1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeBitcodeHeader(); 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIEnumerator(const DIEnumerator *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIStringType(const DIStringType *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIDerivedType(const DIDerivedType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDICompositeType(const DICompositeType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDISubroutineType(const DISubroutineType *N, 314 SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDICompileUnit(const DICompileUnit *N, 319 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 320 void writeDISubprogram(const DISubprogram *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDILexicalBlock(const DILexicalBlock *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 325 SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDICommonBlock(const DICommonBlock *N, 328 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 329 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 341 SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDIGlobalVariable(const DIGlobalVariable *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDILocalVariable(const DILocalVariable *N, 347 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 348 void writeDILabel(const DILabel *N, 349 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 350 void writeDIExpression(const DIExpression *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 353 SmallVectorImpl<uint64_t> &Record, 354 unsigned Abbrev); 355 void writeDIObjCProperty(const DIObjCProperty *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIImportedEntity(const DIImportedEntity *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 unsigned createNamedMetadataAbbrev(); 361 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 362 unsigned createMetadataStringsAbbrev(); 363 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 364 SmallVectorImpl<uint64_t> &Record); 365 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 366 SmallVectorImpl<uint64_t> &Record, 367 std::vector<unsigned> *MDAbbrevs = nullptr, 368 std::vector<uint64_t> *IndexPos = nullptr); 369 void writeModuleMetadata(); 370 void writeFunctionMetadata(const Function &F); 371 void writeFunctionMetadataAttachment(const Function &F); 372 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 373 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 374 const GlobalObject &GO); 375 void writeModuleMetadataKinds(); 376 void writeOperandBundleTags(); 377 void writeSyncScopeNames(); 378 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 379 void writeModuleConstants(); 380 bool pushValueAndType(const Value *V, unsigned InstID, 381 SmallVectorImpl<unsigned> &Vals); 382 void writeOperandBundles(const CallBase &CB, unsigned InstID); 383 void pushValue(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void pushValueSigned(const Value *V, unsigned InstID, 386 SmallVectorImpl<uint64_t> &Vals); 387 void writeInstruction(const Instruction &I, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 390 void writeGlobalValueSymbolTable( 391 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 392 void writeUseList(UseListOrder &&Order); 393 void writeUseListBlock(const Function *F); 394 void 395 writeFunction(const Function &F, 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeBlockInfo(); 398 void writeModuleHash(size_t BlockStartPos); 399 400 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 401 return unsigned(SSID); 402 } 403 404 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 405 }; 406 407 /// Class to manage the bitcode writing for a combined index. 408 class IndexBitcodeWriter : public BitcodeWriterBase { 409 /// The combined index to write to bitcode. 410 const ModuleSummaryIndex &Index; 411 412 /// When writing a subset of the index for distributed backends, client 413 /// provides a map of modules to the corresponding GUIDs/summaries to write. 414 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 415 416 /// Map that holds the correspondence between the GUID used in the combined 417 /// index and a value id generated by this class to use in references. 418 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 419 420 /// Tracks the last value id recorded in the GUIDToValueMap. 421 unsigned GlobalValueId = 0; 422 423 public: 424 /// Constructs a IndexBitcodeWriter object for the given combined index, 425 /// writing to the provided \p Buffer. When writing a subset of the index 426 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 427 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 428 const ModuleSummaryIndex &Index, 429 const std::map<std::string, GVSummaryMapTy> 430 *ModuleToSummariesForIndex = nullptr) 431 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 432 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 433 // Assign unique value ids to all summaries to be written, for use 434 // in writing out the call graph edges. Save the mapping from GUID 435 // to the new global value id to use when writing those edges, which 436 // are currently saved in the index in terms of GUID. 437 forEachSummary([&](GVInfo I, bool) { 438 GUIDToValueIdMap[I.first] = ++GlobalValueId; 439 }); 440 } 441 442 /// The below iterator returns the GUID and associated summary. 443 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 444 445 /// Calls the callback for each value GUID and summary to be written to 446 /// bitcode. This hides the details of whether they are being pulled from the 447 /// entire index or just those in a provided ModuleToSummariesForIndex map. 448 template<typename Functor> 449 void forEachSummary(Functor Callback) { 450 if (ModuleToSummariesForIndex) { 451 for (auto &M : *ModuleToSummariesForIndex) 452 for (auto &Summary : M.second) { 453 Callback(Summary, false); 454 // Ensure aliasee is handled, e.g. for assigning a valueId, 455 // even if we are not importing the aliasee directly (the 456 // imported alias will contain a copy of aliasee). 457 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 458 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 459 } 460 } else { 461 for (auto &Summaries : Index) 462 for (auto &Summary : Summaries.second.SummaryList) 463 Callback({Summaries.first, Summary.get()}, false); 464 } 465 } 466 467 /// Calls the callback for each entry in the modulePaths StringMap that 468 /// should be written to the module path string table. This hides the details 469 /// of whether they are being pulled from the entire index or just those in a 470 /// provided ModuleToSummariesForIndex map. 471 template <typename Functor> void forEachModule(Functor Callback) { 472 if (ModuleToSummariesForIndex) { 473 for (const auto &M : *ModuleToSummariesForIndex) { 474 const auto &MPI = Index.modulePaths().find(M.first); 475 if (MPI == Index.modulePaths().end()) { 476 // This should only happen if the bitcode file was empty, in which 477 // case we shouldn't be importing (the ModuleToSummariesForIndex 478 // would only include the module we are writing and index for). 479 assert(ModuleToSummariesForIndex->size() == 1); 480 continue; 481 } 482 Callback(*MPI); 483 } 484 } else { 485 for (const auto &MPSE : Index.modulePaths()) 486 Callback(MPSE); 487 } 488 } 489 490 /// Main entry point for writing a combined index to bitcode. 491 void write(); 492 493 private: 494 void writeModStrings(); 495 void writeCombinedGlobalValueSummary(); 496 497 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 498 auto VMI = GUIDToValueIdMap.find(ValGUID); 499 if (VMI == GUIDToValueIdMap.end()) 500 return None; 501 return VMI->second; 502 } 503 504 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 505 }; 506 507 } // end anonymous namespace 508 509 static unsigned getEncodedCastOpcode(unsigned Opcode) { 510 switch (Opcode) { 511 default: llvm_unreachable("Unknown cast instruction!"); 512 case Instruction::Trunc : return bitc::CAST_TRUNC; 513 case Instruction::ZExt : return bitc::CAST_ZEXT; 514 case Instruction::SExt : return bitc::CAST_SEXT; 515 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 516 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 517 case Instruction::UIToFP : return bitc::CAST_UITOFP; 518 case Instruction::SIToFP : return bitc::CAST_SITOFP; 519 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 520 case Instruction::FPExt : return bitc::CAST_FPEXT; 521 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 522 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 523 case Instruction::BitCast : return bitc::CAST_BITCAST; 524 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 525 } 526 } 527 528 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 529 switch (Opcode) { 530 default: llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::FNeg: return bitc::UNOP_FNEG; 532 } 533 } 534 535 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 536 switch (Opcode) { 537 default: llvm_unreachable("Unknown binary instruction!"); 538 case Instruction::Add: 539 case Instruction::FAdd: return bitc::BINOP_ADD; 540 case Instruction::Sub: 541 case Instruction::FSub: return bitc::BINOP_SUB; 542 case Instruction::Mul: 543 case Instruction::FMul: return bitc::BINOP_MUL; 544 case Instruction::UDiv: return bitc::BINOP_UDIV; 545 case Instruction::FDiv: 546 case Instruction::SDiv: return bitc::BINOP_SDIV; 547 case Instruction::URem: return bitc::BINOP_UREM; 548 case Instruction::FRem: 549 case Instruction::SRem: return bitc::BINOP_SREM; 550 case Instruction::Shl: return bitc::BINOP_SHL; 551 case Instruction::LShr: return bitc::BINOP_LSHR; 552 case Instruction::AShr: return bitc::BINOP_ASHR; 553 case Instruction::And: return bitc::BINOP_AND; 554 case Instruction::Or: return bitc::BINOP_OR; 555 case Instruction::Xor: return bitc::BINOP_XOR; 556 } 557 } 558 559 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 560 switch (Op) { 561 default: llvm_unreachable("Unknown RMW operation!"); 562 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 563 case AtomicRMWInst::Add: return bitc::RMW_ADD; 564 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 565 case AtomicRMWInst::And: return bitc::RMW_AND; 566 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 567 case AtomicRMWInst::Or: return bitc::RMW_OR; 568 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 569 case AtomicRMWInst::Max: return bitc::RMW_MAX; 570 case AtomicRMWInst::Min: return bitc::RMW_MIN; 571 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 572 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 573 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 574 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 575 } 576 } 577 578 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 579 switch (Ordering) { 580 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 581 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 582 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 583 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 584 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 585 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 586 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 587 } 588 llvm_unreachable("Invalid ordering"); 589 } 590 591 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 592 StringRef Str, unsigned AbbrevToUse) { 593 SmallVector<unsigned, 64> Vals; 594 595 // Code: [strchar x N] 596 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 597 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 598 AbbrevToUse = 0; 599 Vals.push_back(Str[i]); 600 } 601 602 // Emit the finished record. 603 Stream.EmitRecord(Code, Vals, AbbrevToUse); 604 } 605 606 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 607 switch (Kind) { 608 case Attribute::Alignment: 609 return bitc::ATTR_KIND_ALIGNMENT; 610 case Attribute::AllocSize: 611 return bitc::ATTR_KIND_ALLOC_SIZE; 612 case Attribute::AlwaysInline: 613 return bitc::ATTR_KIND_ALWAYS_INLINE; 614 case Attribute::ArgMemOnly: 615 return bitc::ATTR_KIND_ARGMEMONLY; 616 case Attribute::Builtin: 617 return bitc::ATTR_KIND_BUILTIN; 618 case Attribute::ByVal: 619 return bitc::ATTR_KIND_BY_VAL; 620 case Attribute::Convergent: 621 return bitc::ATTR_KIND_CONVERGENT; 622 case Attribute::InAlloca: 623 return bitc::ATTR_KIND_IN_ALLOCA; 624 case Attribute::Cold: 625 return bitc::ATTR_KIND_COLD; 626 case Attribute::InaccessibleMemOnly: 627 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 628 case Attribute::InaccessibleMemOrArgMemOnly: 629 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 630 case Attribute::InlineHint: 631 return bitc::ATTR_KIND_INLINE_HINT; 632 case Attribute::InReg: 633 return bitc::ATTR_KIND_IN_REG; 634 case Attribute::JumpTable: 635 return bitc::ATTR_KIND_JUMP_TABLE; 636 case Attribute::MinSize: 637 return bitc::ATTR_KIND_MIN_SIZE; 638 case Attribute::Naked: 639 return bitc::ATTR_KIND_NAKED; 640 case Attribute::Nest: 641 return bitc::ATTR_KIND_NEST; 642 case Attribute::NoAlias: 643 return bitc::ATTR_KIND_NO_ALIAS; 644 case Attribute::NoBuiltin: 645 return bitc::ATTR_KIND_NO_BUILTIN; 646 case Attribute::NoCapture: 647 return bitc::ATTR_KIND_NO_CAPTURE; 648 case Attribute::NoDuplicate: 649 return bitc::ATTR_KIND_NO_DUPLICATE; 650 case Attribute::NoFree: 651 return bitc::ATTR_KIND_NOFREE; 652 case Attribute::NoImplicitFloat: 653 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 654 case Attribute::NoInline: 655 return bitc::ATTR_KIND_NO_INLINE; 656 case Attribute::NoRecurse: 657 return bitc::ATTR_KIND_NO_RECURSE; 658 case Attribute::NoMerge: 659 return bitc::ATTR_KIND_NO_MERGE; 660 case Attribute::NonLazyBind: 661 return bitc::ATTR_KIND_NON_LAZY_BIND; 662 case Attribute::NonNull: 663 return bitc::ATTR_KIND_NON_NULL; 664 case Attribute::Dereferenceable: 665 return bitc::ATTR_KIND_DEREFERENCEABLE; 666 case Attribute::DereferenceableOrNull: 667 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 668 case Attribute::NoRedZone: 669 return bitc::ATTR_KIND_NO_RED_ZONE; 670 case Attribute::NoReturn: 671 return bitc::ATTR_KIND_NO_RETURN; 672 case Attribute::NoSync: 673 return bitc::ATTR_KIND_NOSYNC; 674 case Attribute::NoCfCheck: 675 return bitc::ATTR_KIND_NOCF_CHECK; 676 case Attribute::NoUnwind: 677 return bitc::ATTR_KIND_NO_UNWIND; 678 case Attribute::NullPointerIsValid: 679 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 680 case Attribute::OptForFuzzing: 681 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 682 case Attribute::OptimizeForSize: 683 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 684 case Attribute::OptimizeNone: 685 return bitc::ATTR_KIND_OPTIMIZE_NONE; 686 case Attribute::ReadNone: 687 return bitc::ATTR_KIND_READ_NONE; 688 case Attribute::ReadOnly: 689 return bitc::ATTR_KIND_READ_ONLY; 690 case Attribute::Returned: 691 return bitc::ATTR_KIND_RETURNED; 692 case Attribute::ReturnsTwice: 693 return bitc::ATTR_KIND_RETURNS_TWICE; 694 case Attribute::SExt: 695 return bitc::ATTR_KIND_S_EXT; 696 case Attribute::Speculatable: 697 return bitc::ATTR_KIND_SPECULATABLE; 698 case Attribute::StackAlignment: 699 return bitc::ATTR_KIND_STACK_ALIGNMENT; 700 case Attribute::StackProtect: 701 return bitc::ATTR_KIND_STACK_PROTECT; 702 case Attribute::StackProtectReq: 703 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 704 case Attribute::StackProtectStrong: 705 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 706 case Attribute::SafeStack: 707 return bitc::ATTR_KIND_SAFESTACK; 708 case Attribute::ShadowCallStack: 709 return bitc::ATTR_KIND_SHADOWCALLSTACK; 710 case Attribute::StrictFP: 711 return bitc::ATTR_KIND_STRICT_FP; 712 case Attribute::StructRet: 713 return bitc::ATTR_KIND_STRUCT_RET; 714 case Attribute::SanitizeAddress: 715 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 716 case Attribute::SanitizeHWAddress: 717 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 718 case Attribute::SanitizeThread: 719 return bitc::ATTR_KIND_SANITIZE_THREAD; 720 case Attribute::SanitizeMemory: 721 return bitc::ATTR_KIND_SANITIZE_MEMORY; 722 case Attribute::SpeculativeLoadHardening: 723 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 724 case Attribute::SwiftError: 725 return bitc::ATTR_KIND_SWIFT_ERROR; 726 case Attribute::SwiftSelf: 727 return bitc::ATTR_KIND_SWIFT_SELF; 728 case Attribute::UWTable: 729 return bitc::ATTR_KIND_UW_TABLE; 730 case Attribute::WillReturn: 731 return bitc::ATTR_KIND_WILLRETURN; 732 case Attribute::WriteOnly: 733 return bitc::ATTR_KIND_WRITEONLY; 734 case Attribute::ZExt: 735 return bitc::ATTR_KIND_Z_EXT; 736 case Attribute::ImmArg: 737 return bitc::ATTR_KIND_IMMARG; 738 case Attribute::SanitizeMemTag: 739 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 740 case Attribute::Preallocated: 741 return bitc::ATTR_KIND_PREALLOCATED; 742 case Attribute::NoUndef: 743 return bitc::ATTR_KIND_NOUNDEF; 744 case Attribute::ByRef: 745 return bitc::ATTR_KIND_BYREF; 746 case Attribute::MustProgress: 747 return bitc::ATTR_KIND_MUSTPROGRESS; 748 case Attribute::EndAttrKinds: 749 llvm_unreachable("Can not encode end-attribute kinds marker."); 750 case Attribute::None: 751 llvm_unreachable("Can not encode none-attribute."); 752 case Attribute::EmptyKey: 753 case Attribute::TombstoneKey: 754 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 755 } 756 757 llvm_unreachable("Trying to encode unknown attribute"); 758 } 759 760 void ModuleBitcodeWriter::writeAttributeGroupTable() { 761 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 762 VE.getAttributeGroups(); 763 if (AttrGrps.empty()) return; 764 765 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 766 767 SmallVector<uint64_t, 64> Record; 768 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 769 unsigned AttrListIndex = Pair.first; 770 AttributeSet AS = Pair.second; 771 Record.push_back(VE.getAttributeGroupID(Pair)); 772 Record.push_back(AttrListIndex); 773 774 for (Attribute Attr : AS) { 775 if (Attr.isEnumAttribute()) { 776 Record.push_back(0); 777 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 778 } else if (Attr.isIntAttribute()) { 779 Record.push_back(1); 780 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 781 Record.push_back(Attr.getValueAsInt()); 782 } else if (Attr.isStringAttribute()) { 783 StringRef Kind = Attr.getKindAsString(); 784 StringRef Val = Attr.getValueAsString(); 785 786 Record.push_back(Val.empty() ? 3 : 4); 787 Record.append(Kind.begin(), Kind.end()); 788 Record.push_back(0); 789 if (!Val.empty()) { 790 Record.append(Val.begin(), Val.end()); 791 Record.push_back(0); 792 } 793 } else { 794 assert(Attr.isTypeAttribute()); 795 Type *Ty = Attr.getValueAsType(); 796 Record.push_back(Ty ? 6 : 5); 797 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 798 if (Ty) 799 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 800 } 801 } 802 803 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 804 Record.clear(); 805 } 806 807 Stream.ExitBlock(); 808 } 809 810 void ModuleBitcodeWriter::writeAttributeTable() { 811 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 812 if (Attrs.empty()) return; 813 814 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 815 816 SmallVector<uint64_t, 64> Record; 817 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 818 AttributeList AL = Attrs[i]; 819 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 820 AttributeSet AS = AL.getAttributes(i); 821 if (AS.hasAttributes()) 822 Record.push_back(VE.getAttributeGroupID({i, AS})); 823 } 824 825 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 826 Record.clear(); 827 } 828 829 Stream.ExitBlock(); 830 } 831 832 /// WriteTypeTable - Write out the type table for a module. 833 void ModuleBitcodeWriter::writeTypeTable() { 834 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 835 836 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 837 SmallVector<uint64_t, 64> TypeVals; 838 839 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 840 841 // Abbrev for TYPE_CODE_POINTER. 842 auto Abbv = std::make_shared<BitCodeAbbrev>(); 843 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 845 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 846 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 847 848 // Abbrev for TYPE_CODE_FUNCTION. 849 Abbv = std::make_shared<BitCodeAbbrev>(); 850 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 854 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 855 856 // Abbrev for TYPE_CODE_STRUCT_ANON. 857 Abbv = std::make_shared<BitCodeAbbrev>(); 858 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 862 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 863 864 // Abbrev for TYPE_CODE_STRUCT_NAME. 865 Abbv = std::make_shared<BitCodeAbbrev>(); 866 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 869 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 870 871 // Abbrev for TYPE_CODE_STRUCT_NAMED. 872 Abbv = std::make_shared<BitCodeAbbrev>(); 873 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 877 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 878 879 // Abbrev for TYPE_CODE_ARRAY. 880 Abbv = std::make_shared<BitCodeAbbrev>(); 881 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 884 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 885 886 // Emit an entry count so the reader can reserve space. 887 TypeVals.push_back(TypeList.size()); 888 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 889 TypeVals.clear(); 890 891 // Loop over all of the types, emitting each in turn. 892 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 893 Type *T = TypeList[i]; 894 int AbbrevToUse = 0; 895 unsigned Code = 0; 896 897 switch (T->getTypeID()) { 898 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 899 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 900 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 901 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 902 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 903 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 904 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 905 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 906 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 907 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 908 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 909 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 910 case Type::IntegerTyID: 911 // INTEGER: [width] 912 Code = bitc::TYPE_CODE_INTEGER; 913 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 914 break; 915 case Type::PointerTyID: { 916 PointerType *PTy = cast<PointerType>(T); 917 // POINTER: [pointee type, address space] 918 Code = bitc::TYPE_CODE_POINTER; 919 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 920 unsigned AddressSpace = PTy->getAddressSpace(); 921 TypeVals.push_back(AddressSpace); 922 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 923 break; 924 } 925 case Type::FunctionTyID: { 926 FunctionType *FT = cast<FunctionType>(T); 927 // FUNCTION: [isvararg, retty, paramty x N] 928 Code = bitc::TYPE_CODE_FUNCTION; 929 TypeVals.push_back(FT->isVarArg()); 930 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 931 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 932 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 933 AbbrevToUse = FunctionAbbrev; 934 break; 935 } 936 case Type::StructTyID: { 937 StructType *ST = cast<StructType>(T); 938 // STRUCT: [ispacked, eltty x N] 939 TypeVals.push_back(ST->isPacked()); 940 // Output all of the element types. 941 for (StructType::element_iterator I = ST->element_begin(), 942 E = ST->element_end(); I != E; ++I) 943 TypeVals.push_back(VE.getTypeID(*I)); 944 945 if (ST->isLiteral()) { 946 Code = bitc::TYPE_CODE_STRUCT_ANON; 947 AbbrevToUse = StructAnonAbbrev; 948 } else { 949 if (ST->isOpaque()) { 950 Code = bitc::TYPE_CODE_OPAQUE; 951 } else { 952 Code = bitc::TYPE_CODE_STRUCT_NAMED; 953 AbbrevToUse = StructNamedAbbrev; 954 } 955 956 // Emit the name if it is present. 957 if (!ST->getName().empty()) 958 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 959 StructNameAbbrev); 960 } 961 break; 962 } 963 case Type::ArrayTyID: { 964 ArrayType *AT = cast<ArrayType>(T); 965 // ARRAY: [numelts, eltty] 966 Code = bitc::TYPE_CODE_ARRAY; 967 TypeVals.push_back(AT->getNumElements()); 968 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 969 AbbrevToUse = ArrayAbbrev; 970 break; 971 } 972 case Type::FixedVectorTyID: 973 case Type::ScalableVectorTyID: { 974 VectorType *VT = cast<VectorType>(T); 975 // VECTOR [numelts, eltty] or 976 // [numelts, eltty, scalable] 977 Code = bitc::TYPE_CODE_VECTOR; 978 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 979 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 980 if (isa<ScalableVectorType>(VT)) 981 TypeVals.push_back(true); 982 break; 983 } 984 } 985 986 // Emit the finished record. 987 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 988 TypeVals.clear(); 989 } 990 991 Stream.ExitBlock(); 992 } 993 994 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 995 switch (Linkage) { 996 case GlobalValue::ExternalLinkage: 997 return 0; 998 case GlobalValue::WeakAnyLinkage: 999 return 16; 1000 case GlobalValue::AppendingLinkage: 1001 return 2; 1002 case GlobalValue::InternalLinkage: 1003 return 3; 1004 case GlobalValue::LinkOnceAnyLinkage: 1005 return 18; 1006 case GlobalValue::ExternalWeakLinkage: 1007 return 7; 1008 case GlobalValue::CommonLinkage: 1009 return 8; 1010 case GlobalValue::PrivateLinkage: 1011 return 9; 1012 case GlobalValue::WeakODRLinkage: 1013 return 17; 1014 case GlobalValue::LinkOnceODRLinkage: 1015 return 19; 1016 case GlobalValue::AvailableExternallyLinkage: 1017 return 12; 1018 } 1019 llvm_unreachable("Invalid linkage"); 1020 } 1021 1022 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1023 return getEncodedLinkage(GV.getLinkage()); 1024 } 1025 1026 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1027 uint64_t RawFlags = 0; 1028 RawFlags |= Flags.ReadNone; 1029 RawFlags |= (Flags.ReadOnly << 1); 1030 RawFlags |= (Flags.NoRecurse << 2); 1031 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1032 RawFlags |= (Flags.NoInline << 4); 1033 RawFlags |= (Flags.AlwaysInline << 5); 1034 return RawFlags; 1035 } 1036 1037 // Decode the flags for GlobalValue in the summary 1038 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1039 uint64_t RawFlags = 0; 1040 1041 RawFlags |= Flags.NotEligibleToImport; // bool 1042 RawFlags |= (Flags.Live << 1); 1043 RawFlags |= (Flags.DSOLocal << 2); 1044 RawFlags |= (Flags.CanAutoHide << 3); 1045 1046 // Linkage don't need to be remapped at that time for the summary. Any future 1047 // change to the getEncodedLinkage() function will need to be taken into 1048 // account here as well. 1049 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1050 1051 return RawFlags; 1052 } 1053 1054 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1055 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1056 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1057 return RawFlags; 1058 } 1059 1060 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1061 switch (GV.getVisibility()) { 1062 case GlobalValue::DefaultVisibility: return 0; 1063 case GlobalValue::HiddenVisibility: return 1; 1064 case GlobalValue::ProtectedVisibility: return 2; 1065 } 1066 llvm_unreachable("Invalid visibility"); 1067 } 1068 1069 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1070 switch (GV.getDLLStorageClass()) { 1071 case GlobalValue::DefaultStorageClass: return 0; 1072 case GlobalValue::DLLImportStorageClass: return 1; 1073 case GlobalValue::DLLExportStorageClass: return 2; 1074 } 1075 llvm_unreachable("Invalid DLL storage class"); 1076 } 1077 1078 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1079 switch (GV.getThreadLocalMode()) { 1080 case GlobalVariable::NotThreadLocal: return 0; 1081 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1082 case GlobalVariable::LocalDynamicTLSModel: return 2; 1083 case GlobalVariable::InitialExecTLSModel: return 3; 1084 case GlobalVariable::LocalExecTLSModel: return 4; 1085 } 1086 llvm_unreachable("Invalid TLS model"); 1087 } 1088 1089 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1090 switch (C.getSelectionKind()) { 1091 case Comdat::Any: 1092 return bitc::COMDAT_SELECTION_KIND_ANY; 1093 case Comdat::ExactMatch: 1094 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1095 case Comdat::Largest: 1096 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1097 case Comdat::NoDuplicates: 1098 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1099 case Comdat::SameSize: 1100 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1101 } 1102 llvm_unreachable("Invalid selection kind"); 1103 } 1104 1105 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1106 switch (GV.getUnnamedAddr()) { 1107 case GlobalValue::UnnamedAddr::None: return 0; 1108 case GlobalValue::UnnamedAddr::Local: return 2; 1109 case GlobalValue::UnnamedAddr::Global: return 1; 1110 } 1111 llvm_unreachable("Invalid unnamed_addr"); 1112 } 1113 1114 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1115 if (GenerateHash) 1116 Hasher.update(Str); 1117 return StrtabBuilder.add(Str); 1118 } 1119 1120 void ModuleBitcodeWriter::writeComdats() { 1121 SmallVector<unsigned, 64> Vals; 1122 for (const Comdat *C : VE.getComdats()) { 1123 // COMDAT: [strtab offset, strtab size, selection_kind] 1124 Vals.push_back(addToStrtab(C->getName())); 1125 Vals.push_back(C->getName().size()); 1126 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1127 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1128 Vals.clear(); 1129 } 1130 } 1131 1132 /// Write a record that will eventually hold the word offset of the 1133 /// module-level VST. For now the offset is 0, which will be backpatched 1134 /// after the real VST is written. Saves the bit offset to backpatch. 1135 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1136 // Write a placeholder value in for the offset of the real VST, 1137 // which is written after the function blocks so that it can include 1138 // the offset of each function. The placeholder offset will be 1139 // updated when the real VST is written. 1140 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1141 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1142 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1143 // hold the real VST offset. Must use fixed instead of VBR as we don't 1144 // know how many VBR chunks to reserve ahead of time. 1145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1146 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1147 1148 // Emit the placeholder 1149 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1150 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1151 1152 // Compute and save the bit offset to the placeholder, which will be 1153 // patched when the real VST is written. We can simply subtract the 32-bit 1154 // fixed size from the current bit number to get the location to backpatch. 1155 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1156 } 1157 1158 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1159 1160 /// Determine the encoding to use for the given string name and length. 1161 static StringEncoding getStringEncoding(StringRef Str) { 1162 bool isChar6 = true; 1163 for (char C : Str) { 1164 if (isChar6) 1165 isChar6 = BitCodeAbbrevOp::isChar6(C); 1166 if ((unsigned char)C & 128) 1167 // don't bother scanning the rest. 1168 return SE_Fixed8; 1169 } 1170 if (isChar6) 1171 return SE_Char6; 1172 return SE_Fixed7; 1173 } 1174 1175 /// Emit top-level description of module, including target triple, inline asm, 1176 /// descriptors for global variables, and function prototype info. 1177 /// Returns the bit offset to backpatch with the location of the real VST. 1178 void ModuleBitcodeWriter::writeModuleInfo() { 1179 // Emit various pieces of data attached to a module. 1180 if (!M.getTargetTriple().empty()) 1181 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1182 0 /*TODO*/); 1183 const std::string &DL = M.getDataLayoutStr(); 1184 if (!DL.empty()) 1185 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1186 if (!M.getModuleInlineAsm().empty()) 1187 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1188 0 /*TODO*/); 1189 1190 // Emit information about sections and GC, computing how many there are. Also 1191 // compute the maximum alignment value. 1192 std::map<std::string, unsigned> SectionMap; 1193 std::map<std::string, unsigned> GCMap; 1194 MaybeAlign MaxAlignment; 1195 unsigned MaxGlobalType = 0; 1196 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1197 if (A) 1198 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1199 }; 1200 for (const GlobalVariable &GV : M.globals()) { 1201 UpdateMaxAlignment(GV.getAlign()); 1202 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1203 if (GV.hasSection()) { 1204 // Give section names unique ID's. 1205 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1206 if (!Entry) { 1207 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1208 0 /*TODO*/); 1209 Entry = SectionMap.size(); 1210 } 1211 } 1212 } 1213 for (const Function &F : M) { 1214 UpdateMaxAlignment(F.getAlign()); 1215 if (F.hasSection()) { 1216 // Give section names unique ID's. 1217 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1218 if (!Entry) { 1219 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1220 0 /*TODO*/); 1221 Entry = SectionMap.size(); 1222 } 1223 } 1224 if (F.hasGC()) { 1225 // Same for GC names. 1226 unsigned &Entry = GCMap[F.getGC()]; 1227 if (!Entry) { 1228 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1229 0 /*TODO*/); 1230 Entry = GCMap.size(); 1231 } 1232 } 1233 } 1234 1235 // Emit abbrev for globals, now that we know # sections and max alignment. 1236 unsigned SimpleGVarAbbrev = 0; 1237 if (!M.global_empty()) { 1238 // Add an abbrev for common globals with no visibility or thread localness. 1239 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1240 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1244 Log2_32_Ceil(MaxGlobalType+1))); 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1246 //| explicitType << 1 1247 //| constant 1248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1250 if (!MaxAlignment) // Alignment. 1251 Abbv->Add(BitCodeAbbrevOp(0)); 1252 else { 1253 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1255 Log2_32_Ceil(MaxEncAlignment+1))); 1256 } 1257 if (SectionMap.empty()) // Section. 1258 Abbv->Add(BitCodeAbbrevOp(0)); 1259 else 1260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1261 Log2_32_Ceil(SectionMap.size()+1))); 1262 // Don't bother emitting vis + thread local. 1263 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1264 } 1265 1266 SmallVector<unsigned, 64> Vals; 1267 // Emit the module's source file name. 1268 { 1269 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1270 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1271 if (Bits == SE_Char6) 1272 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1273 else if (Bits == SE_Fixed7) 1274 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1275 1276 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1277 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1278 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1280 Abbv->Add(AbbrevOpToUse); 1281 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1282 1283 for (const auto P : M.getSourceFileName()) 1284 Vals.push_back((unsigned char)P); 1285 1286 // Emit the finished record. 1287 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1288 Vals.clear(); 1289 } 1290 1291 // Emit the global variable information. 1292 for (const GlobalVariable &GV : M.globals()) { 1293 unsigned AbbrevToUse = 0; 1294 1295 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1296 // linkage, alignment, section, visibility, threadlocal, 1297 // unnamed_addr, externally_initialized, dllstorageclass, 1298 // comdat, attributes, DSO_Local] 1299 Vals.push_back(addToStrtab(GV.getName())); 1300 Vals.push_back(GV.getName().size()); 1301 Vals.push_back(VE.getTypeID(GV.getValueType())); 1302 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1303 Vals.push_back(GV.isDeclaration() ? 0 : 1304 (VE.getValueID(GV.getInitializer()) + 1)); 1305 Vals.push_back(getEncodedLinkage(GV)); 1306 Vals.push_back(getEncodedAlign(GV.getAlign())); 1307 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1308 : 0); 1309 if (GV.isThreadLocal() || 1310 GV.getVisibility() != GlobalValue::DefaultVisibility || 1311 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1312 GV.isExternallyInitialized() || 1313 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1314 GV.hasComdat() || 1315 GV.hasAttributes() || 1316 GV.isDSOLocal() || 1317 GV.hasPartition()) { 1318 Vals.push_back(getEncodedVisibility(GV)); 1319 Vals.push_back(getEncodedThreadLocalMode(GV)); 1320 Vals.push_back(getEncodedUnnamedAddr(GV)); 1321 Vals.push_back(GV.isExternallyInitialized()); 1322 Vals.push_back(getEncodedDLLStorageClass(GV)); 1323 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1324 1325 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1326 Vals.push_back(VE.getAttributeListID(AL)); 1327 1328 Vals.push_back(GV.isDSOLocal()); 1329 Vals.push_back(addToStrtab(GV.getPartition())); 1330 Vals.push_back(GV.getPartition().size()); 1331 } else { 1332 AbbrevToUse = SimpleGVarAbbrev; 1333 } 1334 1335 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1336 Vals.clear(); 1337 } 1338 1339 // Emit the function proto information. 1340 for (const Function &F : M) { 1341 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1342 // linkage, paramattrs, alignment, section, visibility, gc, 1343 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1344 // prefixdata, personalityfn, DSO_Local, addrspace] 1345 Vals.push_back(addToStrtab(F.getName())); 1346 Vals.push_back(F.getName().size()); 1347 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1348 Vals.push_back(F.getCallingConv()); 1349 Vals.push_back(F.isDeclaration()); 1350 Vals.push_back(getEncodedLinkage(F)); 1351 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1352 Vals.push_back(getEncodedAlign(F.getAlign())); 1353 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1354 : 0); 1355 Vals.push_back(getEncodedVisibility(F)); 1356 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1357 Vals.push_back(getEncodedUnnamedAddr(F)); 1358 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1359 : 0); 1360 Vals.push_back(getEncodedDLLStorageClass(F)); 1361 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1362 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1363 : 0); 1364 Vals.push_back( 1365 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1366 1367 Vals.push_back(F.isDSOLocal()); 1368 Vals.push_back(F.getAddressSpace()); 1369 Vals.push_back(addToStrtab(F.getPartition())); 1370 Vals.push_back(F.getPartition().size()); 1371 1372 unsigned AbbrevToUse = 0; 1373 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1374 Vals.clear(); 1375 } 1376 1377 // Emit the alias information. 1378 for (const GlobalAlias &A : M.aliases()) { 1379 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1380 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1381 // DSO_Local] 1382 Vals.push_back(addToStrtab(A.getName())); 1383 Vals.push_back(A.getName().size()); 1384 Vals.push_back(VE.getTypeID(A.getValueType())); 1385 Vals.push_back(A.getType()->getAddressSpace()); 1386 Vals.push_back(VE.getValueID(A.getAliasee())); 1387 Vals.push_back(getEncodedLinkage(A)); 1388 Vals.push_back(getEncodedVisibility(A)); 1389 Vals.push_back(getEncodedDLLStorageClass(A)); 1390 Vals.push_back(getEncodedThreadLocalMode(A)); 1391 Vals.push_back(getEncodedUnnamedAddr(A)); 1392 Vals.push_back(A.isDSOLocal()); 1393 Vals.push_back(addToStrtab(A.getPartition())); 1394 Vals.push_back(A.getPartition().size()); 1395 1396 unsigned AbbrevToUse = 0; 1397 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1398 Vals.clear(); 1399 } 1400 1401 // Emit the ifunc information. 1402 for (const GlobalIFunc &I : M.ifuncs()) { 1403 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1404 // val#, linkage, visibility, DSO_Local] 1405 Vals.push_back(addToStrtab(I.getName())); 1406 Vals.push_back(I.getName().size()); 1407 Vals.push_back(VE.getTypeID(I.getValueType())); 1408 Vals.push_back(I.getType()->getAddressSpace()); 1409 Vals.push_back(VE.getValueID(I.getResolver())); 1410 Vals.push_back(getEncodedLinkage(I)); 1411 Vals.push_back(getEncodedVisibility(I)); 1412 Vals.push_back(I.isDSOLocal()); 1413 Vals.push_back(addToStrtab(I.getPartition())); 1414 Vals.push_back(I.getPartition().size()); 1415 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1416 Vals.clear(); 1417 } 1418 1419 writeValueSymbolTableForwardDecl(); 1420 } 1421 1422 static uint64_t getOptimizationFlags(const Value *V) { 1423 uint64_t Flags = 0; 1424 1425 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1426 if (OBO->hasNoSignedWrap()) 1427 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1428 if (OBO->hasNoUnsignedWrap()) 1429 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1430 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1431 if (PEO->isExact()) 1432 Flags |= 1 << bitc::PEO_EXACT; 1433 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1434 if (FPMO->hasAllowReassoc()) 1435 Flags |= bitc::AllowReassoc; 1436 if (FPMO->hasNoNaNs()) 1437 Flags |= bitc::NoNaNs; 1438 if (FPMO->hasNoInfs()) 1439 Flags |= bitc::NoInfs; 1440 if (FPMO->hasNoSignedZeros()) 1441 Flags |= bitc::NoSignedZeros; 1442 if (FPMO->hasAllowReciprocal()) 1443 Flags |= bitc::AllowReciprocal; 1444 if (FPMO->hasAllowContract()) 1445 Flags |= bitc::AllowContract; 1446 if (FPMO->hasApproxFunc()) 1447 Flags |= bitc::ApproxFunc; 1448 } 1449 1450 return Flags; 1451 } 1452 1453 void ModuleBitcodeWriter::writeValueAsMetadata( 1454 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1455 // Mimic an MDNode with a value as one operand. 1456 Value *V = MD->getValue(); 1457 Record.push_back(VE.getTypeID(V->getType())); 1458 Record.push_back(VE.getValueID(V)); 1459 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1460 Record.clear(); 1461 } 1462 1463 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1464 SmallVectorImpl<uint64_t> &Record, 1465 unsigned Abbrev) { 1466 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1467 Metadata *MD = N->getOperand(i); 1468 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1469 "Unexpected function-local metadata"); 1470 Record.push_back(VE.getMetadataOrNullID(MD)); 1471 } 1472 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1473 : bitc::METADATA_NODE, 1474 Record, Abbrev); 1475 Record.clear(); 1476 } 1477 1478 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1479 // Assume the column is usually under 128, and always output the inlined-at 1480 // location (it's never more expensive than building an array size 1). 1481 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1482 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1489 return Stream.EmitAbbrev(std::move(Abbv)); 1490 } 1491 1492 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1493 SmallVectorImpl<uint64_t> &Record, 1494 unsigned &Abbrev) { 1495 if (!Abbrev) 1496 Abbrev = createDILocationAbbrev(); 1497 1498 Record.push_back(N->isDistinct()); 1499 Record.push_back(N->getLine()); 1500 Record.push_back(N->getColumn()); 1501 Record.push_back(VE.getMetadataID(N->getScope())); 1502 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1503 Record.push_back(N->isImplicitCode()); 1504 1505 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1506 Record.clear(); 1507 } 1508 1509 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1510 // Assume the column is usually under 128, and always output the inlined-at 1511 // location (it's never more expensive than building an array size 1). 1512 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1513 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1520 return Stream.EmitAbbrev(std::move(Abbv)); 1521 } 1522 1523 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1524 SmallVectorImpl<uint64_t> &Record, 1525 unsigned &Abbrev) { 1526 if (!Abbrev) 1527 Abbrev = createGenericDINodeAbbrev(); 1528 1529 Record.push_back(N->isDistinct()); 1530 Record.push_back(N->getTag()); 1531 Record.push_back(0); // Per-tag version field; unused for now. 1532 1533 for (auto &I : N->operands()) 1534 Record.push_back(VE.getMetadataOrNullID(I)); 1535 1536 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1537 Record.clear(); 1538 } 1539 1540 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1541 SmallVectorImpl<uint64_t> &Record, 1542 unsigned Abbrev) { 1543 const uint64_t Version = 2 << 1; 1544 Record.push_back((uint64_t)N->isDistinct() | Version); 1545 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1546 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1549 1550 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1551 Record.clear(); 1552 } 1553 1554 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1555 if ((int64_t)V >= 0) 1556 Vals.push_back(V << 1); 1557 else 1558 Vals.push_back((-V << 1) | 1); 1559 } 1560 1561 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1562 // We have an arbitrary precision integer value to write whose 1563 // bit width is > 64. However, in canonical unsigned integer 1564 // format it is likely that the high bits are going to be zero. 1565 // So, we only write the number of active words. 1566 unsigned NumWords = A.getActiveWords(); 1567 const uint64_t *RawData = A.getRawData(); 1568 for (unsigned i = 0; i < NumWords; i++) 1569 emitSignedInt64(Vals, RawData[i]); 1570 } 1571 1572 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1573 SmallVectorImpl<uint64_t> &Record, 1574 unsigned Abbrev) { 1575 const uint64_t IsBigInt = 1 << 2; 1576 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1577 Record.push_back(N->getValue().getBitWidth()); 1578 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1579 emitWideAPInt(Record, N->getValue()); 1580 1581 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1582 Record.clear(); 1583 } 1584 1585 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1586 SmallVectorImpl<uint64_t> &Record, 1587 unsigned Abbrev) { 1588 Record.push_back(N->isDistinct()); 1589 Record.push_back(N->getTag()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1591 Record.push_back(N->getSizeInBits()); 1592 Record.push_back(N->getAlignInBits()); 1593 Record.push_back(N->getEncoding()); 1594 Record.push_back(N->getFlags()); 1595 1596 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1597 Record.clear(); 1598 } 1599 1600 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1601 SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 Record.push_back(N->isDistinct()); 1604 Record.push_back(N->getTag()); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1608 Record.push_back(N->getSizeInBits()); 1609 Record.push_back(N->getAlignInBits()); 1610 Record.push_back(N->getEncoding()); 1611 1612 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1613 Record.clear(); 1614 } 1615 1616 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1617 SmallVectorImpl<uint64_t> &Record, 1618 unsigned Abbrev) { 1619 Record.push_back(N->isDistinct()); 1620 Record.push_back(N->getTag()); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1623 Record.push_back(N->getLine()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1626 Record.push_back(N->getSizeInBits()); 1627 Record.push_back(N->getAlignInBits()); 1628 Record.push_back(N->getOffsetInBits()); 1629 Record.push_back(N->getFlags()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1631 1632 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1633 // that there is no DWARF address space associated with DIDerivedType. 1634 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1635 Record.push_back(*DWARFAddressSpace + 1); 1636 else 1637 Record.push_back(0); 1638 1639 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1640 Record.clear(); 1641 } 1642 1643 void ModuleBitcodeWriter::writeDICompositeType( 1644 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1645 unsigned Abbrev) { 1646 const unsigned IsNotUsedInOldTypeRef = 0x2; 1647 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1648 Record.push_back(N->getTag()); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1651 Record.push_back(N->getLine()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1653 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1654 Record.push_back(N->getSizeInBits()); 1655 Record.push_back(N->getAlignInBits()); 1656 Record.push_back(N->getOffsetInBits()); 1657 Record.push_back(N->getFlags()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1659 Record.push_back(N->getRuntimeLang()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1666 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1668 1669 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDISubroutineType( 1674 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 const unsigned HasNoOldTypeRefs = 0x2; 1677 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1678 Record.push_back(N->getFlags()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1680 Record.push_back(N->getCC()); 1681 1682 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1683 Record.clear(); 1684 } 1685 1686 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1687 SmallVectorImpl<uint64_t> &Record, 1688 unsigned Abbrev) { 1689 Record.push_back(N->isDistinct()); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1692 if (N->getRawChecksum()) { 1693 Record.push_back(N->getRawChecksum()->Kind); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1695 } else { 1696 // Maintain backwards compatibility with the old internal representation of 1697 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1698 Record.push_back(0); 1699 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1700 } 1701 auto Source = N->getRawSource(); 1702 if (Source) 1703 Record.push_back(VE.getMetadataOrNullID(*Source)); 1704 1705 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1710 SmallVectorImpl<uint64_t> &Record, 1711 unsigned Abbrev) { 1712 assert(N->isDistinct() && "Expected distinct compile units"); 1713 Record.push_back(/* IsDistinct */ true); 1714 Record.push_back(N->getSourceLanguage()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1716 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1717 Record.push_back(N->isOptimized()); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1719 Record.push_back(N->getRuntimeVersion()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1721 Record.push_back(N->getEmissionKind()); 1722 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1724 Record.push_back(/* subprograms */ 0); 1725 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1727 Record.push_back(N->getDWOId()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1729 Record.push_back(N->getSplitDebugInlining()); 1730 Record.push_back(N->getDebugInfoForProfiling()); 1731 Record.push_back((unsigned)N->getNameTableKind()); 1732 Record.push_back(N->getRangesBaseAddress()); 1733 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1734 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1735 1736 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1737 Record.clear(); 1738 } 1739 1740 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1741 SmallVectorImpl<uint64_t> &Record, 1742 unsigned Abbrev) { 1743 const uint64_t HasUnitFlag = 1 << 1; 1744 const uint64_t HasSPFlagsFlag = 1 << 2; 1745 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1746 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1750 Record.push_back(N->getLine()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1752 Record.push_back(N->getScopeLine()); 1753 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1754 Record.push_back(N->getSPFlags()); 1755 Record.push_back(N->getVirtualIndex()); 1756 Record.push_back(N->getFlags()); 1757 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1758 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1760 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1761 Record.push_back(N->getThisAdjustment()); 1762 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1763 1764 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1765 Record.clear(); 1766 } 1767 1768 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1769 SmallVectorImpl<uint64_t> &Record, 1770 unsigned Abbrev) { 1771 Record.push_back(N->isDistinct()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1774 Record.push_back(N->getLine()); 1775 Record.push_back(N->getColumn()); 1776 1777 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1778 Record.clear(); 1779 } 1780 1781 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1782 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1783 unsigned Abbrev) { 1784 Record.push_back(N->isDistinct()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1787 Record.push_back(N->getDiscriminator()); 1788 1789 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1790 Record.clear(); 1791 } 1792 1793 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1794 SmallVectorImpl<uint64_t> &Record, 1795 unsigned Abbrev) { 1796 Record.push_back(N->isDistinct()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1799 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1801 Record.push_back(N->getLineNo()); 1802 1803 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1804 Record.clear(); 1805 } 1806 1807 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1808 SmallVectorImpl<uint64_t> &Record, 1809 unsigned Abbrev) { 1810 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1811 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1813 1814 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1815 Record.clear(); 1816 } 1817 1818 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1819 SmallVectorImpl<uint64_t> &Record, 1820 unsigned Abbrev) { 1821 Record.push_back(N->isDistinct()); 1822 Record.push_back(N->getMacinfoType()); 1823 Record.push_back(N->getLine()); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1826 1827 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1828 Record.clear(); 1829 } 1830 1831 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1832 SmallVectorImpl<uint64_t> &Record, 1833 unsigned Abbrev) { 1834 Record.push_back(N->isDistinct()); 1835 Record.push_back(N->getMacinfoType()); 1836 Record.push_back(N->getLine()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1838 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1839 1840 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1841 Record.clear(); 1842 } 1843 1844 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1845 SmallVectorImpl<uint64_t> &Record, 1846 unsigned Abbrev) { 1847 Record.push_back(N->isDistinct()); 1848 for (auto &I : N->operands()) 1849 Record.push_back(VE.getMetadataOrNullID(I)); 1850 Record.push_back(N->getLineNo()); 1851 1852 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1853 Record.clear(); 1854 } 1855 1856 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1857 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1858 unsigned Abbrev) { 1859 Record.push_back(N->isDistinct()); 1860 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1862 Record.push_back(N->isDefault()); 1863 1864 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1865 Record.clear(); 1866 } 1867 1868 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1869 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1870 unsigned Abbrev) { 1871 Record.push_back(N->isDistinct()); 1872 Record.push_back(N->getTag()); 1873 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1875 Record.push_back(N->isDefault()); 1876 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1877 1878 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1879 Record.clear(); 1880 } 1881 1882 void ModuleBitcodeWriter::writeDIGlobalVariable( 1883 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1884 unsigned Abbrev) { 1885 const uint64_t Version = 2 << 1; 1886 Record.push_back((uint64_t)N->isDistinct() | Version); 1887 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1891 Record.push_back(N->getLine()); 1892 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1893 Record.push_back(N->isLocalToUnit()); 1894 Record.push_back(N->isDefinition()); 1895 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1896 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1897 Record.push_back(N->getAlignInBits()); 1898 1899 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1900 Record.clear(); 1901 } 1902 1903 void ModuleBitcodeWriter::writeDILocalVariable( 1904 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1905 unsigned Abbrev) { 1906 // In order to support all possible bitcode formats in BitcodeReader we need 1907 // to distinguish the following cases: 1908 // 1) Record has no artificial tag (Record[1]), 1909 // has no obsolete inlinedAt field (Record[9]). 1910 // In this case Record size will be 8, HasAlignment flag is false. 1911 // 2) Record has artificial tag (Record[1]), 1912 // has no obsolete inlignedAt field (Record[9]). 1913 // In this case Record size will be 9, HasAlignment flag is false. 1914 // 3) Record has both artificial tag (Record[1]) and 1915 // obsolete inlignedAt field (Record[9]). 1916 // In this case Record size will be 10, HasAlignment flag is false. 1917 // 4) Record has neither artificial tag, nor inlignedAt field, but 1918 // HasAlignment flag is true and Record[8] contains alignment value. 1919 const uint64_t HasAlignmentFlag = 1 << 1; 1920 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1921 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1922 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1923 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1924 Record.push_back(N->getLine()); 1925 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1926 Record.push_back(N->getArg()); 1927 Record.push_back(N->getFlags()); 1928 Record.push_back(N->getAlignInBits()); 1929 1930 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1931 Record.clear(); 1932 } 1933 1934 void ModuleBitcodeWriter::writeDILabel( 1935 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1936 unsigned Abbrev) { 1937 Record.push_back((uint64_t)N->isDistinct()); 1938 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1939 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1940 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1941 Record.push_back(N->getLine()); 1942 1943 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1944 Record.clear(); 1945 } 1946 1947 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1948 SmallVectorImpl<uint64_t> &Record, 1949 unsigned Abbrev) { 1950 Record.reserve(N->getElements().size() + 1); 1951 const uint64_t Version = 3 << 1; 1952 Record.push_back((uint64_t)N->isDistinct() | Version); 1953 Record.append(N->elements_begin(), N->elements_end()); 1954 1955 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1956 Record.clear(); 1957 } 1958 1959 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1960 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1961 unsigned Abbrev) { 1962 Record.push_back(N->isDistinct()); 1963 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1965 1966 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1967 Record.clear(); 1968 } 1969 1970 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1971 SmallVectorImpl<uint64_t> &Record, 1972 unsigned Abbrev) { 1973 Record.push_back(N->isDistinct()); 1974 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1975 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1976 Record.push_back(N->getLine()); 1977 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1978 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1979 Record.push_back(N->getAttributes()); 1980 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1981 1982 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1983 Record.clear(); 1984 } 1985 1986 void ModuleBitcodeWriter::writeDIImportedEntity( 1987 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1988 unsigned Abbrev) { 1989 Record.push_back(N->isDistinct()); 1990 Record.push_back(N->getTag()); 1991 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1993 Record.push_back(N->getLine()); 1994 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1995 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1996 1997 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1998 Record.clear(); 1999 } 2000 2001 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2002 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2003 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2006 return Stream.EmitAbbrev(std::move(Abbv)); 2007 } 2008 2009 void ModuleBitcodeWriter::writeNamedMetadata( 2010 SmallVectorImpl<uint64_t> &Record) { 2011 if (M.named_metadata_empty()) 2012 return; 2013 2014 unsigned Abbrev = createNamedMetadataAbbrev(); 2015 for (const NamedMDNode &NMD : M.named_metadata()) { 2016 // Write name. 2017 StringRef Str = NMD.getName(); 2018 Record.append(Str.bytes_begin(), Str.bytes_end()); 2019 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2020 Record.clear(); 2021 2022 // Write named metadata operands. 2023 for (const MDNode *N : NMD.operands()) 2024 Record.push_back(VE.getMetadataID(N)); 2025 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2026 Record.clear(); 2027 } 2028 } 2029 2030 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2031 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2032 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2036 return Stream.EmitAbbrev(std::move(Abbv)); 2037 } 2038 2039 /// Write out a record for MDString. 2040 /// 2041 /// All the metadata strings in a metadata block are emitted in a single 2042 /// record. The sizes and strings themselves are shoved into a blob. 2043 void ModuleBitcodeWriter::writeMetadataStrings( 2044 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2045 if (Strings.empty()) 2046 return; 2047 2048 // Start the record with the number of strings. 2049 Record.push_back(bitc::METADATA_STRINGS); 2050 Record.push_back(Strings.size()); 2051 2052 // Emit the sizes of the strings in the blob. 2053 SmallString<256> Blob; 2054 { 2055 BitstreamWriter W(Blob); 2056 for (const Metadata *MD : Strings) 2057 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2058 W.FlushToWord(); 2059 } 2060 2061 // Add the offset to the strings to the record. 2062 Record.push_back(Blob.size()); 2063 2064 // Add the strings to the blob. 2065 for (const Metadata *MD : Strings) 2066 Blob.append(cast<MDString>(MD)->getString()); 2067 2068 // Emit the final record. 2069 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2070 Record.clear(); 2071 } 2072 2073 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2074 enum MetadataAbbrev : unsigned { 2075 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2076 #include "llvm/IR/Metadata.def" 2077 LastPlusOne 2078 }; 2079 2080 void ModuleBitcodeWriter::writeMetadataRecords( 2081 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2082 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2083 if (MDs.empty()) 2084 return; 2085 2086 // Initialize MDNode abbreviations. 2087 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2088 #include "llvm/IR/Metadata.def" 2089 2090 for (const Metadata *MD : MDs) { 2091 if (IndexPos) 2092 IndexPos->push_back(Stream.GetCurrentBitNo()); 2093 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2094 assert(N->isResolved() && "Expected forward references to be resolved"); 2095 2096 switch (N->getMetadataID()) { 2097 default: 2098 llvm_unreachable("Invalid MDNode subclass"); 2099 #define HANDLE_MDNODE_LEAF(CLASS) \ 2100 case Metadata::CLASS##Kind: \ 2101 if (MDAbbrevs) \ 2102 write##CLASS(cast<CLASS>(N), Record, \ 2103 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2104 else \ 2105 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2106 continue; 2107 #include "llvm/IR/Metadata.def" 2108 } 2109 } 2110 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2111 } 2112 } 2113 2114 void ModuleBitcodeWriter::writeModuleMetadata() { 2115 if (!VE.hasMDs() && M.named_metadata_empty()) 2116 return; 2117 2118 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2119 SmallVector<uint64_t, 64> Record; 2120 2121 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2122 // block and load any metadata. 2123 std::vector<unsigned> MDAbbrevs; 2124 2125 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2126 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2127 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2128 createGenericDINodeAbbrev(); 2129 2130 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2131 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2134 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2135 2136 Abbv = std::make_shared<BitCodeAbbrev>(); 2137 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2140 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2141 2142 // Emit MDStrings together upfront. 2143 writeMetadataStrings(VE.getMDStrings(), Record); 2144 2145 // We only emit an index for the metadata record if we have more than a given 2146 // (naive) threshold of metadatas, otherwise it is not worth it. 2147 if (VE.getNonMDStrings().size() > IndexThreshold) { 2148 // Write a placeholder value in for the offset of the metadata index, 2149 // which is written after the records, so that it can include 2150 // the offset of each entry. The placeholder offset will be 2151 // updated after all records are emitted. 2152 uint64_t Vals[] = {0, 0}; 2153 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2154 } 2155 2156 // Compute and save the bit offset to the current position, which will be 2157 // patched when we emit the index later. We can simply subtract the 64-bit 2158 // fixed size from the current bit number to get the location to backpatch. 2159 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2160 2161 // This index will contain the bitpos for each individual record. 2162 std::vector<uint64_t> IndexPos; 2163 IndexPos.reserve(VE.getNonMDStrings().size()); 2164 2165 // Write all the records 2166 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2167 2168 if (VE.getNonMDStrings().size() > IndexThreshold) { 2169 // Now that we have emitted all the records we will emit the index. But 2170 // first 2171 // backpatch the forward reference so that the reader can skip the records 2172 // efficiently. 2173 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2174 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2175 2176 // Delta encode the index. 2177 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2178 for (auto &Elt : IndexPos) { 2179 auto EltDelta = Elt - PreviousValue; 2180 PreviousValue = Elt; 2181 Elt = EltDelta; 2182 } 2183 // Emit the index record. 2184 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2185 IndexPos.clear(); 2186 } 2187 2188 // Write the named metadata now. 2189 writeNamedMetadata(Record); 2190 2191 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2192 SmallVector<uint64_t, 4> Record; 2193 Record.push_back(VE.getValueID(&GO)); 2194 pushGlobalMetadataAttachment(Record, GO); 2195 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2196 }; 2197 for (const Function &F : M) 2198 if (F.isDeclaration() && F.hasMetadata()) 2199 AddDeclAttachedMetadata(F); 2200 // FIXME: Only store metadata for declarations here, and move data for global 2201 // variable definitions to a separate block (PR28134). 2202 for (const GlobalVariable &GV : M.globals()) 2203 if (GV.hasMetadata()) 2204 AddDeclAttachedMetadata(GV); 2205 2206 Stream.ExitBlock(); 2207 } 2208 2209 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2210 if (!VE.hasMDs()) 2211 return; 2212 2213 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2214 SmallVector<uint64_t, 64> Record; 2215 writeMetadataStrings(VE.getMDStrings(), Record); 2216 writeMetadataRecords(VE.getNonMDStrings(), Record); 2217 Stream.ExitBlock(); 2218 } 2219 2220 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2221 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2222 // [n x [id, mdnode]] 2223 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2224 GO.getAllMetadata(MDs); 2225 for (const auto &I : MDs) { 2226 Record.push_back(I.first); 2227 Record.push_back(VE.getMetadataID(I.second)); 2228 } 2229 } 2230 2231 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2232 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2233 2234 SmallVector<uint64_t, 64> Record; 2235 2236 if (F.hasMetadata()) { 2237 pushGlobalMetadataAttachment(Record, F); 2238 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2239 Record.clear(); 2240 } 2241 2242 // Write metadata attachments 2243 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2244 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2245 for (const BasicBlock &BB : F) 2246 for (const Instruction &I : BB) { 2247 MDs.clear(); 2248 I.getAllMetadataOtherThanDebugLoc(MDs); 2249 2250 // If no metadata, ignore instruction. 2251 if (MDs.empty()) continue; 2252 2253 Record.push_back(VE.getInstructionID(&I)); 2254 2255 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2256 Record.push_back(MDs[i].first); 2257 Record.push_back(VE.getMetadataID(MDs[i].second)); 2258 } 2259 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2260 Record.clear(); 2261 } 2262 2263 Stream.ExitBlock(); 2264 } 2265 2266 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2267 SmallVector<uint64_t, 64> Record; 2268 2269 // Write metadata kinds 2270 // METADATA_KIND - [n x [id, name]] 2271 SmallVector<StringRef, 8> Names; 2272 M.getMDKindNames(Names); 2273 2274 if (Names.empty()) return; 2275 2276 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2277 2278 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2279 Record.push_back(MDKindID); 2280 StringRef KName = Names[MDKindID]; 2281 Record.append(KName.begin(), KName.end()); 2282 2283 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2284 Record.clear(); 2285 } 2286 2287 Stream.ExitBlock(); 2288 } 2289 2290 void ModuleBitcodeWriter::writeOperandBundleTags() { 2291 // Write metadata kinds 2292 // 2293 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2294 // 2295 // OPERAND_BUNDLE_TAG - [strchr x N] 2296 2297 SmallVector<StringRef, 8> Tags; 2298 M.getOperandBundleTags(Tags); 2299 2300 if (Tags.empty()) 2301 return; 2302 2303 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2304 2305 SmallVector<uint64_t, 64> Record; 2306 2307 for (auto Tag : Tags) { 2308 Record.append(Tag.begin(), Tag.end()); 2309 2310 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2311 Record.clear(); 2312 } 2313 2314 Stream.ExitBlock(); 2315 } 2316 2317 void ModuleBitcodeWriter::writeSyncScopeNames() { 2318 SmallVector<StringRef, 8> SSNs; 2319 M.getContext().getSyncScopeNames(SSNs); 2320 if (SSNs.empty()) 2321 return; 2322 2323 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2324 2325 SmallVector<uint64_t, 64> Record; 2326 for (auto SSN : SSNs) { 2327 Record.append(SSN.begin(), SSN.end()); 2328 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2329 Record.clear(); 2330 } 2331 2332 Stream.ExitBlock(); 2333 } 2334 2335 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2336 bool isGlobal) { 2337 if (FirstVal == LastVal) return; 2338 2339 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2340 2341 unsigned AggregateAbbrev = 0; 2342 unsigned String8Abbrev = 0; 2343 unsigned CString7Abbrev = 0; 2344 unsigned CString6Abbrev = 0; 2345 // If this is a constant pool for the module, emit module-specific abbrevs. 2346 if (isGlobal) { 2347 // Abbrev for CST_CODE_AGGREGATE. 2348 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2349 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2352 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2353 2354 // Abbrev for CST_CODE_STRING. 2355 Abbv = std::make_shared<BitCodeAbbrev>(); 2356 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2359 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2360 // Abbrev for CST_CODE_CSTRING. 2361 Abbv = std::make_shared<BitCodeAbbrev>(); 2362 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2365 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2366 // Abbrev for CST_CODE_CSTRING. 2367 Abbv = std::make_shared<BitCodeAbbrev>(); 2368 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2371 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2372 } 2373 2374 SmallVector<uint64_t, 64> Record; 2375 2376 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2377 Type *LastTy = nullptr; 2378 for (unsigned i = FirstVal; i != LastVal; ++i) { 2379 const Value *V = Vals[i].first; 2380 // If we need to switch types, do so now. 2381 if (V->getType() != LastTy) { 2382 LastTy = V->getType(); 2383 Record.push_back(VE.getTypeID(LastTy)); 2384 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2385 CONSTANTS_SETTYPE_ABBREV); 2386 Record.clear(); 2387 } 2388 2389 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2390 Record.push_back(unsigned(IA->hasSideEffects()) | 2391 unsigned(IA->isAlignStack()) << 1 | 2392 unsigned(IA->getDialect()&1) << 2); 2393 2394 // Add the asm string. 2395 const std::string &AsmStr = IA->getAsmString(); 2396 Record.push_back(AsmStr.size()); 2397 Record.append(AsmStr.begin(), AsmStr.end()); 2398 2399 // Add the constraint string. 2400 const std::string &ConstraintStr = IA->getConstraintString(); 2401 Record.push_back(ConstraintStr.size()); 2402 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2403 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2404 Record.clear(); 2405 continue; 2406 } 2407 const Constant *C = cast<Constant>(V); 2408 unsigned Code = -1U; 2409 unsigned AbbrevToUse = 0; 2410 if (C->isNullValue()) { 2411 Code = bitc::CST_CODE_NULL; 2412 } else if (isa<UndefValue>(C)) { 2413 Code = bitc::CST_CODE_UNDEF; 2414 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2415 if (IV->getBitWidth() <= 64) { 2416 uint64_t V = IV->getSExtValue(); 2417 emitSignedInt64(Record, V); 2418 Code = bitc::CST_CODE_INTEGER; 2419 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2420 } else { // Wide integers, > 64 bits in size. 2421 emitWideAPInt(Record, IV->getValue()); 2422 Code = bitc::CST_CODE_WIDE_INTEGER; 2423 } 2424 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2425 Code = bitc::CST_CODE_FLOAT; 2426 Type *Ty = CFP->getType(); 2427 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2428 Ty->isDoubleTy()) { 2429 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2430 } else if (Ty->isX86_FP80Ty()) { 2431 // api needed to prevent premature destruction 2432 // bits are not in the same order as a normal i80 APInt, compensate. 2433 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2434 const uint64_t *p = api.getRawData(); 2435 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2436 Record.push_back(p[0] & 0xffffLL); 2437 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2438 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2439 const uint64_t *p = api.getRawData(); 2440 Record.push_back(p[0]); 2441 Record.push_back(p[1]); 2442 } else { 2443 assert(0 && "Unknown FP type!"); 2444 } 2445 } else if (isa<ConstantDataSequential>(C) && 2446 cast<ConstantDataSequential>(C)->isString()) { 2447 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2448 // Emit constant strings specially. 2449 unsigned NumElts = Str->getNumElements(); 2450 // If this is a null-terminated string, use the denser CSTRING encoding. 2451 if (Str->isCString()) { 2452 Code = bitc::CST_CODE_CSTRING; 2453 --NumElts; // Don't encode the null, which isn't allowed by char6. 2454 } else { 2455 Code = bitc::CST_CODE_STRING; 2456 AbbrevToUse = String8Abbrev; 2457 } 2458 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2459 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2460 for (unsigned i = 0; i != NumElts; ++i) { 2461 unsigned char V = Str->getElementAsInteger(i); 2462 Record.push_back(V); 2463 isCStr7 &= (V & 128) == 0; 2464 if (isCStrChar6) 2465 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2466 } 2467 2468 if (isCStrChar6) 2469 AbbrevToUse = CString6Abbrev; 2470 else if (isCStr7) 2471 AbbrevToUse = CString7Abbrev; 2472 } else if (const ConstantDataSequential *CDS = 2473 dyn_cast<ConstantDataSequential>(C)) { 2474 Code = bitc::CST_CODE_DATA; 2475 Type *EltTy = CDS->getElementType(); 2476 if (isa<IntegerType>(EltTy)) { 2477 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2478 Record.push_back(CDS->getElementAsInteger(i)); 2479 } else { 2480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2481 Record.push_back( 2482 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2483 } 2484 } else if (isa<ConstantAggregate>(C)) { 2485 Code = bitc::CST_CODE_AGGREGATE; 2486 for (const Value *Op : C->operands()) 2487 Record.push_back(VE.getValueID(Op)); 2488 AbbrevToUse = AggregateAbbrev; 2489 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2490 switch (CE->getOpcode()) { 2491 default: 2492 if (Instruction::isCast(CE->getOpcode())) { 2493 Code = bitc::CST_CODE_CE_CAST; 2494 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2495 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2496 Record.push_back(VE.getValueID(C->getOperand(0))); 2497 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2498 } else { 2499 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2500 Code = bitc::CST_CODE_CE_BINOP; 2501 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2502 Record.push_back(VE.getValueID(C->getOperand(0))); 2503 Record.push_back(VE.getValueID(C->getOperand(1))); 2504 uint64_t Flags = getOptimizationFlags(CE); 2505 if (Flags != 0) 2506 Record.push_back(Flags); 2507 } 2508 break; 2509 case Instruction::FNeg: { 2510 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2511 Code = bitc::CST_CODE_CE_UNOP; 2512 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2513 Record.push_back(VE.getValueID(C->getOperand(0))); 2514 uint64_t Flags = getOptimizationFlags(CE); 2515 if (Flags != 0) 2516 Record.push_back(Flags); 2517 break; 2518 } 2519 case Instruction::GetElementPtr: { 2520 Code = bitc::CST_CODE_CE_GEP; 2521 const auto *GO = cast<GEPOperator>(C); 2522 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2523 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2524 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2525 Record.push_back((*Idx << 1) | GO->isInBounds()); 2526 } else if (GO->isInBounds()) 2527 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2528 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2529 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2530 Record.push_back(VE.getValueID(C->getOperand(i))); 2531 } 2532 break; 2533 } 2534 case Instruction::Select: 2535 Code = bitc::CST_CODE_CE_SELECT; 2536 Record.push_back(VE.getValueID(C->getOperand(0))); 2537 Record.push_back(VE.getValueID(C->getOperand(1))); 2538 Record.push_back(VE.getValueID(C->getOperand(2))); 2539 break; 2540 case Instruction::ExtractElement: 2541 Code = bitc::CST_CODE_CE_EXTRACTELT; 2542 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2543 Record.push_back(VE.getValueID(C->getOperand(0))); 2544 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2545 Record.push_back(VE.getValueID(C->getOperand(1))); 2546 break; 2547 case Instruction::InsertElement: 2548 Code = bitc::CST_CODE_CE_INSERTELT; 2549 Record.push_back(VE.getValueID(C->getOperand(0))); 2550 Record.push_back(VE.getValueID(C->getOperand(1))); 2551 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2552 Record.push_back(VE.getValueID(C->getOperand(2))); 2553 break; 2554 case Instruction::ShuffleVector: 2555 // If the return type and argument types are the same, this is a 2556 // standard shufflevector instruction. If the types are different, 2557 // then the shuffle is widening or truncating the input vectors, and 2558 // the argument type must also be encoded. 2559 if (C->getType() == C->getOperand(0)->getType()) { 2560 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2561 } else { 2562 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2563 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2564 } 2565 Record.push_back(VE.getValueID(C->getOperand(0))); 2566 Record.push_back(VE.getValueID(C->getOperand(1))); 2567 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2568 break; 2569 case Instruction::ICmp: 2570 case Instruction::FCmp: 2571 Code = bitc::CST_CODE_CE_CMP; 2572 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2573 Record.push_back(VE.getValueID(C->getOperand(0))); 2574 Record.push_back(VE.getValueID(C->getOperand(1))); 2575 Record.push_back(CE->getPredicate()); 2576 break; 2577 } 2578 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2579 Code = bitc::CST_CODE_BLOCKADDRESS; 2580 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2581 Record.push_back(VE.getValueID(BA->getFunction())); 2582 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2583 } else { 2584 #ifndef NDEBUG 2585 C->dump(); 2586 #endif 2587 llvm_unreachable("Unknown constant!"); 2588 } 2589 Stream.EmitRecord(Code, Record, AbbrevToUse); 2590 Record.clear(); 2591 } 2592 2593 Stream.ExitBlock(); 2594 } 2595 2596 void ModuleBitcodeWriter::writeModuleConstants() { 2597 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2598 2599 // Find the first constant to emit, which is the first non-globalvalue value. 2600 // We know globalvalues have been emitted by WriteModuleInfo. 2601 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2602 if (!isa<GlobalValue>(Vals[i].first)) { 2603 writeConstants(i, Vals.size(), true); 2604 return; 2605 } 2606 } 2607 } 2608 2609 /// pushValueAndType - The file has to encode both the value and type id for 2610 /// many values, because we need to know what type to create for forward 2611 /// references. However, most operands are not forward references, so this type 2612 /// field is not needed. 2613 /// 2614 /// This function adds V's value ID to Vals. If the value ID is higher than the 2615 /// instruction ID, then it is a forward reference, and it also includes the 2616 /// type ID. The value ID that is written is encoded relative to the InstID. 2617 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2618 SmallVectorImpl<unsigned> &Vals) { 2619 unsigned ValID = VE.getValueID(V); 2620 // Make encoding relative to the InstID. 2621 Vals.push_back(InstID - ValID); 2622 if (ValID >= InstID) { 2623 Vals.push_back(VE.getTypeID(V->getType())); 2624 return true; 2625 } 2626 return false; 2627 } 2628 2629 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2630 unsigned InstID) { 2631 SmallVector<unsigned, 64> Record; 2632 LLVMContext &C = CS.getContext(); 2633 2634 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2635 const auto &Bundle = CS.getOperandBundleAt(i); 2636 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2637 2638 for (auto &Input : Bundle.Inputs) 2639 pushValueAndType(Input, InstID, Record); 2640 2641 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2642 Record.clear(); 2643 } 2644 } 2645 2646 /// pushValue - Like pushValueAndType, but where the type of the value is 2647 /// omitted (perhaps it was already encoded in an earlier operand). 2648 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2649 SmallVectorImpl<unsigned> &Vals) { 2650 unsigned ValID = VE.getValueID(V); 2651 Vals.push_back(InstID - ValID); 2652 } 2653 2654 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2655 SmallVectorImpl<uint64_t> &Vals) { 2656 unsigned ValID = VE.getValueID(V); 2657 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2658 emitSignedInt64(Vals, diff); 2659 } 2660 2661 /// WriteInstruction - Emit an instruction to the specified stream. 2662 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2663 unsigned InstID, 2664 SmallVectorImpl<unsigned> &Vals) { 2665 unsigned Code = 0; 2666 unsigned AbbrevToUse = 0; 2667 VE.setInstructionID(&I); 2668 switch (I.getOpcode()) { 2669 default: 2670 if (Instruction::isCast(I.getOpcode())) { 2671 Code = bitc::FUNC_CODE_INST_CAST; 2672 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2673 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2674 Vals.push_back(VE.getTypeID(I.getType())); 2675 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2676 } else { 2677 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2678 Code = bitc::FUNC_CODE_INST_BINOP; 2679 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2680 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2681 pushValue(I.getOperand(1), InstID, Vals); 2682 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2683 uint64_t Flags = getOptimizationFlags(&I); 2684 if (Flags != 0) { 2685 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2686 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2687 Vals.push_back(Flags); 2688 } 2689 } 2690 break; 2691 case Instruction::FNeg: { 2692 Code = bitc::FUNC_CODE_INST_UNOP; 2693 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2694 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2695 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2696 uint64_t Flags = getOptimizationFlags(&I); 2697 if (Flags != 0) { 2698 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2699 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2700 Vals.push_back(Flags); 2701 } 2702 break; 2703 } 2704 case Instruction::GetElementPtr: { 2705 Code = bitc::FUNC_CODE_INST_GEP; 2706 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2707 auto &GEPInst = cast<GetElementPtrInst>(I); 2708 Vals.push_back(GEPInst.isInBounds()); 2709 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2710 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2711 pushValueAndType(I.getOperand(i), InstID, Vals); 2712 break; 2713 } 2714 case Instruction::ExtractValue: { 2715 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2716 pushValueAndType(I.getOperand(0), InstID, Vals); 2717 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2718 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2719 break; 2720 } 2721 case Instruction::InsertValue: { 2722 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2723 pushValueAndType(I.getOperand(0), InstID, Vals); 2724 pushValueAndType(I.getOperand(1), InstID, Vals); 2725 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2726 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2727 break; 2728 } 2729 case Instruction::Select: { 2730 Code = bitc::FUNC_CODE_INST_VSELECT; 2731 pushValueAndType(I.getOperand(1), InstID, Vals); 2732 pushValue(I.getOperand(2), InstID, Vals); 2733 pushValueAndType(I.getOperand(0), InstID, Vals); 2734 uint64_t Flags = getOptimizationFlags(&I); 2735 if (Flags != 0) 2736 Vals.push_back(Flags); 2737 break; 2738 } 2739 case Instruction::ExtractElement: 2740 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2741 pushValueAndType(I.getOperand(0), InstID, Vals); 2742 pushValueAndType(I.getOperand(1), InstID, Vals); 2743 break; 2744 case Instruction::InsertElement: 2745 Code = bitc::FUNC_CODE_INST_INSERTELT; 2746 pushValueAndType(I.getOperand(0), InstID, Vals); 2747 pushValue(I.getOperand(1), InstID, Vals); 2748 pushValueAndType(I.getOperand(2), InstID, Vals); 2749 break; 2750 case Instruction::ShuffleVector: 2751 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2752 pushValueAndType(I.getOperand(0), InstID, Vals); 2753 pushValue(I.getOperand(1), InstID, Vals); 2754 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2755 Vals); 2756 break; 2757 case Instruction::ICmp: 2758 case Instruction::FCmp: { 2759 // compare returning Int1Ty or vector of Int1Ty 2760 Code = bitc::FUNC_CODE_INST_CMP2; 2761 pushValueAndType(I.getOperand(0), InstID, Vals); 2762 pushValue(I.getOperand(1), InstID, Vals); 2763 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2764 uint64_t Flags = getOptimizationFlags(&I); 2765 if (Flags != 0) 2766 Vals.push_back(Flags); 2767 break; 2768 } 2769 2770 case Instruction::Ret: 2771 { 2772 Code = bitc::FUNC_CODE_INST_RET; 2773 unsigned NumOperands = I.getNumOperands(); 2774 if (NumOperands == 0) 2775 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2776 else if (NumOperands == 1) { 2777 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2778 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2779 } else { 2780 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2781 pushValueAndType(I.getOperand(i), InstID, Vals); 2782 } 2783 } 2784 break; 2785 case Instruction::Br: 2786 { 2787 Code = bitc::FUNC_CODE_INST_BR; 2788 const BranchInst &II = cast<BranchInst>(I); 2789 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2790 if (II.isConditional()) { 2791 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2792 pushValue(II.getCondition(), InstID, Vals); 2793 } 2794 } 2795 break; 2796 case Instruction::Switch: 2797 { 2798 Code = bitc::FUNC_CODE_INST_SWITCH; 2799 const SwitchInst &SI = cast<SwitchInst>(I); 2800 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2801 pushValue(SI.getCondition(), InstID, Vals); 2802 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2803 for (auto Case : SI.cases()) { 2804 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2805 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2806 } 2807 } 2808 break; 2809 case Instruction::IndirectBr: 2810 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2811 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2812 // Encode the address operand as relative, but not the basic blocks. 2813 pushValue(I.getOperand(0), InstID, Vals); 2814 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2815 Vals.push_back(VE.getValueID(I.getOperand(i))); 2816 break; 2817 2818 case Instruction::Invoke: { 2819 const InvokeInst *II = cast<InvokeInst>(&I); 2820 const Value *Callee = II->getCalledOperand(); 2821 FunctionType *FTy = II->getFunctionType(); 2822 2823 if (II->hasOperandBundles()) 2824 writeOperandBundles(*II, InstID); 2825 2826 Code = bitc::FUNC_CODE_INST_INVOKE; 2827 2828 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2829 Vals.push_back(II->getCallingConv() | 1 << 13); 2830 Vals.push_back(VE.getValueID(II->getNormalDest())); 2831 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2832 Vals.push_back(VE.getTypeID(FTy)); 2833 pushValueAndType(Callee, InstID, Vals); 2834 2835 // Emit value #'s for the fixed parameters. 2836 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2837 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2838 2839 // Emit type/value pairs for varargs params. 2840 if (FTy->isVarArg()) { 2841 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2842 i != e; ++i) 2843 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2844 } 2845 break; 2846 } 2847 case Instruction::Resume: 2848 Code = bitc::FUNC_CODE_INST_RESUME; 2849 pushValueAndType(I.getOperand(0), InstID, Vals); 2850 break; 2851 case Instruction::CleanupRet: { 2852 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2853 const auto &CRI = cast<CleanupReturnInst>(I); 2854 pushValue(CRI.getCleanupPad(), InstID, Vals); 2855 if (CRI.hasUnwindDest()) 2856 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2857 break; 2858 } 2859 case Instruction::CatchRet: { 2860 Code = bitc::FUNC_CODE_INST_CATCHRET; 2861 const auto &CRI = cast<CatchReturnInst>(I); 2862 pushValue(CRI.getCatchPad(), InstID, Vals); 2863 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2864 break; 2865 } 2866 case Instruction::CleanupPad: 2867 case Instruction::CatchPad: { 2868 const auto &FuncletPad = cast<FuncletPadInst>(I); 2869 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2870 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2871 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2872 2873 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2874 Vals.push_back(NumArgOperands); 2875 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2876 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2877 break; 2878 } 2879 case Instruction::CatchSwitch: { 2880 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2881 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2882 2883 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2884 2885 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2886 Vals.push_back(NumHandlers); 2887 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2888 Vals.push_back(VE.getValueID(CatchPadBB)); 2889 2890 if (CatchSwitch.hasUnwindDest()) 2891 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2892 break; 2893 } 2894 case Instruction::CallBr: { 2895 const CallBrInst *CBI = cast<CallBrInst>(&I); 2896 const Value *Callee = CBI->getCalledOperand(); 2897 FunctionType *FTy = CBI->getFunctionType(); 2898 2899 if (CBI->hasOperandBundles()) 2900 writeOperandBundles(*CBI, InstID); 2901 2902 Code = bitc::FUNC_CODE_INST_CALLBR; 2903 2904 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2905 2906 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2907 1 << bitc::CALL_EXPLICIT_TYPE); 2908 2909 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2910 Vals.push_back(CBI->getNumIndirectDests()); 2911 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2912 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2913 2914 Vals.push_back(VE.getTypeID(FTy)); 2915 pushValueAndType(Callee, InstID, Vals); 2916 2917 // Emit value #'s for the fixed parameters. 2918 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2919 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2920 2921 // Emit type/value pairs for varargs params. 2922 if (FTy->isVarArg()) { 2923 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2924 i != e; ++i) 2925 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2926 } 2927 break; 2928 } 2929 case Instruction::Unreachable: 2930 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2931 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2932 break; 2933 2934 case Instruction::PHI: { 2935 const PHINode &PN = cast<PHINode>(I); 2936 Code = bitc::FUNC_CODE_INST_PHI; 2937 // With the newer instruction encoding, forward references could give 2938 // negative valued IDs. This is most common for PHIs, so we use 2939 // signed VBRs. 2940 SmallVector<uint64_t, 128> Vals64; 2941 Vals64.push_back(VE.getTypeID(PN.getType())); 2942 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2943 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2944 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2945 } 2946 2947 uint64_t Flags = getOptimizationFlags(&I); 2948 if (Flags != 0) 2949 Vals64.push_back(Flags); 2950 2951 // Emit a Vals64 vector and exit. 2952 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2953 Vals64.clear(); 2954 return; 2955 } 2956 2957 case Instruction::LandingPad: { 2958 const LandingPadInst &LP = cast<LandingPadInst>(I); 2959 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2960 Vals.push_back(VE.getTypeID(LP.getType())); 2961 Vals.push_back(LP.isCleanup()); 2962 Vals.push_back(LP.getNumClauses()); 2963 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2964 if (LP.isCatch(I)) 2965 Vals.push_back(LandingPadInst::Catch); 2966 else 2967 Vals.push_back(LandingPadInst::Filter); 2968 pushValueAndType(LP.getClause(I), InstID, Vals); 2969 } 2970 break; 2971 } 2972 2973 case Instruction::Alloca: { 2974 Code = bitc::FUNC_CODE_INST_ALLOCA; 2975 const AllocaInst &AI = cast<AllocaInst>(I); 2976 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2977 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2978 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2979 using APV = AllocaPackedValues; 2980 unsigned Record = 0; 2981 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 2982 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 2983 Bitfield::set<APV::ExplicitType>(Record, true); 2984 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 2985 Vals.push_back(Record); 2986 break; 2987 } 2988 2989 case Instruction::Load: 2990 if (cast<LoadInst>(I).isAtomic()) { 2991 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2992 pushValueAndType(I.getOperand(0), InstID, Vals); 2993 } else { 2994 Code = bitc::FUNC_CODE_INST_LOAD; 2995 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2996 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2997 } 2998 Vals.push_back(VE.getTypeID(I.getType())); 2999 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3000 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3001 if (cast<LoadInst>(I).isAtomic()) { 3002 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3003 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3004 } 3005 break; 3006 case Instruction::Store: 3007 if (cast<StoreInst>(I).isAtomic()) 3008 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3009 else 3010 Code = bitc::FUNC_CODE_INST_STORE; 3011 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3012 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3013 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3014 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3015 if (cast<StoreInst>(I).isAtomic()) { 3016 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3017 Vals.push_back( 3018 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3019 } 3020 break; 3021 case Instruction::AtomicCmpXchg: 3022 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3023 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3024 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3025 pushValue(I.getOperand(2), InstID, Vals); // newval. 3026 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3027 Vals.push_back( 3028 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3029 Vals.push_back( 3030 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3031 Vals.push_back( 3032 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3033 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3034 break; 3035 case Instruction::AtomicRMW: 3036 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3037 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3038 pushValue(I.getOperand(1), InstID, Vals); // val. 3039 Vals.push_back( 3040 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3041 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3042 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3043 Vals.push_back( 3044 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3045 break; 3046 case Instruction::Fence: 3047 Code = bitc::FUNC_CODE_INST_FENCE; 3048 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3049 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3050 break; 3051 case Instruction::Call: { 3052 const CallInst &CI = cast<CallInst>(I); 3053 FunctionType *FTy = CI.getFunctionType(); 3054 3055 if (CI.hasOperandBundles()) 3056 writeOperandBundles(CI, InstID); 3057 3058 Code = bitc::FUNC_CODE_INST_CALL; 3059 3060 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3061 3062 unsigned Flags = getOptimizationFlags(&I); 3063 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3064 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3065 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3066 1 << bitc::CALL_EXPLICIT_TYPE | 3067 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3068 unsigned(Flags != 0) << bitc::CALL_FMF); 3069 if (Flags != 0) 3070 Vals.push_back(Flags); 3071 3072 Vals.push_back(VE.getTypeID(FTy)); 3073 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3074 3075 // Emit value #'s for the fixed parameters. 3076 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3077 // Check for labels (can happen with asm labels). 3078 if (FTy->getParamType(i)->isLabelTy()) 3079 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3080 else 3081 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3082 } 3083 3084 // Emit type/value pairs for varargs params. 3085 if (FTy->isVarArg()) { 3086 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3087 i != e; ++i) 3088 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3089 } 3090 break; 3091 } 3092 case Instruction::VAArg: 3093 Code = bitc::FUNC_CODE_INST_VAARG; 3094 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3095 pushValue(I.getOperand(0), InstID, Vals); // valist. 3096 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3097 break; 3098 case Instruction::Freeze: 3099 Code = bitc::FUNC_CODE_INST_FREEZE; 3100 pushValueAndType(I.getOperand(0), InstID, Vals); 3101 break; 3102 } 3103 3104 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3105 Vals.clear(); 3106 } 3107 3108 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3109 /// to allow clients to efficiently find the function body. 3110 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3111 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3112 // Get the offset of the VST we are writing, and backpatch it into 3113 // the VST forward declaration record. 3114 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3115 // The BitcodeStartBit was the stream offset of the identification block. 3116 VSTOffset -= bitcodeStartBit(); 3117 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3118 // Note that we add 1 here because the offset is relative to one word 3119 // before the start of the identification block, which was historically 3120 // always the start of the regular bitcode header. 3121 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3122 3123 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3124 3125 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3126 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3129 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3130 3131 for (const Function &F : M) { 3132 uint64_t Record[2]; 3133 3134 if (F.isDeclaration()) 3135 continue; 3136 3137 Record[0] = VE.getValueID(&F); 3138 3139 // Save the word offset of the function (from the start of the 3140 // actual bitcode written to the stream). 3141 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3142 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3143 // Note that we add 1 here because the offset is relative to one word 3144 // before the start of the identification block, which was historically 3145 // always the start of the regular bitcode header. 3146 Record[1] = BitcodeIndex / 32 + 1; 3147 3148 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3149 } 3150 3151 Stream.ExitBlock(); 3152 } 3153 3154 /// Emit names for arguments, instructions and basic blocks in a function. 3155 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3156 const ValueSymbolTable &VST) { 3157 if (VST.empty()) 3158 return; 3159 3160 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3161 3162 // FIXME: Set up the abbrev, we know how many values there are! 3163 // FIXME: We know if the type names can use 7-bit ascii. 3164 SmallVector<uint64_t, 64> NameVals; 3165 3166 for (const ValueName &Name : VST) { 3167 // Figure out the encoding to use for the name. 3168 StringEncoding Bits = getStringEncoding(Name.getKey()); 3169 3170 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3171 NameVals.push_back(VE.getValueID(Name.getValue())); 3172 3173 // VST_CODE_ENTRY: [valueid, namechar x N] 3174 // VST_CODE_BBENTRY: [bbid, namechar x N] 3175 unsigned Code; 3176 if (isa<BasicBlock>(Name.getValue())) { 3177 Code = bitc::VST_CODE_BBENTRY; 3178 if (Bits == SE_Char6) 3179 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3180 } else { 3181 Code = bitc::VST_CODE_ENTRY; 3182 if (Bits == SE_Char6) 3183 AbbrevToUse = VST_ENTRY_6_ABBREV; 3184 else if (Bits == SE_Fixed7) 3185 AbbrevToUse = VST_ENTRY_7_ABBREV; 3186 } 3187 3188 for (const auto P : Name.getKey()) 3189 NameVals.push_back((unsigned char)P); 3190 3191 // Emit the finished record. 3192 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3193 NameVals.clear(); 3194 } 3195 3196 Stream.ExitBlock(); 3197 } 3198 3199 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3200 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3201 unsigned Code; 3202 if (isa<BasicBlock>(Order.V)) 3203 Code = bitc::USELIST_CODE_BB; 3204 else 3205 Code = bitc::USELIST_CODE_DEFAULT; 3206 3207 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3208 Record.push_back(VE.getValueID(Order.V)); 3209 Stream.EmitRecord(Code, Record); 3210 } 3211 3212 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3213 assert(VE.shouldPreserveUseListOrder() && 3214 "Expected to be preserving use-list order"); 3215 3216 auto hasMore = [&]() { 3217 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3218 }; 3219 if (!hasMore()) 3220 // Nothing to do. 3221 return; 3222 3223 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3224 while (hasMore()) { 3225 writeUseList(std::move(VE.UseListOrders.back())); 3226 VE.UseListOrders.pop_back(); 3227 } 3228 Stream.ExitBlock(); 3229 } 3230 3231 /// Emit a function body to the module stream. 3232 void ModuleBitcodeWriter::writeFunction( 3233 const Function &F, 3234 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3235 // Save the bitcode index of the start of this function block for recording 3236 // in the VST. 3237 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3238 3239 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3240 VE.incorporateFunction(F); 3241 3242 SmallVector<unsigned, 64> Vals; 3243 3244 // Emit the number of basic blocks, so the reader can create them ahead of 3245 // time. 3246 Vals.push_back(VE.getBasicBlocks().size()); 3247 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3248 Vals.clear(); 3249 3250 // If there are function-local constants, emit them now. 3251 unsigned CstStart, CstEnd; 3252 VE.getFunctionConstantRange(CstStart, CstEnd); 3253 writeConstants(CstStart, CstEnd, false); 3254 3255 // If there is function-local metadata, emit it now. 3256 writeFunctionMetadata(F); 3257 3258 // Keep a running idea of what the instruction ID is. 3259 unsigned InstID = CstEnd; 3260 3261 bool NeedsMetadataAttachment = F.hasMetadata(); 3262 3263 DILocation *LastDL = nullptr; 3264 // Finally, emit all the instructions, in order. 3265 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3266 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3267 I != E; ++I) { 3268 writeInstruction(*I, InstID, Vals); 3269 3270 if (!I->getType()->isVoidTy()) 3271 ++InstID; 3272 3273 // If the instruction has metadata, write a metadata attachment later. 3274 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3275 3276 // If the instruction has a debug location, emit it. 3277 DILocation *DL = I->getDebugLoc(); 3278 if (!DL) 3279 continue; 3280 3281 if (DL == LastDL) { 3282 // Just repeat the same debug loc as last time. 3283 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3284 continue; 3285 } 3286 3287 Vals.push_back(DL->getLine()); 3288 Vals.push_back(DL->getColumn()); 3289 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3290 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3291 Vals.push_back(DL->isImplicitCode()); 3292 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3293 Vals.clear(); 3294 3295 LastDL = DL; 3296 } 3297 3298 // Emit names for all the instructions etc. 3299 if (auto *Symtab = F.getValueSymbolTable()) 3300 writeFunctionLevelValueSymbolTable(*Symtab); 3301 3302 if (NeedsMetadataAttachment) 3303 writeFunctionMetadataAttachment(F); 3304 if (VE.shouldPreserveUseListOrder()) 3305 writeUseListBlock(&F); 3306 VE.purgeFunction(); 3307 Stream.ExitBlock(); 3308 } 3309 3310 // Emit blockinfo, which defines the standard abbreviations etc. 3311 void ModuleBitcodeWriter::writeBlockInfo() { 3312 // We only want to emit block info records for blocks that have multiple 3313 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3314 // Other blocks can define their abbrevs inline. 3315 Stream.EnterBlockInfoBlock(); 3316 3317 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3323 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3324 VST_ENTRY_8_ABBREV) 3325 llvm_unreachable("Unexpected abbrev ordering!"); 3326 } 3327 3328 { // 7-bit fixed width VST_CODE_ENTRY strings. 3329 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3330 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3334 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3335 VST_ENTRY_7_ABBREV) 3336 llvm_unreachable("Unexpected abbrev ordering!"); 3337 } 3338 { // 6-bit char6 VST_CODE_ENTRY strings. 3339 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3340 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3344 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3345 VST_ENTRY_6_ABBREV) 3346 llvm_unreachable("Unexpected abbrev ordering!"); 3347 } 3348 { // 6-bit char6 VST_CODE_BBENTRY strings. 3349 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3350 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3354 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3355 VST_BBENTRY_6_ABBREV) 3356 llvm_unreachable("Unexpected abbrev ordering!"); 3357 } 3358 3359 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3360 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3361 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3363 VE.computeBitsRequiredForTypeIndicies())); 3364 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3365 CONSTANTS_SETTYPE_ABBREV) 3366 llvm_unreachable("Unexpected abbrev ordering!"); 3367 } 3368 3369 { // INTEGER abbrev for CONSTANTS_BLOCK. 3370 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3371 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3373 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3374 CONSTANTS_INTEGER_ABBREV) 3375 llvm_unreachable("Unexpected abbrev ordering!"); 3376 } 3377 3378 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3379 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3380 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3383 VE.computeBitsRequiredForTypeIndicies())); 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3385 3386 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3387 CONSTANTS_CE_CAST_Abbrev) 3388 llvm_unreachable("Unexpected abbrev ordering!"); 3389 } 3390 { // NULL abbrev for CONSTANTS_BLOCK. 3391 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3392 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3393 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3394 CONSTANTS_NULL_Abbrev) 3395 llvm_unreachable("Unexpected abbrev ordering!"); 3396 } 3397 3398 // FIXME: This should only use space for first class types! 3399 3400 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3401 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3402 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3405 VE.computeBitsRequiredForTypeIndicies())); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3408 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3409 FUNCTION_INST_LOAD_ABBREV) 3410 llvm_unreachable("Unexpected abbrev ordering!"); 3411 } 3412 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3414 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3417 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3418 FUNCTION_INST_UNOP_ABBREV) 3419 llvm_unreachable("Unexpected abbrev ordering!"); 3420 } 3421 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3422 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3423 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3427 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3428 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3429 llvm_unreachable("Unexpected abbrev ordering!"); 3430 } 3431 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3432 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3433 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3437 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3438 FUNCTION_INST_BINOP_ABBREV) 3439 llvm_unreachable("Unexpected abbrev ordering!"); 3440 } 3441 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3442 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3443 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3448 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3449 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3450 llvm_unreachable("Unexpected abbrev ordering!"); 3451 } 3452 { // INST_CAST abbrev for FUNCTION_BLOCK. 3453 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3454 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3457 VE.computeBitsRequiredForTypeIndicies())); 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3459 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3460 FUNCTION_INST_CAST_ABBREV) 3461 llvm_unreachable("Unexpected abbrev ordering!"); 3462 } 3463 3464 { // INST_RET abbrev for FUNCTION_BLOCK. 3465 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3467 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3468 FUNCTION_INST_RET_VOID_ABBREV) 3469 llvm_unreachable("Unexpected abbrev ordering!"); 3470 } 3471 { // INST_RET abbrev for FUNCTION_BLOCK. 3472 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3473 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3475 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3476 FUNCTION_INST_RET_VAL_ABBREV) 3477 llvm_unreachable("Unexpected abbrev ordering!"); 3478 } 3479 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3480 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3481 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3482 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3483 FUNCTION_INST_UNREACHABLE_ABBREV) 3484 llvm_unreachable("Unexpected abbrev ordering!"); 3485 } 3486 { 3487 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3488 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3491 Log2_32_Ceil(VE.getTypes().size() + 1))); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3494 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3495 FUNCTION_INST_GEP_ABBREV) 3496 llvm_unreachable("Unexpected abbrev ordering!"); 3497 } 3498 3499 Stream.ExitBlock(); 3500 } 3501 3502 /// Write the module path strings, currently only used when generating 3503 /// a combined index file. 3504 void IndexBitcodeWriter::writeModStrings() { 3505 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3506 3507 // TODO: See which abbrev sizes we actually need to emit 3508 3509 // 8-bit fixed-width MST_ENTRY strings. 3510 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3511 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3515 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3516 3517 // 7-bit fixed width MST_ENTRY strings. 3518 Abbv = std::make_shared<BitCodeAbbrev>(); 3519 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3523 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3524 3525 // 6-bit char6 MST_ENTRY strings. 3526 Abbv = std::make_shared<BitCodeAbbrev>(); 3527 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3531 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3532 3533 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3534 Abbv = std::make_shared<BitCodeAbbrev>(); 3535 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3541 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3542 3543 SmallVector<unsigned, 64> Vals; 3544 forEachModule( 3545 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3546 StringRef Key = MPSE.getKey(); 3547 const auto &Value = MPSE.getValue(); 3548 StringEncoding Bits = getStringEncoding(Key); 3549 unsigned AbbrevToUse = Abbrev8Bit; 3550 if (Bits == SE_Char6) 3551 AbbrevToUse = Abbrev6Bit; 3552 else if (Bits == SE_Fixed7) 3553 AbbrevToUse = Abbrev7Bit; 3554 3555 Vals.push_back(Value.first); 3556 Vals.append(Key.begin(), Key.end()); 3557 3558 // Emit the finished record. 3559 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3560 3561 // Emit an optional hash for the module now 3562 const auto &Hash = Value.second; 3563 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3564 Vals.assign(Hash.begin(), Hash.end()); 3565 // Emit the hash record. 3566 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3567 } 3568 3569 Vals.clear(); 3570 }); 3571 Stream.ExitBlock(); 3572 } 3573 3574 /// Write the function type metadata related records that need to appear before 3575 /// a function summary entry (whether per-module or combined). 3576 template <typename Fn> 3577 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3578 FunctionSummary *FS, 3579 Fn GetValueID) { 3580 if (!FS->type_tests().empty()) 3581 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3582 3583 SmallVector<uint64_t, 64> Record; 3584 3585 auto WriteVFuncIdVec = [&](uint64_t Ty, 3586 ArrayRef<FunctionSummary::VFuncId> VFs) { 3587 if (VFs.empty()) 3588 return; 3589 Record.clear(); 3590 for (auto &VF : VFs) { 3591 Record.push_back(VF.GUID); 3592 Record.push_back(VF.Offset); 3593 } 3594 Stream.EmitRecord(Ty, Record); 3595 }; 3596 3597 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3598 FS->type_test_assume_vcalls()); 3599 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3600 FS->type_checked_load_vcalls()); 3601 3602 auto WriteConstVCallVec = [&](uint64_t Ty, 3603 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3604 for (auto &VC : VCs) { 3605 Record.clear(); 3606 Record.push_back(VC.VFunc.GUID); 3607 Record.push_back(VC.VFunc.Offset); 3608 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3609 Stream.EmitRecord(Ty, Record); 3610 } 3611 }; 3612 3613 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3614 FS->type_test_assume_const_vcalls()); 3615 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3616 FS->type_checked_load_const_vcalls()); 3617 3618 auto WriteRange = [&](ConstantRange Range) { 3619 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3620 assert(Range.getLower().getNumWords() == 1); 3621 assert(Range.getUpper().getNumWords() == 1); 3622 emitSignedInt64(Record, *Range.getLower().getRawData()); 3623 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3624 }; 3625 3626 if (!FS->paramAccesses().empty()) { 3627 Record.clear(); 3628 for (auto &Arg : FS->paramAccesses()) { 3629 size_t UndoSize = Record.size(); 3630 Record.push_back(Arg.ParamNo); 3631 WriteRange(Arg.Use); 3632 Record.push_back(Arg.Calls.size()); 3633 for (auto &Call : Arg.Calls) { 3634 Record.push_back(Call.ParamNo); 3635 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3636 if (!ValueID) { 3637 // If ValueID is unknown we can't drop just this call, we must drop 3638 // entire parameter. 3639 Record.resize(UndoSize); 3640 break; 3641 } 3642 Record.push_back(*ValueID); 3643 WriteRange(Call.Offsets); 3644 } 3645 } 3646 if (!Record.empty()) 3647 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3648 } 3649 } 3650 3651 /// Collect type IDs from type tests used by function. 3652 static void 3653 getReferencedTypeIds(FunctionSummary *FS, 3654 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3655 if (!FS->type_tests().empty()) 3656 for (auto &TT : FS->type_tests()) 3657 ReferencedTypeIds.insert(TT); 3658 3659 auto GetReferencedTypesFromVFuncIdVec = 3660 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3661 for (auto &VF : VFs) 3662 ReferencedTypeIds.insert(VF.GUID); 3663 }; 3664 3665 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3666 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3667 3668 auto GetReferencedTypesFromConstVCallVec = 3669 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3670 for (auto &VC : VCs) 3671 ReferencedTypeIds.insert(VC.VFunc.GUID); 3672 }; 3673 3674 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3675 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3676 } 3677 3678 static void writeWholeProgramDevirtResolutionByArg( 3679 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3680 const WholeProgramDevirtResolution::ByArg &ByArg) { 3681 NameVals.push_back(args.size()); 3682 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3683 3684 NameVals.push_back(ByArg.TheKind); 3685 NameVals.push_back(ByArg.Info); 3686 NameVals.push_back(ByArg.Byte); 3687 NameVals.push_back(ByArg.Bit); 3688 } 3689 3690 static void writeWholeProgramDevirtResolution( 3691 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3692 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3693 NameVals.push_back(Id); 3694 3695 NameVals.push_back(Wpd.TheKind); 3696 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3697 NameVals.push_back(Wpd.SingleImplName.size()); 3698 3699 NameVals.push_back(Wpd.ResByArg.size()); 3700 for (auto &A : Wpd.ResByArg) 3701 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3702 } 3703 3704 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3705 StringTableBuilder &StrtabBuilder, 3706 const std::string &Id, 3707 const TypeIdSummary &Summary) { 3708 NameVals.push_back(StrtabBuilder.add(Id)); 3709 NameVals.push_back(Id.size()); 3710 3711 NameVals.push_back(Summary.TTRes.TheKind); 3712 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3713 NameVals.push_back(Summary.TTRes.AlignLog2); 3714 NameVals.push_back(Summary.TTRes.SizeM1); 3715 NameVals.push_back(Summary.TTRes.BitMask); 3716 NameVals.push_back(Summary.TTRes.InlineBits); 3717 3718 for (auto &W : Summary.WPDRes) 3719 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3720 W.second); 3721 } 3722 3723 static void writeTypeIdCompatibleVtableSummaryRecord( 3724 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3725 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3726 ValueEnumerator &VE) { 3727 NameVals.push_back(StrtabBuilder.add(Id)); 3728 NameVals.push_back(Id.size()); 3729 3730 for (auto &P : Summary) { 3731 NameVals.push_back(P.AddressPointOffset); 3732 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3733 } 3734 } 3735 3736 // Helper to emit a single function summary record. 3737 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3738 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3739 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3740 const Function &F) { 3741 NameVals.push_back(ValueID); 3742 3743 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3744 3745 writeFunctionTypeMetadataRecords( 3746 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3747 return {VE.getValueID(VI.getValue())}; 3748 }); 3749 3750 auto SpecialRefCnts = FS->specialRefCounts(); 3751 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3752 NameVals.push_back(FS->instCount()); 3753 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3754 NameVals.push_back(FS->refs().size()); 3755 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3756 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3757 3758 for (auto &RI : FS->refs()) 3759 NameVals.push_back(VE.getValueID(RI.getValue())); 3760 3761 bool HasProfileData = 3762 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3763 for (auto &ECI : FS->calls()) { 3764 NameVals.push_back(getValueId(ECI.first)); 3765 if (HasProfileData) 3766 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3767 else if (WriteRelBFToSummary) 3768 NameVals.push_back(ECI.second.RelBlockFreq); 3769 } 3770 3771 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3772 unsigned Code = 3773 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3774 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3775 : bitc::FS_PERMODULE)); 3776 3777 // Emit the finished record. 3778 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3779 NameVals.clear(); 3780 } 3781 3782 // Collect the global value references in the given variable's initializer, 3783 // and emit them in a summary record. 3784 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3785 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3786 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3787 auto VI = Index->getValueInfo(V.getGUID()); 3788 if (!VI || VI.getSummaryList().empty()) { 3789 // Only declarations should not have a summary (a declaration might however 3790 // have a summary if the def was in module level asm). 3791 assert(V.isDeclaration()); 3792 return; 3793 } 3794 auto *Summary = VI.getSummaryList()[0].get(); 3795 NameVals.push_back(VE.getValueID(&V)); 3796 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3797 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3798 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3799 3800 auto VTableFuncs = VS->vTableFuncs(); 3801 if (!VTableFuncs.empty()) 3802 NameVals.push_back(VS->refs().size()); 3803 3804 unsigned SizeBeforeRefs = NameVals.size(); 3805 for (auto &RI : VS->refs()) 3806 NameVals.push_back(VE.getValueID(RI.getValue())); 3807 // Sort the refs for determinism output, the vector returned by FS->refs() has 3808 // been initialized from a DenseSet. 3809 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3810 3811 if (VTableFuncs.empty()) 3812 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3813 FSModRefsAbbrev); 3814 else { 3815 // VTableFuncs pairs should already be sorted by offset. 3816 for (auto &P : VTableFuncs) { 3817 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3818 NameVals.push_back(P.VTableOffset); 3819 } 3820 3821 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3822 FSModVTableRefsAbbrev); 3823 } 3824 NameVals.clear(); 3825 } 3826 3827 /// Emit the per-module summary section alongside the rest of 3828 /// the module's bitcode. 3829 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3830 // By default we compile with ThinLTO if the module has a summary, but the 3831 // client can request full LTO with a module flag. 3832 bool IsThinLTO = true; 3833 if (auto *MD = 3834 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3835 IsThinLTO = MD->getZExtValue(); 3836 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3837 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3838 4); 3839 3840 Stream.EmitRecord( 3841 bitc::FS_VERSION, 3842 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3843 3844 // Write the index flags. 3845 uint64_t Flags = 0; 3846 // Bits 1-3 are set only in the combined index, skip them. 3847 if (Index->enableSplitLTOUnit()) 3848 Flags |= 0x8; 3849 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3850 3851 if (Index->begin() == Index->end()) { 3852 Stream.ExitBlock(); 3853 return; 3854 } 3855 3856 for (const auto &GVI : valueIds()) { 3857 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3858 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3859 } 3860 3861 // Abbrev for FS_PERMODULE_PROFILE. 3862 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3863 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3871 // numrefs x valueid, n x (valueid, hotness) 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3874 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3875 3876 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3877 Abbv = std::make_shared<BitCodeAbbrev>(); 3878 if (WriteRelBFToSummary) 3879 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3880 else 3881 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3889 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3892 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3893 3894 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3895 Abbv = std::make_shared<BitCodeAbbrev>(); 3896 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3901 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3902 3903 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3904 Abbv = std::make_shared<BitCodeAbbrev>(); 3905 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3909 // numrefs x valueid, n x (valueid , offset) 3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3912 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3913 3914 // Abbrev for FS_ALIAS. 3915 Abbv = std::make_shared<BitCodeAbbrev>(); 3916 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3920 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3921 3922 // Abbrev for FS_TYPE_ID_METADATA 3923 Abbv = std::make_shared<BitCodeAbbrev>(); 3924 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3927 // n x (valueid , offset) 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3930 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3931 3932 SmallVector<uint64_t, 64> NameVals; 3933 // Iterate over the list of functions instead of the Index to 3934 // ensure the ordering is stable. 3935 for (const Function &F : M) { 3936 // Summary emission does not support anonymous functions, they have to 3937 // renamed using the anonymous function renaming pass. 3938 if (!F.hasName()) 3939 report_fatal_error("Unexpected anonymous function when writing summary"); 3940 3941 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3942 if (!VI || VI.getSummaryList().empty()) { 3943 // Only declarations should not have a summary (a declaration might 3944 // however have a summary if the def was in module level asm). 3945 assert(F.isDeclaration()); 3946 continue; 3947 } 3948 auto *Summary = VI.getSummaryList()[0].get(); 3949 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3950 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3951 } 3952 3953 // Capture references from GlobalVariable initializers, which are outside 3954 // of a function scope. 3955 for (const GlobalVariable &G : M.globals()) 3956 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3957 FSModVTableRefsAbbrev); 3958 3959 for (const GlobalAlias &A : M.aliases()) { 3960 auto *Aliasee = A.getBaseObject(); 3961 if (!Aliasee->hasName()) 3962 // Nameless function don't have an entry in the summary, skip it. 3963 continue; 3964 auto AliasId = VE.getValueID(&A); 3965 auto AliaseeId = VE.getValueID(Aliasee); 3966 NameVals.push_back(AliasId); 3967 auto *Summary = Index->getGlobalValueSummary(A); 3968 AliasSummary *AS = cast<AliasSummary>(Summary); 3969 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3970 NameVals.push_back(AliaseeId); 3971 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3972 NameVals.clear(); 3973 } 3974 3975 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3976 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3977 S.second, VE); 3978 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3979 TypeIdCompatibleVtableAbbrev); 3980 NameVals.clear(); 3981 } 3982 3983 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 3984 ArrayRef<uint64_t>{Index->getBlockCount()}); 3985 3986 Stream.ExitBlock(); 3987 } 3988 3989 /// Emit the combined summary section into the combined index file. 3990 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3991 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3992 Stream.EmitRecord( 3993 bitc::FS_VERSION, 3994 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3995 3996 // Write the index flags. 3997 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3998 3999 for (const auto &GVI : valueIds()) { 4000 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4001 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4002 } 4003 4004 // Abbrev for FS_COMBINED. 4005 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4006 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4016 // numrefs x valueid, n x (valueid) 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4019 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4020 4021 // Abbrev for FS_COMBINED_PROFILE. 4022 Abbv = std::make_shared<BitCodeAbbrev>(); 4023 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4033 // numrefs x valueid, n x (valueid, hotness) 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4036 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4037 4038 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4039 Abbv = std::make_shared<BitCodeAbbrev>(); 4040 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4046 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4047 4048 // Abbrev for FS_COMBINED_ALIAS. 4049 Abbv = std::make_shared<BitCodeAbbrev>(); 4050 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4055 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4056 4057 // The aliases are emitted as a post-pass, and will point to the value 4058 // id of the aliasee. Save them in a vector for post-processing. 4059 SmallVector<AliasSummary *, 64> Aliases; 4060 4061 // Save the value id for each summary for alias emission. 4062 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4063 4064 SmallVector<uint64_t, 64> NameVals; 4065 4066 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4067 // with the type ids referenced by this index file. 4068 std::set<GlobalValue::GUID> ReferencedTypeIds; 4069 4070 // For local linkage, we also emit the original name separately 4071 // immediately after the record. 4072 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4073 if (!GlobalValue::isLocalLinkage(S.linkage())) 4074 return; 4075 NameVals.push_back(S.getOriginalName()); 4076 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4077 NameVals.clear(); 4078 }; 4079 4080 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4081 forEachSummary([&](GVInfo I, bool IsAliasee) { 4082 GlobalValueSummary *S = I.second; 4083 assert(S); 4084 DefOrUseGUIDs.insert(I.first); 4085 for (const ValueInfo &VI : S->refs()) 4086 DefOrUseGUIDs.insert(VI.getGUID()); 4087 4088 auto ValueId = getValueId(I.first); 4089 assert(ValueId); 4090 SummaryToValueIdMap[S] = *ValueId; 4091 4092 // If this is invoked for an aliasee, we want to record the above 4093 // mapping, but then not emit a summary entry (if the aliasee is 4094 // to be imported, we will invoke this separately with IsAliasee=false). 4095 if (IsAliasee) 4096 return; 4097 4098 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4099 // Will process aliases as a post-pass because the reader wants all 4100 // global to be loaded first. 4101 Aliases.push_back(AS); 4102 return; 4103 } 4104 4105 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4106 NameVals.push_back(*ValueId); 4107 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4108 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4109 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4110 for (auto &RI : VS->refs()) { 4111 auto RefValueId = getValueId(RI.getGUID()); 4112 if (!RefValueId) 4113 continue; 4114 NameVals.push_back(*RefValueId); 4115 } 4116 4117 // Emit the finished record. 4118 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4119 FSModRefsAbbrev); 4120 NameVals.clear(); 4121 MaybeEmitOriginalName(*S); 4122 return; 4123 } 4124 4125 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4126 GlobalValue::GUID GUID = VI.getGUID(); 4127 Optional<unsigned> CallValueId = getValueId(GUID); 4128 if (CallValueId) 4129 return CallValueId; 4130 // For SamplePGO, the indirect call targets for local functions will 4131 // have its original name annotated in profile. We try to find the 4132 // corresponding PGOFuncName as the GUID. 4133 GUID = Index.getGUIDFromOriginalID(GUID); 4134 if (!GUID) 4135 return None; 4136 CallValueId = getValueId(GUID); 4137 if (!CallValueId) 4138 return None; 4139 // The mapping from OriginalId to GUID may return a GUID 4140 // that corresponds to a static variable. Filter it out here. 4141 // This can happen when 4142 // 1) There is a call to a library function which does not have 4143 // a CallValidId; 4144 // 2) There is a static variable with the OriginalGUID identical 4145 // to the GUID of the library function in 1); 4146 // When this happens, the logic for SamplePGO kicks in and 4147 // the static variable in 2) will be found, which needs to be 4148 // filtered out. 4149 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4150 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4151 return None; 4152 return CallValueId; 4153 }; 4154 4155 auto *FS = cast<FunctionSummary>(S); 4156 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4157 getReferencedTypeIds(FS, ReferencedTypeIds); 4158 4159 NameVals.push_back(*ValueId); 4160 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4161 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4162 NameVals.push_back(FS->instCount()); 4163 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4164 NameVals.push_back(FS->entryCount()); 4165 4166 // Fill in below 4167 NameVals.push_back(0); // numrefs 4168 NameVals.push_back(0); // rorefcnt 4169 NameVals.push_back(0); // worefcnt 4170 4171 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4172 for (auto &RI : FS->refs()) { 4173 auto RefValueId = getValueId(RI.getGUID()); 4174 if (!RefValueId) 4175 continue; 4176 NameVals.push_back(*RefValueId); 4177 if (RI.isReadOnly()) 4178 RORefCnt++; 4179 else if (RI.isWriteOnly()) 4180 WORefCnt++; 4181 Count++; 4182 } 4183 NameVals[6] = Count; 4184 NameVals[7] = RORefCnt; 4185 NameVals[8] = WORefCnt; 4186 4187 bool HasProfileData = false; 4188 for (auto &EI : FS->calls()) { 4189 HasProfileData |= 4190 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4191 if (HasProfileData) 4192 break; 4193 } 4194 4195 for (auto &EI : FS->calls()) { 4196 // If this GUID doesn't have a value id, it doesn't have a function 4197 // summary and we don't need to record any calls to it. 4198 Optional<unsigned> CallValueId = GetValueId(EI.first); 4199 if (!CallValueId) 4200 continue; 4201 NameVals.push_back(*CallValueId); 4202 if (HasProfileData) 4203 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4204 } 4205 4206 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4207 unsigned Code = 4208 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4209 4210 // Emit the finished record. 4211 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4212 NameVals.clear(); 4213 MaybeEmitOriginalName(*S); 4214 }); 4215 4216 for (auto *AS : Aliases) { 4217 auto AliasValueId = SummaryToValueIdMap[AS]; 4218 assert(AliasValueId); 4219 NameVals.push_back(AliasValueId); 4220 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4221 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4222 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4223 assert(AliaseeValueId); 4224 NameVals.push_back(AliaseeValueId); 4225 4226 // Emit the finished record. 4227 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4228 NameVals.clear(); 4229 MaybeEmitOriginalName(*AS); 4230 4231 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4232 getReferencedTypeIds(FS, ReferencedTypeIds); 4233 } 4234 4235 if (!Index.cfiFunctionDefs().empty()) { 4236 for (auto &S : Index.cfiFunctionDefs()) { 4237 if (DefOrUseGUIDs.count( 4238 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4239 NameVals.push_back(StrtabBuilder.add(S)); 4240 NameVals.push_back(S.size()); 4241 } 4242 } 4243 if (!NameVals.empty()) { 4244 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4245 NameVals.clear(); 4246 } 4247 } 4248 4249 if (!Index.cfiFunctionDecls().empty()) { 4250 for (auto &S : Index.cfiFunctionDecls()) { 4251 if (DefOrUseGUIDs.count( 4252 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4253 NameVals.push_back(StrtabBuilder.add(S)); 4254 NameVals.push_back(S.size()); 4255 } 4256 } 4257 if (!NameVals.empty()) { 4258 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4259 NameVals.clear(); 4260 } 4261 } 4262 4263 // Walk the GUIDs that were referenced, and write the 4264 // corresponding type id records. 4265 for (auto &T : ReferencedTypeIds) { 4266 auto TidIter = Index.typeIds().equal_range(T); 4267 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4268 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4269 It->second.second); 4270 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4271 NameVals.clear(); 4272 } 4273 } 4274 4275 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4276 ArrayRef<uint64_t>{Index.getBlockCount()}); 4277 4278 Stream.ExitBlock(); 4279 } 4280 4281 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4282 /// current llvm version, and a record for the epoch number. 4283 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4284 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4285 4286 // Write the "user readable" string identifying the bitcode producer 4287 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4288 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4291 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4292 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4293 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4294 4295 // Write the epoch version 4296 Abbv = std::make_shared<BitCodeAbbrev>(); 4297 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4299 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4300 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4301 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4302 Stream.ExitBlock(); 4303 } 4304 4305 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4306 // Emit the module's hash. 4307 // MODULE_CODE_HASH: [5*i32] 4308 if (GenerateHash) { 4309 uint32_t Vals[5]; 4310 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4311 Buffer.size() - BlockStartPos)); 4312 StringRef Hash = Hasher.result(); 4313 for (int Pos = 0; Pos < 20; Pos += 4) { 4314 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4315 } 4316 4317 // Emit the finished record. 4318 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4319 4320 if (ModHash) 4321 // Save the written hash value. 4322 llvm::copy(Vals, std::begin(*ModHash)); 4323 } 4324 } 4325 4326 void ModuleBitcodeWriter::write() { 4327 writeIdentificationBlock(Stream); 4328 4329 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4330 size_t BlockStartPos = Buffer.size(); 4331 4332 writeModuleVersion(); 4333 4334 // Emit blockinfo, which defines the standard abbreviations etc. 4335 writeBlockInfo(); 4336 4337 // Emit information describing all of the types in the module. 4338 writeTypeTable(); 4339 4340 // Emit information about attribute groups. 4341 writeAttributeGroupTable(); 4342 4343 // Emit information about parameter attributes. 4344 writeAttributeTable(); 4345 4346 writeComdats(); 4347 4348 // Emit top-level description of module, including target triple, inline asm, 4349 // descriptors for global variables, and function prototype info. 4350 writeModuleInfo(); 4351 4352 // Emit constants. 4353 writeModuleConstants(); 4354 4355 // Emit metadata kind names. 4356 writeModuleMetadataKinds(); 4357 4358 // Emit metadata. 4359 writeModuleMetadata(); 4360 4361 // Emit module-level use-lists. 4362 if (VE.shouldPreserveUseListOrder()) 4363 writeUseListBlock(nullptr); 4364 4365 writeOperandBundleTags(); 4366 writeSyncScopeNames(); 4367 4368 // Emit function bodies. 4369 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4370 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4371 if (!F->isDeclaration()) 4372 writeFunction(*F, FunctionToBitcodeIndex); 4373 4374 // Need to write after the above call to WriteFunction which populates 4375 // the summary information in the index. 4376 if (Index) 4377 writePerModuleGlobalValueSummary(); 4378 4379 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4380 4381 writeModuleHash(BlockStartPos); 4382 4383 Stream.ExitBlock(); 4384 } 4385 4386 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4387 uint32_t &Position) { 4388 support::endian::write32le(&Buffer[Position], Value); 4389 Position += 4; 4390 } 4391 4392 /// If generating a bc file on darwin, we have to emit a 4393 /// header and trailer to make it compatible with the system archiver. To do 4394 /// this we emit the following header, and then emit a trailer that pads the 4395 /// file out to be a multiple of 16 bytes. 4396 /// 4397 /// struct bc_header { 4398 /// uint32_t Magic; // 0x0B17C0DE 4399 /// uint32_t Version; // Version, currently always 0. 4400 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4401 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4402 /// uint32_t CPUType; // CPU specifier. 4403 /// ... potentially more later ... 4404 /// }; 4405 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4406 const Triple &TT) { 4407 unsigned CPUType = ~0U; 4408 4409 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4410 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4411 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4412 // specific constants here because they are implicitly part of the Darwin ABI. 4413 enum { 4414 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4415 DARWIN_CPU_TYPE_X86 = 7, 4416 DARWIN_CPU_TYPE_ARM = 12, 4417 DARWIN_CPU_TYPE_POWERPC = 18 4418 }; 4419 4420 Triple::ArchType Arch = TT.getArch(); 4421 if (Arch == Triple::x86_64) 4422 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4423 else if (Arch == Triple::x86) 4424 CPUType = DARWIN_CPU_TYPE_X86; 4425 else if (Arch == Triple::ppc) 4426 CPUType = DARWIN_CPU_TYPE_POWERPC; 4427 else if (Arch == Triple::ppc64) 4428 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4429 else if (Arch == Triple::arm || Arch == Triple::thumb) 4430 CPUType = DARWIN_CPU_TYPE_ARM; 4431 4432 // Traditional Bitcode starts after header. 4433 assert(Buffer.size() >= BWH_HeaderSize && 4434 "Expected header size to be reserved"); 4435 unsigned BCOffset = BWH_HeaderSize; 4436 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4437 4438 // Write the magic and version. 4439 unsigned Position = 0; 4440 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4441 writeInt32ToBuffer(0, Buffer, Position); // Version. 4442 writeInt32ToBuffer(BCOffset, Buffer, Position); 4443 writeInt32ToBuffer(BCSize, Buffer, Position); 4444 writeInt32ToBuffer(CPUType, Buffer, Position); 4445 4446 // If the file is not a multiple of 16 bytes, insert dummy padding. 4447 while (Buffer.size() & 15) 4448 Buffer.push_back(0); 4449 } 4450 4451 /// Helper to write the header common to all bitcode files. 4452 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4453 // Emit the file header. 4454 Stream.Emit((unsigned)'B', 8); 4455 Stream.Emit((unsigned)'C', 8); 4456 Stream.Emit(0x0, 4); 4457 Stream.Emit(0xC, 4); 4458 Stream.Emit(0xE, 4); 4459 Stream.Emit(0xD, 4); 4460 } 4461 4462 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4463 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4464 writeBitcodeHeader(*Stream); 4465 } 4466 4467 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4468 4469 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4470 Stream->EnterSubblock(Block, 3); 4471 4472 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4473 Abbv->Add(BitCodeAbbrevOp(Record)); 4474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4475 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4476 4477 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4478 4479 Stream->ExitBlock(); 4480 } 4481 4482 void BitcodeWriter::writeSymtab() { 4483 assert(!WroteStrtab && !WroteSymtab); 4484 4485 // If any module has module-level inline asm, we will require a registered asm 4486 // parser for the target so that we can create an accurate symbol table for 4487 // the module. 4488 for (Module *M : Mods) { 4489 if (M->getModuleInlineAsm().empty()) 4490 continue; 4491 4492 std::string Err; 4493 const Triple TT(M->getTargetTriple()); 4494 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4495 if (!T || !T->hasMCAsmParser()) 4496 return; 4497 } 4498 4499 WroteSymtab = true; 4500 SmallVector<char, 0> Symtab; 4501 // The irsymtab::build function may be unable to create a symbol table if the 4502 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4503 // table is not required for correctness, but we still want to be able to 4504 // write malformed modules to bitcode files, so swallow the error. 4505 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4506 consumeError(std::move(E)); 4507 return; 4508 } 4509 4510 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4511 {Symtab.data(), Symtab.size()}); 4512 } 4513 4514 void BitcodeWriter::writeStrtab() { 4515 assert(!WroteStrtab); 4516 4517 std::vector<char> Strtab; 4518 StrtabBuilder.finalizeInOrder(); 4519 Strtab.resize(StrtabBuilder.getSize()); 4520 StrtabBuilder.write((uint8_t *)Strtab.data()); 4521 4522 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4523 {Strtab.data(), Strtab.size()}); 4524 4525 WroteStrtab = true; 4526 } 4527 4528 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4529 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4530 WroteStrtab = true; 4531 } 4532 4533 void BitcodeWriter::writeModule(const Module &M, 4534 bool ShouldPreserveUseListOrder, 4535 const ModuleSummaryIndex *Index, 4536 bool GenerateHash, ModuleHash *ModHash) { 4537 assert(!WroteStrtab); 4538 4539 // The Mods vector is used by irsymtab::build, which requires non-const 4540 // Modules in case it needs to materialize metadata. But the bitcode writer 4541 // requires that the module is materialized, so we can cast to non-const here, 4542 // after checking that it is in fact materialized. 4543 assert(M.isMaterialized()); 4544 Mods.push_back(const_cast<Module *>(&M)); 4545 4546 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4547 ShouldPreserveUseListOrder, Index, 4548 GenerateHash, ModHash); 4549 ModuleWriter.write(); 4550 } 4551 4552 void BitcodeWriter::writeIndex( 4553 const ModuleSummaryIndex *Index, 4554 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4555 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4556 ModuleToSummariesForIndex); 4557 IndexWriter.write(); 4558 } 4559 4560 /// Write the specified module to the specified output stream. 4561 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4562 bool ShouldPreserveUseListOrder, 4563 const ModuleSummaryIndex *Index, 4564 bool GenerateHash, ModuleHash *ModHash) { 4565 SmallVector<char, 0> Buffer; 4566 Buffer.reserve(256*1024); 4567 4568 // If this is darwin or another generic macho target, reserve space for the 4569 // header. 4570 Triple TT(M.getTargetTriple()); 4571 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4572 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4573 4574 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4575 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4576 ModHash); 4577 Writer.writeSymtab(); 4578 Writer.writeStrtab(); 4579 4580 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4581 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4582 4583 // Write the generated bitstream to "Out". 4584 if (!Buffer.empty()) 4585 Out.write((char *)&Buffer.front(), Buffer.size()); 4586 } 4587 4588 void IndexBitcodeWriter::write() { 4589 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4590 4591 writeModuleVersion(); 4592 4593 // Write the module paths in the combined index. 4594 writeModStrings(); 4595 4596 // Write the summary combined index records. 4597 writeCombinedGlobalValueSummary(); 4598 4599 Stream.ExitBlock(); 4600 } 4601 4602 // Write the specified module summary index to the given raw output stream, 4603 // where it will be written in a new bitcode block. This is used when 4604 // writing the combined index file for ThinLTO. When writing a subset of the 4605 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4606 void llvm::WriteIndexToFile( 4607 const ModuleSummaryIndex &Index, raw_ostream &Out, 4608 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4609 SmallVector<char, 0> Buffer; 4610 Buffer.reserve(256 * 1024); 4611 4612 BitcodeWriter Writer(Buffer); 4613 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4614 Writer.writeStrtab(); 4615 4616 Out.write((char *)&Buffer.front(), Buffer.size()); 4617 } 4618 4619 namespace { 4620 4621 /// Class to manage the bitcode writing for a thin link bitcode file. 4622 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4623 /// ModHash is for use in ThinLTO incremental build, generated while writing 4624 /// the module bitcode file. 4625 const ModuleHash *ModHash; 4626 4627 public: 4628 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4629 BitstreamWriter &Stream, 4630 const ModuleSummaryIndex &Index, 4631 const ModuleHash &ModHash) 4632 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4633 /*ShouldPreserveUseListOrder=*/false, &Index), 4634 ModHash(&ModHash) {} 4635 4636 void write(); 4637 4638 private: 4639 void writeSimplifiedModuleInfo(); 4640 }; 4641 4642 } // end anonymous namespace 4643 4644 // This function writes a simpilified module info for thin link bitcode file. 4645 // It only contains the source file name along with the name(the offset and 4646 // size in strtab) and linkage for global values. For the global value info 4647 // entry, in order to keep linkage at offset 5, there are three zeros used 4648 // as padding. 4649 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4650 SmallVector<unsigned, 64> Vals; 4651 // Emit the module's source file name. 4652 { 4653 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4654 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4655 if (Bits == SE_Char6) 4656 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4657 else if (Bits == SE_Fixed7) 4658 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4659 4660 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4661 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4662 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4664 Abbv->Add(AbbrevOpToUse); 4665 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4666 4667 for (const auto P : M.getSourceFileName()) 4668 Vals.push_back((unsigned char)P); 4669 4670 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4671 Vals.clear(); 4672 } 4673 4674 // Emit the global variable information. 4675 for (const GlobalVariable &GV : M.globals()) { 4676 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4677 Vals.push_back(StrtabBuilder.add(GV.getName())); 4678 Vals.push_back(GV.getName().size()); 4679 Vals.push_back(0); 4680 Vals.push_back(0); 4681 Vals.push_back(0); 4682 Vals.push_back(getEncodedLinkage(GV)); 4683 4684 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4685 Vals.clear(); 4686 } 4687 4688 // Emit the function proto information. 4689 for (const Function &F : M) { 4690 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4691 Vals.push_back(StrtabBuilder.add(F.getName())); 4692 Vals.push_back(F.getName().size()); 4693 Vals.push_back(0); 4694 Vals.push_back(0); 4695 Vals.push_back(0); 4696 Vals.push_back(getEncodedLinkage(F)); 4697 4698 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4699 Vals.clear(); 4700 } 4701 4702 // Emit the alias information. 4703 for (const GlobalAlias &A : M.aliases()) { 4704 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4705 Vals.push_back(StrtabBuilder.add(A.getName())); 4706 Vals.push_back(A.getName().size()); 4707 Vals.push_back(0); 4708 Vals.push_back(0); 4709 Vals.push_back(0); 4710 Vals.push_back(getEncodedLinkage(A)); 4711 4712 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4713 Vals.clear(); 4714 } 4715 4716 // Emit the ifunc information. 4717 for (const GlobalIFunc &I : M.ifuncs()) { 4718 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4719 Vals.push_back(StrtabBuilder.add(I.getName())); 4720 Vals.push_back(I.getName().size()); 4721 Vals.push_back(0); 4722 Vals.push_back(0); 4723 Vals.push_back(0); 4724 Vals.push_back(getEncodedLinkage(I)); 4725 4726 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4727 Vals.clear(); 4728 } 4729 } 4730 4731 void ThinLinkBitcodeWriter::write() { 4732 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4733 4734 writeModuleVersion(); 4735 4736 writeSimplifiedModuleInfo(); 4737 4738 writePerModuleGlobalValueSummary(); 4739 4740 // Write module hash. 4741 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4742 4743 Stream.ExitBlock(); 4744 } 4745 4746 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4747 const ModuleSummaryIndex &Index, 4748 const ModuleHash &ModHash) { 4749 assert(!WroteStrtab); 4750 4751 // The Mods vector is used by irsymtab::build, which requires non-const 4752 // Modules in case it needs to materialize metadata. But the bitcode writer 4753 // requires that the module is materialized, so we can cast to non-const here, 4754 // after checking that it is in fact materialized. 4755 assert(M.isMaterialized()); 4756 Mods.push_back(const_cast<Module *>(&M)); 4757 4758 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4759 ModHash); 4760 ThinLinkWriter.write(); 4761 } 4762 4763 // Write the specified thin link bitcode file to the given raw output stream, 4764 // where it will be written in a new bitcode block. This is used when 4765 // writing the per-module index file for ThinLTO. 4766 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4767 const ModuleSummaryIndex &Index, 4768 const ModuleHash &ModHash) { 4769 SmallVector<char, 0> Buffer; 4770 Buffer.reserve(256 * 1024); 4771 4772 BitcodeWriter Writer(Buffer); 4773 Writer.writeThinLinkBitcode(M, Index, ModHash); 4774 Writer.writeSymtab(); 4775 Writer.writeStrtab(); 4776 4777 Out.write((char *)&Buffer.front(), Buffer.size()); 4778 } 4779 4780 static const char *getSectionNameForBitcode(const Triple &T) { 4781 switch (T.getObjectFormat()) { 4782 case Triple::MachO: 4783 return "__LLVM,__bitcode"; 4784 case Triple::COFF: 4785 case Triple::ELF: 4786 case Triple::Wasm: 4787 case Triple::UnknownObjectFormat: 4788 return ".llvmbc"; 4789 case Triple::GOFF: 4790 llvm_unreachable("GOFF is not yet implemented"); 4791 break; 4792 case Triple::XCOFF: 4793 llvm_unreachable("XCOFF is not yet implemented"); 4794 break; 4795 } 4796 llvm_unreachable("Unimplemented ObjectFormatType"); 4797 } 4798 4799 static const char *getSectionNameForCommandline(const Triple &T) { 4800 switch (T.getObjectFormat()) { 4801 case Triple::MachO: 4802 return "__LLVM,__cmdline"; 4803 case Triple::COFF: 4804 case Triple::ELF: 4805 case Triple::Wasm: 4806 case Triple::UnknownObjectFormat: 4807 return ".llvmcmd"; 4808 case Triple::GOFF: 4809 llvm_unreachable("GOFF is not yet implemented"); 4810 break; 4811 case Triple::XCOFF: 4812 llvm_unreachable("XCOFF is not yet implemented"); 4813 break; 4814 } 4815 llvm_unreachable("Unimplemented ObjectFormatType"); 4816 } 4817 4818 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4819 bool EmbedBitcode, bool EmbedMarker, 4820 const std::vector<uint8_t> *CmdArgs) { 4821 // Save llvm.compiler.used and remove it. 4822 SmallVector<Constant *, 2> UsedArray; 4823 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4824 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4825 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4826 for (auto *GV : UsedGlobals) { 4827 if (GV->getName() != "llvm.embedded.module" && 4828 GV->getName() != "llvm.cmdline") 4829 UsedArray.push_back( 4830 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4831 } 4832 if (Used) 4833 Used->eraseFromParent(); 4834 4835 // Embed the bitcode for the llvm module. 4836 std::string Data; 4837 ArrayRef<uint8_t> ModuleData; 4838 Triple T(M.getTargetTriple()); 4839 4840 if (EmbedBitcode) { 4841 if (Buf.getBufferSize() == 0 || 4842 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4843 (const unsigned char *)Buf.getBufferEnd())) { 4844 // If the input is LLVM Assembly, bitcode is produced by serializing 4845 // the module. Use-lists order need to be preserved in this case. 4846 llvm::raw_string_ostream OS(Data); 4847 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4848 ModuleData = 4849 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4850 } else 4851 // If the input is LLVM bitcode, write the input byte stream directly. 4852 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4853 Buf.getBufferSize()); 4854 } 4855 llvm::Constant *ModuleConstant = 4856 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4857 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4858 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4859 ModuleConstant); 4860 GV->setSection(getSectionNameForBitcode(T)); 4861 // Set alignment to 1 to prevent padding between two contributions from input 4862 // sections after linking. 4863 GV->setAlignment(Align(1)); 4864 UsedArray.push_back( 4865 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4866 if (llvm::GlobalVariable *Old = 4867 M.getGlobalVariable("llvm.embedded.module", true)) { 4868 assert(Old->hasOneUse() && 4869 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4870 GV->takeName(Old); 4871 Old->eraseFromParent(); 4872 } else { 4873 GV->setName("llvm.embedded.module"); 4874 } 4875 4876 // Skip if only bitcode needs to be embedded. 4877 if (EmbedMarker) { 4878 // Embed command-line options. 4879 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4880 CmdArgs->size()); 4881 llvm::Constant *CmdConstant = 4882 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4883 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4884 llvm::GlobalValue::PrivateLinkage, 4885 CmdConstant); 4886 GV->setSection(getSectionNameForCommandline(T)); 4887 GV->setAlignment(Align(1)); 4888 UsedArray.push_back( 4889 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4890 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4891 assert(Old->hasOneUse() && 4892 "llvm.cmdline can only be used once in llvm.compiler.used"); 4893 GV->takeName(Old); 4894 Old->eraseFromParent(); 4895 } else { 4896 GV->setName("llvm.cmdline"); 4897 } 4898 } 4899 4900 if (UsedArray.empty()) 4901 return; 4902 4903 // Recreate llvm.compiler.used. 4904 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4905 auto *NewUsed = new GlobalVariable( 4906 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4907 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4908 NewUsed->setSection("llvm.metadata"); 4909 } 4910