1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/Program.h" 30 using namespace llvm; 31 32 /// These are manifest constants used by the bitcode writer. They do not need to 33 /// be kept in sync with the reader, but need to be consistent within this file. 34 enum { 35 CurVersion = 0, 36 37 // VALUE_SYMTAB_BLOCK abbrev id's. 38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 39 VST_ENTRY_7_ABBREV, 40 VST_ENTRY_6_ABBREV, 41 VST_BBENTRY_6_ABBREV, 42 43 // CONSTANTS_BLOCK abbrev id's. 44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 CONSTANTS_INTEGER_ABBREV, 46 CONSTANTS_CE_CAST_Abbrev, 47 CONSTANTS_NULL_Abbrev, 48 49 // FUNCTION_BLOCK abbrev id's. 50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 FUNCTION_INST_BINOP_ABBREV, 52 FUNCTION_INST_BINOP_FLAGS_ABBREV, 53 FUNCTION_INST_CAST_ABBREV, 54 FUNCTION_INST_RET_VOID_ABBREV, 55 FUNCTION_INST_RET_VAL_ABBREV, 56 FUNCTION_INST_UNREACHABLE_ABBREV 57 }; 58 59 60 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 61 switch (Opcode) { 62 default: llvm_unreachable("Unknown cast instruction!"); 63 case Instruction::Trunc : return bitc::CAST_TRUNC; 64 case Instruction::ZExt : return bitc::CAST_ZEXT; 65 case Instruction::SExt : return bitc::CAST_SEXT; 66 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 67 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 68 case Instruction::UIToFP : return bitc::CAST_UITOFP; 69 case Instruction::SIToFP : return bitc::CAST_SITOFP; 70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 71 case Instruction::FPExt : return bitc::CAST_FPEXT; 72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 74 case Instruction::BitCast : return bitc::CAST_BITCAST; 75 } 76 } 77 78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown binary instruction!"); 81 case Instruction::Add: 82 case Instruction::FAdd: return bitc::BINOP_ADD; 83 case Instruction::Sub: 84 case Instruction::FSub: return bitc::BINOP_SUB; 85 case Instruction::Mul: 86 case Instruction::FMul: return bitc::BINOP_MUL; 87 case Instruction::UDiv: return bitc::BINOP_UDIV; 88 case Instruction::FDiv: 89 case Instruction::SDiv: return bitc::BINOP_SDIV; 90 case Instruction::URem: return bitc::BINOP_UREM; 91 case Instruction::FRem: 92 case Instruction::SRem: return bitc::BINOP_SREM; 93 case Instruction::Shl: return bitc::BINOP_SHL; 94 case Instruction::LShr: return bitc::BINOP_LSHR; 95 case Instruction::AShr: return bitc::BINOP_ASHR; 96 case Instruction::And: return bitc::BINOP_AND; 97 case Instruction::Or: return bitc::BINOP_OR; 98 case Instruction::Xor: return bitc::BINOP_XOR; 99 } 100 } 101 102 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_UNION. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_UNION)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned UnionAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Abbrev for TYPE_CODE_ARRAY. 193 Abbv = new BitCodeAbbrev(); 194 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 197 Log2_32_Ceil(VE.getTypes().size()+1))); 198 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 199 200 // Emit an entry count so the reader can reserve space. 201 TypeVals.push_back(TypeList.size()); 202 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 203 TypeVals.clear(); 204 205 // Loop over all of the types, emitting each in turn. 206 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 207 const Type *T = TypeList[i].first; 208 int AbbrevToUse = 0; 209 unsigned Code = 0; 210 211 switch (T->getTypeID()) { 212 default: llvm_unreachable("Unknown type!"); 213 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 214 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 215 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 216 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 217 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 218 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 219 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 220 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 221 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 222 case Type::IntegerTyID: 223 // INTEGER: [width] 224 Code = bitc::TYPE_CODE_INTEGER; 225 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 226 break; 227 case Type::PointerTyID: { 228 const PointerType *PTy = cast<PointerType>(T); 229 // POINTER: [pointee type, address space] 230 Code = bitc::TYPE_CODE_POINTER; 231 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 232 unsigned AddressSpace = PTy->getAddressSpace(); 233 TypeVals.push_back(AddressSpace); 234 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 235 break; 236 } 237 case Type::FunctionTyID: { 238 const FunctionType *FT = cast<FunctionType>(T); 239 // FUNCTION: [isvararg, attrid, retty, paramty x N] 240 Code = bitc::TYPE_CODE_FUNCTION; 241 TypeVals.push_back(FT->isVarArg()); 242 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 243 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 244 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 245 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 246 AbbrevToUse = FunctionAbbrev; 247 break; 248 } 249 case Type::StructTyID: { 250 const StructType *ST = cast<StructType>(T); 251 // STRUCT: [ispacked, eltty x N] 252 Code = bitc::TYPE_CODE_STRUCT; 253 TypeVals.push_back(ST->isPacked()); 254 // Output all of the element types. 255 for (StructType::element_iterator I = ST->element_begin(), 256 E = ST->element_end(); I != E; ++I) 257 TypeVals.push_back(VE.getTypeID(*I)); 258 AbbrevToUse = StructAbbrev; 259 break; 260 } 261 case Type::UnionTyID: { 262 const UnionType *UT = cast<UnionType>(T); 263 // UNION: [eltty x N] 264 Code = bitc::TYPE_CODE_UNION; 265 // Output all of the element types. 266 for (UnionType::element_iterator I = UT->element_begin(), 267 E = UT->element_end(); I != E; ++I) 268 TypeVals.push_back(VE.getTypeID(*I)); 269 AbbrevToUse = UnionAbbrev; 270 break; 271 } 272 case Type::ArrayTyID: { 273 const ArrayType *AT = cast<ArrayType>(T); 274 // ARRAY: [numelts, eltty] 275 Code = bitc::TYPE_CODE_ARRAY; 276 TypeVals.push_back(AT->getNumElements()); 277 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 278 AbbrevToUse = ArrayAbbrev; 279 break; 280 } 281 case Type::VectorTyID: { 282 const VectorType *VT = cast<VectorType>(T); 283 // VECTOR [numelts, eltty] 284 Code = bitc::TYPE_CODE_VECTOR; 285 TypeVals.push_back(VT->getNumElements()); 286 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 287 break; 288 } 289 } 290 291 // Emit the finished record. 292 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 293 TypeVals.clear(); 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static unsigned getEncodedLinkage(const GlobalValue *GV) { 300 switch (GV->getLinkage()) { 301 default: llvm_unreachable("Invalid linkage!"); 302 case GlobalValue::ExternalLinkage: return 0; 303 case GlobalValue::WeakAnyLinkage: return 1; 304 case GlobalValue::AppendingLinkage: return 2; 305 case GlobalValue::InternalLinkage: return 3; 306 case GlobalValue::LinkOnceAnyLinkage: return 4; 307 case GlobalValue::DLLImportLinkage: return 5; 308 case GlobalValue::DLLExportLinkage: return 6; 309 case GlobalValue::ExternalWeakLinkage: return 7; 310 case GlobalValue::CommonLinkage: return 8; 311 case GlobalValue::PrivateLinkage: return 9; 312 case GlobalValue::WeakODRLinkage: return 10; 313 case GlobalValue::LinkOnceODRLinkage: return 11; 314 case GlobalValue::AvailableExternallyLinkage: return 12; 315 case GlobalValue::LinkerPrivateLinkage: return 13; 316 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 317 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 318 } 319 } 320 321 static unsigned getEncodedVisibility(const GlobalValue *GV) { 322 switch (GV->getVisibility()) { 323 default: llvm_unreachable("Invalid visibility!"); 324 case GlobalValue::DefaultVisibility: return 0; 325 case GlobalValue::HiddenVisibility: return 1; 326 case GlobalValue::ProtectedVisibility: return 2; 327 } 328 } 329 330 // Emit top-level description of module, including target triple, inline asm, 331 // descriptors for global variables, and function prototype info. 332 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 333 BitstreamWriter &Stream) { 334 // Emit the list of dependent libraries for the Module. 335 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 336 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 337 338 // Emit various pieces of data attached to a module. 339 if (!M->getTargetTriple().empty()) 340 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 341 0/*TODO*/, Stream); 342 if (!M->getDataLayout().empty()) 343 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 344 0/*TODO*/, Stream); 345 if (!M->getModuleInlineAsm().empty()) 346 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 347 0/*TODO*/, Stream); 348 349 // Emit information about sections and GC, computing how many there are. Also 350 // compute the maximum alignment value. 351 std::map<std::string, unsigned> SectionMap; 352 std::map<std::string, unsigned> GCMap; 353 unsigned MaxAlignment = 0; 354 unsigned MaxGlobalType = 0; 355 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 356 GV != E; ++GV) { 357 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 358 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 359 360 if (!GV->hasSection()) continue; 361 // Give section names unique ID's. 362 unsigned &Entry = SectionMap[GV->getSection()]; 363 if (Entry != 0) continue; 364 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 365 0/*TODO*/, Stream); 366 Entry = SectionMap.size(); 367 } 368 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 369 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 370 if (F->hasSection()) { 371 // Give section names unique ID's. 372 unsigned &Entry = SectionMap[F->getSection()]; 373 if (!Entry) { 374 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 375 0/*TODO*/, Stream); 376 Entry = SectionMap.size(); 377 } 378 } 379 if (F->hasGC()) { 380 // Same for GC names. 381 unsigned &Entry = GCMap[F->getGC()]; 382 if (!Entry) { 383 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 384 0/*TODO*/, Stream); 385 Entry = GCMap.size(); 386 } 387 } 388 } 389 390 // Emit abbrev for globals, now that we know # sections and max alignment. 391 unsigned SimpleGVarAbbrev = 0; 392 if (!M->global_empty()) { 393 // Add an abbrev for common globals with no visibility or thread localness. 394 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 395 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 397 Log2_32_Ceil(MaxGlobalType+1))); 398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 401 if (MaxAlignment == 0) // Alignment. 402 Abbv->Add(BitCodeAbbrevOp(0)); 403 else { 404 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 406 Log2_32_Ceil(MaxEncAlignment+1))); 407 } 408 if (SectionMap.empty()) // Section. 409 Abbv->Add(BitCodeAbbrevOp(0)); 410 else 411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 412 Log2_32_Ceil(SectionMap.size()+1))); 413 // Don't bother emitting vis + thread local. 414 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 415 } 416 417 // Emit the global variable information. 418 SmallVector<unsigned, 64> Vals; 419 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 420 GV != E; ++GV) { 421 unsigned AbbrevToUse = 0; 422 423 // GLOBALVAR: [type, isconst, initid, 424 // linkage, alignment, section, visibility, threadlocal] 425 Vals.push_back(VE.getTypeID(GV->getType())); 426 Vals.push_back(GV->isConstant()); 427 Vals.push_back(GV->isDeclaration() ? 0 : 428 (VE.getValueID(GV->getInitializer()) + 1)); 429 Vals.push_back(getEncodedLinkage(GV)); 430 Vals.push_back(Log2_32(GV->getAlignment())+1); 431 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 432 if (GV->isThreadLocal() || 433 GV->getVisibility() != GlobalValue::DefaultVisibility) { 434 Vals.push_back(getEncodedVisibility(GV)); 435 Vals.push_back(GV->isThreadLocal()); 436 } else { 437 AbbrevToUse = SimpleGVarAbbrev; 438 } 439 440 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 441 Vals.clear(); 442 } 443 444 // Emit the function proto information. 445 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 446 // FUNCTION: [type, callingconv, isproto, paramattr, 447 // linkage, alignment, section, visibility, gc] 448 Vals.push_back(VE.getTypeID(F->getType())); 449 Vals.push_back(F->getCallingConv()); 450 Vals.push_back(F->isDeclaration()); 451 Vals.push_back(getEncodedLinkage(F)); 452 Vals.push_back(VE.getAttributeID(F->getAttributes())); 453 Vals.push_back(Log2_32(F->getAlignment())+1); 454 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 455 Vals.push_back(getEncodedVisibility(F)); 456 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 457 458 unsigned AbbrevToUse = 0; 459 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 460 Vals.clear(); 461 } 462 463 464 // Emit the alias information. 465 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 466 AI != E; ++AI) { 467 Vals.push_back(VE.getTypeID(AI->getType())); 468 Vals.push_back(VE.getValueID(AI->getAliasee())); 469 Vals.push_back(getEncodedLinkage(AI)); 470 Vals.push_back(getEncodedVisibility(AI)); 471 unsigned AbbrevToUse = 0; 472 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 473 Vals.clear(); 474 } 475 } 476 477 static uint64_t GetOptimizationFlags(const Value *V) { 478 uint64_t Flags = 0; 479 480 if (const OverflowingBinaryOperator *OBO = 481 dyn_cast<OverflowingBinaryOperator>(V)) { 482 if (OBO->hasNoSignedWrap()) 483 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 484 if (OBO->hasNoUnsignedWrap()) 485 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 486 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 487 if (Div->isExact()) 488 Flags |= 1 << bitc::SDIV_EXACT; 489 } 490 491 return Flags; 492 } 493 494 static void WriteMDNode(const MDNode *N, 495 const ValueEnumerator &VE, 496 BitstreamWriter &Stream, 497 SmallVector<uint64_t, 64> &Record) { 498 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 499 if (N->getOperand(i)) { 500 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 501 Record.push_back(VE.getValueID(N->getOperand(i))); 502 } else { 503 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 504 Record.push_back(0); 505 } 506 } 507 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 508 bitc::METADATA_NODE; 509 Stream.EmitRecord(MDCode, Record, 0); 510 Record.clear(); 511 } 512 513 static void WriteModuleMetadata(const Module *M, 514 const ValueEnumerator &VE, 515 BitstreamWriter &Stream) { 516 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 517 bool StartedMetadataBlock = false; 518 unsigned MDSAbbrev = 0; 519 SmallVector<uint64_t, 64> Record; 520 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 521 522 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 523 if (!N->isFunctionLocal() || !N->getFunction()) { 524 if (!StartedMetadataBlock) { 525 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 526 StartedMetadataBlock = true; 527 } 528 WriteMDNode(N, VE, Stream, Record); 529 } 530 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 531 if (!StartedMetadataBlock) { 532 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 533 534 // Abbrev for METADATA_STRING. 535 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 536 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 539 MDSAbbrev = Stream.EmitAbbrev(Abbv); 540 StartedMetadataBlock = true; 541 } 542 543 // Code: [strchar x N] 544 Record.append(MDS->begin(), MDS->end()); 545 546 // Emit the finished record. 547 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 548 Record.clear(); 549 } 550 } 551 552 // Write named metadata. 553 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 554 E = M->named_metadata_end(); I != E; ++I) { 555 const NamedMDNode *NMD = I; 556 if (!StartedMetadataBlock) { 557 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 558 StartedMetadataBlock = true; 559 } 560 561 // Write name. 562 StringRef Str = NMD->getName(); 563 for (unsigned i = 0, e = Str.size(); i != e; ++i) 564 Record.push_back(Str[i]); 565 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 566 Record.clear(); 567 568 // Write named metadata operands. 569 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 570 Record.push_back(VE.getValueID(NMD->getOperand(i))); 571 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 572 Record.clear(); 573 } 574 575 if (StartedMetadataBlock) 576 Stream.ExitBlock(); 577 } 578 579 static void WriteFunctionLocalMetadata(const Function &F, 580 const ValueEnumerator &VE, 581 BitstreamWriter &Stream) { 582 bool StartedMetadataBlock = false; 583 SmallVector<uint64_t, 64> Record; 584 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 585 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 586 if (const MDNode *N = Vals[i]) 587 if (N->isFunctionLocal() && N->getFunction() == &F) { 588 if (!StartedMetadataBlock) { 589 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 590 StartedMetadataBlock = true; 591 } 592 WriteMDNode(N, VE, Stream, Record); 593 } 594 595 if (StartedMetadataBlock) 596 Stream.ExitBlock(); 597 } 598 599 static void WriteMetadataAttachment(const Function &F, 600 const ValueEnumerator &VE, 601 BitstreamWriter &Stream) { 602 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 603 604 SmallVector<uint64_t, 64> Record; 605 606 // Write metadata attachments 607 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 608 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 609 610 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 611 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 612 I != E; ++I) { 613 MDs.clear(); 614 I->getAllMetadataOtherThanDebugLoc(MDs); 615 616 // If no metadata, ignore instruction. 617 if (MDs.empty()) continue; 618 619 Record.push_back(VE.getInstructionID(I)); 620 621 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 622 Record.push_back(MDs[i].first); 623 Record.push_back(VE.getValueID(MDs[i].second)); 624 } 625 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 626 Record.clear(); 627 } 628 629 Stream.ExitBlock(); 630 } 631 632 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 633 SmallVector<uint64_t, 64> Record; 634 635 // Write metadata kinds 636 // METADATA_KIND - [n x [id, name]] 637 SmallVector<StringRef, 4> Names; 638 M->getMDKindNames(Names); 639 640 if (Names.empty()) return; 641 642 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 643 644 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 645 Record.push_back(MDKindID); 646 StringRef KName = Names[MDKindID]; 647 Record.append(KName.begin(), KName.end()); 648 649 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 650 Record.clear(); 651 } 652 653 Stream.ExitBlock(); 654 } 655 656 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 657 const ValueEnumerator &VE, 658 BitstreamWriter &Stream, bool isGlobal) { 659 if (FirstVal == LastVal) return; 660 661 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 662 663 unsigned AggregateAbbrev = 0; 664 unsigned String8Abbrev = 0; 665 unsigned CString7Abbrev = 0; 666 unsigned CString6Abbrev = 0; 667 // If this is a constant pool for the module, emit module-specific abbrevs. 668 if (isGlobal) { 669 // Abbrev for CST_CODE_AGGREGATE. 670 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 671 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 674 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 675 676 // Abbrev for CST_CODE_STRING. 677 Abbv = new BitCodeAbbrev(); 678 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 681 String8Abbrev = Stream.EmitAbbrev(Abbv); 682 // Abbrev for CST_CODE_CSTRING. 683 Abbv = new BitCodeAbbrev(); 684 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 687 CString7Abbrev = Stream.EmitAbbrev(Abbv); 688 // Abbrev for CST_CODE_CSTRING. 689 Abbv = new BitCodeAbbrev(); 690 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 693 CString6Abbrev = Stream.EmitAbbrev(Abbv); 694 } 695 696 SmallVector<uint64_t, 64> Record; 697 698 const ValueEnumerator::ValueList &Vals = VE.getValues(); 699 const Type *LastTy = 0; 700 for (unsigned i = FirstVal; i != LastVal; ++i) { 701 const Value *V = Vals[i].first; 702 // If we need to switch types, do so now. 703 if (V->getType() != LastTy) { 704 LastTy = V->getType(); 705 Record.push_back(VE.getTypeID(LastTy)); 706 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 707 CONSTANTS_SETTYPE_ABBREV); 708 Record.clear(); 709 } 710 711 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 712 Record.push_back(unsigned(IA->hasSideEffects()) | 713 unsigned(IA->isAlignStack()) << 1); 714 715 // Add the asm string. 716 const std::string &AsmStr = IA->getAsmString(); 717 Record.push_back(AsmStr.size()); 718 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 719 Record.push_back(AsmStr[i]); 720 721 // Add the constraint string. 722 const std::string &ConstraintStr = IA->getConstraintString(); 723 Record.push_back(ConstraintStr.size()); 724 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 725 Record.push_back(ConstraintStr[i]); 726 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 727 Record.clear(); 728 continue; 729 } 730 const Constant *C = cast<Constant>(V); 731 unsigned Code = -1U; 732 unsigned AbbrevToUse = 0; 733 if (C->isNullValue()) { 734 Code = bitc::CST_CODE_NULL; 735 } else if (isa<UndefValue>(C)) { 736 Code = bitc::CST_CODE_UNDEF; 737 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 738 if (IV->getBitWidth() <= 64) { 739 uint64_t V = IV->getSExtValue(); 740 if ((int64_t)V >= 0) 741 Record.push_back(V << 1); 742 else 743 Record.push_back((-V << 1) | 1); 744 Code = bitc::CST_CODE_INTEGER; 745 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 746 } else { // Wide integers, > 64 bits in size. 747 // We have an arbitrary precision integer value to write whose 748 // bit width is > 64. However, in canonical unsigned integer 749 // format it is likely that the high bits are going to be zero. 750 // So, we only write the number of active words. 751 unsigned NWords = IV->getValue().getActiveWords(); 752 const uint64_t *RawWords = IV->getValue().getRawData(); 753 for (unsigned i = 0; i != NWords; ++i) { 754 int64_t V = RawWords[i]; 755 if (V >= 0) 756 Record.push_back(V << 1); 757 else 758 Record.push_back((-V << 1) | 1); 759 } 760 Code = bitc::CST_CODE_WIDE_INTEGER; 761 } 762 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 763 Code = bitc::CST_CODE_FLOAT; 764 const Type *Ty = CFP->getType(); 765 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 766 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 767 } else if (Ty->isX86_FP80Ty()) { 768 // api needed to prevent premature destruction 769 // bits are not in the same order as a normal i80 APInt, compensate. 770 APInt api = CFP->getValueAPF().bitcastToAPInt(); 771 const uint64_t *p = api.getRawData(); 772 Record.push_back((p[1] << 48) | (p[0] >> 16)); 773 Record.push_back(p[0] & 0xffffLL); 774 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 775 APInt api = CFP->getValueAPF().bitcastToAPInt(); 776 const uint64_t *p = api.getRawData(); 777 Record.push_back(p[0]); 778 Record.push_back(p[1]); 779 } else { 780 assert (0 && "Unknown FP type!"); 781 } 782 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 783 const ConstantArray *CA = cast<ConstantArray>(C); 784 // Emit constant strings specially. 785 unsigned NumOps = CA->getNumOperands(); 786 // If this is a null-terminated string, use the denser CSTRING encoding. 787 if (CA->getOperand(NumOps-1)->isNullValue()) { 788 Code = bitc::CST_CODE_CSTRING; 789 --NumOps; // Don't encode the null, which isn't allowed by char6. 790 } else { 791 Code = bitc::CST_CODE_STRING; 792 AbbrevToUse = String8Abbrev; 793 } 794 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 795 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 796 for (unsigned i = 0; i != NumOps; ++i) { 797 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 798 Record.push_back(V); 799 isCStr7 &= (V & 128) == 0; 800 if (isCStrChar6) 801 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 802 } 803 804 if (isCStrChar6) 805 AbbrevToUse = CString6Abbrev; 806 else if (isCStr7) 807 AbbrevToUse = CString7Abbrev; 808 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 809 isa<ConstantVector>(V)) { 810 Code = bitc::CST_CODE_AGGREGATE; 811 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 812 Record.push_back(VE.getValueID(C->getOperand(i))); 813 AbbrevToUse = AggregateAbbrev; 814 } else if (isa<ConstantUnion>(C)) { 815 Code = bitc::CST_CODE_AGGREGATE; 816 817 // Unions only have one entry but we must send type along with it. 818 const Type *EntryKind = C->getOperand(0)->getType(); 819 820 const UnionType *UnTy = cast<UnionType>(C->getType()); 821 int UnionIndex = UnTy->getElementTypeIndex(EntryKind); 822 assert(UnionIndex != -1 && "Constant union contains invalid entry"); 823 824 Record.push_back(UnionIndex); 825 Record.push_back(VE.getValueID(C->getOperand(0))); 826 827 AbbrevToUse = AggregateAbbrev; 828 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 829 switch (CE->getOpcode()) { 830 default: 831 if (Instruction::isCast(CE->getOpcode())) { 832 Code = bitc::CST_CODE_CE_CAST; 833 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 834 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 835 Record.push_back(VE.getValueID(C->getOperand(0))); 836 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 837 } else { 838 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 839 Code = bitc::CST_CODE_CE_BINOP; 840 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 841 Record.push_back(VE.getValueID(C->getOperand(0))); 842 Record.push_back(VE.getValueID(C->getOperand(1))); 843 uint64_t Flags = GetOptimizationFlags(CE); 844 if (Flags != 0) 845 Record.push_back(Flags); 846 } 847 break; 848 case Instruction::GetElementPtr: 849 Code = bitc::CST_CODE_CE_GEP; 850 if (cast<GEPOperator>(C)->isInBounds()) 851 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 852 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 853 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 854 Record.push_back(VE.getValueID(C->getOperand(i))); 855 } 856 break; 857 case Instruction::Select: 858 Code = bitc::CST_CODE_CE_SELECT; 859 Record.push_back(VE.getValueID(C->getOperand(0))); 860 Record.push_back(VE.getValueID(C->getOperand(1))); 861 Record.push_back(VE.getValueID(C->getOperand(2))); 862 break; 863 case Instruction::ExtractElement: 864 Code = bitc::CST_CODE_CE_EXTRACTELT; 865 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 866 Record.push_back(VE.getValueID(C->getOperand(0))); 867 Record.push_back(VE.getValueID(C->getOperand(1))); 868 break; 869 case Instruction::InsertElement: 870 Code = bitc::CST_CODE_CE_INSERTELT; 871 Record.push_back(VE.getValueID(C->getOperand(0))); 872 Record.push_back(VE.getValueID(C->getOperand(1))); 873 Record.push_back(VE.getValueID(C->getOperand(2))); 874 break; 875 case Instruction::ShuffleVector: 876 // If the return type and argument types are the same, this is a 877 // standard shufflevector instruction. If the types are different, 878 // then the shuffle is widening or truncating the input vectors, and 879 // the argument type must also be encoded. 880 if (C->getType() == C->getOperand(0)->getType()) { 881 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 882 } else { 883 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 884 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 885 } 886 Record.push_back(VE.getValueID(C->getOperand(0))); 887 Record.push_back(VE.getValueID(C->getOperand(1))); 888 Record.push_back(VE.getValueID(C->getOperand(2))); 889 break; 890 case Instruction::ICmp: 891 case Instruction::FCmp: 892 Code = bitc::CST_CODE_CE_CMP; 893 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 894 Record.push_back(VE.getValueID(C->getOperand(0))); 895 Record.push_back(VE.getValueID(C->getOperand(1))); 896 Record.push_back(CE->getPredicate()); 897 break; 898 } 899 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 900 assert(BA->getFunction() == BA->getBasicBlock()->getParent() && 901 "Malformed blockaddress"); 902 Code = bitc::CST_CODE_BLOCKADDRESS; 903 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 904 Record.push_back(VE.getValueID(BA->getFunction())); 905 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 906 } else { 907 #ifndef NDEBUG 908 C->dump(); 909 #endif 910 llvm_unreachable("Unknown constant!"); 911 } 912 Stream.EmitRecord(Code, Record, AbbrevToUse); 913 Record.clear(); 914 } 915 916 Stream.ExitBlock(); 917 } 918 919 static void WriteModuleConstants(const ValueEnumerator &VE, 920 BitstreamWriter &Stream) { 921 const ValueEnumerator::ValueList &Vals = VE.getValues(); 922 923 // Find the first constant to emit, which is the first non-globalvalue value. 924 // We know globalvalues have been emitted by WriteModuleInfo. 925 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 926 if (!isa<GlobalValue>(Vals[i].first)) { 927 WriteConstants(i, Vals.size(), VE, Stream, true); 928 return; 929 } 930 } 931 } 932 933 /// PushValueAndType - The file has to encode both the value and type id for 934 /// many values, because we need to know what type to create for forward 935 /// references. However, most operands are not forward references, so this type 936 /// field is not needed. 937 /// 938 /// This function adds V's value ID to Vals. If the value ID is higher than the 939 /// instruction ID, then it is a forward reference, and it also includes the 940 /// type ID. 941 static bool PushValueAndType(const Value *V, unsigned InstID, 942 SmallVector<unsigned, 64> &Vals, 943 ValueEnumerator &VE) { 944 unsigned ValID = VE.getValueID(V); 945 Vals.push_back(ValID); 946 if (ValID >= InstID) { 947 Vals.push_back(VE.getTypeID(V->getType())); 948 return true; 949 } 950 return false; 951 } 952 953 /// WriteInstruction - Emit an instruction to the specified stream. 954 static void WriteInstruction(const Instruction &I, unsigned InstID, 955 ValueEnumerator &VE, BitstreamWriter &Stream, 956 SmallVector<unsigned, 64> &Vals) { 957 unsigned Code = 0; 958 unsigned AbbrevToUse = 0; 959 VE.setInstructionID(&I); 960 switch (I.getOpcode()) { 961 default: 962 if (Instruction::isCast(I.getOpcode())) { 963 Code = bitc::FUNC_CODE_INST_CAST; 964 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 965 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 966 Vals.push_back(VE.getTypeID(I.getType())); 967 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 968 } else { 969 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 970 Code = bitc::FUNC_CODE_INST_BINOP; 971 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 972 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 973 Vals.push_back(VE.getValueID(I.getOperand(1))); 974 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 975 uint64_t Flags = GetOptimizationFlags(&I); 976 if (Flags != 0) { 977 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 978 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 979 Vals.push_back(Flags); 980 } 981 } 982 break; 983 984 case Instruction::GetElementPtr: 985 Code = bitc::FUNC_CODE_INST_GEP; 986 if (cast<GEPOperator>(&I)->isInBounds()) 987 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 988 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 989 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 990 break; 991 case Instruction::ExtractValue: { 992 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 993 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 994 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 995 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 996 Vals.push_back(*i); 997 break; 998 } 999 case Instruction::InsertValue: { 1000 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1001 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1002 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1003 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1004 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1005 Vals.push_back(*i); 1006 break; 1007 } 1008 case Instruction::Select: 1009 Code = bitc::FUNC_CODE_INST_VSELECT; 1010 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1011 Vals.push_back(VE.getValueID(I.getOperand(2))); 1012 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1013 break; 1014 case Instruction::ExtractElement: 1015 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1016 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1017 Vals.push_back(VE.getValueID(I.getOperand(1))); 1018 break; 1019 case Instruction::InsertElement: 1020 Code = bitc::FUNC_CODE_INST_INSERTELT; 1021 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1022 Vals.push_back(VE.getValueID(I.getOperand(1))); 1023 Vals.push_back(VE.getValueID(I.getOperand(2))); 1024 break; 1025 case Instruction::ShuffleVector: 1026 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1027 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1028 Vals.push_back(VE.getValueID(I.getOperand(1))); 1029 Vals.push_back(VE.getValueID(I.getOperand(2))); 1030 break; 1031 case Instruction::ICmp: 1032 case Instruction::FCmp: 1033 // compare returning Int1Ty or vector of Int1Ty 1034 Code = bitc::FUNC_CODE_INST_CMP2; 1035 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1036 Vals.push_back(VE.getValueID(I.getOperand(1))); 1037 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1038 break; 1039 1040 case Instruction::Ret: 1041 { 1042 Code = bitc::FUNC_CODE_INST_RET; 1043 unsigned NumOperands = I.getNumOperands(); 1044 if (NumOperands == 0) 1045 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1046 else if (NumOperands == 1) { 1047 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1048 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1049 } else { 1050 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1051 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1052 } 1053 } 1054 break; 1055 case Instruction::Br: 1056 { 1057 Code = bitc::FUNC_CODE_INST_BR; 1058 BranchInst &II = cast<BranchInst>(I); 1059 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1060 if (II.isConditional()) { 1061 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1062 Vals.push_back(VE.getValueID(II.getCondition())); 1063 } 1064 } 1065 break; 1066 case Instruction::Switch: 1067 Code = bitc::FUNC_CODE_INST_SWITCH; 1068 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1069 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1070 Vals.push_back(VE.getValueID(I.getOperand(i))); 1071 break; 1072 case Instruction::IndirectBr: 1073 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1074 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1075 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1076 Vals.push_back(VE.getValueID(I.getOperand(i))); 1077 break; 1078 1079 case Instruction::Invoke: { 1080 const InvokeInst *II = cast<InvokeInst>(&I); 1081 const Value *Callee(II->getCalledValue()); 1082 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1083 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1084 Code = bitc::FUNC_CODE_INST_INVOKE; 1085 1086 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1087 Vals.push_back(II->getCallingConv()); 1088 Vals.push_back(VE.getValueID(II->getNormalDest())); 1089 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1090 PushValueAndType(Callee, InstID, Vals, VE); 1091 1092 // Emit value #'s for the fixed parameters. 1093 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1094 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1095 1096 // Emit type/value pairs for varargs params. 1097 if (FTy->isVarArg()) { 1098 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1099 i != e; ++i) 1100 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1101 } 1102 break; 1103 } 1104 case Instruction::Unwind: 1105 Code = bitc::FUNC_CODE_INST_UNWIND; 1106 break; 1107 case Instruction::Unreachable: 1108 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1109 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1110 break; 1111 1112 case Instruction::PHI: 1113 Code = bitc::FUNC_CODE_INST_PHI; 1114 Vals.push_back(VE.getTypeID(I.getType())); 1115 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1116 Vals.push_back(VE.getValueID(I.getOperand(i))); 1117 break; 1118 1119 case Instruction::Alloca: 1120 Code = bitc::FUNC_CODE_INST_ALLOCA; 1121 Vals.push_back(VE.getTypeID(I.getType())); 1122 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1123 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1124 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1125 break; 1126 1127 case Instruction::Load: 1128 Code = bitc::FUNC_CODE_INST_LOAD; 1129 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1130 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1131 1132 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1133 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1134 break; 1135 case Instruction::Store: 1136 Code = bitc::FUNC_CODE_INST_STORE2; 1137 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1138 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1139 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1140 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1141 break; 1142 case Instruction::Call: { 1143 const CallInst &CI = cast<CallInst>(I); 1144 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1145 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1146 1147 Code = bitc::FUNC_CODE_INST_CALL; 1148 1149 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1150 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1151 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1152 1153 // Emit value #'s for the fixed parameters. 1154 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1155 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1156 1157 // Emit type/value pairs for varargs params. 1158 if (FTy->isVarArg()) { 1159 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1160 i != e; ++i) 1161 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1162 } 1163 break; 1164 } 1165 case Instruction::VAArg: 1166 Code = bitc::FUNC_CODE_INST_VAARG; 1167 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1168 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1169 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1170 break; 1171 } 1172 1173 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1174 Vals.clear(); 1175 } 1176 1177 // Emit names for globals/functions etc. 1178 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1179 const ValueEnumerator &VE, 1180 BitstreamWriter &Stream) { 1181 if (VST.empty()) return; 1182 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1183 1184 // FIXME: Set up the abbrev, we know how many values there are! 1185 // FIXME: We know if the type names can use 7-bit ascii. 1186 SmallVector<unsigned, 64> NameVals; 1187 1188 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1189 SI != SE; ++SI) { 1190 1191 const ValueName &Name = *SI; 1192 1193 // Figure out the encoding to use for the name. 1194 bool is7Bit = true; 1195 bool isChar6 = true; 1196 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1197 C != E; ++C) { 1198 if (isChar6) 1199 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1200 if ((unsigned char)*C & 128) { 1201 is7Bit = false; 1202 break; // don't bother scanning the rest. 1203 } 1204 } 1205 1206 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1207 1208 // VST_ENTRY: [valueid, namechar x N] 1209 // VST_BBENTRY: [bbid, namechar x N] 1210 unsigned Code; 1211 if (isa<BasicBlock>(SI->getValue())) { 1212 Code = bitc::VST_CODE_BBENTRY; 1213 if (isChar6) 1214 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1215 } else { 1216 Code = bitc::VST_CODE_ENTRY; 1217 if (isChar6) 1218 AbbrevToUse = VST_ENTRY_6_ABBREV; 1219 else if (is7Bit) 1220 AbbrevToUse = VST_ENTRY_7_ABBREV; 1221 } 1222 1223 NameVals.push_back(VE.getValueID(SI->getValue())); 1224 for (const char *P = Name.getKeyData(), 1225 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1226 NameVals.push_back((unsigned char)*P); 1227 1228 // Emit the finished record. 1229 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1230 NameVals.clear(); 1231 } 1232 Stream.ExitBlock(); 1233 } 1234 1235 /// WriteFunction - Emit a function body to the module stream. 1236 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1237 BitstreamWriter &Stream) { 1238 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1239 VE.incorporateFunction(F); 1240 1241 SmallVector<unsigned, 64> Vals; 1242 1243 // Emit the number of basic blocks, so the reader can create them ahead of 1244 // time. 1245 Vals.push_back(VE.getBasicBlocks().size()); 1246 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1247 Vals.clear(); 1248 1249 // If there are function-local constants, emit them now. 1250 unsigned CstStart, CstEnd; 1251 VE.getFunctionConstantRange(CstStart, CstEnd); 1252 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1253 1254 // If there is function-local metadata, emit it now. 1255 WriteFunctionLocalMetadata(F, VE, Stream); 1256 1257 // Keep a running idea of what the instruction ID is. 1258 unsigned InstID = CstEnd; 1259 1260 bool NeedsMetadataAttachment = false; 1261 1262 DebugLoc LastDL; 1263 1264 // Finally, emit all the instructions, in order. 1265 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1266 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1267 I != E; ++I) { 1268 WriteInstruction(*I, InstID, VE, Stream, Vals); 1269 1270 if (!I->getType()->isVoidTy()) 1271 ++InstID; 1272 1273 // If the instruction has metadata, write a metadata attachment later. 1274 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1275 1276 // If the instruction has a debug location, emit it. 1277 DebugLoc DL = I->getDebugLoc(); 1278 if (DL.isUnknown()) { 1279 // nothing todo. 1280 } else if (DL == LastDL) { 1281 // Just repeat the same debug loc as last time. 1282 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1283 } else { 1284 MDNode *Scope, *IA; 1285 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1286 1287 Vals.push_back(DL.getLine()); 1288 Vals.push_back(DL.getCol()); 1289 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1290 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1291 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1292 Vals.clear(); 1293 1294 LastDL = DL; 1295 } 1296 } 1297 1298 // Emit names for all the instructions etc. 1299 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1300 1301 if (NeedsMetadataAttachment) 1302 WriteMetadataAttachment(F, VE, Stream); 1303 VE.purgeFunction(); 1304 Stream.ExitBlock(); 1305 } 1306 1307 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1308 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1309 const ValueEnumerator &VE, 1310 BitstreamWriter &Stream) { 1311 if (TST.empty()) return; 1312 1313 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1314 1315 // 7-bit fixed width VST_CODE_ENTRY strings. 1316 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1317 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1319 Log2_32_Ceil(VE.getTypes().size()+1))); 1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1322 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1323 1324 SmallVector<unsigned, 64> NameVals; 1325 1326 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1327 TI != TE; ++TI) { 1328 // TST_ENTRY: [typeid, namechar x N] 1329 NameVals.push_back(VE.getTypeID(TI->second)); 1330 1331 const std::string &Str = TI->first; 1332 bool is7Bit = true; 1333 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1334 NameVals.push_back((unsigned char)Str[i]); 1335 if (Str[i] & 128) 1336 is7Bit = false; 1337 } 1338 1339 // Emit the finished record. 1340 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1341 NameVals.clear(); 1342 } 1343 1344 Stream.ExitBlock(); 1345 } 1346 1347 // Emit blockinfo, which defines the standard abbreviations etc. 1348 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1349 // We only want to emit block info records for blocks that have multiple 1350 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1351 // blocks can defined their abbrevs inline. 1352 Stream.EnterBlockInfoBlock(2); 1353 1354 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1355 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1360 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1361 Abbv) != VST_ENTRY_8_ABBREV) 1362 llvm_unreachable("Unexpected abbrev ordering!"); 1363 } 1364 1365 { // 7-bit fixed width VST_ENTRY strings. 1366 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1367 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1371 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1372 Abbv) != VST_ENTRY_7_ABBREV) 1373 llvm_unreachable("Unexpected abbrev ordering!"); 1374 } 1375 { // 6-bit char6 VST_ENTRY strings. 1376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1377 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1381 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1382 Abbv) != VST_ENTRY_6_ABBREV) 1383 llvm_unreachable("Unexpected abbrev ordering!"); 1384 } 1385 { // 6-bit char6 VST_BBENTRY strings. 1386 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1387 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1391 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1392 Abbv) != VST_BBENTRY_6_ABBREV) 1393 llvm_unreachable("Unexpected abbrev ordering!"); 1394 } 1395 1396 1397 1398 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1399 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1400 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1402 Log2_32_Ceil(VE.getTypes().size()+1))); 1403 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1404 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1405 llvm_unreachable("Unexpected abbrev ordering!"); 1406 } 1407 1408 { // INTEGER abbrev for CONSTANTS_BLOCK. 1409 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1410 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1412 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1413 Abbv) != CONSTANTS_INTEGER_ABBREV) 1414 llvm_unreachable("Unexpected abbrev ordering!"); 1415 } 1416 1417 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1418 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1419 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1422 Log2_32_Ceil(VE.getTypes().size()+1))); 1423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1424 1425 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1426 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1427 llvm_unreachable("Unexpected abbrev ordering!"); 1428 } 1429 { // NULL abbrev for CONSTANTS_BLOCK. 1430 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1431 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1432 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1433 Abbv) != CONSTANTS_NULL_Abbrev) 1434 llvm_unreachable("Unexpected abbrev ordering!"); 1435 } 1436 1437 // FIXME: This should only use space for first class types! 1438 1439 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1440 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1441 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1445 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1446 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1447 llvm_unreachable("Unexpected abbrev ordering!"); 1448 } 1449 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1450 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1451 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1455 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1456 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1457 llvm_unreachable("Unexpected abbrev ordering!"); 1458 } 1459 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1460 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1461 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1466 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1467 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1468 llvm_unreachable("Unexpected abbrev ordering!"); 1469 } 1470 { // INST_CAST abbrev for FUNCTION_BLOCK. 1471 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1472 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1475 Log2_32_Ceil(VE.getTypes().size()+1))); 1476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1477 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1478 Abbv) != FUNCTION_INST_CAST_ABBREV) 1479 llvm_unreachable("Unexpected abbrev ordering!"); 1480 } 1481 1482 { // INST_RET abbrev for FUNCTION_BLOCK. 1483 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1484 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1485 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1486 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1487 llvm_unreachable("Unexpected abbrev ordering!"); 1488 } 1489 { // INST_RET abbrev for FUNCTION_BLOCK. 1490 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1491 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1493 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1494 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1495 llvm_unreachable("Unexpected abbrev ordering!"); 1496 } 1497 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1498 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1499 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1500 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1501 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1502 llvm_unreachable("Unexpected abbrev ordering!"); 1503 } 1504 1505 Stream.ExitBlock(); 1506 } 1507 1508 1509 /// WriteModule - Emit the specified module to the bitstream. 1510 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1511 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1512 1513 // Emit the version number if it is non-zero. 1514 if (CurVersion) { 1515 SmallVector<unsigned, 1> Vals; 1516 Vals.push_back(CurVersion); 1517 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1518 } 1519 1520 // Analyze the module, enumerating globals, functions, etc. 1521 ValueEnumerator VE(M); 1522 1523 // Emit blockinfo, which defines the standard abbreviations etc. 1524 WriteBlockInfo(VE, Stream); 1525 1526 // Emit information about parameter attributes. 1527 WriteAttributeTable(VE, Stream); 1528 1529 // Emit information describing all of the types in the module. 1530 WriteTypeTable(VE, Stream); 1531 1532 // Emit top-level description of module, including target triple, inline asm, 1533 // descriptors for global variables, and function prototype info. 1534 WriteModuleInfo(M, VE, Stream); 1535 1536 // Emit constants. 1537 WriteModuleConstants(VE, Stream); 1538 1539 // Emit metadata. 1540 WriteModuleMetadata(M, VE, Stream); 1541 1542 // Emit function bodies. 1543 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1544 if (!I->isDeclaration()) 1545 WriteFunction(*I, VE, Stream); 1546 1547 // Emit metadata. 1548 WriteModuleMetadataStore(M, Stream); 1549 1550 // Emit the type symbol table information. 1551 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1552 1553 // Emit names for globals/functions etc. 1554 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1555 1556 Stream.ExitBlock(); 1557 } 1558 1559 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1560 /// header and trailer to make it compatible with the system archiver. To do 1561 /// this we emit the following header, and then emit a trailer that pads the 1562 /// file out to be a multiple of 16 bytes. 1563 /// 1564 /// struct bc_header { 1565 /// uint32_t Magic; // 0x0B17C0DE 1566 /// uint32_t Version; // Version, currently always 0. 1567 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1568 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1569 /// uint32_t CPUType; // CPU specifier. 1570 /// ... potentially more later ... 1571 /// }; 1572 enum { 1573 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1574 DarwinBCHeaderSize = 5*4 1575 }; 1576 1577 /// isARMTriplet - Return true if the triplet looks like: 1578 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. 1579 static bool isARMTriplet(const std::string &TT) { 1580 size_t Pos = 0; 1581 size_t Size = TT.size(); 1582 if (Size >= 6 && 1583 TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' && 1584 TT[3] == 'm' && TT[4] == 'b') 1585 Pos = 5; 1586 else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm') 1587 Pos = 3; 1588 else 1589 return false; 1590 1591 if (TT[Pos] == '-') 1592 return true; 1593 else if (TT[Pos] == 'v') { 1594 if (Size >= Pos+4 && 1595 TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2') 1596 return true; 1597 else if (Size >= Pos+4 && 1598 TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e') 1599 return true; 1600 } else 1601 return false; 1602 while (++Pos < Size && TT[Pos] != '-') { 1603 if (!isdigit(TT[Pos])) 1604 return false; 1605 } 1606 return true; 1607 } 1608 1609 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1610 const std::string &TT) { 1611 unsigned CPUType = ~0U; 1612 1613 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1614 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1615 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1616 // specific constants here because they are implicitly part of the Darwin ABI. 1617 enum { 1618 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1619 DARWIN_CPU_TYPE_X86 = 7, 1620 DARWIN_CPU_TYPE_ARM = 12, 1621 DARWIN_CPU_TYPE_POWERPC = 18 1622 }; 1623 1624 if (TT.find("x86_64-") == 0) 1625 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1626 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1627 TT[4] == '-' && TT[1] - '3' < 6) 1628 CPUType = DARWIN_CPU_TYPE_X86; 1629 else if (TT.find("powerpc-") == 0) 1630 CPUType = DARWIN_CPU_TYPE_POWERPC; 1631 else if (TT.find("powerpc64-") == 0) 1632 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1633 else if (isARMTriplet(TT)) 1634 CPUType = DARWIN_CPU_TYPE_ARM; 1635 1636 // Traditional Bitcode starts after header. 1637 unsigned BCOffset = DarwinBCHeaderSize; 1638 1639 Stream.Emit(0x0B17C0DE, 32); 1640 Stream.Emit(0 , 32); // Version. 1641 Stream.Emit(BCOffset , 32); 1642 Stream.Emit(0 , 32); // Filled in later. 1643 Stream.Emit(CPUType , 32); 1644 } 1645 1646 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1647 /// finalize the header. 1648 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1649 // Update the size field in the header. 1650 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1651 1652 // If the file is not a multiple of 16 bytes, insert dummy padding. 1653 while (BufferSize & 15) { 1654 Stream.Emit(0, 8); 1655 ++BufferSize; 1656 } 1657 } 1658 1659 1660 /// WriteBitcodeToFile - Write the specified module to the specified output 1661 /// stream. 1662 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1663 std::vector<unsigned char> Buffer; 1664 BitstreamWriter Stream(Buffer); 1665 1666 Buffer.reserve(256*1024); 1667 1668 WriteBitcodeToStream( M, Stream ); 1669 1670 // Write the generated bitstream to "Out". 1671 Out.write((char*)&Buffer.front(), Buffer.size()); 1672 } 1673 1674 /// WriteBitcodeToStream - Write the specified module to the specified output 1675 /// stream. 1676 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1677 // If this is darwin, emit a file header and trailer if needed. 1678 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1679 if (isDarwin) 1680 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1681 1682 // Emit the file header. 1683 Stream.Emit((unsigned)'B', 8); 1684 Stream.Emit((unsigned)'C', 8); 1685 Stream.Emit(0x0, 4); 1686 Stream.Emit(0xC, 4); 1687 Stream.Emit(0xE, 4); 1688 Stream.Emit(0xD, 4); 1689 1690 // Emit the module. 1691 WriteModule(M, Stream); 1692 1693 if (isDarwin) 1694 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1695 } 1696