1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/BlockFrequencyInfo.h" 18 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Bitcode/BitstreamWriter.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/UseListOrder.h" 36 #include "llvm/IR/ValueSymbolTable.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/Program.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cctype> 43 #include <map> 44 using namespace llvm; 45 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 73 switch (Opcode) { 74 default: llvm_unreachable("Unknown cast instruction!"); 75 case Instruction::Trunc : return bitc::CAST_TRUNC; 76 case Instruction::ZExt : return bitc::CAST_ZEXT; 77 case Instruction::SExt : return bitc::CAST_SEXT; 78 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 79 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 80 case Instruction::UIToFP : return bitc::CAST_UITOFP; 81 case Instruction::SIToFP : return bitc::CAST_SITOFP; 82 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 83 case Instruction::FPExt : return bitc::CAST_FPEXT; 84 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 85 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 86 case Instruction::BitCast : return bitc::CAST_BITCAST; 87 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 88 } 89 } 90 91 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 92 switch (Opcode) { 93 default: llvm_unreachable("Unknown binary instruction!"); 94 case Instruction::Add: 95 case Instruction::FAdd: return bitc::BINOP_ADD; 96 case Instruction::Sub: 97 case Instruction::FSub: return bitc::BINOP_SUB; 98 case Instruction::Mul: 99 case Instruction::FMul: return bitc::BINOP_MUL; 100 case Instruction::UDiv: return bitc::BINOP_UDIV; 101 case Instruction::FDiv: 102 case Instruction::SDiv: return bitc::BINOP_SDIV; 103 case Instruction::URem: return bitc::BINOP_UREM; 104 case Instruction::FRem: 105 case Instruction::SRem: return bitc::BINOP_SREM; 106 case Instruction::Shl: return bitc::BINOP_SHL; 107 case Instruction::LShr: return bitc::BINOP_LSHR; 108 case Instruction::AShr: return bitc::BINOP_ASHR; 109 case Instruction::And: return bitc::BINOP_AND; 110 case Instruction::Or: return bitc::BINOP_OR; 111 case Instruction::Xor: return bitc::BINOP_XOR; 112 } 113 } 114 115 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 116 switch (Op) { 117 default: llvm_unreachable("Unknown RMW operation!"); 118 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 119 case AtomicRMWInst::Add: return bitc::RMW_ADD; 120 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 121 case AtomicRMWInst::And: return bitc::RMW_AND; 122 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 123 case AtomicRMWInst::Or: return bitc::RMW_OR; 124 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 125 case AtomicRMWInst::Max: return bitc::RMW_MAX; 126 case AtomicRMWInst::Min: return bitc::RMW_MIN; 127 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 128 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 129 } 130 } 131 132 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 133 switch (Ordering) { 134 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 135 case Unordered: return bitc::ORDERING_UNORDERED; 136 case Monotonic: return bitc::ORDERING_MONOTONIC; 137 case Acquire: return bitc::ORDERING_ACQUIRE; 138 case Release: return bitc::ORDERING_RELEASE; 139 case AcquireRelease: return bitc::ORDERING_ACQREL; 140 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 141 } 142 llvm_unreachable("Invalid ordering"); 143 } 144 145 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 146 switch (SynchScope) { 147 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 148 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 149 } 150 llvm_unreachable("Invalid synch scope"); 151 } 152 153 static void WriteStringRecord(unsigned Code, StringRef Str, 154 unsigned AbbrevToUse, BitstreamWriter &Stream) { 155 SmallVector<unsigned, 64> Vals; 156 157 // Code: [strchar x N] 158 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 159 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 160 AbbrevToUse = 0; 161 Vals.push_back(Str[i]); 162 } 163 164 // Emit the finished record. 165 Stream.EmitRecord(Code, Vals, AbbrevToUse); 166 } 167 168 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 169 switch (Kind) { 170 case Attribute::Alignment: 171 return bitc::ATTR_KIND_ALIGNMENT; 172 case Attribute::AlwaysInline: 173 return bitc::ATTR_KIND_ALWAYS_INLINE; 174 case Attribute::ArgMemOnly: 175 return bitc::ATTR_KIND_ARGMEMONLY; 176 case Attribute::Builtin: 177 return bitc::ATTR_KIND_BUILTIN; 178 case Attribute::ByVal: 179 return bitc::ATTR_KIND_BY_VAL; 180 case Attribute::Convergent: 181 return bitc::ATTR_KIND_CONVERGENT; 182 case Attribute::InAlloca: 183 return bitc::ATTR_KIND_IN_ALLOCA; 184 case Attribute::Cold: 185 return bitc::ATTR_KIND_COLD; 186 case Attribute::InaccessibleMemOnly: 187 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 188 case Attribute::InaccessibleMemOrArgMemOnly: 189 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 190 case Attribute::InlineHint: 191 return bitc::ATTR_KIND_INLINE_HINT; 192 case Attribute::InReg: 193 return bitc::ATTR_KIND_IN_REG; 194 case Attribute::JumpTable: 195 return bitc::ATTR_KIND_JUMP_TABLE; 196 case Attribute::MinSize: 197 return bitc::ATTR_KIND_MIN_SIZE; 198 case Attribute::Naked: 199 return bitc::ATTR_KIND_NAKED; 200 case Attribute::Nest: 201 return bitc::ATTR_KIND_NEST; 202 case Attribute::NoAlias: 203 return bitc::ATTR_KIND_NO_ALIAS; 204 case Attribute::NoBuiltin: 205 return bitc::ATTR_KIND_NO_BUILTIN; 206 case Attribute::NoCapture: 207 return bitc::ATTR_KIND_NO_CAPTURE; 208 case Attribute::NoDuplicate: 209 return bitc::ATTR_KIND_NO_DUPLICATE; 210 case Attribute::NoImplicitFloat: 211 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 212 case Attribute::NoInline: 213 return bitc::ATTR_KIND_NO_INLINE; 214 case Attribute::NoRecurse: 215 return bitc::ATTR_KIND_NO_RECURSE; 216 case Attribute::NonLazyBind: 217 return bitc::ATTR_KIND_NON_LAZY_BIND; 218 case Attribute::NonNull: 219 return bitc::ATTR_KIND_NON_NULL; 220 case Attribute::Dereferenceable: 221 return bitc::ATTR_KIND_DEREFERENCEABLE; 222 case Attribute::DereferenceableOrNull: 223 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 224 case Attribute::NoRedZone: 225 return bitc::ATTR_KIND_NO_RED_ZONE; 226 case Attribute::NoReturn: 227 return bitc::ATTR_KIND_NO_RETURN; 228 case Attribute::NoUnwind: 229 return bitc::ATTR_KIND_NO_UNWIND; 230 case Attribute::OptimizeForSize: 231 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 232 case Attribute::OptimizeNone: 233 return bitc::ATTR_KIND_OPTIMIZE_NONE; 234 case Attribute::ReadNone: 235 return bitc::ATTR_KIND_READ_NONE; 236 case Attribute::ReadOnly: 237 return bitc::ATTR_KIND_READ_ONLY; 238 case Attribute::Returned: 239 return bitc::ATTR_KIND_RETURNED; 240 case Attribute::ReturnsTwice: 241 return bitc::ATTR_KIND_RETURNS_TWICE; 242 case Attribute::SExt: 243 return bitc::ATTR_KIND_S_EXT; 244 case Attribute::StackAlignment: 245 return bitc::ATTR_KIND_STACK_ALIGNMENT; 246 case Attribute::StackProtect: 247 return bitc::ATTR_KIND_STACK_PROTECT; 248 case Attribute::StackProtectReq: 249 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 250 case Attribute::StackProtectStrong: 251 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 252 case Attribute::SafeStack: 253 return bitc::ATTR_KIND_SAFESTACK; 254 case Attribute::StructRet: 255 return bitc::ATTR_KIND_STRUCT_RET; 256 case Attribute::SanitizeAddress: 257 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 258 case Attribute::SanitizeThread: 259 return bitc::ATTR_KIND_SANITIZE_THREAD; 260 case Attribute::SanitizeMemory: 261 return bitc::ATTR_KIND_SANITIZE_MEMORY; 262 case Attribute::UWTable: 263 return bitc::ATTR_KIND_UW_TABLE; 264 case Attribute::ZExt: 265 return bitc::ATTR_KIND_Z_EXT; 266 case Attribute::EndAttrKinds: 267 llvm_unreachable("Can not encode end-attribute kinds marker."); 268 case Attribute::None: 269 llvm_unreachable("Can not encode none-attribute."); 270 } 271 272 llvm_unreachable("Trying to encode unknown attribute"); 273 } 274 275 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 276 BitstreamWriter &Stream) { 277 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 278 if (AttrGrps.empty()) return; 279 280 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 281 282 SmallVector<uint64_t, 64> Record; 283 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 284 AttributeSet AS = AttrGrps[i]; 285 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 286 AttributeSet A = AS.getSlotAttributes(i); 287 288 Record.push_back(VE.getAttributeGroupID(A)); 289 Record.push_back(AS.getSlotIndex(i)); 290 291 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 292 I != E; ++I) { 293 Attribute Attr = *I; 294 if (Attr.isEnumAttribute()) { 295 Record.push_back(0); 296 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 297 } else if (Attr.isIntAttribute()) { 298 Record.push_back(1); 299 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 300 Record.push_back(Attr.getValueAsInt()); 301 } else { 302 StringRef Kind = Attr.getKindAsString(); 303 StringRef Val = Attr.getValueAsString(); 304 305 Record.push_back(Val.empty() ? 3 : 4); 306 Record.append(Kind.begin(), Kind.end()); 307 Record.push_back(0); 308 if (!Val.empty()) { 309 Record.append(Val.begin(), Val.end()); 310 Record.push_back(0); 311 } 312 } 313 } 314 315 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 316 Record.clear(); 317 } 318 } 319 320 Stream.ExitBlock(); 321 } 322 323 static void WriteAttributeTable(const ValueEnumerator &VE, 324 BitstreamWriter &Stream) { 325 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 326 if (Attrs.empty()) return; 327 328 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 329 330 SmallVector<uint64_t, 64> Record; 331 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 332 const AttributeSet &A = Attrs[i]; 333 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 334 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 335 336 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 337 Record.clear(); 338 } 339 340 Stream.ExitBlock(); 341 } 342 343 /// WriteTypeTable - Write out the type table for a module. 344 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 345 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 346 347 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 348 SmallVector<uint64_t, 64> TypeVals; 349 350 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 351 352 // Abbrev for TYPE_CODE_POINTER. 353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 356 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 357 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_FUNCTION. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_STRUCT_ANON. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Abbrev for TYPE_CODE_STRUCT_NAME. 378 Abbv = new BitCodeAbbrev(); 379 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 382 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Abbrev for TYPE_CODE_STRUCT_NAMED. 385 Abbv = new BitCodeAbbrev(); 386 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 390 391 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 392 393 // Abbrev for TYPE_CODE_ARRAY. 394 Abbv = new BitCodeAbbrev(); 395 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 398 399 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 400 401 // Emit an entry count so the reader can reserve space. 402 TypeVals.push_back(TypeList.size()); 403 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 404 TypeVals.clear(); 405 406 // Loop over all of the types, emitting each in turn. 407 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 408 Type *T = TypeList[i]; 409 int AbbrevToUse = 0; 410 unsigned Code = 0; 411 412 switch (T->getTypeID()) { 413 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 414 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 415 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 416 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 417 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 418 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 419 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 420 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 421 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 422 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 423 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 424 case Type::IntegerTyID: 425 // INTEGER: [width] 426 Code = bitc::TYPE_CODE_INTEGER; 427 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 428 break; 429 case Type::PointerTyID: { 430 PointerType *PTy = cast<PointerType>(T); 431 // POINTER: [pointee type, address space] 432 Code = bitc::TYPE_CODE_POINTER; 433 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 434 unsigned AddressSpace = PTy->getAddressSpace(); 435 TypeVals.push_back(AddressSpace); 436 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 437 break; 438 } 439 case Type::FunctionTyID: { 440 FunctionType *FT = cast<FunctionType>(T); 441 // FUNCTION: [isvararg, retty, paramty x N] 442 Code = bitc::TYPE_CODE_FUNCTION; 443 TypeVals.push_back(FT->isVarArg()); 444 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 445 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 446 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 447 AbbrevToUse = FunctionAbbrev; 448 break; 449 } 450 case Type::StructTyID: { 451 StructType *ST = cast<StructType>(T); 452 // STRUCT: [ispacked, eltty x N] 453 TypeVals.push_back(ST->isPacked()); 454 // Output all of the element types. 455 for (StructType::element_iterator I = ST->element_begin(), 456 E = ST->element_end(); I != E; ++I) 457 TypeVals.push_back(VE.getTypeID(*I)); 458 459 if (ST->isLiteral()) { 460 Code = bitc::TYPE_CODE_STRUCT_ANON; 461 AbbrevToUse = StructAnonAbbrev; 462 } else { 463 if (ST->isOpaque()) { 464 Code = bitc::TYPE_CODE_OPAQUE; 465 } else { 466 Code = bitc::TYPE_CODE_STRUCT_NAMED; 467 AbbrevToUse = StructNamedAbbrev; 468 } 469 470 // Emit the name if it is present. 471 if (!ST->getName().empty()) 472 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 473 StructNameAbbrev, Stream); 474 } 475 break; 476 } 477 case Type::ArrayTyID: { 478 ArrayType *AT = cast<ArrayType>(T); 479 // ARRAY: [numelts, eltty] 480 Code = bitc::TYPE_CODE_ARRAY; 481 TypeVals.push_back(AT->getNumElements()); 482 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 483 AbbrevToUse = ArrayAbbrev; 484 break; 485 } 486 case Type::VectorTyID: { 487 VectorType *VT = cast<VectorType>(T); 488 // VECTOR [numelts, eltty] 489 Code = bitc::TYPE_CODE_VECTOR; 490 TypeVals.push_back(VT->getNumElements()); 491 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 492 break; 493 } 494 } 495 496 // Emit the finished record. 497 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 498 TypeVals.clear(); 499 } 500 501 Stream.ExitBlock(); 502 } 503 504 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 505 switch (Linkage) { 506 case GlobalValue::ExternalLinkage: 507 return 0; 508 case GlobalValue::WeakAnyLinkage: 509 return 16; 510 case GlobalValue::AppendingLinkage: 511 return 2; 512 case GlobalValue::InternalLinkage: 513 return 3; 514 case GlobalValue::LinkOnceAnyLinkage: 515 return 18; 516 case GlobalValue::ExternalWeakLinkage: 517 return 7; 518 case GlobalValue::CommonLinkage: 519 return 8; 520 case GlobalValue::PrivateLinkage: 521 return 9; 522 case GlobalValue::WeakODRLinkage: 523 return 17; 524 case GlobalValue::LinkOnceODRLinkage: 525 return 19; 526 case GlobalValue::AvailableExternallyLinkage: 527 return 12; 528 } 529 llvm_unreachable("Invalid linkage"); 530 } 531 532 static unsigned getEncodedLinkage(const GlobalValue &GV) { 533 return getEncodedLinkage(GV.getLinkage()); 534 } 535 536 static unsigned getEncodedVisibility(const GlobalValue &GV) { 537 switch (GV.getVisibility()) { 538 case GlobalValue::DefaultVisibility: return 0; 539 case GlobalValue::HiddenVisibility: return 1; 540 case GlobalValue::ProtectedVisibility: return 2; 541 } 542 llvm_unreachable("Invalid visibility"); 543 } 544 545 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 546 switch (GV.getDLLStorageClass()) { 547 case GlobalValue::DefaultStorageClass: return 0; 548 case GlobalValue::DLLImportStorageClass: return 1; 549 case GlobalValue::DLLExportStorageClass: return 2; 550 } 551 llvm_unreachable("Invalid DLL storage class"); 552 } 553 554 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 555 switch (GV.getThreadLocalMode()) { 556 case GlobalVariable::NotThreadLocal: return 0; 557 case GlobalVariable::GeneralDynamicTLSModel: return 1; 558 case GlobalVariable::LocalDynamicTLSModel: return 2; 559 case GlobalVariable::InitialExecTLSModel: return 3; 560 case GlobalVariable::LocalExecTLSModel: return 4; 561 } 562 llvm_unreachable("Invalid TLS model"); 563 } 564 565 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 566 switch (C.getSelectionKind()) { 567 case Comdat::Any: 568 return bitc::COMDAT_SELECTION_KIND_ANY; 569 case Comdat::ExactMatch: 570 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 571 case Comdat::Largest: 572 return bitc::COMDAT_SELECTION_KIND_LARGEST; 573 case Comdat::NoDuplicates: 574 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 575 case Comdat::SameSize: 576 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 577 } 578 llvm_unreachable("Invalid selection kind"); 579 } 580 581 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 582 SmallVector<unsigned, 64> Vals; 583 for (const Comdat *C : VE.getComdats()) { 584 // COMDAT: [selection_kind, name] 585 Vals.push_back(getEncodedComdatSelectionKind(*C)); 586 size_t Size = C->getName().size(); 587 assert(isUInt<32>(Size)); 588 Vals.push_back(Size); 589 for (char Chr : C->getName()) 590 Vals.push_back((unsigned char)Chr); 591 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 592 Vals.clear(); 593 } 594 } 595 596 /// Write a record that will eventually hold the word offset of the 597 /// module-level VST. For now the offset is 0, which will be backpatched 598 /// after the real VST is written. Returns the bit offset to backpatch. 599 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 600 // Write a placeholder value in for the offset of the real VST, 601 // which is written after the function blocks so that it can include 602 // the offset of each function. The placeholder offset will be 603 // updated when the real VST is written. 604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 605 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 606 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 607 // hold the real VST offset. Must use fixed instead of VBR as we don't 608 // know how many VBR chunks to reserve ahead of time. 609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 610 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 611 612 // Emit the placeholder 613 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 614 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 615 616 // Compute and return the bit offset to the placeholder, which will be 617 // patched when the real VST is written. We can simply subtract the 32-bit 618 // fixed size from the current bit number to get the location to backpatch. 619 return Stream.GetCurrentBitNo() - 32; 620 } 621 622 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 623 624 /// Determine the encoding to use for the given string name and length. 625 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 626 bool isChar6 = true; 627 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 628 if (isChar6) 629 isChar6 = BitCodeAbbrevOp::isChar6(*C); 630 if ((unsigned char)*C & 128) 631 // don't bother scanning the rest. 632 return SE_Fixed8; 633 } 634 if (isChar6) 635 return SE_Char6; 636 else 637 return SE_Fixed7; 638 } 639 640 /// Emit top-level description of module, including target triple, inline asm, 641 /// descriptors for global variables, and function prototype info. 642 /// Returns the bit offset to backpatch with the location of the real VST. 643 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 644 BitstreamWriter &Stream) { 645 // Emit various pieces of data attached to a module. 646 if (!M->getTargetTriple().empty()) 647 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 648 0/*TODO*/, Stream); 649 const std::string &DL = M->getDataLayoutStr(); 650 if (!DL.empty()) 651 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 652 if (!M->getModuleInlineAsm().empty()) 653 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 654 0/*TODO*/, Stream); 655 656 // Emit information about sections and GC, computing how many there are. Also 657 // compute the maximum alignment value. 658 std::map<std::string, unsigned> SectionMap; 659 std::map<std::string, unsigned> GCMap; 660 unsigned MaxAlignment = 0; 661 unsigned MaxGlobalType = 0; 662 for (const GlobalValue &GV : M->globals()) { 663 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 664 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 665 if (GV.hasSection()) { 666 // Give section names unique ID's. 667 unsigned &Entry = SectionMap[GV.getSection()]; 668 if (!Entry) { 669 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 670 0/*TODO*/, Stream); 671 Entry = SectionMap.size(); 672 } 673 } 674 } 675 for (const Function &F : *M) { 676 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 677 if (F.hasSection()) { 678 // Give section names unique ID's. 679 unsigned &Entry = SectionMap[F.getSection()]; 680 if (!Entry) { 681 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 682 0/*TODO*/, Stream); 683 Entry = SectionMap.size(); 684 } 685 } 686 if (F.hasGC()) { 687 // Same for GC names. 688 unsigned &Entry = GCMap[F.getGC()]; 689 if (!Entry) { 690 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 691 0/*TODO*/, Stream); 692 Entry = GCMap.size(); 693 } 694 } 695 } 696 697 // Emit abbrev for globals, now that we know # sections and max alignment. 698 unsigned SimpleGVarAbbrev = 0; 699 if (!M->global_empty()) { 700 // Add an abbrev for common globals with no visibility or thread localness. 701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 702 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 704 Log2_32_Ceil(MaxGlobalType+1))); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 706 //| explicitType << 1 707 //| constant 708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 710 if (MaxAlignment == 0) // Alignment. 711 Abbv->Add(BitCodeAbbrevOp(0)); 712 else { 713 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 715 Log2_32_Ceil(MaxEncAlignment+1))); 716 } 717 if (SectionMap.empty()) // Section. 718 Abbv->Add(BitCodeAbbrevOp(0)); 719 else 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 721 Log2_32_Ceil(SectionMap.size()+1))); 722 // Don't bother emitting vis + thread local. 723 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 724 } 725 726 // Emit the global variable information. 727 SmallVector<unsigned, 64> Vals; 728 for (const GlobalVariable &GV : M->globals()) { 729 unsigned AbbrevToUse = 0; 730 731 // GLOBALVAR: [type, isconst, initid, 732 // linkage, alignment, section, visibility, threadlocal, 733 // unnamed_addr, externally_initialized, dllstorageclass, 734 // comdat] 735 Vals.push_back(VE.getTypeID(GV.getValueType())); 736 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 737 Vals.push_back(GV.isDeclaration() ? 0 : 738 (VE.getValueID(GV.getInitializer()) + 1)); 739 Vals.push_back(getEncodedLinkage(GV)); 740 Vals.push_back(Log2_32(GV.getAlignment())+1); 741 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 742 if (GV.isThreadLocal() || 743 GV.getVisibility() != GlobalValue::DefaultVisibility || 744 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 745 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 746 GV.hasComdat()) { 747 Vals.push_back(getEncodedVisibility(GV)); 748 Vals.push_back(getEncodedThreadLocalMode(GV)); 749 Vals.push_back(GV.hasUnnamedAddr()); 750 Vals.push_back(GV.isExternallyInitialized()); 751 Vals.push_back(getEncodedDLLStorageClass(GV)); 752 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 753 } else { 754 AbbrevToUse = SimpleGVarAbbrev; 755 } 756 757 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 758 Vals.clear(); 759 } 760 761 // Emit the function proto information. 762 for (const Function &F : *M) { 763 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 764 // section, visibility, gc, unnamed_addr, prologuedata, 765 // dllstorageclass, comdat, prefixdata, personalityfn] 766 Vals.push_back(VE.getTypeID(F.getFunctionType())); 767 Vals.push_back(F.getCallingConv()); 768 Vals.push_back(F.isDeclaration()); 769 Vals.push_back(getEncodedLinkage(F)); 770 Vals.push_back(VE.getAttributeID(F.getAttributes())); 771 Vals.push_back(Log2_32(F.getAlignment())+1); 772 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 773 Vals.push_back(getEncodedVisibility(F)); 774 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 775 Vals.push_back(F.hasUnnamedAddr()); 776 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 777 : 0); 778 Vals.push_back(getEncodedDLLStorageClass(F)); 779 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 780 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 781 : 0); 782 Vals.push_back( 783 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 784 785 unsigned AbbrevToUse = 0; 786 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 787 Vals.clear(); 788 } 789 790 // Emit the alias information. 791 for (const GlobalAlias &A : M->aliases()) { 792 // ALIAS: [alias type, aliasee val#, linkage, visibility] 793 Vals.push_back(VE.getTypeID(A.getValueType())); 794 Vals.push_back(A.getType()->getAddressSpace()); 795 Vals.push_back(VE.getValueID(A.getAliasee())); 796 Vals.push_back(getEncodedLinkage(A)); 797 Vals.push_back(getEncodedVisibility(A)); 798 Vals.push_back(getEncodedDLLStorageClass(A)); 799 Vals.push_back(getEncodedThreadLocalMode(A)); 800 Vals.push_back(A.hasUnnamedAddr()); 801 unsigned AbbrevToUse = 0; 802 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 803 Vals.clear(); 804 } 805 806 // Emit the module's source file name. 807 { 808 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 809 M->getSourceFileName().size()); 810 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 811 if (Bits == SE_Char6) 812 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 813 else if (Bits == SE_Fixed7) 814 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 815 816 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 817 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 818 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 820 Abbv->Add(AbbrevOpToUse); 821 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 822 823 for (const auto P : M->getSourceFileName()) 824 Vals.push_back((unsigned char)P); 825 826 // Emit the finished record. 827 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 828 Vals.clear(); 829 } 830 831 // If we have a VST, write the VSTOFFSET record placeholder and return 832 // its offset. 833 if (M->getValueSymbolTable().empty()) 834 return 0; 835 return WriteValueSymbolTableForwardDecl(Stream); 836 } 837 838 static uint64_t GetOptimizationFlags(const Value *V) { 839 uint64_t Flags = 0; 840 841 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 842 if (OBO->hasNoSignedWrap()) 843 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 844 if (OBO->hasNoUnsignedWrap()) 845 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 846 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 847 if (PEO->isExact()) 848 Flags |= 1 << bitc::PEO_EXACT; 849 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 850 if (FPMO->hasUnsafeAlgebra()) 851 Flags |= FastMathFlags::UnsafeAlgebra; 852 if (FPMO->hasNoNaNs()) 853 Flags |= FastMathFlags::NoNaNs; 854 if (FPMO->hasNoInfs()) 855 Flags |= FastMathFlags::NoInfs; 856 if (FPMO->hasNoSignedZeros()) 857 Flags |= FastMathFlags::NoSignedZeros; 858 if (FPMO->hasAllowReciprocal()) 859 Flags |= FastMathFlags::AllowReciprocal; 860 } 861 862 return Flags; 863 } 864 865 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 866 const ValueEnumerator &VE, 867 BitstreamWriter &Stream, 868 SmallVectorImpl<uint64_t> &Record) { 869 // Mimic an MDNode with a value as one operand. 870 Value *V = MD->getValue(); 871 Record.push_back(VE.getTypeID(V->getType())); 872 Record.push_back(VE.getValueID(V)); 873 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 874 Record.clear(); 875 } 876 877 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 878 BitstreamWriter &Stream, 879 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 880 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 881 Metadata *MD = N->getOperand(i); 882 assert(!(MD && isa<LocalAsMetadata>(MD)) && 883 "Unexpected function-local metadata"); 884 Record.push_back(VE.getMetadataOrNullID(MD)); 885 } 886 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 887 : bitc::METADATA_NODE, 888 Record, Abbrev); 889 Record.clear(); 890 } 891 892 static unsigned createDILocationAbbrev(BitstreamWriter &Stream) { 893 // Assume the column is usually under 128, and always output the inlined-at 894 // location (it's never more expensive than building an array size 1). 895 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 896 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 902 return Stream.EmitAbbrev(Abbv); 903 } 904 905 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 906 BitstreamWriter &Stream, 907 SmallVectorImpl<uint64_t> &Record, 908 unsigned &Abbrev) { 909 if (!Abbrev) 910 Abbrev = createDILocationAbbrev(Stream); 911 912 Record.push_back(N->isDistinct()); 913 Record.push_back(N->getLine()); 914 Record.push_back(N->getColumn()); 915 Record.push_back(VE.getMetadataID(N->getScope())); 916 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 917 918 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 919 Record.clear(); 920 } 921 922 static unsigned createGenericDINodeAbbrev(BitstreamWriter &Stream) { 923 // Assume the column is usually under 128, and always output the inlined-at 924 // location (it's never more expensive than building an array size 1). 925 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 926 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 933 return Stream.EmitAbbrev(Abbv); 934 } 935 936 static void WriteGenericDINode(const GenericDINode *N, 937 const ValueEnumerator &VE, 938 BitstreamWriter &Stream, 939 SmallVectorImpl<uint64_t> &Record, 940 unsigned &Abbrev) { 941 if (!Abbrev) 942 Abbrev = createGenericDINodeAbbrev(Stream); 943 944 Record.push_back(N->isDistinct()); 945 Record.push_back(N->getTag()); 946 Record.push_back(0); // Per-tag version field; unused for now. 947 948 for (auto &I : N->operands()) 949 Record.push_back(VE.getMetadataOrNullID(I)); 950 951 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 952 Record.clear(); 953 } 954 955 static uint64_t rotateSign(int64_t I) { 956 uint64_t U = I; 957 return I < 0 ? ~(U << 1) : U << 1; 958 } 959 960 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 961 BitstreamWriter &Stream, 962 SmallVectorImpl<uint64_t> &Record, 963 unsigned Abbrev) { 964 Record.push_back(N->isDistinct()); 965 Record.push_back(N->getCount()); 966 Record.push_back(rotateSign(N->getLowerBound())); 967 968 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 969 Record.clear(); 970 } 971 972 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 973 BitstreamWriter &Stream, 974 SmallVectorImpl<uint64_t> &Record, 975 unsigned Abbrev) { 976 Record.push_back(N->isDistinct()); 977 Record.push_back(rotateSign(N->getValue())); 978 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 979 980 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 981 Record.clear(); 982 } 983 984 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 985 BitstreamWriter &Stream, 986 SmallVectorImpl<uint64_t> &Record, 987 unsigned Abbrev) { 988 Record.push_back(N->isDistinct()); 989 Record.push_back(N->getTag()); 990 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 991 Record.push_back(N->getSizeInBits()); 992 Record.push_back(N->getAlignInBits()); 993 Record.push_back(N->getEncoding()); 994 995 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 996 Record.clear(); 997 } 998 999 static void WriteDIDerivedType(const DIDerivedType *N, 1000 const ValueEnumerator &VE, 1001 BitstreamWriter &Stream, 1002 SmallVectorImpl<uint64_t> &Record, 1003 unsigned Abbrev) { 1004 Record.push_back(N->isDistinct()); 1005 Record.push_back(N->getTag()); 1006 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1007 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1008 Record.push_back(N->getLine()); 1009 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1010 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1011 Record.push_back(N->getSizeInBits()); 1012 Record.push_back(N->getAlignInBits()); 1013 Record.push_back(N->getOffsetInBits()); 1014 Record.push_back(N->getFlags()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1016 1017 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1018 Record.clear(); 1019 } 1020 1021 static void WriteDICompositeType(const DICompositeType *N, 1022 const ValueEnumerator &VE, 1023 BitstreamWriter &Stream, 1024 SmallVectorImpl<uint64_t> &Record, 1025 unsigned Abbrev) { 1026 Record.push_back(N->isDistinct()); 1027 Record.push_back(N->getTag()); 1028 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1029 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1030 Record.push_back(N->getLine()); 1031 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1033 Record.push_back(N->getSizeInBits()); 1034 Record.push_back(N->getAlignInBits()); 1035 Record.push_back(N->getOffsetInBits()); 1036 Record.push_back(N->getFlags()); 1037 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1038 Record.push_back(N->getRuntimeLang()); 1039 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1040 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1041 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1042 1043 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1044 Record.clear(); 1045 } 1046 1047 static void WriteDISubroutineType(const DISubroutineType *N, 1048 const ValueEnumerator &VE, 1049 BitstreamWriter &Stream, 1050 SmallVectorImpl<uint64_t> &Record, 1051 unsigned Abbrev) { 1052 Record.push_back(N->isDistinct()); 1053 Record.push_back(N->getFlags()); 1054 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1055 1056 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1057 Record.clear(); 1058 } 1059 1060 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 1061 BitstreamWriter &Stream, 1062 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1063 Record.push_back(N->isDistinct()); 1064 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1065 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1066 1067 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1068 Record.clear(); 1069 } 1070 1071 static void WriteDICompileUnit(const DICompileUnit *N, 1072 const ValueEnumerator &VE, 1073 BitstreamWriter &Stream, 1074 SmallVectorImpl<uint64_t> &Record, 1075 unsigned Abbrev) { 1076 assert(N->isDistinct() && "Expected distinct compile units"); 1077 Record.push_back(/* IsDistinct */ true); 1078 Record.push_back(N->getSourceLanguage()); 1079 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1080 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1081 Record.push_back(N->isOptimized()); 1082 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1083 Record.push_back(N->getRuntimeVersion()); 1084 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1085 Record.push_back(N->getEmissionKind()); 1086 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1087 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1088 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1089 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1090 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1091 Record.push_back(N->getDWOId()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1093 1094 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1095 Record.clear(); 1096 } 1097 1098 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1099 BitstreamWriter &Stream, 1100 SmallVectorImpl<uint64_t> &Record, 1101 unsigned Abbrev) { 1102 Record.push_back(N->isDistinct()); 1103 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1104 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1105 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1106 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1107 Record.push_back(N->getLine()); 1108 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1109 Record.push_back(N->isLocalToUnit()); 1110 Record.push_back(N->isDefinition()); 1111 Record.push_back(N->getScopeLine()); 1112 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1113 Record.push_back(N->getVirtuality()); 1114 Record.push_back(N->getVirtualIndex()); 1115 Record.push_back(N->getFlags()); 1116 Record.push_back(N->isOptimized()); 1117 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1118 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1120 1121 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1122 Record.clear(); 1123 } 1124 1125 static void WriteDILexicalBlock(const DILexicalBlock *N, 1126 const ValueEnumerator &VE, 1127 BitstreamWriter &Stream, 1128 SmallVectorImpl<uint64_t> &Record, 1129 unsigned Abbrev) { 1130 Record.push_back(N->isDistinct()); 1131 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1132 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1133 Record.push_back(N->getLine()); 1134 Record.push_back(N->getColumn()); 1135 1136 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1137 Record.clear(); 1138 } 1139 1140 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1141 const ValueEnumerator &VE, 1142 BitstreamWriter &Stream, 1143 SmallVectorImpl<uint64_t> &Record, 1144 unsigned Abbrev) { 1145 Record.push_back(N->isDistinct()); 1146 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1147 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1148 Record.push_back(N->getDiscriminator()); 1149 1150 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1151 Record.clear(); 1152 } 1153 1154 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1155 BitstreamWriter &Stream, 1156 SmallVectorImpl<uint64_t> &Record, 1157 unsigned Abbrev) { 1158 Record.push_back(N->isDistinct()); 1159 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1160 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1161 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1162 Record.push_back(N->getLine()); 1163 1164 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1165 Record.clear(); 1166 } 1167 1168 static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1169 BitstreamWriter &Stream, 1170 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1171 Record.push_back(N->isDistinct()); 1172 Record.push_back(N->getMacinfoType()); 1173 Record.push_back(N->getLine()); 1174 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1175 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1176 1177 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1178 Record.clear(); 1179 } 1180 1181 static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1182 BitstreamWriter &Stream, 1183 SmallVectorImpl<uint64_t> &Record, 1184 unsigned Abbrev) { 1185 Record.push_back(N->isDistinct()); 1186 Record.push_back(N->getMacinfoType()); 1187 Record.push_back(N->getLine()); 1188 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1189 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1190 1191 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1192 Record.clear(); 1193 } 1194 1195 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1196 BitstreamWriter &Stream, 1197 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1198 Record.push_back(N->isDistinct()); 1199 for (auto &I : N->operands()) 1200 Record.push_back(VE.getMetadataOrNullID(I)); 1201 1202 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1203 Record.clear(); 1204 } 1205 1206 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1207 const ValueEnumerator &VE, 1208 BitstreamWriter &Stream, 1209 SmallVectorImpl<uint64_t> &Record, 1210 unsigned Abbrev) { 1211 Record.push_back(N->isDistinct()); 1212 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1213 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1214 1215 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1216 Record.clear(); 1217 } 1218 1219 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1220 const ValueEnumerator &VE, 1221 BitstreamWriter &Stream, 1222 SmallVectorImpl<uint64_t> &Record, 1223 unsigned Abbrev) { 1224 Record.push_back(N->isDistinct()); 1225 Record.push_back(N->getTag()); 1226 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1227 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1228 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1229 1230 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1231 Record.clear(); 1232 } 1233 1234 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1235 const ValueEnumerator &VE, 1236 BitstreamWriter &Stream, 1237 SmallVectorImpl<uint64_t> &Record, 1238 unsigned Abbrev) { 1239 Record.push_back(N->isDistinct()); 1240 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1241 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1242 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1243 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1244 Record.push_back(N->getLine()); 1245 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1246 Record.push_back(N->isLocalToUnit()); 1247 Record.push_back(N->isDefinition()); 1248 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1249 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1250 1251 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1252 Record.clear(); 1253 } 1254 1255 static void WriteDILocalVariable(const DILocalVariable *N, 1256 const ValueEnumerator &VE, 1257 BitstreamWriter &Stream, 1258 SmallVectorImpl<uint64_t> &Record, 1259 unsigned Abbrev) { 1260 Record.push_back(N->isDistinct()); 1261 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1262 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1263 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1264 Record.push_back(N->getLine()); 1265 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1266 Record.push_back(N->getArg()); 1267 Record.push_back(N->getFlags()); 1268 1269 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1270 Record.clear(); 1271 } 1272 1273 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1274 BitstreamWriter &Stream, 1275 SmallVectorImpl<uint64_t> &Record, 1276 unsigned Abbrev) { 1277 Record.reserve(N->getElements().size() + 1); 1278 1279 Record.push_back(N->isDistinct()); 1280 Record.append(N->elements_begin(), N->elements_end()); 1281 1282 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1283 Record.clear(); 1284 } 1285 1286 static void WriteDIObjCProperty(const DIObjCProperty *N, 1287 const ValueEnumerator &VE, 1288 BitstreamWriter &Stream, 1289 SmallVectorImpl<uint64_t> &Record, 1290 unsigned Abbrev) { 1291 Record.push_back(N->isDistinct()); 1292 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1293 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1294 Record.push_back(N->getLine()); 1295 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1296 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1297 Record.push_back(N->getAttributes()); 1298 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1299 1300 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1301 Record.clear(); 1302 } 1303 1304 static void WriteDIImportedEntity(const DIImportedEntity *N, 1305 const ValueEnumerator &VE, 1306 BitstreamWriter &Stream, 1307 SmallVectorImpl<uint64_t> &Record, 1308 unsigned Abbrev) { 1309 Record.push_back(N->isDistinct()); 1310 Record.push_back(N->getTag()); 1311 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1312 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1313 Record.push_back(N->getLine()); 1314 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1315 1316 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1317 Record.clear(); 1318 } 1319 1320 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1321 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1322 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1325 return Stream.EmitAbbrev(Abbv); 1326 } 1327 1328 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1329 BitstreamWriter &Stream, 1330 SmallVectorImpl<uint64_t> &Record) { 1331 if (M.named_metadata_empty()) 1332 return; 1333 1334 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1335 for (const NamedMDNode &NMD : M.named_metadata()) { 1336 // Write name. 1337 StringRef Str = NMD.getName(); 1338 Record.append(Str.bytes_begin(), Str.bytes_end()); 1339 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1340 Record.clear(); 1341 1342 // Write named metadata operands. 1343 for (const MDNode *N : NMD.operands()) 1344 Record.push_back(VE.getMetadataID(N)); 1345 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1346 Record.clear(); 1347 } 1348 } 1349 1350 static unsigned createMetadataStringsAbbrev(BitstreamWriter &Stream) { 1351 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1352 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1356 return Stream.EmitAbbrev(Abbv); 1357 } 1358 1359 /// Write out a record for MDString. 1360 /// 1361 /// All the metadata strings in a metadata block are emitted in a single 1362 /// record. The sizes and strings themselves are shoved into a blob. 1363 static void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 1364 BitstreamWriter &Stream, 1365 SmallVectorImpl<uint64_t> &Record) { 1366 if (Strings.empty()) 1367 return; 1368 1369 // Start the record with the number of strings. 1370 Record.push_back(bitc::METADATA_STRINGS); 1371 Record.push_back(Strings.size()); 1372 1373 // Emit the sizes of the strings in the blob. 1374 SmallString<256> Blob; 1375 { 1376 BitstreamWriter W(Blob); 1377 for (const Metadata *MD : Strings) 1378 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1379 W.FlushToWord(); 1380 } 1381 1382 // Add the offset to the strings to the record. 1383 Record.push_back(Blob.size()); 1384 1385 // Add the strings to the blob. 1386 for (const Metadata *MD : Strings) 1387 Blob.append(cast<MDString>(MD)->getString()); 1388 1389 // Emit the final record. 1390 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(Stream), Record, Blob); 1391 Record.clear(); 1392 } 1393 1394 static void WriteModuleMetadata(const Module &M, 1395 const ValueEnumerator &VE, 1396 BitstreamWriter &Stream) { 1397 if (VE.getMDs().empty() && M.named_metadata_empty()) 1398 return; 1399 1400 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1401 1402 // Initialize MDNode abbreviations. 1403 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1404 #include "llvm/IR/Metadata.def" 1405 1406 SmallVector<uint64_t, 64> Record; 1407 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1408 for (const Metadata *MD : VE.getNonMDStrings()) { 1409 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1410 assert(N->isResolved() && "Expected forward references to be resolved"); 1411 1412 switch (N->getMetadataID()) { 1413 default: 1414 llvm_unreachable("Invalid MDNode subclass"); 1415 #define HANDLE_MDNODE_LEAF(CLASS) \ 1416 case Metadata::CLASS##Kind: \ 1417 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1418 continue; 1419 #include "llvm/IR/Metadata.def" 1420 } 1421 } 1422 WriteValueAsMetadata(cast<ConstantAsMetadata>(MD), VE, Stream, Record); 1423 } 1424 1425 writeNamedMetadata(M, VE, Stream, Record); 1426 Stream.ExitBlock(); 1427 } 1428 1429 static void WriteFunctionLocalMetadata(const Function &F, 1430 const ValueEnumerator &VE, 1431 BitstreamWriter &Stream) { 1432 ArrayRef<const Metadata *> MDs = VE.getFunctionMDs(); 1433 if (MDs.empty()) 1434 return; 1435 1436 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1437 1438 SmallVector<uint64_t, 64> Record; 1439 for (const Metadata *MD : VE.getFunctionMDs()) 1440 WriteValueAsMetadata(cast<LocalAsMetadata>(MD), VE, Stream, Record); 1441 1442 Stream.ExitBlock(); 1443 } 1444 1445 static void WriteMetadataAttachment(const Function &F, 1446 const ValueEnumerator &VE, 1447 BitstreamWriter &Stream) { 1448 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1449 1450 SmallVector<uint64_t, 64> Record; 1451 1452 // Write metadata attachments 1453 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1454 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1455 F.getAllMetadata(MDs); 1456 if (!MDs.empty()) { 1457 for (const auto &I : MDs) { 1458 Record.push_back(I.first); 1459 Record.push_back(VE.getMetadataID(I.second)); 1460 } 1461 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1462 Record.clear(); 1463 } 1464 1465 for (const BasicBlock &BB : F) 1466 for (const Instruction &I : BB) { 1467 MDs.clear(); 1468 I.getAllMetadataOtherThanDebugLoc(MDs); 1469 1470 // If no metadata, ignore instruction. 1471 if (MDs.empty()) continue; 1472 1473 Record.push_back(VE.getInstructionID(&I)); 1474 1475 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1476 Record.push_back(MDs[i].first); 1477 Record.push_back(VE.getMetadataID(MDs[i].second)); 1478 } 1479 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1480 Record.clear(); 1481 } 1482 1483 Stream.ExitBlock(); 1484 } 1485 1486 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1487 SmallVector<uint64_t, 64> Record; 1488 1489 // Write metadata kinds 1490 // METADATA_KIND - [n x [id, name]] 1491 SmallVector<StringRef, 8> Names; 1492 M->getMDKindNames(Names); 1493 1494 if (Names.empty()) return; 1495 1496 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1497 1498 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1499 Record.push_back(MDKindID); 1500 StringRef KName = Names[MDKindID]; 1501 Record.append(KName.begin(), KName.end()); 1502 1503 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1504 Record.clear(); 1505 } 1506 1507 Stream.ExitBlock(); 1508 } 1509 1510 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1511 // Write metadata kinds 1512 // 1513 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1514 // 1515 // OPERAND_BUNDLE_TAG - [strchr x N] 1516 1517 SmallVector<StringRef, 8> Tags; 1518 M->getOperandBundleTags(Tags); 1519 1520 if (Tags.empty()) 1521 return; 1522 1523 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1524 1525 SmallVector<uint64_t, 64> Record; 1526 1527 for (auto Tag : Tags) { 1528 Record.append(Tag.begin(), Tag.end()); 1529 1530 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1531 Record.clear(); 1532 } 1533 1534 Stream.ExitBlock(); 1535 } 1536 1537 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1538 if ((int64_t)V >= 0) 1539 Vals.push_back(V << 1); 1540 else 1541 Vals.push_back((-V << 1) | 1); 1542 } 1543 1544 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1545 const ValueEnumerator &VE, 1546 BitstreamWriter &Stream, bool isGlobal) { 1547 if (FirstVal == LastVal) return; 1548 1549 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1550 1551 unsigned AggregateAbbrev = 0; 1552 unsigned String8Abbrev = 0; 1553 unsigned CString7Abbrev = 0; 1554 unsigned CString6Abbrev = 0; 1555 // If this is a constant pool for the module, emit module-specific abbrevs. 1556 if (isGlobal) { 1557 // Abbrev for CST_CODE_AGGREGATE. 1558 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1559 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1562 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1563 1564 // Abbrev for CST_CODE_STRING. 1565 Abbv = new BitCodeAbbrev(); 1566 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1569 String8Abbrev = Stream.EmitAbbrev(Abbv); 1570 // Abbrev for CST_CODE_CSTRING. 1571 Abbv = new BitCodeAbbrev(); 1572 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1575 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1576 // Abbrev for CST_CODE_CSTRING. 1577 Abbv = new BitCodeAbbrev(); 1578 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1581 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1582 } 1583 1584 SmallVector<uint64_t, 64> Record; 1585 1586 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1587 Type *LastTy = nullptr; 1588 for (unsigned i = FirstVal; i != LastVal; ++i) { 1589 const Value *V = Vals[i].first; 1590 // If we need to switch types, do so now. 1591 if (V->getType() != LastTy) { 1592 LastTy = V->getType(); 1593 Record.push_back(VE.getTypeID(LastTy)); 1594 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1595 CONSTANTS_SETTYPE_ABBREV); 1596 Record.clear(); 1597 } 1598 1599 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1600 Record.push_back(unsigned(IA->hasSideEffects()) | 1601 unsigned(IA->isAlignStack()) << 1 | 1602 unsigned(IA->getDialect()&1) << 2); 1603 1604 // Add the asm string. 1605 const std::string &AsmStr = IA->getAsmString(); 1606 Record.push_back(AsmStr.size()); 1607 Record.append(AsmStr.begin(), AsmStr.end()); 1608 1609 // Add the constraint string. 1610 const std::string &ConstraintStr = IA->getConstraintString(); 1611 Record.push_back(ConstraintStr.size()); 1612 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1613 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1614 Record.clear(); 1615 continue; 1616 } 1617 const Constant *C = cast<Constant>(V); 1618 unsigned Code = -1U; 1619 unsigned AbbrevToUse = 0; 1620 if (C->isNullValue()) { 1621 Code = bitc::CST_CODE_NULL; 1622 } else if (isa<UndefValue>(C)) { 1623 Code = bitc::CST_CODE_UNDEF; 1624 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1625 if (IV->getBitWidth() <= 64) { 1626 uint64_t V = IV->getSExtValue(); 1627 emitSignedInt64(Record, V); 1628 Code = bitc::CST_CODE_INTEGER; 1629 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1630 } else { // Wide integers, > 64 bits in size. 1631 // We have an arbitrary precision integer value to write whose 1632 // bit width is > 64. However, in canonical unsigned integer 1633 // format it is likely that the high bits are going to be zero. 1634 // So, we only write the number of active words. 1635 unsigned NWords = IV->getValue().getActiveWords(); 1636 const uint64_t *RawWords = IV->getValue().getRawData(); 1637 for (unsigned i = 0; i != NWords; ++i) { 1638 emitSignedInt64(Record, RawWords[i]); 1639 } 1640 Code = bitc::CST_CODE_WIDE_INTEGER; 1641 } 1642 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1643 Code = bitc::CST_CODE_FLOAT; 1644 Type *Ty = CFP->getType(); 1645 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1646 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1647 } else if (Ty->isX86_FP80Ty()) { 1648 // api needed to prevent premature destruction 1649 // bits are not in the same order as a normal i80 APInt, compensate. 1650 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1651 const uint64_t *p = api.getRawData(); 1652 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1653 Record.push_back(p[0] & 0xffffLL); 1654 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1655 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1656 const uint64_t *p = api.getRawData(); 1657 Record.push_back(p[0]); 1658 Record.push_back(p[1]); 1659 } else { 1660 assert (0 && "Unknown FP type!"); 1661 } 1662 } else if (isa<ConstantDataSequential>(C) && 1663 cast<ConstantDataSequential>(C)->isString()) { 1664 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1665 // Emit constant strings specially. 1666 unsigned NumElts = Str->getNumElements(); 1667 // If this is a null-terminated string, use the denser CSTRING encoding. 1668 if (Str->isCString()) { 1669 Code = bitc::CST_CODE_CSTRING; 1670 --NumElts; // Don't encode the null, which isn't allowed by char6. 1671 } else { 1672 Code = bitc::CST_CODE_STRING; 1673 AbbrevToUse = String8Abbrev; 1674 } 1675 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1676 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1677 for (unsigned i = 0; i != NumElts; ++i) { 1678 unsigned char V = Str->getElementAsInteger(i); 1679 Record.push_back(V); 1680 isCStr7 &= (V & 128) == 0; 1681 if (isCStrChar6) 1682 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1683 } 1684 1685 if (isCStrChar6) 1686 AbbrevToUse = CString6Abbrev; 1687 else if (isCStr7) 1688 AbbrevToUse = CString7Abbrev; 1689 } else if (const ConstantDataSequential *CDS = 1690 dyn_cast<ConstantDataSequential>(C)) { 1691 Code = bitc::CST_CODE_DATA; 1692 Type *EltTy = CDS->getType()->getElementType(); 1693 if (isa<IntegerType>(EltTy)) { 1694 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1695 Record.push_back(CDS->getElementAsInteger(i)); 1696 } else { 1697 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1698 Record.push_back( 1699 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1700 } 1701 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1702 isa<ConstantVector>(C)) { 1703 Code = bitc::CST_CODE_AGGREGATE; 1704 for (const Value *Op : C->operands()) 1705 Record.push_back(VE.getValueID(Op)); 1706 AbbrevToUse = AggregateAbbrev; 1707 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1708 switch (CE->getOpcode()) { 1709 default: 1710 if (Instruction::isCast(CE->getOpcode())) { 1711 Code = bitc::CST_CODE_CE_CAST; 1712 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1713 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1714 Record.push_back(VE.getValueID(C->getOperand(0))); 1715 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1716 } else { 1717 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1718 Code = bitc::CST_CODE_CE_BINOP; 1719 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1720 Record.push_back(VE.getValueID(C->getOperand(0))); 1721 Record.push_back(VE.getValueID(C->getOperand(1))); 1722 uint64_t Flags = GetOptimizationFlags(CE); 1723 if (Flags != 0) 1724 Record.push_back(Flags); 1725 } 1726 break; 1727 case Instruction::GetElementPtr: { 1728 Code = bitc::CST_CODE_CE_GEP; 1729 const auto *GO = cast<GEPOperator>(C); 1730 if (GO->isInBounds()) 1731 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1732 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1733 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1734 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1735 Record.push_back(VE.getValueID(C->getOperand(i))); 1736 } 1737 break; 1738 } 1739 case Instruction::Select: 1740 Code = bitc::CST_CODE_CE_SELECT; 1741 Record.push_back(VE.getValueID(C->getOperand(0))); 1742 Record.push_back(VE.getValueID(C->getOperand(1))); 1743 Record.push_back(VE.getValueID(C->getOperand(2))); 1744 break; 1745 case Instruction::ExtractElement: 1746 Code = bitc::CST_CODE_CE_EXTRACTELT; 1747 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1748 Record.push_back(VE.getValueID(C->getOperand(0))); 1749 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1750 Record.push_back(VE.getValueID(C->getOperand(1))); 1751 break; 1752 case Instruction::InsertElement: 1753 Code = bitc::CST_CODE_CE_INSERTELT; 1754 Record.push_back(VE.getValueID(C->getOperand(0))); 1755 Record.push_back(VE.getValueID(C->getOperand(1))); 1756 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1757 Record.push_back(VE.getValueID(C->getOperand(2))); 1758 break; 1759 case Instruction::ShuffleVector: 1760 // If the return type and argument types are the same, this is a 1761 // standard shufflevector instruction. If the types are different, 1762 // then the shuffle is widening or truncating the input vectors, and 1763 // the argument type must also be encoded. 1764 if (C->getType() == C->getOperand(0)->getType()) { 1765 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1766 } else { 1767 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1768 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1769 } 1770 Record.push_back(VE.getValueID(C->getOperand(0))); 1771 Record.push_back(VE.getValueID(C->getOperand(1))); 1772 Record.push_back(VE.getValueID(C->getOperand(2))); 1773 break; 1774 case Instruction::ICmp: 1775 case Instruction::FCmp: 1776 Code = bitc::CST_CODE_CE_CMP; 1777 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1778 Record.push_back(VE.getValueID(C->getOperand(0))); 1779 Record.push_back(VE.getValueID(C->getOperand(1))); 1780 Record.push_back(CE->getPredicate()); 1781 break; 1782 } 1783 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1784 Code = bitc::CST_CODE_BLOCKADDRESS; 1785 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1786 Record.push_back(VE.getValueID(BA->getFunction())); 1787 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1788 } else { 1789 #ifndef NDEBUG 1790 C->dump(); 1791 #endif 1792 llvm_unreachable("Unknown constant!"); 1793 } 1794 Stream.EmitRecord(Code, Record, AbbrevToUse); 1795 Record.clear(); 1796 } 1797 1798 Stream.ExitBlock(); 1799 } 1800 1801 static void WriteModuleConstants(const ValueEnumerator &VE, 1802 BitstreamWriter &Stream) { 1803 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1804 1805 // Find the first constant to emit, which is the first non-globalvalue value. 1806 // We know globalvalues have been emitted by WriteModuleInfo. 1807 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1808 if (!isa<GlobalValue>(Vals[i].first)) { 1809 WriteConstants(i, Vals.size(), VE, Stream, true); 1810 return; 1811 } 1812 } 1813 } 1814 1815 /// PushValueAndType - The file has to encode both the value and type id for 1816 /// many values, because we need to know what type to create for forward 1817 /// references. However, most operands are not forward references, so this type 1818 /// field is not needed. 1819 /// 1820 /// This function adds V's value ID to Vals. If the value ID is higher than the 1821 /// instruction ID, then it is a forward reference, and it also includes the 1822 /// type ID. The value ID that is written is encoded relative to the InstID. 1823 static bool PushValueAndType(const Value *V, unsigned InstID, 1824 SmallVectorImpl<unsigned> &Vals, 1825 ValueEnumerator &VE) { 1826 unsigned ValID = VE.getValueID(V); 1827 // Make encoding relative to the InstID. 1828 Vals.push_back(InstID - ValID); 1829 if (ValID >= InstID) { 1830 Vals.push_back(VE.getTypeID(V->getType())); 1831 return true; 1832 } 1833 return false; 1834 } 1835 1836 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1837 unsigned InstID, ValueEnumerator &VE) { 1838 SmallVector<unsigned, 64> Record; 1839 LLVMContext &C = CS.getInstruction()->getContext(); 1840 1841 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1842 const auto &Bundle = CS.getOperandBundleAt(i); 1843 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1844 1845 for (auto &Input : Bundle.Inputs) 1846 PushValueAndType(Input, InstID, Record, VE); 1847 1848 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1849 Record.clear(); 1850 } 1851 } 1852 1853 /// pushValue - Like PushValueAndType, but where the type of the value is 1854 /// omitted (perhaps it was already encoded in an earlier operand). 1855 static void pushValue(const Value *V, unsigned InstID, 1856 SmallVectorImpl<unsigned> &Vals, 1857 ValueEnumerator &VE) { 1858 unsigned ValID = VE.getValueID(V); 1859 Vals.push_back(InstID - ValID); 1860 } 1861 1862 static void pushValueSigned(const Value *V, unsigned InstID, 1863 SmallVectorImpl<uint64_t> &Vals, 1864 ValueEnumerator &VE) { 1865 unsigned ValID = VE.getValueID(V); 1866 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1867 emitSignedInt64(Vals, diff); 1868 } 1869 1870 /// WriteInstruction - Emit an instruction to the specified stream. 1871 static void WriteInstruction(const Instruction &I, unsigned InstID, 1872 ValueEnumerator &VE, BitstreamWriter &Stream, 1873 SmallVectorImpl<unsigned> &Vals) { 1874 unsigned Code = 0; 1875 unsigned AbbrevToUse = 0; 1876 VE.setInstructionID(&I); 1877 switch (I.getOpcode()) { 1878 default: 1879 if (Instruction::isCast(I.getOpcode())) { 1880 Code = bitc::FUNC_CODE_INST_CAST; 1881 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1882 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1883 Vals.push_back(VE.getTypeID(I.getType())); 1884 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1885 } else { 1886 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1887 Code = bitc::FUNC_CODE_INST_BINOP; 1888 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1889 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1890 pushValue(I.getOperand(1), InstID, Vals, VE); 1891 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1892 uint64_t Flags = GetOptimizationFlags(&I); 1893 if (Flags != 0) { 1894 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1895 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1896 Vals.push_back(Flags); 1897 } 1898 } 1899 break; 1900 1901 case Instruction::GetElementPtr: { 1902 Code = bitc::FUNC_CODE_INST_GEP; 1903 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1904 auto &GEPInst = cast<GetElementPtrInst>(I); 1905 Vals.push_back(GEPInst.isInBounds()); 1906 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1907 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1908 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1909 break; 1910 } 1911 case Instruction::ExtractValue: { 1912 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1913 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1914 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1915 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1916 break; 1917 } 1918 case Instruction::InsertValue: { 1919 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1920 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1921 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1922 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1923 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1924 break; 1925 } 1926 case Instruction::Select: 1927 Code = bitc::FUNC_CODE_INST_VSELECT; 1928 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1929 pushValue(I.getOperand(2), InstID, Vals, VE); 1930 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1931 break; 1932 case Instruction::ExtractElement: 1933 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1934 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1935 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1936 break; 1937 case Instruction::InsertElement: 1938 Code = bitc::FUNC_CODE_INST_INSERTELT; 1939 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1940 pushValue(I.getOperand(1), InstID, Vals, VE); 1941 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1942 break; 1943 case Instruction::ShuffleVector: 1944 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1945 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1946 pushValue(I.getOperand(1), InstID, Vals, VE); 1947 pushValue(I.getOperand(2), InstID, Vals, VE); 1948 break; 1949 case Instruction::ICmp: 1950 case Instruction::FCmp: { 1951 // compare returning Int1Ty or vector of Int1Ty 1952 Code = bitc::FUNC_CODE_INST_CMP2; 1953 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1954 pushValue(I.getOperand(1), InstID, Vals, VE); 1955 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1956 uint64_t Flags = GetOptimizationFlags(&I); 1957 if (Flags != 0) 1958 Vals.push_back(Flags); 1959 break; 1960 } 1961 1962 case Instruction::Ret: 1963 { 1964 Code = bitc::FUNC_CODE_INST_RET; 1965 unsigned NumOperands = I.getNumOperands(); 1966 if (NumOperands == 0) 1967 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1968 else if (NumOperands == 1) { 1969 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1970 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1971 } else { 1972 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1973 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1974 } 1975 } 1976 break; 1977 case Instruction::Br: 1978 { 1979 Code = bitc::FUNC_CODE_INST_BR; 1980 const BranchInst &II = cast<BranchInst>(I); 1981 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1982 if (II.isConditional()) { 1983 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1984 pushValue(II.getCondition(), InstID, Vals, VE); 1985 } 1986 } 1987 break; 1988 case Instruction::Switch: 1989 { 1990 Code = bitc::FUNC_CODE_INST_SWITCH; 1991 const SwitchInst &SI = cast<SwitchInst>(I); 1992 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1993 pushValue(SI.getCondition(), InstID, Vals, VE); 1994 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1995 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 1996 Vals.push_back(VE.getValueID(Case.getCaseValue())); 1997 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 1998 } 1999 } 2000 break; 2001 case Instruction::IndirectBr: 2002 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2003 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2004 // Encode the address operand as relative, but not the basic blocks. 2005 pushValue(I.getOperand(0), InstID, Vals, VE); 2006 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2007 Vals.push_back(VE.getValueID(I.getOperand(i))); 2008 break; 2009 2010 case Instruction::Invoke: { 2011 const InvokeInst *II = cast<InvokeInst>(&I); 2012 const Value *Callee = II->getCalledValue(); 2013 FunctionType *FTy = II->getFunctionType(); 2014 2015 if (II->hasOperandBundles()) 2016 WriteOperandBundles(Stream, II, InstID, VE); 2017 2018 Code = bitc::FUNC_CODE_INST_INVOKE; 2019 2020 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2021 Vals.push_back(II->getCallingConv() | 1 << 13); 2022 Vals.push_back(VE.getValueID(II->getNormalDest())); 2023 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2024 Vals.push_back(VE.getTypeID(FTy)); 2025 PushValueAndType(Callee, InstID, Vals, VE); 2026 2027 // Emit value #'s for the fixed parameters. 2028 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2029 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2030 2031 // Emit type/value pairs for varargs params. 2032 if (FTy->isVarArg()) { 2033 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2034 i != e; ++i) 2035 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2036 } 2037 break; 2038 } 2039 case Instruction::Resume: 2040 Code = bitc::FUNC_CODE_INST_RESUME; 2041 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2042 break; 2043 case Instruction::CleanupRet: { 2044 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2045 const auto &CRI = cast<CleanupReturnInst>(I); 2046 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2047 if (CRI.hasUnwindDest()) 2048 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2049 break; 2050 } 2051 case Instruction::CatchRet: { 2052 Code = bitc::FUNC_CODE_INST_CATCHRET; 2053 const auto &CRI = cast<CatchReturnInst>(I); 2054 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2055 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2056 break; 2057 } 2058 case Instruction::CleanupPad: 2059 case Instruction::CatchPad: { 2060 const auto &FuncletPad = cast<FuncletPadInst>(I); 2061 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2062 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2063 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2064 2065 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2066 Vals.push_back(NumArgOperands); 2067 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2068 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2069 break; 2070 } 2071 case Instruction::CatchSwitch: { 2072 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2073 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2074 2075 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2076 2077 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2078 Vals.push_back(NumHandlers); 2079 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2080 Vals.push_back(VE.getValueID(CatchPadBB)); 2081 2082 if (CatchSwitch.hasUnwindDest()) 2083 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2084 break; 2085 } 2086 case Instruction::Unreachable: 2087 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2088 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2089 break; 2090 2091 case Instruction::PHI: { 2092 const PHINode &PN = cast<PHINode>(I); 2093 Code = bitc::FUNC_CODE_INST_PHI; 2094 // With the newer instruction encoding, forward references could give 2095 // negative valued IDs. This is most common for PHIs, so we use 2096 // signed VBRs. 2097 SmallVector<uint64_t, 128> Vals64; 2098 Vals64.push_back(VE.getTypeID(PN.getType())); 2099 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2100 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2101 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2102 } 2103 // Emit a Vals64 vector and exit. 2104 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2105 Vals64.clear(); 2106 return; 2107 } 2108 2109 case Instruction::LandingPad: { 2110 const LandingPadInst &LP = cast<LandingPadInst>(I); 2111 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2112 Vals.push_back(VE.getTypeID(LP.getType())); 2113 Vals.push_back(LP.isCleanup()); 2114 Vals.push_back(LP.getNumClauses()); 2115 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2116 if (LP.isCatch(I)) 2117 Vals.push_back(LandingPadInst::Catch); 2118 else 2119 Vals.push_back(LandingPadInst::Filter); 2120 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2121 } 2122 break; 2123 } 2124 2125 case Instruction::Alloca: { 2126 Code = bitc::FUNC_CODE_INST_ALLOCA; 2127 const AllocaInst &AI = cast<AllocaInst>(I); 2128 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2129 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2130 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2131 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2132 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2133 "not enough bits for maximum alignment"); 2134 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2135 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2136 AlignRecord |= 1 << 6; 2137 // Reserve bit 7 for SwiftError flag. 2138 // AlignRecord |= AI.isSwiftError() << 7; 2139 Vals.push_back(AlignRecord); 2140 break; 2141 } 2142 2143 case Instruction::Load: 2144 if (cast<LoadInst>(I).isAtomic()) { 2145 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2146 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2147 } else { 2148 Code = bitc::FUNC_CODE_INST_LOAD; 2149 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2150 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2151 } 2152 Vals.push_back(VE.getTypeID(I.getType())); 2153 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2154 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2155 if (cast<LoadInst>(I).isAtomic()) { 2156 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2157 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2158 } 2159 break; 2160 case Instruction::Store: 2161 if (cast<StoreInst>(I).isAtomic()) 2162 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2163 else 2164 Code = bitc::FUNC_CODE_INST_STORE; 2165 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2166 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2167 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2168 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2169 if (cast<StoreInst>(I).isAtomic()) { 2170 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2171 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2172 } 2173 break; 2174 case Instruction::AtomicCmpXchg: 2175 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2176 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2177 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2178 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2179 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2180 Vals.push_back(GetEncodedOrdering( 2181 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2182 Vals.push_back(GetEncodedSynchScope( 2183 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2184 Vals.push_back(GetEncodedOrdering( 2185 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2186 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2187 break; 2188 case Instruction::AtomicRMW: 2189 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2190 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2191 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2192 Vals.push_back(GetEncodedRMWOperation( 2193 cast<AtomicRMWInst>(I).getOperation())); 2194 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2195 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2196 Vals.push_back(GetEncodedSynchScope( 2197 cast<AtomicRMWInst>(I).getSynchScope())); 2198 break; 2199 case Instruction::Fence: 2200 Code = bitc::FUNC_CODE_INST_FENCE; 2201 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2202 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2203 break; 2204 case Instruction::Call: { 2205 const CallInst &CI = cast<CallInst>(I); 2206 FunctionType *FTy = CI.getFunctionType(); 2207 2208 if (CI.hasOperandBundles()) 2209 WriteOperandBundles(Stream, &CI, InstID, VE); 2210 2211 Code = bitc::FUNC_CODE_INST_CALL; 2212 2213 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2214 2215 unsigned Flags = GetOptimizationFlags(&I); 2216 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2217 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2218 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2219 1 << bitc::CALL_EXPLICIT_TYPE | 2220 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2221 unsigned(Flags != 0) << bitc::CALL_FMF); 2222 if (Flags != 0) 2223 Vals.push_back(Flags); 2224 2225 Vals.push_back(VE.getTypeID(FTy)); 2226 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2227 2228 // Emit value #'s for the fixed parameters. 2229 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2230 // Check for labels (can happen with asm labels). 2231 if (FTy->getParamType(i)->isLabelTy()) 2232 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2233 else 2234 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2235 } 2236 2237 // Emit type/value pairs for varargs params. 2238 if (FTy->isVarArg()) { 2239 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2240 i != e; ++i) 2241 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2242 } 2243 break; 2244 } 2245 case Instruction::VAArg: 2246 Code = bitc::FUNC_CODE_INST_VAARG; 2247 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2248 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2249 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2250 break; 2251 } 2252 2253 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2254 Vals.clear(); 2255 } 2256 2257 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2258 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2259 /// VST, where we are including a function bitcode index and need to 2260 /// backpatch the VST forward declaration record. 2261 static void WriteValueSymbolTable( 2262 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2263 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2264 uint64_t BitcodeStartBit = 0, 2265 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> 2266 *FunctionIndex = nullptr) { 2267 if (VST.empty()) { 2268 // WriteValueSymbolTableForwardDecl should have returned early as 2269 // well. Ensure this handling remains in sync by asserting that 2270 // the placeholder offset is not set. 2271 assert(VSTOffsetPlaceholder == 0); 2272 return; 2273 } 2274 2275 if (VSTOffsetPlaceholder > 0) { 2276 // Get the offset of the VST we are writing, and backpatch it into 2277 // the VST forward declaration record. 2278 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2279 // The BitcodeStartBit was the stream offset of the actual bitcode 2280 // (e.g. excluding any initial darwin header). 2281 VSTOffset -= BitcodeStartBit; 2282 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2283 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2284 } 2285 2286 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2287 2288 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2289 // records, which are not used in the per-function VSTs. 2290 unsigned FnEntry8BitAbbrev; 2291 unsigned FnEntry7BitAbbrev; 2292 unsigned FnEntry6BitAbbrev; 2293 if (VSTOffsetPlaceholder > 0) { 2294 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2295 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2296 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2301 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2302 2303 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2304 Abbv = new BitCodeAbbrev(); 2305 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2310 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2311 2312 // 6-bit char6 VST_CODE_FNENTRY function strings. 2313 Abbv = new BitCodeAbbrev(); 2314 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2319 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2320 } 2321 2322 // FIXME: Set up the abbrev, we know how many values there are! 2323 // FIXME: We know if the type names can use 7-bit ascii. 2324 SmallVector<unsigned, 64> NameVals; 2325 2326 for (const ValueName &Name : VST) { 2327 // Figure out the encoding to use for the name. 2328 StringEncoding Bits = 2329 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2330 2331 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2332 NameVals.push_back(VE.getValueID(Name.getValue())); 2333 2334 Function *F = dyn_cast<Function>(Name.getValue()); 2335 if (!F) { 2336 // If value is an alias, need to get the aliased base object to 2337 // see if it is a function. 2338 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2339 if (GA && GA->getBaseObject()) 2340 F = dyn_cast<Function>(GA->getBaseObject()); 2341 } 2342 2343 // VST_CODE_ENTRY: [valueid, namechar x N] 2344 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2345 // VST_CODE_BBENTRY: [bbid, namechar x N] 2346 unsigned Code; 2347 if (isa<BasicBlock>(Name.getValue())) { 2348 Code = bitc::VST_CODE_BBENTRY; 2349 if (Bits == SE_Char6) 2350 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2351 } else if (F && !F->isDeclaration()) { 2352 // Must be the module-level VST, where we pass in the Index and 2353 // have a VSTOffsetPlaceholder. The function-level VST should not 2354 // contain any Function symbols. 2355 assert(FunctionIndex); 2356 assert(VSTOffsetPlaceholder > 0); 2357 2358 // Save the word offset of the function (from the start of the 2359 // actual bitcode written to the stream). 2360 uint64_t BitcodeIndex = 2361 (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2362 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2363 NameVals.push_back(BitcodeIndex / 32); 2364 2365 Code = bitc::VST_CODE_FNENTRY; 2366 AbbrevToUse = FnEntry8BitAbbrev; 2367 if (Bits == SE_Char6) 2368 AbbrevToUse = FnEntry6BitAbbrev; 2369 else if (Bits == SE_Fixed7) 2370 AbbrevToUse = FnEntry7BitAbbrev; 2371 } else { 2372 Code = bitc::VST_CODE_ENTRY; 2373 if (Bits == SE_Char6) 2374 AbbrevToUse = VST_ENTRY_6_ABBREV; 2375 else if (Bits == SE_Fixed7) 2376 AbbrevToUse = VST_ENTRY_7_ABBREV; 2377 } 2378 2379 for (const auto P : Name.getKey()) 2380 NameVals.push_back((unsigned char)P); 2381 2382 // Emit the finished record. 2383 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2384 NameVals.clear(); 2385 } 2386 Stream.ExitBlock(); 2387 } 2388 2389 /// Emit function names and summary offsets for the combined index 2390 /// used by ThinLTO. 2391 static void 2392 WriteCombinedValueSymbolTable(const ModuleSummaryIndex &Index, 2393 BitstreamWriter &Stream, 2394 std::map<uint64_t, unsigned> &GUIDToValueIdMap, 2395 uint64_t VSTOffsetPlaceholder) { 2396 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2397 // Get the offset of the VST we are writing, and backpatch it into 2398 // the VST forward declaration record. 2399 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2400 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2401 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2402 2403 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2404 2405 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2406 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2410 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2411 2412 Abbv = new BitCodeAbbrev(); 2413 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2416 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2417 2418 SmallVector<uint64_t, 64> NameVals; 2419 2420 for (const auto &FII : Index) { 2421 uint64_t FuncGUID = FII.first; 2422 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2423 assert(VMI != GUIDToValueIdMap.end()); 2424 2425 for (const auto &FI : FII.second) { 2426 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2427 NameVals.push_back(VMI->second); 2428 NameVals.push_back(FI->bitcodeIndex()); 2429 NameVals.push_back(FuncGUID); 2430 2431 // Emit the finished record. 2432 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2433 DefEntryAbbrev); 2434 NameVals.clear(); 2435 } 2436 GUIDToValueIdMap.erase(VMI); 2437 } 2438 for (const auto &GVI : GUIDToValueIdMap) { 2439 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2440 NameVals.push_back(GVI.second); 2441 NameVals.push_back(GVI.first); 2442 2443 // Emit the finished record. 2444 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2445 NameVals.clear(); 2446 } 2447 Stream.ExitBlock(); 2448 } 2449 2450 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2451 BitstreamWriter &Stream) { 2452 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2453 unsigned Code; 2454 if (isa<BasicBlock>(Order.V)) 2455 Code = bitc::USELIST_CODE_BB; 2456 else 2457 Code = bitc::USELIST_CODE_DEFAULT; 2458 2459 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2460 Record.push_back(VE.getValueID(Order.V)); 2461 Stream.EmitRecord(Code, Record); 2462 } 2463 2464 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2465 BitstreamWriter &Stream) { 2466 assert(VE.shouldPreserveUseListOrder() && 2467 "Expected to be preserving use-list order"); 2468 2469 auto hasMore = [&]() { 2470 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2471 }; 2472 if (!hasMore()) 2473 // Nothing to do. 2474 return; 2475 2476 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2477 while (hasMore()) { 2478 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2479 VE.UseListOrders.pop_back(); 2480 } 2481 Stream.ExitBlock(); 2482 } 2483 2484 // Walk through the operands of a given User via worklist iteration and populate 2485 // the set of GlobalValue references encountered. Invoked either on an 2486 // Instruction or a GlobalVariable (which walks its initializer). 2487 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE, 2488 DenseSet<unsigned> &RefEdges, 2489 SmallPtrSet<const User *, 8> &Visited) { 2490 SmallVector<const User *, 32> Worklist; 2491 Worklist.push_back(CurUser); 2492 2493 while (!Worklist.empty()) { 2494 const User *U = Worklist.pop_back_val(); 2495 2496 if (!Visited.insert(U).second) 2497 continue; 2498 2499 ImmutableCallSite CS(U); 2500 2501 for (const auto &OI : U->operands()) { 2502 const User *Operand = dyn_cast<User>(OI); 2503 if (!Operand) 2504 continue; 2505 if (isa<BlockAddress>(Operand)) 2506 continue; 2507 if (isa<GlobalValue>(Operand)) { 2508 // We have a reference to a global value. This should be added to 2509 // the reference set unless it is a callee. Callees are handled 2510 // specially by WriteFunction and are added to a separate list. 2511 if (!(CS && CS.isCallee(&OI))) 2512 RefEdges.insert(VE.getValueID(Operand)); 2513 continue; 2514 } 2515 Worklist.push_back(Operand); 2516 } 2517 } 2518 } 2519 2520 /// Emit a function body to the module stream. 2521 static void WriteFunction( 2522 const Function &F, const Module *M, ValueEnumerator &VE, 2523 BitstreamWriter &Stream, 2524 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2525 bool EmitSummaryIndex) { 2526 // Save the bitcode index of the start of this function block for recording 2527 // in the VST. 2528 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2529 2530 bool HasProfileData = F.getEntryCount().hasValue(); 2531 std::unique_ptr<BlockFrequencyInfo> BFI; 2532 if (EmitSummaryIndex && HasProfileData) { 2533 Function &Func = const_cast<Function &>(F); 2534 LoopInfo LI{DominatorTree(Func)}; 2535 BranchProbabilityInfo BPI{Func, LI}; 2536 BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI); 2537 } 2538 2539 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2540 VE.incorporateFunction(F); 2541 2542 SmallVector<unsigned, 64> Vals; 2543 2544 // Emit the number of basic blocks, so the reader can create them ahead of 2545 // time. 2546 Vals.push_back(VE.getBasicBlocks().size()); 2547 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2548 Vals.clear(); 2549 2550 // If there are function-local constants, emit them now. 2551 unsigned CstStart, CstEnd; 2552 VE.getFunctionConstantRange(CstStart, CstEnd); 2553 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2554 2555 // If there is function-local metadata, emit it now. 2556 WriteFunctionLocalMetadata(F, VE, Stream); 2557 2558 // Keep a running idea of what the instruction ID is. 2559 unsigned InstID = CstEnd; 2560 2561 bool NeedsMetadataAttachment = F.hasMetadata(); 2562 2563 DILocation *LastDL = nullptr; 2564 unsigned NumInsts = 0; 2565 // Map from callee ValueId to profile count. Used to accumulate profile 2566 // counts for all static calls to a given callee. 2567 DenseMap<unsigned, CalleeInfo> CallGraphEdges; 2568 DenseSet<unsigned> RefEdges; 2569 2570 SmallPtrSet<const User *, 8> Visited; 2571 // Finally, emit all the instructions, in order. 2572 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2573 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2574 I != E; ++I) { 2575 WriteInstruction(*I, InstID, VE, Stream, Vals); 2576 2577 if (!isa<DbgInfoIntrinsic>(I)) 2578 ++NumInsts; 2579 2580 if (!I->getType()->isVoidTy()) 2581 ++InstID; 2582 2583 if (EmitSummaryIndex) { 2584 if (auto CS = ImmutableCallSite(&*I)) { 2585 auto *CalledFunction = CS.getCalledFunction(); 2586 if (CalledFunction && CalledFunction->hasName() && 2587 !CalledFunction->isIntrinsic()) { 2588 auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None; 2589 unsigned CalleeId = VE.getValueID( 2590 M->getValueSymbolTable().lookup(CalledFunction->getName())); 2591 CallGraphEdges[CalleeId] += 2592 (ScaledCount ? ScaledCount.getValue() : 0); 2593 } 2594 } 2595 findRefEdges(&*I, VE, RefEdges, Visited); 2596 } 2597 2598 // If the instruction has metadata, write a metadata attachment later. 2599 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2600 2601 // If the instruction has a debug location, emit it. 2602 DILocation *DL = I->getDebugLoc(); 2603 if (!DL) 2604 continue; 2605 2606 if (DL == LastDL) { 2607 // Just repeat the same debug loc as last time. 2608 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2609 continue; 2610 } 2611 2612 Vals.push_back(DL->getLine()); 2613 Vals.push_back(DL->getColumn()); 2614 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2615 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2616 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2617 Vals.clear(); 2618 2619 LastDL = DL; 2620 } 2621 2622 std::unique_ptr<FunctionSummary> FuncSummary; 2623 if (EmitSummaryIndex) { 2624 FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts); 2625 FuncSummary->addCallGraphEdges(CallGraphEdges); 2626 FuncSummary->addRefEdges(RefEdges); 2627 } 2628 FunctionIndex[&F] = 2629 llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary)); 2630 2631 // Emit names for all the instructions etc. 2632 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2633 2634 if (NeedsMetadataAttachment) 2635 WriteMetadataAttachment(F, VE, Stream); 2636 if (VE.shouldPreserveUseListOrder()) 2637 WriteUseListBlock(&F, VE, Stream); 2638 VE.purgeFunction(); 2639 Stream.ExitBlock(); 2640 } 2641 2642 // Emit blockinfo, which defines the standard abbreviations etc. 2643 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2644 // We only want to emit block info records for blocks that have multiple 2645 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2646 // Other blocks can define their abbrevs inline. 2647 Stream.EnterBlockInfoBlock(2); 2648 2649 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2650 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2655 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2656 Abbv) != VST_ENTRY_8_ABBREV) 2657 llvm_unreachable("Unexpected abbrev ordering!"); 2658 } 2659 2660 { // 7-bit fixed width VST_CODE_ENTRY strings. 2661 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2662 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2666 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2667 Abbv) != VST_ENTRY_7_ABBREV) 2668 llvm_unreachable("Unexpected abbrev ordering!"); 2669 } 2670 { // 6-bit char6 VST_CODE_ENTRY strings. 2671 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2672 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2676 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2677 Abbv) != VST_ENTRY_6_ABBREV) 2678 llvm_unreachable("Unexpected abbrev ordering!"); 2679 } 2680 { // 6-bit char6 VST_CODE_BBENTRY strings. 2681 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2682 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2686 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2687 Abbv) != VST_BBENTRY_6_ABBREV) 2688 llvm_unreachable("Unexpected abbrev ordering!"); 2689 } 2690 2691 2692 2693 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2694 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2695 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2697 VE.computeBitsRequiredForTypeIndicies())); 2698 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2699 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2700 llvm_unreachable("Unexpected abbrev ordering!"); 2701 } 2702 2703 { // INTEGER abbrev for CONSTANTS_BLOCK. 2704 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2705 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2707 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2708 Abbv) != CONSTANTS_INTEGER_ABBREV) 2709 llvm_unreachable("Unexpected abbrev ordering!"); 2710 } 2711 2712 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2713 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2714 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2717 VE.computeBitsRequiredForTypeIndicies())); 2718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2719 2720 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2721 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2722 llvm_unreachable("Unexpected abbrev ordering!"); 2723 } 2724 { // NULL abbrev for CONSTANTS_BLOCK. 2725 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2726 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2727 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2728 Abbv) != CONSTANTS_NULL_Abbrev) 2729 llvm_unreachable("Unexpected abbrev ordering!"); 2730 } 2731 2732 // FIXME: This should only use space for first class types! 2733 2734 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2735 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2736 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2739 VE.computeBitsRequiredForTypeIndicies())); 2740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2742 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2743 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2744 llvm_unreachable("Unexpected abbrev ordering!"); 2745 } 2746 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2747 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2748 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2752 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2753 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2754 llvm_unreachable("Unexpected abbrev ordering!"); 2755 } 2756 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2757 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2758 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2763 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2764 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2765 llvm_unreachable("Unexpected abbrev ordering!"); 2766 } 2767 { // INST_CAST abbrev for FUNCTION_BLOCK. 2768 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2769 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2772 VE.computeBitsRequiredForTypeIndicies())); 2773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2774 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2775 Abbv) != FUNCTION_INST_CAST_ABBREV) 2776 llvm_unreachable("Unexpected abbrev ordering!"); 2777 } 2778 2779 { // INST_RET abbrev for FUNCTION_BLOCK. 2780 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2781 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2782 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2783 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2784 llvm_unreachable("Unexpected abbrev ordering!"); 2785 } 2786 { // INST_RET abbrev for FUNCTION_BLOCK. 2787 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2788 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2790 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2791 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2792 llvm_unreachable("Unexpected abbrev ordering!"); 2793 } 2794 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2795 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2796 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2797 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2798 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2799 llvm_unreachable("Unexpected abbrev ordering!"); 2800 } 2801 { 2802 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2803 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2806 Log2_32_Ceil(VE.getTypes().size() + 1))); 2807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2809 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2810 FUNCTION_INST_GEP_ABBREV) 2811 llvm_unreachable("Unexpected abbrev ordering!"); 2812 } 2813 2814 Stream.ExitBlock(); 2815 } 2816 2817 /// Write the module path strings, currently only used when generating 2818 /// a combined index file. 2819 static void WriteModStrings(const ModuleSummaryIndex &I, 2820 BitstreamWriter &Stream) { 2821 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2822 2823 // TODO: See which abbrev sizes we actually need to emit 2824 2825 // 8-bit fixed-width MST_ENTRY strings. 2826 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2827 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2831 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2832 2833 // 7-bit fixed width MST_ENTRY strings. 2834 Abbv = new BitCodeAbbrev(); 2835 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2839 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2840 2841 // 6-bit char6 MST_ENTRY strings. 2842 Abbv = new BitCodeAbbrev(); 2843 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2847 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2848 2849 SmallVector<unsigned, 64> NameVals; 2850 for (const StringMapEntry<uint64_t> &MPSE : I.modulePaths()) { 2851 StringEncoding Bits = 2852 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2853 unsigned AbbrevToUse = Abbrev8Bit; 2854 if (Bits == SE_Char6) 2855 AbbrevToUse = Abbrev6Bit; 2856 else if (Bits == SE_Fixed7) 2857 AbbrevToUse = Abbrev7Bit; 2858 2859 NameVals.push_back(MPSE.getValue()); 2860 2861 for (const auto P : MPSE.getKey()) 2862 NameVals.push_back((unsigned char)P); 2863 2864 // Emit the finished record. 2865 Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse); 2866 NameVals.clear(); 2867 } 2868 Stream.ExitBlock(); 2869 } 2870 2871 // Helper to emit a single function summary record. 2872 static void WritePerModuleFunctionSummaryRecord( 2873 SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2874 unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 2875 BitstreamWriter &Stream, const Function &F) { 2876 assert(FS); 2877 NameVals.push_back(ValueID); 2878 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2879 NameVals.push_back(FS->instCount()); 2880 NameVals.push_back(FS->refs().size()); 2881 2882 for (auto &RI : FS->refs()) 2883 NameVals.push_back(RI); 2884 2885 bool HasProfileData = F.getEntryCount().hasValue(); 2886 for (auto &ECI : FS->calls()) { 2887 NameVals.push_back(ECI.first); 2888 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2889 NameVals.push_back(ECI.second.CallsiteCount); 2890 if (HasProfileData) 2891 NameVals.push_back(ECI.second.ProfileCount); 2892 } 2893 2894 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2895 unsigned Code = 2896 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2897 2898 // Emit the finished record. 2899 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2900 NameVals.clear(); 2901 } 2902 2903 // Collect the global value references in the given variable's initializer, 2904 // and emit them in a summary record. 2905 static void WriteModuleLevelReferences(const GlobalVariable &V, 2906 const ValueEnumerator &VE, 2907 SmallVector<uint64_t, 64> &NameVals, 2908 unsigned FSModRefsAbbrev, 2909 BitstreamWriter &Stream) { 2910 // Only interested in recording variable defs in the summary. 2911 if (V.isDeclaration()) 2912 return; 2913 DenseSet<unsigned> RefEdges; 2914 SmallPtrSet<const User *, 8> Visited; 2915 findRefEdges(&V, VE, RefEdges, Visited); 2916 NameVals.push_back(VE.getValueID(&V)); 2917 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2918 for (auto RefId : RefEdges) { 2919 NameVals.push_back(RefId); 2920 } 2921 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2922 FSModRefsAbbrev); 2923 NameVals.clear(); 2924 } 2925 2926 /// Emit the per-module summary section alongside the rest of 2927 /// the module's bitcode. 2928 static void WritePerModuleGlobalValueSummary( 2929 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2930 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2931 if (M->empty()) 2932 return; 2933 2934 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2935 2936 // Abbrev for FS_PERMODULE. 2937 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2938 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2943 // numrefs x valueid, n x (valueid, callsitecount) 2944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2946 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2947 2948 // Abbrev for FS_PERMODULE_PROFILE. 2949 Abbv = new BitCodeAbbrev(); 2950 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2955 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2958 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2959 2960 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2961 Abbv = new BitCodeAbbrev(); 2962 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2967 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 2968 2969 SmallVector<uint64_t, 64> NameVals; 2970 // Iterate over the list of functions instead of the FunctionIndex map to 2971 // ensure the ordering is stable. 2972 for (const Function &F : *M) { 2973 if (F.isDeclaration()) 2974 continue; 2975 // Skip anonymous functions. We will emit a function summary for 2976 // any aliases below. 2977 if (!F.hasName()) 2978 continue; 2979 2980 assert(FunctionIndex.count(&F) == 1); 2981 2982 WritePerModuleFunctionSummaryRecord( 2983 NameVals, cast<FunctionSummary>(FunctionIndex[&F]->summary()), 2984 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), 2985 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 2986 } 2987 2988 for (const GlobalAlias &A : M->aliases()) { 2989 if (!A.getBaseObject()) 2990 continue; 2991 const Function *F = dyn_cast<Function>(A.getBaseObject()); 2992 if (!F || F->isDeclaration()) 2993 continue; 2994 2995 assert(FunctionIndex.count(F) == 1); 2996 FunctionSummary *FS = 2997 cast<FunctionSummary>(FunctionIndex[F]->summary()); 2998 // Add the alias to the reference list of aliasee function. 2999 FS->addRefEdge( 3000 VE.getValueID(M->getValueSymbolTable().lookup(A.getName()))); 3001 WritePerModuleFunctionSummaryRecord( 3002 NameVals, FS, 3003 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), 3004 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F); 3005 } 3006 3007 // Capture references from GlobalVariable initializers, which are outside 3008 // of a function scope. 3009 for (const GlobalVariable &G : M->globals()) 3010 WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream); 3011 for (const GlobalAlias &A : M->aliases()) 3012 if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject())) 3013 WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream); 3014 3015 Stream.ExitBlock(); 3016 } 3017 3018 /// Emit the combined summary section into the combined index file. 3019 static void WriteCombinedGlobalValueSummary( 3020 const ModuleSummaryIndex &I, BitstreamWriter &Stream, 3021 std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) { 3022 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3023 3024 // Abbrev for FS_COMBINED. 3025 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3026 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3031 // numrefs x valueid, n x (valueid, callsitecount) 3032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3034 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3035 3036 // Abbrev for FS_COMBINED_PROFILE. 3037 Abbv = new BitCodeAbbrev(); 3038 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3043 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3046 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3047 3048 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3049 Abbv = new BitCodeAbbrev(); 3050 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3055 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3056 3057 SmallVector<uint64_t, 64> NameVals; 3058 for (const auto &FII : I) { 3059 for (auto &FI : FII.second) { 3060 GlobalValueSummary *S = FI->summary(); 3061 assert(S); 3062 3063 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3064 NameVals.push_back(I.getModuleId(VS->modulePath())); 3065 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3066 for (auto &RI : VS->refs()) { 3067 const auto &VMI = GUIDToValueIdMap.find(RI); 3068 unsigned RefId; 3069 // If this GUID doesn't have an entry, assign one. 3070 if (VMI == GUIDToValueIdMap.end()) { 3071 GUIDToValueIdMap[RI] = ++GlobalValueId; 3072 RefId = GlobalValueId; 3073 } else { 3074 RefId = VMI->second; 3075 } 3076 NameVals.push_back(RefId); 3077 } 3078 3079 // Record the starting offset of this summary entry for use 3080 // in the VST entry. Add the current code size since the 3081 // reader will invoke readRecord after the abbrev id read. 3082 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3083 Stream.GetAbbrevIDWidth()); 3084 3085 // Emit the finished record. 3086 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3087 FSModRefsAbbrev); 3088 NameVals.clear(); 3089 continue; 3090 } 3091 3092 auto *FS = cast<FunctionSummary>(S); 3093 NameVals.push_back(I.getModuleId(FS->modulePath())); 3094 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3095 NameVals.push_back(FS->instCount()); 3096 NameVals.push_back(FS->refs().size()); 3097 3098 for (auto &RI : FS->refs()) { 3099 const auto &VMI = GUIDToValueIdMap.find(RI); 3100 unsigned RefId; 3101 // If this GUID doesn't have an entry, assign one. 3102 if (VMI == GUIDToValueIdMap.end()) { 3103 GUIDToValueIdMap[RI] = ++GlobalValueId; 3104 RefId = GlobalValueId; 3105 } else { 3106 RefId = VMI->second; 3107 } 3108 NameVals.push_back(RefId); 3109 } 3110 3111 bool HasProfileData = false; 3112 for (auto &EI : FS->calls()) { 3113 HasProfileData |= EI.second.ProfileCount != 0; 3114 if (HasProfileData) 3115 break; 3116 } 3117 3118 for (auto &EI : FS->calls()) { 3119 const auto &VMI = GUIDToValueIdMap.find(EI.first); 3120 // If this GUID doesn't have an entry, it doesn't have a function 3121 // summary and we don't need to record any calls to it. 3122 if (VMI == GUIDToValueIdMap.end()) 3123 continue; 3124 NameVals.push_back(VMI->second); 3125 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3126 NameVals.push_back(EI.second.CallsiteCount); 3127 if (HasProfileData) 3128 NameVals.push_back(EI.second.ProfileCount); 3129 } 3130 3131 // Record the starting offset of this summary entry for use 3132 // in the VST entry. Add the current code size since the 3133 // reader will invoke readRecord after the abbrev id read. 3134 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3135 3136 unsigned FSAbbrev = 3137 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3138 unsigned Code = 3139 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3140 3141 // Emit the finished record. 3142 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3143 NameVals.clear(); 3144 } 3145 } 3146 3147 Stream.ExitBlock(); 3148 } 3149 3150 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3151 // current llvm version, and a record for the epoch number. 3152 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3153 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3154 3155 // Write the "user readable" string identifying the bitcode producer 3156 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3157 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3160 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3161 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3162 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3163 3164 // Write the epoch version 3165 Abbv = new BitCodeAbbrev(); 3166 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3168 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3169 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3170 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3171 Stream.ExitBlock(); 3172 } 3173 3174 /// WriteModule - Emit the specified module to the bitstream. 3175 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3176 bool ShouldPreserveUseListOrder, 3177 uint64_t BitcodeStartBit, bool EmitSummaryIndex) { 3178 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3179 3180 SmallVector<unsigned, 1> Vals; 3181 unsigned CurVersion = 1; 3182 Vals.push_back(CurVersion); 3183 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3184 3185 // Analyze the module, enumerating globals, functions, etc. 3186 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3187 3188 // Emit blockinfo, which defines the standard abbreviations etc. 3189 WriteBlockInfo(VE, Stream); 3190 3191 // Emit information about attribute groups. 3192 WriteAttributeGroupTable(VE, Stream); 3193 3194 // Emit information about parameter attributes. 3195 WriteAttributeTable(VE, Stream); 3196 3197 // Emit information describing all of the types in the module. 3198 WriteTypeTable(VE, Stream); 3199 3200 writeComdats(VE, Stream); 3201 3202 // Emit top-level description of module, including target triple, inline asm, 3203 // descriptors for global variables, and function prototype info. 3204 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3205 3206 // Emit constants. 3207 WriteModuleConstants(VE, Stream); 3208 3209 // Emit metadata. 3210 WriteModuleMetadata(*M, VE, Stream); 3211 3212 // Emit metadata. 3213 WriteModuleMetadataStore(M, Stream); 3214 3215 // Emit module-level use-lists. 3216 if (VE.shouldPreserveUseListOrder()) 3217 WriteUseListBlock(nullptr, VE, Stream); 3218 3219 WriteOperandBundleTags(M, Stream); 3220 3221 // Emit function bodies. 3222 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex; 3223 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3224 if (!F->isDeclaration()) 3225 WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex); 3226 3227 // Need to write after the above call to WriteFunction which populates 3228 // the summary information in the index. 3229 if (EmitSummaryIndex) 3230 WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream); 3231 3232 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3233 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 3234 3235 Stream.ExitBlock(); 3236 } 3237 3238 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3239 /// header and trailer to make it compatible with the system archiver. To do 3240 /// this we emit the following header, and then emit a trailer that pads the 3241 /// file out to be a multiple of 16 bytes. 3242 /// 3243 /// struct bc_header { 3244 /// uint32_t Magic; // 0x0B17C0DE 3245 /// uint32_t Version; // Version, currently always 0. 3246 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3247 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3248 /// uint32_t CPUType; // CPU specifier. 3249 /// ... potentially more later ... 3250 /// }; 3251 3252 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3253 uint32_t &Position) { 3254 support::endian::write32le(&Buffer[Position], Value); 3255 Position += 4; 3256 } 3257 3258 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3259 const Triple &TT) { 3260 unsigned CPUType = ~0U; 3261 3262 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3263 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3264 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3265 // specific constants here because they are implicitly part of the Darwin ABI. 3266 enum { 3267 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3268 DARWIN_CPU_TYPE_X86 = 7, 3269 DARWIN_CPU_TYPE_ARM = 12, 3270 DARWIN_CPU_TYPE_POWERPC = 18 3271 }; 3272 3273 Triple::ArchType Arch = TT.getArch(); 3274 if (Arch == Triple::x86_64) 3275 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3276 else if (Arch == Triple::x86) 3277 CPUType = DARWIN_CPU_TYPE_X86; 3278 else if (Arch == Triple::ppc) 3279 CPUType = DARWIN_CPU_TYPE_POWERPC; 3280 else if (Arch == Triple::ppc64) 3281 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3282 else if (Arch == Triple::arm || Arch == Triple::thumb) 3283 CPUType = DARWIN_CPU_TYPE_ARM; 3284 3285 // Traditional Bitcode starts after header. 3286 assert(Buffer.size() >= BWH_HeaderSize && 3287 "Expected header size to be reserved"); 3288 unsigned BCOffset = BWH_HeaderSize; 3289 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3290 3291 // Write the magic and version. 3292 unsigned Position = 0; 3293 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3294 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3295 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3296 WriteInt32ToBuffer(BCSize , Buffer, Position); 3297 WriteInt32ToBuffer(CPUType , Buffer, Position); 3298 3299 // If the file is not a multiple of 16 bytes, insert dummy padding. 3300 while (Buffer.size() & 15) 3301 Buffer.push_back(0); 3302 } 3303 3304 /// Helper to write the header common to all bitcode files. 3305 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3306 // Emit the file header. 3307 Stream.Emit((unsigned)'B', 8); 3308 Stream.Emit((unsigned)'C', 8); 3309 Stream.Emit(0x0, 4); 3310 Stream.Emit(0xC, 4); 3311 Stream.Emit(0xE, 4); 3312 Stream.Emit(0xD, 4); 3313 } 3314 3315 /// WriteBitcodeToFile - Write the specified module to the specified output 3316 /// stream. 3317 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3318 bool ShouldPreserveUseListOrder, 3319 bool EmitSummaryIndex) { 3320 SmallVector<char, 0> Buffer; 3321 Buffer.reserve(256*1024); 3322 3323 // If this is darwin or another generic macho target, reserve space for the 3324 // header. 3325 Triple TT(M->getTargetTriple()); 3326 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3327 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3328 3329 // Emit the module into the buffer. 3330 { 3331 BitstreamWriter Stream(Buffer); 3332 // Save the start bit of the actual bitcode, in case there is space 3333 // saved at the start for the darwin header above. The reader stream 3334 // will start at the bitcode, and we need the offset of the VST 3335 // to line up. 3336 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3337 3338 // Emit the file header. 3339 WriteBitcodeHeader(Stream); 3340 3341 WriteIdentificationBlock(M, Stream); 3342 3343 // Emit the module. 3344 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3345 EmitSummaryIndex); 3346 } 3347 3348 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3349 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3350 3351 // Write the generated bitstream to "Out". 3352 Out.write((char*)&Buffer.front(), Buffer.size()); 3353 } 3354 3355 // Write the specified module summary index to the given raw output stream, 3356 // where it will be written in a new bitcode block. This is used when 3357 // writing the combined index file for ThinLTO. 3358 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3359 SmallVector<char, 0> Buffer; 3360 Buffer.reserve(256 * 1024); 3361 3362 BitstreamWriter Stream(Buffer); 3363 3364 // Emit the bitcode header. 3365 WriteBitcodeHeader(Stream); 3366 3367 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3368 3369 SmallVector<unsigned, 1> Vals; 3370 unsigned CurVersion = 1; 3371 Vals.push_back(CurVersion); 3372 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3373 3374 // If we have a VST, write the VSTOFFSET record placeholder and record 3375 // its offset. 3376 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3377 3378 // Write the module paths in the combined index. 3379 WriteModStrings(Index, Stream); 3380 3381 // Assign unique value ids to all functions in the index for use 3382 // in writing out the call graph edges. Save the mapping from GUID 3383 // to the new global value id to use when writing those edges, which 3384 // are currently saved in the index in terms of GUID. 3385 std::map<uint64_t, unsigned> GUIDToValueIdMap; 3386 unsigned GlobalValueId = 0; 3387 for (auto &II : Index) 3388 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3389 3390 // Write the summary combined index records. 3391 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3392 GlobalValueId); 3393 3394 // Need a special VST writer for the combined index (we don't have a 3395 // real VST and real values when this is invoked). 3396 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3397 VSTOffsetPlaceholder); 3398 3399 Stream.ExitBlock(); 3400 3401 Out.write((char *)&Buffer.front(), Buffer.size()); 3402 } 3403