULL abbrev for CONSTANTS_BLOCK. 1721 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1722 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1723 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1724 Abbv) != CONSTANTS_NULL_Abbrev) 1725 llvm_unreachable("Unexpected abbrev ordering!"); 1726 } 1727 1728 // FIXME: This should only use space for first class types! 1729 1730 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1731 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1732 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1736 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1737 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1738 llvm_unreachable("Unexpected abbrev ordering!"); 1739 } 1740 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1741 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1742 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1746 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1747 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1748 llvm_unreachable("Unexpected abbrev ordering!"); 1749 } 1750 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1751 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1752 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1757 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1758 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1759 llvm_unreachable("Unexpected abbrev ordering!"); 1760 } 1761 { // INST_CAST abbrev for FUNCTION_BLOCK. 1762 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1763 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1766 Log2_32_Ceil(VE.getTypes().size()+1))); 1767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1768 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1769 Abbv) != FUNCTION_INST_CAST_ABBREV) 1770 llvm_unreachable("Unexpected abbrev ordering!"); 1771 } 1772 1773 { // INST_RET abbrev for FUNCTION_BLOCK. 1774 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1775 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1776 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1777 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1778 llvm_unreachable("Unexpected abbrev ordering!"); 1779 } 1780 { // INST_RET abbrev for FUNCTION_BLOCK. 1781 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1782 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1784 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1785 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1786 llvm_unreachable("Unexpected abbrev ordering!"); 1787 } 1788 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1789 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1790 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1791 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1792 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1793 llvm_unreachable("Unexpected abbrev ordering!"); 1794 } 1795 1796 Stream.ExitBlock(); 1797 } 1798 1799 // Sort the Users based on the order in which the reader parses the bitcode 1800 // file. 1801 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1802 // TODO: Implement. 1803 return true; 1804 } 1805 1806 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1807 BitstreamWriter &Stream) { 1808 1809 // One or zero uses can't get out of order. 1810 if (V->use_empty() || V->hasNUses(1)) 1811 return; 1812 1813 // Make a copy of the in-memory use-list for sorting. 1814 SmallVector<const User*, 8> UserList(V->user_begin(), V->user_end()); 1815 1816 // Sort the copy based on the order read by the BitcodeReader. 1817 std::sort(UserList.begin(), UserList.end(), bitcodereader_order); 1818 1819 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1820 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1821 1822 // TODO: Emit the USELIST_CODE_ENTRYs. 1823 } 1824 1825 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1826 BitstreamWriter &Stream) { 1827 VE.incorporateFunction(*F); 1828 1829 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1830 AI != AE; ++AI) 1831 WriteUseList(AI, VE, Stream); 1832 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1833 ++BB) { 1834 WriteUseList(BB, VE, Stream); 1835 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1836 ++II) { 1837 WriteUseList(II, VE, Stream); 1838 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1839 OI != E; ++OI) { 1840 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1841 isa<InlineAsm>(*OI)) 1842 WriteUseList(*OI, VE, Stream); 1843 } 1844 } 1845 } 1846 VE.purgeFunction(); 1847 } 1848 1849 // Emit use-lists. 1850 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1851 BitstreamWriter &Stream) { 1852 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1853 1854 // XXX: this modifies the module, but in a way that should never change the 1855 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1856 // contain entries in the use_list that do not exist in the Module and are 1857 // not stored in the .bc file. 1858 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1859 I != E; ++I) 1860 I->removeDeadConstantUsers(); 1861 1862 // Write the global variables. 1863 for (Module::const_global_iterator GI = M->global_begin(), 1864 GE = M->global_end(); GI != GE; ++GI) { 1865 WriteUseList(GI, VE, Stream); 1866 1867 // Write the global variable initializers. 1868 if (GI->hasInitializer()) 1869 WriteUseList(GI->getInitializer(), VE, Stream); 1870 } 1871 1872 // Write the functions. 1873 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1874 WriteUseList(FI, VE, Stream); 1875 if (!FI->isDeclaration()) 1876 WriteFunctionUseList(FI, VE, Stream); 1877 if (FI->hasPrefixData()) 1878 WriteUseList(FI->getPrefixData(), VE, Stream); 1879 } 1880 1881 // Write the aliases. 1882 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1883 AI != AE; ++AI) { 1884 WriteUseList(AI, VE, Stream); 1885 WriteUseList(AI->getAliasee(), VE, Stream); 1886 } 1887 1888 Stream.ExitBlock(); 1889 } 1890 1891 /// WriteModule - Emit the specified module to the bitstream. 1892 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1893 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1894 1895 SmallVector<unsigned, 1> Vals; 1896 unsigned CurVersion = 1; 1897 Vals.push_back(CurVersion); 1898 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1899 1900 // Analyze the module, enumerating globals, functions, etc. 1901 ValueEnumerator VE(M); 1902 1903 // Emit blockinfo, which defines the standard abbreviations etc. 1904 WriteBlockInfo(VE, Stream); 1905 1906 // Emit information about attribute groups. 1907 WriteAttributeGroupTable(VE, Stream); 1908 1909 // Emit information about parameter attributes. 1910 WriteAttributeTable(VE, Stream); 1911 1912 // Emit information describing all of the types in the module. 1913 WriteTypeTable(VE, Stream); 1914 1915 // Emit top-level description of module, including target triple, inline asm, 1916 // descriptors for global variables, and function prototype info. 1917 WriteModuleInfo(M, VE, Stream); 1918 1919 // Emit constants. 1920 WriteModuleConstants(VE, Stream); 1921 1922 // Emit metadata. 1923 WriteModuleMetadata(M, VE, Stream); 1924 1925 // Emit metadata. 1926 WriteModuleMetadataStore(M, Stream); 1927 1928 // Emit names for globals/functions etc. 1929 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1930 1931 // Emit use-lists. 1932 if (EnablePreserveUseListOrdering) 1933 WriteModuleUseLists(M, VE, Stream); 1934 1935 // Emit function bodies. 1936 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1937 if (!F->isDeclaration()) 1938 WriteFunction(*F, VE, Stream); 1939 1940 Stream.ExitBlock(); 1941 } 1942 1943 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1944 /// header and trailer to make it compatible with the system archiver. To do 1945 /// this we emit the following header, and then emit a trailer that pads the 1946 /// file out to be a multiple of 16 bytes. 1947 /// 1948 /// struct bc_header { 1949 /// uint32_t Magic; // 0x0B17C0DE 1950 /// uint32_t Version; // Version, currently always 0. 1951 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1952 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1953 /// uint32_t CPUType; // CPU specifier. 1954 /// ... potentially more later ... 1955 /// }; 1956 enum { 1957 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1958 DarwinBCHeaderSize = 5*4 1959 }; 1960 1961 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1962 uint32_t &Position) { 1963 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1964 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1965 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1966 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1967 Position += 4; 1968 } 1969 1970 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1971 const Triple &TT) { 1972 unsigned CPUType = ~0U; 1973 1974 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1975 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1976 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1977 // specific constants here because they are implicitly part of the Darwin ABI. 1978 enum { 1979 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1980 DARWIN_CPU_TYPE_X86 = 7, 1981 DARWIN_CPU_TYPE_ARM = 12, 1982 DARWIN_CPU_TYPE_POWERPC = 18 1983 }; 1984 1985 Triple::ArchType Arch = TT.getArch(); 1986 if (Arch == Triple::x86_64) 1987 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1988 else if (Arch == Triple::x86) 1989 CPUType = DARWIN_CPU_TYPE_X86; 1990 else if (Arch == Triple::ppc) 1991 CPUType = DARWIN_CPU_TYPE_POWERPC; 1992 else if (Arch == Triple::ppc64) 1993 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1994 else if (Arch == Triple::arm || Arch == Triple::thumb) 1995 CPUType = DARWIN_CPU_TYPE_ARM; 1996 1997 // Traditional Bitcode starts after header. 1998 assert(Buffer.size() >= DarwinBCHeaderSize && 1999 "Expected header size to be reserved"); 2000 unsigned BCOffset = DarwinBCHeaderSize; 2001 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2002 2003 // Write the magic and version. 2004 unsigned Position = 0; 2005 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2006 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2007 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2008 WriteInt32ToBuffer(BCSize , Buffer, Position); 2009 WriteInt32ToBuffer(CPUType , Buffer, Position); 2010 2011 // If the file is not a multiple of 16 bytes, insert dummy padding. 2012 while (Buffer.size() & 15) 2013 Buffer.push_back(0); 2014 } 2015 2016 /// WriteBitcodeToFile - Write the specified module to the specified output 2017 /// stream. 2018 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2019 SmallVector<char, 0> Buffer; 2020 Buffer.reserve(256*1024); 2021 2022 // If this is darwin or another generic macho target, reserve space for the 2023 // header. 2024 Triple TT(M->getTargetTriple()); 2025 if (TT.isOSDarwin()) 2026 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2027 2028 // Emit the module into the buffer. 2029 { 2030 BitstreamWriter Stream(Buffer); 2031 2032 // Emit the file header. 2033 Stream.Emit((unsigned)'B', 8); 2034 Stream.Emit((unsigned)'C', 8); 2035 Stream.Emit(0x0, 4); 2036 Stream.Emit(0xC, 4); 2037 Stream.Emit(0xE, 4); 2038 Stream.Emit(0xD, 4); 2039 2040 // Emit the module. 2041 WriteModule(M, Stream); 2042 } 2043 2044 if (TT.isOSDarwin()) 2045 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2046 2047 // Write the generated bitstream to "Out". 2048 Out.write((char*)&Buffer.front(), Buffer.size()); 2049 } 2050