1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 StringTableBuilder &StrtabBuilder; 81 82 public: 83 /// Constructs a BitcodeWriterBase object that writes to the provided 84 /// \p Stream. 85 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 86 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 87 88 protected: 89 void writeBitcodeHeader(); 90 void writeModuleVersion(); 91 }; 92 93 void BitcodeWriterBase::writeModuleVersion() { 94 // VERSION: [version#] 95 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 96 } 97 98 /// Class to manage the bitcode writing for a module. 99 class ModuleBitcodeWriter : public BitcodeWriterBase { 100 /// Pointer to the buffer allocated by caller for bitcode writing. 101 const SmallVectorImpl<char> &Buffer; 102 103 /// The Module to write to bitcode. 104 const Module &M; 105 106 /// Enumerates ids for all values in the module. 107 ValueEnumerator VE; 108 109 /// Optional per-module index to write for ThinLTO. 110 const ModuleSummaryIndex *Index; 111 112 /// True if a module hash record should be written. 113 bool GenerateHash; 114 115 /// If non-null, when GenerateHash is true, the resulting hash is written 116 /// into ModHash. When GenerateHash is false, that specified value 117 /// is used as the hash instead of computing from the generated bitcode. 118 /// Can be used to produce the same module hash for a minimized bitcode 119 /// used just for the thin link as in the regular full bitcode that will 120 /// be used in the backend. 121 ModuleHash *ModHash; 122 123 /// The start bit of the identification block. 124 uint64_t BitcodeStartBit; 125 126 /// Map that holds the correspondence between GUIDs in the summary index, 127 /// that came from indirect call profiles, and a value id generated by this 128 /// class to use in the VST and summary block records. 129 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 130 131 /// Tracks the last value id recorded in the GUIDToValueMap. 132 unsigned GlobalValueId; 133 134 /// Saves the offset of the VSTOffset record that must eventually be 135 /// backpatched with the offset of the actual VST. 136 uint64_t VSTOffsetPlaceholder = 0; 137 138 public: 139 /// Constructs a ModuleBitcodeWriter object for the given Module, 140 /// writing to the provided \p Buffer. 141 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 142 StringTableBuilder &StrtabBuilder, 143 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 144 const ModuleSummaryIndex *Index, bool GenerateHash, 145 ModuleHash *ModHash = nullptr) 146 : BitcodeWriterBase(Stream, StrtabBuilder), Buffer(Buffer), M(*M), 147 VE(*M, ShouldPreserveUseListOrder), Index(Index), 148 GenerateHash(GenerateHash), ModHash(ModHash), 149 BitcodeStartBit(Stream.GetCurrentBitNo()) { 150 // Assign ValueIds to any callee values in the index that came from 151 // indirect call profiles and were recorded as a GUID not a Value* 152 // (which would have been assigned an ID by the ValueEnumerator). 153 // The starting ValueId is just after the number of values in the 154 // ValueEnumerator, so that they can be emitted in the VST. 155 GlobalValueId = VE.getValues().size(); 156 if (!Index) 157 return; 158 for (const auto &GUIDSummaryLists : *Index) 159 // Examine all summaries for this GUID. 160 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 161 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 162 // For each call in the function summary, see if the call 163 // is to a GUID (which means it is for an indirect call, 164 // otherwise we would have a Value for it). If so, synthesize 165 // a value id. 166 for (auto &CallEdge : FS->calls()) 167 if (!CallEdge.first.getValue()) 168 assignValueId(CallEdge.first.getGUID()); 169 } 170 171 /// Emit the current module to the bitstream. 172 void write(); 173 174 private: 175 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 176 177 void writeAttributeGroupTable(); 178 void writeAttributeTable(); 179 void writeTypeTable(); 180 void writeComdats(); 181 void writeValueSymbolTableForwardDecl(); 182 void writeModuleInfo(); 183 void writeValueAsMetadata(const ValueAsMetadata *MD, 184 SmallVectorImpl<uint64_t> &Record); 185 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 186 unsigned Abbrev); 187 unsigned createDILocationAbbrev(); 188 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 189 unsigned &Abbrev); 190 unsigned createGenericDINodeAbbrev(); 191 void writeGenericDINode(const GenericDINode *N, 192 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 193 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 194 unsigned Abbrev); 195 void writeDIEnumerator(const DIEnumerator *N, 196 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 197 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 198 unsigned Abbrev); 199 void writeDIDerivedType(const DIDerivedType *N, 200 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 201 void writeDICompositeType(const DICompositeType *N, 202 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 203 void writeDISubroutineType(const DISubroutineType *N, 204 SmallVectorImpl<uint64_t> &Record, 205 unsigned Abbrev); 206 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 207 unsigned Abbrev); 208 void writeDICompileUnit(const DICompileUnit *N, 209 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 210 void writeDISubprogram(const DISubprogram *N, 211 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 212 void writeDILexicalBlock(const DILexicalBlock *N, 213 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 214 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 215 SmallVectorImpl<uint64_t> &Record, 216 unsigned Abbrev); 217 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 218 unsigned Abbrev); 219 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 220 unsigned Abbrev); 221 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned Abbrev); 225 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 226 SmallVectorImpl<uint64_t> &Record, 227 unsigned Abbrev); 228 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 229 SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIGlobalVariable(const DIGlobalVariable *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev); 234 void writeDILocalVariable(const DILocalVariable *N, 235 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 236 void writeDIExpression(const DIExpression *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 239 SmallVectorImpl<uint64_t> &Record, 240 unsigned Abbrev); 241 void writeDIObjCProperty(const DIObjCProperty *N, 242 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 243 void writeDIImportedEntity(const DIImportedEntity *N, 244 SmallVectorImpl<uint64_t> &Record, 245 unsigned Abbrev); 246 unsigned createNamedMetadataAbbrev(); 247 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 248 unsigned createMetadataStringsAbbrev(); 249 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 250 SmallVectorImpl<uint64_t> &Record); 251 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 252 SmallVectorImpl<uint64_t> &Record, 253 std::vector<unsigned> *MDAbbrevs = nullptr, 254 std::vector<uint64_t> *IndexPos = nullptr); 255 void writeModuleMetadata(); 256 void writeFunctionMetadata(const Function &F); 257 void writeFunctionMetadataAttachment(const Function &F); 258 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 259 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 260 const GlobalObject &GO); 261 void writeModuleMetadataKinds(); 262 void writeOperandBundleTags(); 263 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 264 void writeModuleConstants(); 265 bool pushValueAndType(const Value *V, unsigned InstID, 266 SmallVectorImpl<unsigned> &Vals); 267 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 268 void pushValue(const Value *V, unsigned InstID, 269 SmallVectorImpl<unsigned> &Vals); 270 void pushValueSigned(const Value *V, unsigned InstID, 271 SmallVectorImpl<uint64_t> &Vals); 272 void writeInstruction(const Instruction &I, unsigned InstID, 273 SmallVectorImpl<unsigned> &Vals); 274 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 275 void writeGlobalValueSymbolTable( 276 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 277 void writeUseList(UseListOrder &&Order); 278 void writeUseListBlock(const Function *F); 279 void 280 writeFunction(const Function &F, 281 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 282 void writeBlockInfo(); 283 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 284 GlobalValueSummary *Summary, 285 unsigned ValueID, 286 unsigned FSCallsAbbrev, 287 unsigned FSCallsProfileAbbrev, 288 const Function &F); 289 void writeModuleLevelReferences(const GlobalVariable &V, 290 SmallVector<uint64_t, 64> &NameVals, 291 unsigned FSModRefsAbbrev); 292 void writePerModuleGlobalValueSummary(); 293 void writeModuleHash(size_t BlockStartPos); 294 295 void assignValueId(GlobalValue::GUID ValGUID) { 296 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 297 } 298 unsigned getValueId(GlobalValue::GUID ValGUID) { 299 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 300 // Expect that any GUID value had a value Id assigned by an 301 // earlier call to assignValueId. 302 assert(VMI != GUIDToValueIdMap.end() && 303 "GUID does not have assigned value Id"); 304 return VMI->second; 305 } 306 // Helper to get the valueId for the type of value recorded in VI. 307 unsigned getValueId(ValueInfo VI) { 308 if (!VI.getValue()) 309 return getValueId(VI.getGUID()); 310 return VE.getValueID(VI.getValue()); 311 } 312 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 313 }; 314 315 /// Class to manage the bitcode writing for a combined index. 316 class IndexBitcodeWriter : public BitcodeWriterBase { 317 /// The combined index to write to bitcode. 318 const ModuleSummaryIndex &Index; 319 320 /// When writing a subset of the index for distributed backends, client 321 /// provides a map of modules to the corresponding GUIDs/summaries to write. 322 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 323 324 /// Map that holds the correspondence between the GUID used in the combined 325 /// index and a value id generated by this class to use in references. 326 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 327 328 /// Tracks the last value id recorded in the GUIDToValueMap. 329 unsigned GlobalValueId = 0; 330 331 public: 332 /// Constructs a IndexBitcodeWriter object for the given combined index, 333 /// writing to the provided \p Buffer. When writing a subset of the index 334 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 335 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 336 const ModuleSummaryIndex &Index, 337 const std::map<std::string, GVSummaryMapTy> 338 *ModuleToSummariesForIndex = nullptr) 339 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 340 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 341 // Assign unique value ids to all summaries to be written, for use 342 // in writing out the call graph edges. Save the mapping from GUID 343 // to the new global value id to use when writing those edges, which 344 // are currently saved in the index in terms of GUID. 345 forEachSummary([&](GVInfo I) { 346 GUIDToValueIdMap[I.first] = ++GlobalValueId; 347 }); 348 } 349 350 /// The below iterator returns the GUID and associated summary. 351 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 352 353 /// Calls the callback for each value GUID and summary to be written to 354 /// bitcode. This hides the details of whether they are being pulled from the 355 /// entire index or just those in a provided ModuleToSummariesForIndex map. 356 template<typename Functor> 357 void forEachSummary(Functor Callback) { 358 if (ModuleToSummariesForIndex) { 359 for (auto &M : *ModuleToSummariesForIndex) 360 for (auto &Summary : M.second) 361 Callback(Summary); 362 } else { 363 for (auto &Summaries : Index) 364 for (auto &Summary : Summaries.second.SummaryList) 365 Callback({Summaries.first, Summary.get()}); 366 } 367 } 368 369 /// Calls the callback for each entry in the modulePaths StringMap that 370 /// should be written to the module path string table. This hides the details 371 /// of whether they are being pulled from the entire index or just those in a 372 /// provided ModuleToSummariesForIndex map. 373 template <typename Functor> void forEachModule(Functor Callback) { 374 if (ModuleToSummariesForIndex) { 375 for (const auto &M : *ModuleToSummariesForIndex) { 376 const auto &MPI = Index.modulePaths().find(M.first); 377 if (MPI == Index.modulePaths().end()) { 378 // This should only happen if the bitcode file was empty, in which 379 // case we shouldn't be importing (the ModuleToSummariesForIndex 380 // would only include the module we are writing and index for). 381 assert(ModuleToSummariesForIndex->size() == 1); 382 continue; 383 } 384 Callback(*MPI); 385 } 386 } else { 387 for (const auto &MPSE : Index.modulePaths()) 388 Callback(MPSE); 389 } 390 } 391 392 /// Main entry point for writing a combined index to bitcode. 393 void write(); 394 395 private: 396 void writeModStrings(); 397 void writeCombinedGlobalValueSummary(); 398 399 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 400 auto VMI = GUIDToValueIdMap.find(ValGUID); 401 if (VMI == GUIDToValueIdMap.end()) 402 return None; 403 return VMI->second; 404 } 405 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 406 }; 407 } // end anonymous namespace 408 409 static unsigned getEncodedCastOpcode(unsigned Opcode) { 410 switch (Opcode) { 411 default: llvm_unreachable("Unknown cast instruction!"); 412 case Instruction::Trunc : return bitc::CAST_TRUNC; 413 case Instruction::ZExt : return bitc::CAST_ZEXT; 414 case Instruction::SExt : return bitc::CAST_SEXT; 415 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 416 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 417 case Instruction::UIToFP : return bitc::CAST_UITOFP; 418 case Instruction::SIToFP : return bitc::CAST_SITOFP; 419 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 420 case Instruction::FPExt : return bitc::CAST_FPEXT; 421 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 422 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 423 case Instruction::BitCast : return bitc::CAST_BITCAST; 424 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 425 } 426 } 427 428 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 429 switch (Opcode) { 430 default: llvm_unreachable("Unknown binary instruction!"); 431 case Instruction::Add: 432 case Instruction::FAdd: return bitc::BINOP_ADD; 433 case Instruction::Sub: 434 case Instruction::FSub: return bitc::BINOP_SUB; 435 case Instruction::Mul: 436 case Instruction::FMul: return bitc::BINOP_MUL; 437 case Instruction::UDiv: return bitc::BINOP_UDIV; 438 case Instruction::FDiv: 439 case Instruction::SDiv: return bitc::BINOP_SDIV; 440 case Instruction::URem: return bitc::BINOP_UREM; 441 case Instruction::FRem: 442 case Instruction::SRem: return bitc::BINOP_SREM; 443 case Instruction::Shl: return bitc::BINOP_SHL; 444 case Instruction::LShr: return bitc::BINOP_LSHR; 445 case Instruction::AShr: return bitc::BINOP_ASHR; 446 case Instruction::And: return bitc::BINOP_AND; 447 case Instruction::Or: return bitc::BINOP_OR; 448 case Instruction::Xor: return bitc::BINOP_XOR; 449 } 450 } 451 452 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 453 switch (Op) { 454 default: llvm_unreachable("Unknown RMW operation!"); 455 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 456 case AtomicRMWInst::Add: return bitc::RMW_ADD; 457 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 458 case AtomicRMWInst::And: return bitc::RMW_AND; 459 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 460 case AtomicRMWInst::Or: return bitc::RMW_OR; 461 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 462 case AtomicRMWInst::Max: return bitc::RMW_MAX; 463 case AtomicRMWInst::Min: return bitc::RMW_MIN; 464 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 465 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 466 } 467 } 468 469 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 470 switch (Ordering) { 471 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 472 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 473 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 474 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 475 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 476 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 477 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 478 } 479 llvm_unreachable("Invalid ordering"); 480 } 481 482 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 483 switch (SynchScope) { 484 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 485 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 486 } 487 llvm_unreachable("Invalid synch scope"); 488 } 489 490 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 491 StringRef Str, unsigned AbbrevToUse) { 492 SmallVector<unsigned, 64> Vals; 493 494 // Code: [strchar x N] 495 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 496 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 497 AbbrevToUse = 0; 498 Vals.push_back(Str[i]); 499 } 500 501 // Emit the finished record. 502 Stream.EmitRecord(Code, Vals, AbbrevToUse); 503 } 504 505 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 506 switch (Kind) { 507 case Attribute::Alignment: 508 return bitc::ATTR_KIND_ALIGNMENT; 509 case Attribute::AllocSize: 510 return bitc::ATTR_KIND_ALLOC_SIZE; 511 case Attribute::AlwaysInline: 512 return bitc::ATTR_KIND_ALWAYS_INLINE; 513 case Attribute::ArgMemOnly: 514 return bitc::ATTR_KIND_ARGMEMONLY; 515 case Attribute::Builtin: 516 return bitc::ATTR_KIND_BUILTIN; 517 case Attribute::ByVal: 518 return bitc::ATTR_KIND_BY_VAL; 519 case Attribute::Convergent: 520 return bitc::ATTR_KIND_CONVERGENT; 521 case Attribute::InAlloca: 522 return bitc::ATTR_KIND_IN_ALLOCA; 523 case Attribute::Cold: 524 return bitc::ATTR_KIND_COLD; 525 case Attribute::InaccessibleMemOnly: 526 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 527 case Attribute::InaccessibleMemOrArgMemOnly: 528 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 529 case Attribute::InlineHint: 530 return bitc::ATTR_KIND_INLINE_HINT; 531 case Attribute::InReg: 532 return bitc::ATTR_KIND_IN_REG; 533 case Attribute::JumpTable: 534 return bitc::ATTR_KIND_JUMP_TABLE; 535 case Attribute::MinSize: 536 return bitc::ATTR_KIND_MIN_SIZE; 537 case Attribute::Naked: 538 return bitc::ATTR_KIND_NAKED; 539 case Attribute::Nest: 540 return bitc::ATTR_KIND_NEST; 541 case Attribute::NoAlias: 542 return bitc::ATTR_KIND_NO_ALIAS; 543 case Attribute::NoBuiltin: 544 return bitc::ATTR_KIND_NO_BUILTIN; 545 case Attribute::NoCapture: 546 return bitc::ATTR_KIND_NO_CAPTURE; 547 case Attribute::NoDuplicate: 548 return bitc::ATTR_KIND_NO_DUPLICATE; 549 case Attribute::NoImplicitFloat: 550 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 551 case Attribute::NoInline: 552 return bitc::ATTR_KIND_NO_INLINE; 553 case Attribute::NoRecurse: 554 return bitc::ATTR_KIND_NO_RECURSE; 555 case Attribute::NonLazyBind: 556 return bitc::ATTR_KIND_NON_LAZY_BIND; 557 case Attribute::NonNull: 558 return bitc::ATTR_KIND_NON_NULL; 559 case Attribute::Dereferenceable: 560 return bitc::ATTR_KIND_DEREFERENCEABLE; 561 case Attribute::DereferenceableOrNull: 562 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 563 case Attribute::NoRedZone: 564 return bitc::ATTR_KIND_NO_RED_ZONE; 565 case Attribute::NoReturn: 566 return bitc::ATTR_KIND_NO_RETURN; 567 case Attribute::NoUnwind: 568 return bitc::ATTR_KIND_NO_UNWIND; 569 case Attribute::OptimizeForSize: 570 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 571 case Attribute::OptimizeNone: 572 return bitc::ATTR_KIND_OPTIMIZE_NONE; 573 case Attribute::ReadNone: 574 return bitc::ATTR_KIND_READ_NONE; 575 case Attribute::ReadOnly: 576 return bitc::ATTR_KIND_READ_ONLY; 577 case Attribute::Returned: 578 return bitc::ATTR_KIND_RETURNED; 579 case Attribute::ReturnsTwice: 580 return bitc::ATTR_KIND_RETURNS_TWICE; 581 case Attribute::SExt: 582 return bitc::ATTR_KIND_S_EXT; 583 case Attribute::Speculatable: 584 return bitc::ATTR_KIND_SPECULATABLE; 585 case Attribute::StackAlignment: 586 return bitc::ATTR_KIND_STACK_ALIGNMENT; 587 case Attribute::StackProtect: 588 return bitc::ATTR_KIND_STACK_PROTECT; 589 case Attribute::StackProtectReq: 590 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 591 case Attribute::StackProtectStrong: 592 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 593 case Attribute::SafeStack: 594 return bitc::ATTR_KIND_SAFESTACK; 595 case Attribute::StructRet: 596 return bitc::ATTR_KIND_STRUCT_RET; 597 case Attribute::SanitizeAddress: 598 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 599 case Attribute::SanitizeThread: 600 return bitc::ATTR_KIND_SANITIZE_THREAD; 601 case Attribute::SanitizeMemory: 602 return bitc::ATTR_KIND_SANITIZE_MEMORY; 603 case Attribute::SwiftError: 604 return bitc::ATTR_KIND_SWIFT_ERROR; 605 case Attribute::SwiftSelf: 606 return bitc::ATTR_KIND_SWIFT_SELF; 607 case Attribute::UWTable: 608 return bitc::ATTR_KIND_UW_TABLE; 609 case Attribute::WriteOnly: 610 return bitc::ATTR_KIND_WRITEONLY; 611 case Attribute::ZExt: 612 return bitc::ATTR_KIND_Z_EXT; 613 case Attribute::EndAttrKinds: 614 llvm_unreachable("Can not encode end-attribute kinds marker."); 615 case Attribute::None: 616 llvm_unreachable("Can not encode none-attribute."); 617 } 618 619 llvm_unreachable("Trying to encode unknown attribute"); 620 } 621 622 void ModuleBitcodeWriter::writeAttributeGroupTable() { 623 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 624 VE.getAttributeGroups(); 625 if (AttrGrps.empty()) return; 626 627 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 628 629 SmallVector<uint64_t, 64> Record; 630 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 631 unsigned AttrListIndex = Pair.first; 632 AttributeSet AS = Pair.second; 633 Record.push_back(VE.getAttributeGroupID(Pair)); 634 Record.push_back(AttrListIndex); 635 636 for (Attribute Attr : AS) { 637 if (Attr.isEnumAttribute()) { 638 Record.push_back(0); 639 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 640 } else if (Attr.isIntAttribute()) { 641 Record.push_back(1); 642 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 643 Record.push_back(Attr.getValueAsInt()); 644 } else { 645 StringRef Kind = Attr.getKindAsString(); 646 StringRef Val = Attr.getValueAsString(); 647 648 Record.push_back(Val.empty() ? 3 : 4); 649 Record.append(Kind.begin(), Kind.end()); 650 Record.push_back(0); 651 if (!Val.empty()) { 652 Record.append(Val.begin(), Val.end()); 653 Record.push_back(0); 654 } 655 } 656 } 657 658 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 659 Record.clear(); 660 } 661 662 Stream.ExitBlock(); 663 } 664 665 void ModuleBitcodeWriter::writeAttributeTable() { 666 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 667 if (Attrs.empty()) return; 668 669 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 670 671 SmallVector<uint64_t, 64> Record; 672 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 673 AttributeList AL = Attrs[i]; 674 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 675 AttributeSet AS = AL.getAttributes(i); 676 if (AS.hasAttributes()) 677 Record.push_back(VE.getAttributeGroupID({i, AS})); 678 } 679 680 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 681 Record.clear(); 682 } 683 684 Stream.ExitBlock(); 685 } 686 687 /// WriteTypeTable - Write out the type table for a module. 688 void ModuleBitcodeWriter::writeTypeTable() { 689 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 690 691 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 692 SmallVector<uint64_t, 64> TypeVals; 693 694 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 695 696 // Abbrev for TYPE_CODE_POINTER. 697 auto Abbv = std::make_shared<BitCodeAbbrev>(); 698 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 700 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 701 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 702 703 // Abbrev for TYPE_CODE_FUNCTION. 704 Abbv = std::make_shared<BitCodeAbbrev>(); 705 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 709 710 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 711 712 // Abbrev for TYPE_CODE_STRUCT_ANON. 713 Abbv = std::make_shared<BitCodeAbbrev>(); 714 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 718 719 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 720 721 // Abbrev for TYPE_CODE_STRUCT_NAME. 722 Abbv = std::make_shared<BitCodeAbbrev>(); 723 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 726 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 727 728 // Abbrev for TYPE_CODE_STRUCT_NAMED. 729 Abbv = std::make_shared<BitCodeAbbrev>(); 730 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 734 735 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 736 737 // Abbrev for TYPE_CODE_ARRAY. 738 Abbv = std::make_shared<BitCodeAbbrev>(); 739 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 742 743 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 744 745 // Emit an entry count so the reader can reserve space. 746 TypeVals.push_back(TypeList.size()); 747 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 748 TypeVals.clear(); 749 750 // Loop over all of the types, emitting each in turn. 751 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 752 Type *T = TypeList[i]; 753 int AbbrevToUse = 0; 754 unsigned Code = 0; 755 756 switch (T->getTypeID()) { 757 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 758 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 759 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 760 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 761 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 762 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 763 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 764 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 765 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 766 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 767 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 768 case Type::IntegerTyID: 769 // INTEGER: [width] 770 Code = bitc::TYPE_CODE_INTEGER; 771 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 772 break; 773 case Type::PointerTyID: { 774 PointerType *PTy = cast<PointerType>(T); 775 // POINTER: [pointee type, address space] 776 Code = bitc::TYPE_CODE_POINTER; 777 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 778 unsigned AddressSpace = PTy->getAddressSpace(); 779 TypeVals.push_back(AddressSpace); 780 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 781 break; 782 } 783 case Type::FunctionTyID: { 784 FunctionType *FT = cast<FunctionType>(T); 785 // FUNCTION: [isvararg, retty, paramty x N] 786 Code = bitc::TYPE_CODE_FUNCTION; 787 TypeVals.push_back(FT->isVarArg()); 788 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 789 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 790 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 791 AbbrevToUse = FunctionAbbrev; 792 break; 793 } 794 case Type::StructTyID: { 795 StructType *ST = cast<StructType>(T); 796 // STRUCT: [ispacked, eltty x N] 797 TypeVals.push_back(ST->isPacked()); 798 // Output all of the element types. 799 for (StructType::element_iterator I = ST->element_begin(), 800 E = ST->element_end(); I != E; ++I) 801 TypeVals.push_back(VE.getTypeID(*I)); 802 803 if (ST->isLiteral()) { 804 Code = bitc::TYPE_CODE_STRUCT_ANON; 805 AbbrevToUse = StructAnonAbbrev; 806 } else { 807 if (ST->isOpaque()) { 808 Code = bitc::TYPE_CODE_OPAQUE; 809 } else { 810 Code = bitc::TYPE_CODE_STRUCT_NAMED; 811 AbbrevToUse = StructNamedAbbrev; 812 } 813 814 // Emit the name if it is present. 815 if (!ST->getName().empty()) 816 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 817 StructNameAbbrev); 818 } 819 break; 820 } 821 case Type::ArrayTyID: { 822 ArrayType *AT = cast<ArrayType>(T); 823 // ARRAY: [numelts, eltty] 824 Code = bitc::TYPE_CODE_ARRAY; 825 TypeVals.push_back(AT->getNumElements()); 826 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 827 AbbrevToUse = ArrayAbbrev; 828 break; 829 } 830 case Type::VectorTyID: { 831 VectorType *VT = cast<VectorType>(T); 832 // VECTOR [numelts, eltty] 833 Code = bitc::TYPE_CODE_VECTOR; 834 TypeVals.push_back(VT->getNumElements()); 835 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 836 break; 837 } 838 } 839 840 // Emit the finished record. 841 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 842 TypeVals.clear(); 843 } 844 845 Stream.ExitBlock(); 846 } 847 848 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 849 switch (Linkage) { 850 case GlobalValue::ExternalLinkage: 851 return 0; 852 case GlobalValue::WeakAnyLinkage: 853 return 16; 854 case GlobalValue::AppendingLinkage: 855 return 2; 856 case GlobalValue::InternalLinkage: 857 return 3; 858 case GlobalValue::LinkOnceAnyLinkage: 859 return 18; 860 case GlobalValue::ExternalWeakLinkage: 861 return 7; 862 case GlobalValue::CommonLinkage: 863 return 8; 864 case GlobalValue::PrivateLinkage: 865 return 9; 866 case GlobalValue::WeakODRLinkage: 867 return 17; 868 case GlobalValue::LinkOnceODRLinkage: 869 return 19; 870 case GlobalValue::AvailableExternallyLinkage: 871 return 12; 872 } 873 llvm_unreachable("Invalid linkage"); 874 } 875 876 static unsigned getEncodedLinkage(const GlobalValue &GV) { 877 return getEncodedLinkage(GV.getLinkage()); 878 } 879 880 // Decode the flags for GlobalValue in the summary 881 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 882 uint64_t RawFlags = 0; 883 884 RawFlags |= Flags.NotEligibleToImport; // bool 885 RawFlags |= (Flags.Live << 1); 886 // Linkage don't need to be remapped at that time for the summary. Any future 887 // change to the getEncodedLinkage() function will need to be taken into 888 // account here as well. 889 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 890 891 return RawFlags; 892 } 893 894 static unsigned getEncodedVisibility(const GlobalValue &GV) { 895 switch (GV.getVisibility()) { 896 case GlobalValue::DefaultVisibility: return 0; 897 case GlobalValue::HiddenVisibility: return 1; 898 case GlobalValue::ProtectedVisibility: return 2; 899 } 900 llvm_unreachable("Invalid visibility"); 901 } 902 903 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 904 switch (GV.getDLLStorageClass()) { 905 case GlobalValue::DefaultStorageClass: return 0; 906 case GlobalValue::DLLImportStorageClass: return 1; 907 case GlobalValue::DLLExportStorageClass: return 2; 908 } 909 llvm_unreachable("Invalid DLL storage class"); 910 } 911 912 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 913 switch (GV.getThreadLocalMode()) { 914 case GlobalVariable::NotThreadLocal: return 0; 915 case GlobalVariable::GeneralDynamicTLSModel: return 1; 916 case GlobalVariable::LocalDynamicTLSModel: return 2; 917 case GlobalVariable::InitialExecTLSModel: return 3; 918 case GlobalVariable::LocalExecTLSModel: return 4; 919 } 920 llvm_unreachable("Invalid TLS model"); 921 } 922 923 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 924 switch (C.getSelectionKind()) { 925 case Comdat::Any: 926 return bitc::COMDAT_SELECTION_KIND_ANY; 927 case Comdat::ExactMatch: 928 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 929 case Comdat::Largest: 930 return bitc::COMDAT_SELECTION_KIND_LARGEST; 931 case Comdat::NoDuplicates: 932 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 933 case Comdat::SameSize: 934 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 935 } 936 llvm_unreachable("Invalid selection kind"); 937 } 938 939 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 940 switch (GV.getUnnamedAddr()) { 941 case GlobalValue::UnnamedAddr::None: return 0; 942 case GlobalValue::UnnamedAddr::Local: return 2; 943 case GlobalValue::UnnamedAddr::Global: return 1; 944 } 945 llvm_unreachable("Invalid unnamed_addr"); 946 } 947 948 void ModuleBitcodeWriter::writeComdats() { 949 SmallVector<unsigned, 64> Vals; 950 for (const Comdat *C : VE.getComdats()) { 951 // COMDAT: [strtab offset, strtab size, selection_kind] 952 Vals.push_back(StrtabBuilder.add(C->getName())); 953 Vals.push_back(C->getName().size()); 954 Vals.push_back(getEncodedComdatSelectionKind(*C)); 955 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 956 Vals.clear(); 957 } 958 } 959 960 /// Write a record that will eventually hold the word offset of the 961 /// module-level VST. For now the offset is 0, which will be backpatched 962 /// after the real VST is written. Saves the bit offset to backpatch. 963 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 964 // Write a placeholder value in for the offset of the real VST, 965 // which is written after the function blocks so that it can include 966 // the offset of each function. The placeholder offset will be 967 // updated when the real VST is written. 968 auto Abbv = std::make_shared<BitCodeAbbrev>(); 969 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 970 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 971 // hold the real VST offset. Must use fixed instead of VBR as we don't 972 // know how many VBR chunks to reserve ahead of time. 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 974 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 975 976 // Emit the placeholder 977 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 978 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 979 980 // Compute and save the bit offset to the placeholder, which will be 981 // patched when the real VST is written. We can simply subtract the 32-bit 982 // fixed size from the current bit number to get the location to backpatch. 983 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 984 } 985 986 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 987 988 /// Determine the encoding to use for the given string name and length. 989 static StringEncoding getStringEncoding(StringRef Str) { 990 bool isChar6 = true; 991 for (char C : Str) { 992 if (isChar6) 993 isChar6 = BitCodeAbbrevOp::isChar6(C); 994 if ((unsigned char)C & 128) 995 // don't bother scanning the rest. 996 return SE_Fixed8; 997 } 998 if (isChar6) 999 return SE_Char6; 1000 return SE_Fixed7; 1001 } 1002 1003 /// Emit top-level description of module, including target triple, inline asm, 1004 /// descriptors for global variables, and function prototype info. 1005 /// Returns the bit offset to backpatch with the location of the real VST. 1006 void ModuleBitcodeWriter::writeModuleInfo() { 1007 // Emit various pieces of data attached to a module. 1008 if (!M.getTargetTriple().empty()) 1009 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1010 0 /*TODO*/); 1011 const std::string &DL = M.getDataLayoutStr(); 1012 if (!DL.empty()) 1013 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1014 if (!M.getModuleInlineAsm().empty()) 1015 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1016 0 /*TODO*/); 1017 1018 // Emit information about sections and GC, computing how many there are. Also 1019 // compute the maximum alignment value. 1020 std::map<std::string, unsigned> SectionMap; 1021 std::map<std::string, unsigned> GCMap; 1022 unsigned MaxAlignment = 0; 1023 unsigned MaxGlobalType = 0; 1024 for (const GlobalValue &GV : M.globals()) { 1025 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1026 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1027 if (GV.hasSection()) { 1028 // Give section names unique ID's. 1029 unsigned &Entry = SectionMap[GV.getSection()]; 1030 if (!Entry) { 1031 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1032 0 /*TODO*/); 1033 Entry = SectionMap.size(); 1034 } 1035 } 1036 } 1037 for (const Function &F : M) { 1038 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1039 if (F.hasSection()) { 1040 // Give section names unique ID's. 1041 unsigned &Entry = SectionMap[F.getSection()]; 1042 if (!Entry) { 1043 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1044 0 /*TODO*/); 1045 Entry = SectionMap.size(); 1046 } 1047 } 1048 if (F.hasGC()) { 1049 // Same for GC names. 1050 unsigned &Entry = GCMap[F.getGC()]; 1051 if (!Entry) { 1052 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1053 0 /*TODO*/); 1054 Entry = GCMap.size(); 1055 } 1056 } 1057 } 1058 1059 // Emit abbrev for globals, now that we know # sections and max alignment. 1060 unsigned SimpleGVarAbbrev = 0; 1061 if (!M.global_empty()) { 1062 // Add an abbrev for common globals with no visibility or thread localness. 1063 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1064 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1068 Log2_32_Ceil(MaxGlobalType+1))); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1070 //| explicitType << 1 1071 //| constant 1072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1074 if (MaxAlignment == 0) // Alignment. 1075 Abbv->Add(BitCodeAbbrevOp(0)); 1076 else { 1077 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1079 Log2_32_Ceil(MaxEncAlignment+1))); 1080 } 1081 if (SectionMap.empty()) // Section. 1082 Abbv->Add(BitCodeAbbrevOp(0)); 1083 else 1084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1085 Log2_32_Ceil(SectionMap.size()+1))); 1086 // Don't bother emitting vis + thread local. 1087 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1088 } 1089 1090 SmallVector<unsigned, 64> Vals; 1091 // Emit the module's source file name. 1092 { 1093 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1094 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1095 if (Bits == SE_Char6) 1096 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1097 else if (Bits == SE_Fixed7) 1098 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1099 1100 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1101 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1102 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1104 Abbv->Add(AbbrevOpToUse); 1105 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1106 1107 for (const auto P : M.getSourceFileName()) 1108 Vals.push_back((unsigned char)P); 1109 1110 // Emit the finished record. 1111 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1112 Vals.clear(); 1113 } 1114 1115 // Emit the global variable information. 1116 for (const GlobalVariable &GV : M.globals()) { 1117 unsigned AbbrevToUse = 0; 1118 1119 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1120 // linkage, alignment, section, visibility, threadlocal, 1121 // unnamed_addr, externally_initialized, dllstorageclass, 1122 // comdat, attributes] 1123 Vals.push_back(StrtabBuilder.add(GV.getName())); 1124 Vals.push_back(GV.getName().size()); 1125 Vals.push_back(VE.getTypeID(GV.getValueType())); 1126 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1127 Vals.push_back(GV.isDeclaration() ? 0 : 1128 (VE.getValueID(GV.getInitializer()) + 1)); 1129 Vals.push_back(getEncodedLinkage(GV)); 1130 Vals.push_back(Log2_32(GV.getAlignment())+1); 1131 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1132 if (GV.isThreadLocal() || 1133 GV.getVisibility() != GlobalValue::DefaultVisibility || 1134 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1135 GV.isExternallyInitialized() || 1136 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1137 GV.hasComdat() || 1138 GV.hasAttributes()) { 1139 Vals.push_back(getEncodedVisibility(GV)); 1140 Vals.push_back(getEncodedThreadLocalMode(GV)); 1141 Vals.push_back(getEncodedUnnamedAddr(GV)); 1142 Vals.push_back(GV.isExternallyInitialized()); 1143 Vals.push_back(getEncodedDLLStorageClass(GV)); 1144 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1145 1146 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1147 Vals.push_back(VE.getAttributeListID(AL)); 1148 } else { 1149 AbbrevToUse = SimpleGVarAbbrev; 1150 } 1151 1152 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1153 Vals.clear(); 1154 } 1155 1156 // Emit the function proto information. 1157 for (const Function &F : M) { 1158 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1159 // linkage, paramattrs, alignment, section, visibility, gc, 1160 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1161 // prefixdata, personalityfn] 1162 Vals.push_back(StrtabBuilder.add(F.getName())); 1163 Vals.push_back(F.getName().size()); 1164 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1165 Vals.push_back(F.getCallingConv()); 1166 Vals.push_back(F.isDeclaration()); 1167 Vals.push_back(getEncodedLinkage(F)); 1168 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1169 Vals.push_back(Log2_32(F.getAlignment())+1); 1170 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1171 Vals.push_back(getEncodedVisibility(F)); 1172 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1173 Vals.push_back(getEncodedUnnamedAddr(F)); 1174 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1175 : 0); 1176 Vals.push_back(getEncodedDLLStorageClass(F)); 1177 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1178 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1179 : 0); 1180 Vals.push_back( 1181 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1182 1183 unsigned AbbrevToUse = 0; 1184 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1185 Vals.clear(); 1186 } 1187 1188 // Emit the alias information. 1189 for (const GlobalAlias &A : M.aliases()) { 1190 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1191 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1192 Vals.push_back(StrtabBuilder.add(A.getName())); 1193 Vals.push_back(A.getName().size()); 1194 Vals.push_back(VE.getTypeID(A.getValueType())); 1195 Vals.push_back(A.getType()->getAddressSpace()); 1196 Vals.push_back(VE.getValueID(A.getAliasee())); 1197 Vals.push_back(getEncodedLinkage(A)); 1198 Vals.push_back(getEncodedVisibility(A)); 1199 Vals.push_back(getEncodedDLLStorageClass(A)); 1200 Vals.push_back(getEncodedThreadLocalMode(A)); 1201 Vals.push_back(getEncodedUnnamedAddr(A)); 1202 unsigned AbbrevToUse = 0; 1203 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1204 Vals.clear(); 1205 } 1206 1207 // Emit the ifunc information. 1208 for (const GlobalIFunc &I : M.ifuncs()) { 1209 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1210 // val#, linkage, visibility] 1211 Vals.push_back(StrtabBuilder.add(I.getName())); 1212 Vals.push_back(I.getName().size()); 1213 Vals.push_back(VE.getTypeID(I.getValueType())); 1214 Vals.push_back(I.getType()->getAddressSpace()); 1215 Vals.push_back(VE.getValueID(I.getResolver())); 1216 Vals.push_back(getEncodedLinkage(I)); 1217 Vals.push_back(getEncodedVisibility(I)); 1218 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1219 Vals.clear(); 1220 } 1221 1222 writeValueSymbolTableForwardDecl(); 1223 } 1224 1225 static uint64_t getOptimizationFlags(const Value *V) { 1226 uint64_t Flags = 0; 1227 1228 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1229 if (OBO->hasNoSignedWrap()) 1230 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1231 if (OBO->hasNoUnsignedWrap()) 1232 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1233 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1234 if (PEO->isExact()) 1235 Flags |= 1 << bitc::PEO_EXACT; 1236 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1237 if (FPMO->hasUnsafeAlgebra()) 1238 Flags |= FastMathFlags::UnsafeAlgebra; 1239 if (FPMO->hasNoNaNs()) 1240 Flags |= FastMathFlags::NoNaNs; 1241 if (FPMO->hasNoInfs()) 1242 Flags |= FastMathFlags::NoInfs; 1243 if (FPMO->hasNoSignedZeros()) 1244 Flags |= FastMathFlags::NoSignedZeros; 1245 if (FPMO->hasAllowReciprocal()) 1246 Flags |= FastMathFlags::AllowReciprocal; 1247 if (FPMO->hasAllowContract()) 1248 Flags |= FastMathFlags::AllowContract; 1249 } 1250 1251 return Flags; 1252 } 1253 1254 void ModuleBitcodeWriter::writeValueAsMetadata( 1255 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1256 // Mimic an MDNode with a value as one operand. 1257 Value *V = MD->getValue(); 1258 Record.push_back(VE.getTypeID(V->getType())); 1259 Record.push_back(VE.getValueID(V)); 1260 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1261 Record.clear(); 1262 } 1263 1264 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1265 SmallVectorImpl<uint64_t> &Record, 1266 unsigned Abbrev) { 1267 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1268 Metadata *MD = N->getOperand(i); 1269 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1270 "Unexpected function-local metadata"); 1271 Record.push_back(VE.getMetadataOrNullID(MD)); 1272 } 1273 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1274 : bitc::METADATA_NODE, 1275 Record, Abbrev); 1276 Record.clear(); 1277 } 1278 1279 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1280 // Assume the column is usually under 128, and always output the inlined-at 1281 // location (it's never more expensive than building an array size 1). 1282 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1283 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1289 return Stream.EmitAbbrev(std::move(Abbv)); 1290 } 1291 1292 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1293 SmallVectorImpl<uint64_t> &Record, 1294 unsigned &Abbrev) { 1295 if (!Abbrev) 1296 Abbrev = createDILocationAbbrev(); 1297 1298 Record.push_back(N->isDistinct()); 1299 Record.push_back(N->getLine()); 1300 Record.push_back(N->getColumn()); 1301 Record.push_back(VE.getMetadataID(N->getScope())); 1302 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1303 1304 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1305 Record.clear(); 1306 } 1307 1308 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1309 // Assume the column is usually under 128, and always output the inlined-at 1310 // location (it's never more expensive than building an array size 1). 1311 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1312 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1319 return Stream.EmitAbbrev(std::move(Abbv)); 1320 } 1321 1322 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1323 SmallVectorImpl<uint64_t> &Record, 1324 unsigned &Abbrev) { 1325 if (!Abbrev) 1326 Abbrev = createGenericDINodeAbbrev(); 1327 1328 Record.push_back(N->isDistinct()); 1329 Record.push_back(N->getTag()); 1330 Record.push_back(0); // Per-tag version field; unused for now. 1331 1332 for (auto &I : N->operands()) 1333 Record.push_back(VE.getMetadataOrNullID(I)); 1334 1335 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1336 Record.clear(); 1337 } 1338 1339 static uint64_t rotateSign(int64_t I) { 1340 uint64_t U = I; 1341 return I < 0 ? ~(U << 1) : U << 1; 1342 } 1343 1344 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1345 SmallVectorImpl<uint64_t> &Record, 1346 unsigned Abbrev) { 1347 Record.push_back(N->isDistinct()); 1348 Record.push_back(N->getCount()); 1349 Record.push_back(rotateSign(N->getLowerBound())); 1350 1351 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1352 Record.clear(); 1353 } 1354 1355 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1356 SmallVectorImpl<uint64_t> &Record, 1357 unsigned Abbrev) { 1358 Record.push_back(N->isDistinct()); 1359 Record.push_back(rotateSign(N->getValue())); 1360 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1361 1362 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1363 Record.clear(); 1364 } 1365 1366 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1367 SmallVectorImpl<uint64_t> &Record, 1368 unsigned Abbrev) { 1369 Record.push_back(N->isDistinct()); 1370 Record.push_back(N->getTag()); 1371 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1372 Record.push_back(N->getSizeInBits()); 1373 Record.push_back(N->getAlignInBits()); 1374 Record.push_back(N->getEncoding()); 1375 1376 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1377 Record.clear(); 1378 } 1379 1380 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1381 SmallVectorImpl<uint64_t> &Record, 1382 unsigned Abbrev) { 1383 Record.push_back(N->isDistinct()); 1384 Record.push_back(N->getTag()); 1385 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1386 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1387 Record.push_back(N->getLine()); 1388 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1389 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1390 Record.push_back(N->getSizeInBits()); 1391 Record.push_back(N->getAlignInBits()); 1392 Record.push_back(N->getOffsetInBits()); 1393 Record.push_back(N->getFlags()); 1394 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1395 1396 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1397 // that there is no DWARF address space associated with DIDerivedType. 1398 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1399 Record.push_back(*DWARFAddressSpace + 1); 1400 else 1401 Record.push_back(0); 1402 1403 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1404 Record.clear(); 1405 } 1406 1407 void ModuleBitcodeWriter::writeDICompositeType( 1408 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1409 unsigned Abbrev) { 1410 const unsigned IsNotUsedInOldTypeRef = 0x2; 1411 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1412 Record.push_back(N->getTag()); 1413 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1414 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1415 Record.push_back(N->getLine()); 1416 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1417 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1418 Record.push_back(N->getSizeInBits()); 1419 Record.push_back(N->getAlignInBits()); 1420 Record.push_back(N->getOffsetInBits()); 1421 Record.push_back(N->getFlags()); 1422 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1423 Record.push_back(N->getRuntimeLang()); 1424 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1425 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1426 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1427 1428 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1429 Record.clear(); 1430 } 1431 1432 void ModuleBitcodeWriter::writeDISubroutineType( 1433 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1434 unsigned Abbrev) { 1435 const unsigned HasNoOldTypeRefs = 0x2; 1436 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1437 Record.push_back(N->getFlags()); 1438 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1439 Record.push_back(N->getCC()); 1440 1441 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1442 Record.clear(); 1443 } 1444 1445 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1446 SmallVectorImpl<uint64_t> &Record, 1447 unsigned Abbrev) { 1448 Record.push_back(N->isDistinct()); 1449 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1450 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1451 Record.push_back(N->getChecksumKind()); 1452 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1453 1454 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1455 Record.clear(); 1456 } 1457 1458 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1459 SmallVectorImpl<uint64_t> &Record, 1460 unsigned Abbrev) { 1461 assert(N->isDistinct() && "Expected distinct compile units"); 1462 Record.push_back(/* IsDistinct */ true); 1463 Record.push_back(N->getSourceLanguage()); 1464 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1465 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1466 Record.push_back(N->isOptimized()); 1467 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1468 Record.push_back(N->getRuntimeVersion()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1470 Record.push_back(N->getEmissionKind()); 1471 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1472 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1473 Record.push_back(/* subprograms */ 0); 1474 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1475 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1476 Record.push_back(N->getDWOId()); 1477 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1478 Record.push_back(N->getSplitDebugInlining()); 1479 Record.push_back(N->getDebugInfoForProfiling()); 1480 1481 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1482 Record.clear(); 1483 } 1484 1485 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1486 SmallVectorImpl<uint64_t> &Record, 1487 unsigned Abbrev) { 1488 uint64_t HasUnitFlag = 1 << 1; 1489 Record.push_back(N->isDistinct() | HasUnitFlag); 1490 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1492 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1493 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1494 Record.push_back(N->getLine()); 1495 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1496 Record.push_back(N->isLocalToUnit()); 1497 Record.push_back(N->isDefinition()); 1498 Record.push_back(N->getScopeLine()); 1499 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1500 Record.push_back(N->getVirtuality()); 1501 Record.push_back(N->getVirtualIndex()); 1502 Record.push_back(N->getFlags()); 1503 Record.push_back(N->isOptimized()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1506 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1507 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1508 Record.push_back(N->getThisAdjustment()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1510 1511 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1512 Record.clear(); 1513 } 1514 1515 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1516 SmallVectorImpl<uint64_t> &Record, 1517 unsigned Abbrev) { 1518 Record.push_back(N->isDistinct()); 1519 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1520 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1521 Record.push_back(N->getLine()); 1522 Record.push_back(N->getColumn()); 1523 1524 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1525 Record.clear(); 1526 } 1527 1528 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1529 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1530 unsigned Abbrev) { 1531 Record.push_back(N->isDistinct()); 1532 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1533 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1534 Record.push_back(N->getDiscriminator()); 1535 1536 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1537 Record.clear(); 1538 } 1539 1540 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1541 SmallVectorImpl<uint64_t> &Record, 1542 unsigned Abbrev) { 1543 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1544 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1545 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1546 1547 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1548 Record.clear(); 1549 } 1550 1551 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1552 SmallVectorImpl<uint64_t> &Record, 1553 unsigned Abbrev) { 1554 Record.push_back(N->isDistinct()); 1555 Record.push_back(N->getMacinfoType()); 1556 Record.push_back(N->getLine()); 1557 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1559 1560 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1561 Record.clear(); 1562 } 1563 1564 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1565 SmallVectorImpl<uint64_t> &Record, 1566 unsigned Abbrev) { 1567 Record.push_back(N->isDistinct()); 1568 Record.push_back(N->getMacinfoType()); 1569 Record.push_back(N->getLine()); 1570 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1571 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1572 1573 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1578 SmallVectorImpl<uint64_t> &Record, 1579 unsigned Abbrev) { 1580 Record.push_back(N->isDistinct()); 1581 for (auto &I : N->operands()) 1582 Record.push_back(VE.getMetadataOrNullID(I)); 1583 1584 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1585 Record.clear(); 1586 } 1587 1588 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1589 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1590 unsigned Abbrev) { 1591 Record.push_back(N->isDistinct()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1594 1595 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1596 Record.clear(); 1597 } 1598 1599 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1600 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1601 unsigned Abbrev) { 1602 Record.push_back(N->isDistinct()); 1603 Record.push_back(N->getTag()); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1607 1608 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1609 Record.clear(); 1610 } 1611 1612 void ModuleBitcodeWriter::writeDIGlobalVariable( 1613 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1614 unsigned Abbrev) { 1615 const uint64_t Version = 1 << 1; 1616 Record.push_back((uint64_t)N->isDistinct() | Version); 1617 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1621 Record.push_back(N->getLine()); 1622 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1623 Record.push_back(N->isLocalToUnit()); 1624 Record.push_back(N->isDefinition()); 1625 Record.push_back(/* expr */ 0); 1626 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1627 Record.push_back(N->getAlignInBits()); 1628 1629 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1630 Record.clear(); 1631 } 1632 1633 void ModuleBitcodeWriter::writeDILocalVariable( 1634 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1635 unsigned Abbrev) { 1636 // In order to support all possible bitcode formats in BitcodeReader we need 1637 // to distinguish the following cases: 1638 // 1) Record has no artificial tag (Record[1]), 1639 // has no obsolete inlinedAt field (Record[9]). 1640 // In this case Record size will be 8, HasAlignment flag is false. 1641 // 2) Record has artificial tag (Record[1]), 1642 // has no obsolete inlignedAt field (Record[9]). 1643 // In this case Record size will be 9, HasAlignment flag is false. 1644 // 3) Record has both artificial tag (Record[1]) and 1645 // obsolete inlignedAt field (Record[9]). 1646 // In this case Record size will be 10, HasAlignment flag is false. 1647 // 4) Record has neither artificial tag, nor inlignedAt field, but 1648 // HasAlignment flag is true and Record[8] contains alignment value. 1649 const uint64_t HasAlignmentFlag = 1 << 1; 1650 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1651 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1652 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1653 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1654 Record.push_back(N->getLine()); 1655 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1656 Record.push_back(N->getArg()); 1657 Record.push_back(N->getFlags()); 1658 Record.push_back(N->getAlignInBits()); 1659 1660 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1661 Record.clear(); 1662 } 1663 1664 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1665 SmallVectorImpl<uint64_t> &Record, 1666 unsigned Abbrev) { 1667 Record.reserve(N->getElements().size() + 1); 1668 const uint64_t Version = 3 << 1; 1669 Record.push_back((uint64_t)N->isDistinct() | Version); 1670 Record.append(N->elements_begin(), N->elements_end()); 1671 1672 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1677 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.push_back(N->isDistinct()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1682 1683 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1684 Record.clear(); 1685 } 1686 1687 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1688 SmallVectorImpl<uint64_t> &Record, 1689 unsigned Abbrev) { 1690 Record.push_back(N->isDistinct()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1693 Record.push_back(N->getLine()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1696 Record.push_back(N->getAttributes()); 1697 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1698 1699 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDIImportedEntity( 1704 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 Record.push_back(N->isDistinct()); 1707 Record.push_back(N->getTag()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1710 Record.push_back(N->getLine()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1712 1713 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1714 Record.clear(); 1715 } 1716 1717 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1718 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1719 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1722 return Stream.EmitAbbrev(std::move(Abbv)); 1723 } 1724 1725 void ModuleBitcodeWriter::writeNamedMetadata( 1726 SmallVectorImpl<uint64_t> &Record) { 1727 if (M.named_metadata_empty()) 1728 return; 1729 1730 unsigned Abbrev = createNamedMetadataAbbrev(); 1731 for (const NamedMDNode &NMD : M.named_metadata()) { 1732 // Write name. 1733 StringRef Str = NMD.getName(); 1734 Record.append(Str.bytes_begin(), Str.bytes_end()); 1735 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1736 Record.clear(); 1737 1738 // Write named metadata operands. 1739 for (const MDNode *N : NMD.operands()) 1740 Record.push_back(VE.getMetadataID(N)); 1741 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1742 Record.clear(); 1743 } 1744 } 1745 1746 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1747 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1748 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1752 return Stream.EmitAbbrev(std::move(Abbv)); 1753 } 1754 1755 /// Write out a record for MDString. 1756 /// 1757 /// All the metadata strings in a metadata block are emitted in a single 1758 /// record. The sizes and strings themselves are shoved into a blob. 1759 void ModuleBitcodeWriter::writeMetadataStrings( 1760 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1761 if (Strings.empty()) 1762 return; 1763 1764 // Start the record with the number of strings. 1765 Record.push_back(bitc::METADATA_STRINGS); 1766 Record.push_back(Strings.size()); 1767 1768 // Emit the sizes of the strings in the blob. 1769 SmallString<256> Blob; 1770 { 1771 BitstreamWriter W(Blob); 1772 for (const Metadata *MD : Strings) 1773 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1774 W.FlushToWord(); 1775 } 1776 1777 // Add the offset to the strings to the record. 1778 Record.push_back(Blob.size()); 1779 1780 // Add the strings to the blob. 1781 for (const Metadata *MD : Strings) 1782 Blob.append(cast<MDString>(MD)->getString()); 1783 1784 // Emit the final record. 1785 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1786 Record.clear(); 1787 } 1788 1789 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1790 enum MetadataAbbrev : unsigned { 1791 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1792 #include "llvm/IR/Metadata.def" 1793 LastPlusOne 1794 }; 1795 1796 void ModuleBitcodeWriter::writeMetadataRecords( 1797 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1798 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1799 if (MDs.empty()) 1800 return; 1801 1802 // Initialize MDNode abbreviations. 1803 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1804 #include "llvm/IR/Metadata.def" 1805 1806 for (const Metadata *MD : MDs) { 1807 if (IndexPos) 1808 IndexPos->push_back(Stream.GetCurrentBitNo()); 1809 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1810 assert(N->isResolved() && "Expected forward references to be resolved"); 1811 1812 switch (N->getMetadataID()) { 1813 default: 1814 llvm_unreachable("Invalid MDNode subclass"); 1815 #define HANDLE_MDNODE_LEAF(CLASS) \ 1816 case Metadata::CLASS##Kind: \ 1817 if (MDAbbrevs) \ 1818 write##CLASS(cast<CLASS>(N), Record, \ 1819 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1820 else \ 1821 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1822 continue; 1823 #include "llvm/IR/Metadata.def" 1824 } 1825 } 1826 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1827 } 1828 } 1829 1830 void ModuleBitcodeWriter::writeModuleMetadata() { 1831 if (!VE.hasMDs() && M.named_metadata_empty()) 1832 return; 1833 1834 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1835 SmallVector<uint64_t, 64> Record; 1836 1837 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1838 // block and load any metadata. 1839 std::vector<unsigned> MDAbbrevs; 1840 1841 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1842 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1843 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1844 createGenericDINodeAbbrev(); 1845 1846 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1847 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1850 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1851 1852 Abbv = std::make_shared<BitCodeAbbrev>(); 1853 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1856 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1857 1858 // Emit MDStrings together upfront. 1859 writeMetadataStrings(VE.getMDStrings(), Record); 1860 1861 // We only emit an index for the metadata record if we have more than a given 1862 // (naive) threshold of metadatas, otherwise it is not worth it. 1863 if (VE.getNonMDStrings().size() > IndexThreshold) { 1864 // Write a placeholder value in for the offset of the metadata index, 1865 // which is written after the records, so that it can include 1866 // the offset of each entry. The placeholder offset will be 1867 // updated after all records are emitted. 1868 uint64_t Vals[] = {0, 0}; 1869 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1870 } 1871 1872 // Compute and save the bit offset to the current position, which will be 1873 // patched when we emit the index later. We can simply subtract the 64-bit 1874 // fixed size from the current bit number to get the location to backpatch. 1875 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1876 1877 // This index will contain the bitpos for each individual record. 1878 std::vector<uint64_t> IndexPos; 1879 IndexPos.reserve(VE.getNonMDStrings().size()); 1880 1881 // Write all the records 1882 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1883 1884 if (VE.getNonMDStrings().size() > IndexThreshold) { 1885 // Now that we have emitted all the records we will emit the index. But 1886 // first 1887 // backpatch the forward reference so that the reader can skip the records 1888 // efficiently. 1889 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1890 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1891 1892 // Delta encode the index. 1893 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1894 for (auto &Elt : IndexPos) { 1895 auto EltDelta = Elt - PreviousValue; 1896 PreviousValue = Elt; 1897 Elt = EltDelta; 1898 } 1899 // Emit the index record. 1900 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1901 IndexPos.clear(); 1902 } 1903 1904 // Write the named metadata now. 1905 writeNamedMetadata(Record); 1906 1907 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1908 SmallVector<uint64_t, 4> Record; 1909 Record.push_back(VE.getValueID(&GO)); 1910 pushGlobalMetadataAttachment(Record, GO); 1911 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1912 }; 1913 for (const Function &F : M) 1914 if (F.isDeclaration() && F.hasMetadata()) 1915 AddDeclAttachedMetadata(F); 1916 // FIXME: Only store metadata for declarations here, and move data for global 1917 // variable definitions to a separate block (PR28134). 1918 for (const GlobalVariable &GV : M.globals()) 1919 if (GV.hasMetadata()) 1920 AddDeclAttachedMetadata(GV); 1921 1922 Stream.ExitBlock(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1926 if (!VE.hasMDs()) 1927 return; 1928 1929 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1930 SmallVector<uint64_t, 64> Record; 1931 writeMetadataStrings(VE.getMDStrings(), Record); 1932 writeMetadataRecords(VE.getNonMDStrings(), Record); 1933 Stream.ExitBlock(); 1934 } 1935 1936 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1937 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1938 // [n x [id, mdnode]] 1939 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1940 GO.getAllMetadata(MDs); 1941 for (const auto &I : MDs) { 1942 Record.push_back(I.first); 1943 Record.push_back(VE.getMetadataID(I.second)); 1944 } 1945 } 1946 1947 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1948 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1949 1950 SmallVector<uint64_t, 64> Record; 1951 1952 if (F.hasMetadata()) { 1953 pushGlobalMetadataAttachment(Record, F); 1954 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1955 Record.clear(); 1956 } 1957 1958 // Write metadata attachments 1959 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1960 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1961 for (const BasicBlock &BB : F) 1962 for (const Instruction &I : BB) { 1963 MDs.clear(); 1964 I.getAllMetadataOtherThanDebugLoc(MDs); 1965 1966 // If no metadata, ignore instruction. 1967 if (MDs.empty()) continue; 1968 1969 Record.push_back(VE.getInstructionID(&I)); 1970 1971 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1972 Record.push_back(MDs[i].first); 1973 Record.push_back(VE.getMetadataID(MDs[i].second)); 1974 } 1975 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1976 Record.clear(); 1977 } 1978 1979 Stream.ExitBlock(); 1980 } 1981 1982 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1983 SmallVector<uint64_t, 64> Record; 1984 1985 // Write metadata kinds 1986 // METADATA_KIND - [n x [id, name]] 1987 SmallVector<StringRef, 8> Names; 1988 M.getMDKindNames(Names); 1989 1990 if (Names.empty()) return; 1991 1992 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1993 1994 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1995 Record.push_back(MDKindID); 1996 StringRef KName = Names[MDKindID]; 1997 Record.append(KName.begin(), KName.end()); 1998 1999 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2000 Record.clear(); 2001 } 2002 2003 Stream.ExitBlock(); 2004 } 2005 2006 void ModuleBitcodeWriter::writeOperandBundleTags() { 2007 // Write metadata kinds 2008 // 2009 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2010 // 2011 // OPERAND_BUNDLE_TAG - [strchr x N] 2012 2013 SmallVector<StringRef, 8> Tags; 2014 M.getOperandBundleTags(Tags); 2015 2016 if (Tags.empty()) 2017 return; 2018 2019 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2020 2021 SmallVector<uint64_t, 64> Record; 2022 2023 for (auto Tag : Tags) { 2024 Record.append(Tag.begin(), Tag.end()); 2025 2026 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2027 Record.clear(); 2028 } 2029 2030 Stream.ExitBlock(); 2031 } 2032 2033 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2034 if ((int64_t)V >= 0) 2035 Vals.push_back(V << 1); 2036 else 2037 Vals.push_back((-V << 1) | 1); 2038 } 2039 2040 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2041 bool isGlobal) { 2042 if (FirstVal == LastVal) return; 2043 2044 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2045 2046 unsigned AggregateAbbrev = 0; 2047 unsigned String8Abbrev = 0; 2048 unsigned CString7Abbrev = 0; 2049 unsigned CString6Abbrev = 0; 2050 // If this is a constant pool for the module, emit module-specific abbrevs. 2051 if (isGlobal) { 2052 // Abbrev for CST_CODE_AGGREGATE. 2053 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2054 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2057 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2058 2059 // Abbrev for CST_CODE_STRING. 2060 Abbv = std::make_shared<BitCodeAbbrev>(); 2061 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2064 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2065 // Abbrev for CST_CODE_CSTRING. 2066 Abbv = std::make_shared<BitCodeAbbrev>(); 2067 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2070 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2071 // Abbrev for CST_CODE_CSTRING. 2072 Abbv = std::make_shared<BitCodeAbbrev>(); 2073 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2076 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2077 } 2078 2079 SmallVector<uint64_t, 64> Record; 2080 2081 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2082 Type *LastTy = nullptr; 2083 for (unsigned i = FirstVal; i != LastVal; ++i) { 2084 const Value *V = Vals[i].first; 2085 // If we need to switch types, do so now. 2086 if (V->getType() != LastTy) { 2087 LastTy = V->getType(); 2088 Record.push_back(VE.getTypeID(LastTy)); 2089 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2090 CONSTANTS_SETTYPE_ABBREV); 2091 Record.clear(); 2092 } 2093 2094 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2095 Record.push_back(unsigned(IA->hasSideEffects()) | 2096 unsigned(IA->isAlignStack()) << 1 | 2097 unsigned(IA->getDialect()&1) << 2); 2098 2099 // Add the asm string. 2100 const std::string &AsmStr = IA->getAsmString(); 2101 Record.push_back(AsmStr.size()); 2102 Record.append(AsmStr.begin(), AsmStr.end()); 2103 2104 // Add the constraint string. 2105 const std::string &ConstraintStr = IA->getConstraintString(); 2106 Record.push_back(ConstraintStr.size()); 2107 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2108 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2109 Record.clear(); 2110 continue; 2111 } 2112 const Constant *C = cast<Constant>(V); 2113 unsigned Code = -1U; 2114 unsigned AbbrevToUse = 0; 2115 if (C->isNullValue()) { 2116 Code = bitc::CST_CODE_NULL; 2117 } else if (isa<UndefValue>(C)) { 2118 Code = bitc::CST_CODE_UNDEF; 2119 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2120 if (IV->getBitWidth() <= 64) { 2121 uint64_t V = IV->getSExtValue(); 2122 emitSignedInt64(Record, V); 2123 Code = bitc::CST_CODE_INTEGER; 2124 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2125 } else { // Wide integers, > 64 bits in size. 2126 // We have an arbitrary precision integer value to write whose 2127 // bit width is > 64. However, in canonical unsigned integer 2128 // format it is likely that the high bits are going to be zero. 2129 // So, we only write the number of active words. 2130 unsigned NWords = IV->getValue().getActiveWords(); 2131 const uint64_t *RawWords = IV->getValue().getRawData(); 2132 for (unsigned i = 0; i != NWords; ++i) { 2133 emitSignedInt64(Record, RawWords[i]); 2134 } 2135 Code = bitc::CST_CODE_WIDE_INTEGER; 2136 } 2137 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2138 Code = bitc::CST_CODE_FLOAT; 2139 Type *Ty = CFP->getType(); 2140 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2141 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2142 } else if (Ty->isX86_FP80Ty()) { 2143 // api needed to prevent premature destruction 2144 // bits are not in the same order as a normal i80 APInt, compensate. 2145 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2146 const uint64_t *p = api.getRawData(); 2147 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2148 Record.push_back(p[0] & 0xffffLL); 2149 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2150 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2151 const uint64_t *p = api.getRawData(); 2152 Record.push_back(p[0]); 2153 Record.push_back(p[1]); 2154 } else { 2155 assert (0 && "Unknown FP type!"); 2156 } 2157 } else if (isa<ConstantDataSequential>(C) && 2158 cast<ConstantDataSequential>(C)->isString()) { 2159 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2160 // Emit constant strings specially. 2161 unsigned NumElts = Str->getNumElements(); 2162 // If this is a null-terminated string, use the denser CSTRING encoding. 2163 if (Str->isCString()) { 2164 Code = bitc::CST_CODE_CSTRING; 2165 --NumElts; // Don't encode the null, which isn't allowed by char6. 2166 } else { 2167 Code = bitc::CST_CODE_STRING; 2168 AbbrevToUse = String8Abbrev; 2169 } 2170 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2171 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2172 for (unsigned i = 0; i != NumElts; ++i) { 2173 unsigned char V = Str->getElementAsInteger(i); 2174 Record.push_back(V); 2175 isCStr7 &= (V & 128) == 0; 2176 if (isCStrChar6) 2177 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2178 } 2179 2180 if (isCStrChar6) 2181 AbbrevToUse = CString6Abbrev; 2182 else if (isCStr7) 2183 AbbrevToUse = CString7Abbrev; 2184 } else if (const ConstantDataSequential *CDS = 2185 dyn_cast<ConstantDataSequential>(C)) { 2186 Code = bitc::CST_CODE_DATA; 2187 Type *EltTy = CDS->getType()->getElementType(); 2188 if (isa<IntegerType>(EltTy)) { 2189 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2190 Record.push_back(CDS->getElementAsInteger(i)); 2191 } else { 2192 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2193 Record.push_back( 2194 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2195 } 2196 } else if (isa<ConstantAggregate>(C)) { 2197 Code = bitc::CST_CODE_AGGREGATE; 2198 for (const Value *Op : C->operands()) 2199 Record.push_back(VE.getValueID(Op)); 2200 AbbrevToUse = AggregateAbbrev; 2201 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2202 switch (CE->getOpcode()) { 2203 default: 2204 if (Instruction::isCast(CE->getOpcode())) { 2205 Code = bitc::CST_CODE_CE_CAST; 2206 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2207 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2208 Record.push_back(VE.getValueID(C->getOperand(0))); 2209 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2210 } else { 2211 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2212 Code = bitc::CST_CODE_CE_BINOP; 2213 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2214 Record.push_back(VE.getValueID(C->getOperand(0))); 2215 Record.push_back(VE.getValueID(C->getOperand(1))); 2216 uint64_t Flags = getOptimizationFlags(CE); 2217 if (Flags != 0) 2218 Record.push_back(Flags); 2219 } 2220 break; 2221 case Instruction::GetElementPtr: { 2222 Code = bitc::CST_CODE_CE_GEP; 2223 const auto *GO = cast<GEPOperator>(C); 2224 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2225 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2226 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2227 Record.push_back((*Idx << 1) | GO->isInBounds()); 2228 } else if (GO->isInBounds()) 2229 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2230 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2231 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2232 Record.push_back(VE.getValueID(C->getOperand(i))); 2233 } 2234 break; 2235 } 2236 case Instruction::Select: 2237 Code = bitc::CST_CODE_CE_SELECT; 2238 Record.push_back(VE.getValueID(C->getOperand(0))); 2239 Record.push_back(VE.getValueID(C->getOperand(1))); 2240 Record.push_back(VE.getValueID(C->getOperand(2))); 2241 break; 2242 case Instruction::ExtractElement: 2243 Code = bitc::CST_CODE_CE_EXTRACTELT; 2244 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2245 Record.push_back(VE.getValueID(C->getOperand(0))); 2246 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2247 Record.push_back(VE.getValueID(C->getOperand(1))); 2248 break; 2249 case Instruction::InsertElement: 2250 Code = bitc::CST_CODE_CE_INSERTELT; 2251 Record.push_back(VE.getValueID(C->getOperand(0))); 2252 Record.push_back(VE.getValueID(C->getOperand(1))); 2253 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2254 Record.push_back(VE.getValueID(C->getOperand(2))); 2255 break; 2256 case Instruction::ShuffleVector: 2257 // If the return type and argument types are the same, this is a 2258 // standard shufflevector instruction. If the types are different, 2259 // then the shuffle is widening or truncating the input vectors, and 2260 // the argument type must also be encoded. 2261 if (C->getType() == C->getOperand(0)->getType()) { 2262 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2263 } else { 2264 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2265 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2266 } 2267 Record.push_back(VE.getValueID(C->getOperand(0))); 2268 Record.push_back(VE.getValueID(C->getOperand(1))); 2269 Record.push_back(VE.getValueID(C->getOperand(2))); 2270 break; 2271 case Instruction::ICmp: 2272 case Instruction::FCmp: 2273 Code = bitc::CST_CODE_CE_CMP; 2274 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2275 Record.push_back(VE.getValueID(C->getOperand(0))); 2276 Record.push_back(VE.getValueID(C->getOperand(1))); 2277 Record.push_back(CE->getPredicate()); 2278 break; 2279 } 2280 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2281 Code = bitc::CST_CODE_BLOCKADDRESS; 2282 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2283 Record.push_back(VE.getValueID(BA->getFunction())); 2284 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2285 } else { 2286 #ifndef NDEBUG 2287 C->dump(); 2288 #endif 2289 llvm_unreachable("Unknown constant!"); 2290 } 2291 Stream.EmitRecord(Code, Record, AbbrevToUse); 2292 Record.clear(); 2293 } 2294 2295 Stream.ExitBlock(); 2296 } 2297 2298 void ModuleBitcodeWriter::writeModuleConstants() { 2299 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2300 2301 // Find the first constant to emit, which is the first non-globalvalue value. 2302 // We know globalvalues have been emitted by WriteModuleInfo. 2303 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2304 if (!isa<GlobalValue>(Vals[i].first)) { 2305 writeConstants(i, Vals.size(), true); 2306 return; 2307 } 2308 } 2309 } 2310 2311 /// pushValueAndType - The file has to encode both the value and type id for 2312 /// many values, because we need to know what type to create for forward 2313 /// references. However, most operands are not forward references, so this type 2314 /// field is not needed. 2315 /// 2316 /// This function adds V's value ID to Vals. If the value ID is higher than the 2317 /// instruction ID, then it is a forward reference, and it also includes the 2318 /// type ID. The value ID that is written is encoded relative to the InstID. 2319 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2320 SmallVectorImpl<unsigned> &Vals) { 2321 unsigned ValID = VE.getValueID(V); 2322 // Make encoding relative to the InstID. 2323 Vals.push_back(InstID - ValID); 2324 if (ValID >= InstID) { 2325 Vals.push_back(VE.getTypeID(V->getType())); 2326 return true; 2327 } 2328 return false; 2329 } 2330 2331 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2332 unsigned InstID) { 2333 SmallVector<unsigned, 64> Record; 2334 LLVMContext &C = CS.getInstruction()->getContext(); 2335 2336 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2337 const auto &Bundle = CS.getOperandBundleAt(i); 2338 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2339 2340 for (auto &Input : Bundle.Inputs) 2341 pushValueAndType(Input, InstID, Record); 2342 2343 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2344 Record.clear(); 2345 } 2346 } 2347 2348 /// pushValue - Like pushValueAndType, but where the type of the value is 2349 /// omitted (perhaps it was already encoded in an earlier operand). 2350 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2351 SmallVectorImpl<unsigned> &Vals) { 2352 unsigned ValID = VE.getValueID(V); 2353 Vals.push_back(InstID - ValID); 2354 } 2355 2356 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2357 SmallVectorImpl<uint64_t> &Vals) { 2358 unsigned ValID = VE.getValueID(V); 2359 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2360 emitSignedInt64(Vals, diff); 2361 } 2362 2363 /// WriteInstruction - Emit an instruction to the specified stream. 2364 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2365 unsigned InstID, 2366 SmallVectorImpl<unsigned> &Vals) { 2367 unsigned Code = 0; 2368 unsigned AbbrevToUse = 0; 2369 VE.setInstructionID(&I); 2370 switch (I.getOpcode()) { 2371 default: 2372 if (Instruction::isCast(I.getOpcode())) { 2373 Code = bitc::FUNC_CODE_INST_CAST; 2374 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2375 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2376 Vals.push_back(VE.getTypeID(I.getType())); 2377 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2378 } else { 2379 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2380 Code = bitc::FUNC_CODE_INST_BINOP; 2381 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2382 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2383 pushValue(I.getOperand(1), InstID, Vals); 2384 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2385 uint64_t Flags = getOptimizationFlags(&I); 2386 if (Flags != 0) { 2387 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2388 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2389 Vals.push_back(Flags); 2390 } 2391 } 2392 break; 2393 2394 case Instruction::GetElementPtr: { 2395 Code = bitc::FUNC_CODE_INST_GEP; 2396 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2397 auto &GEPInst = cast<GetElementPtrInst>(I); 2398 Vals.push_back(GEPInst.isInBounds()); 2399 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2400 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2401 pushValueAndType(I.getOperand(i), InstID, Vals); 2402 break; 2403 } 2404 case Instruction::ExtractValue: { 2405 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2406 pushValueAndType(I.getOperand(0), InstID, Vals); 2407 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2408 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2409 break; 2410 } 2411 case Instruction::InsertValue: { 2412 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2413 pushValueAndType(I.getOperand(0), InstID, Vals); 2414 pushValueAndType(I.getOperand(1), InstID, Vals); 2415 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2416 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2417 break; 2418 } 2419 case Instruction::Select: 2420 Code = bitc::FUNC_CODE_INST_VSELECT; 2421 pushValueAndType(I.getOperand(1), InstID, Vals); 2422 pushValue(I.getOperand(2), InstID, Vals); 2423 pushValueAndType(I.getOperand(0), InstID, Vals); 2424 break; 2425 case Instruction::ExtractElement: 2426 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2427 pushValueAndType(I.getOperand(0), InstID, Vals); 2428 pushValueAndType(I.getOperand(1), InstID, Vals); 2429 break; 2430 case Instruction::InsertElement: 2431 Code = bitc::FUNC_CODE_INST_INSERTELT; 2432 pushValueAndType(I.getOperand(0), InstID, Vals); 2433 pushValue(I.getOperand(1), InstID, Vals); 2434 pushValueAndType(I.getOperand(2), InstID, Vals); 2435 break; 2436 case Instruction::ShuffleVector: 2437 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2438 pushValueAndType(I.getOperand(0), InstID, Vals); 2439 pushValue(I.getOperand(1), InstID, Vals); 2440 pushValue(I.getOperand(2), InstID, Vals); 2441 break; 2442 case Instruction::ICmp: 2443 case Instruction::FCmp: { 2444 // compare returning Int1Ty or vector of Int1Ty 2445 Code = bitc::FUNC_CODE_INST_CMP2; 2446 pushValueAndType(I.getOperand(0), InstID, Vals); 2447 pushValue(I.getOperand(1), InstID, Vals); 2448 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2449 uint64_t Flags = getOptimizationFlags(&I); 2450 if (Flags != 0) 2451 Vals.push_back(Flags); 2452 break; 2453 } 2454 2455 case Instruction::Ret: 2456 { 2457 Code = bitc::FUNC_CODE_INST_RET; 2458 unsigned NumOperands = I.getNumOperands(); 2459 if (NumOperands == 0) 2460 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2461 else if (NumOperands == 1) { 2462 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2463 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2464 } else { 2465 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2466 pushValueAndType(I.getOperand(i), InstID, Vals); 2467 } 2468 } 2469 break; 2470 case Instruction::Br: 2471 { 2472 Code = bitc::FUNC_CODE_INST_BR; 2473 const BranchInst &II = cast<BranchInst>(I); 2474 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2475 if (II.isConditional()) { 2476 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2477 pushValue(II.getCondition(), InstID, Vals); 2478 } 2479 } 2480 break; 2481 case Instruction::Switch: 2482 { 2483 Code = bitc::FUNC_CODE_INST_SWITCH; 2484 const SwitchInst &SI = cast<SwitchInst>(I); 2485 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2486 pushValue(SI.getCondition(), InstID, Vals); 2487 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2488 for (auto Case : SI.cases()) { 2489 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2490 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2491 } 2492 } 2493 break; 2494 case Instruction::IndirectBr: 2495 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2496 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2497 // Encode the address operand as relative, but not the basic blocks. 2498 pushValue(I.getOperand(0), InstID, Vals); 2499 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2500 Vals.push_back(VE.getValueID(I.getOperand(i))); 2501 break; 2502 2503 case Instruction::Invoke: { 2504 const InvokeInst *II = cast<InvokeInst>(&I); 2505 const Value *Callee = II->getCalledValue(); 2506 FunctionType *FTy = II->getFunctionType(); 2507 2508 if (II->hasOperandBundles()) 2509 writeOperandBundles(II, InstID); 2510 2511 Code = bitc::FUNC_CODE_INST_INVOKE; 2512 2513 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2514 Vals.push_back(II->getCallingConv() | 1 << 13); 2515 Vals.push_back(VE.getValueID(II->getNormalDest())); 2516 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2517 Vals.push_back(VE.getTypeID(FTy)); 2518 pushValueAndType(Callee, InstID, Vals); 2519 2520 // Emit value #'s for the fixed parameters. 2521 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2522 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2523 2524 // Emit type/value pairs for varargs params. 2525 if (FTy->isVarArg()) { 2526 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2527 i != e; ++i) 2528 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2529 } 2530 break; 2531 } 2532 case Instruction::Resume: 2533 Code = bitc::FUNC_CODE_INST_RESUME; 2534 pushValueAndType(I.getOperand(0), InstID, Vals); 2535 break; 2536 case Instruction::CleanupRet: { 2537 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2538 const auto &CRI = cast<CleanupReturnInst>(I); 2539 pushValue(CRI.getCleanupPad(), InstID, Vals); 2540 if (CRI.hasUnwindDest()) 2541 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2542 break; 2543 } 2544 case Instruction::CatchRet: { 2545 Code = bitc::FUNC_CODE_INST_CATCHRET; 2546 const auto &CRI = cast<CatchReturnInst>(I); 2547 pushValue(CRI.getCatchPad(), InstID, Vals); 2548 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2549 break; 2550 } 2551 case Instruction::CleanupPad: 2552 case Instruction::CatchPad: { 2553 const auto &FuncletPad = cast<FuncletPadInst>(I); 2554 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2555 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2556 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2557 2558 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2559 Vals.push_back(NumArgOperands); 2560 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2561 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2562 break; 2563 } 2564 case Instruction::CatchSwitch: { 2565 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2566 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2567 2568 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2569 2570 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2571 Vals.push_back(NumHandlers); 2572 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2573 Vals.push_back(VE.getValueID(CatchPadBB)); 2574 2575 if (CatchSwitch.hasUnwindDest()) 2576 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2577 break; 2578 } 2579 case Instruction::Unreachable: 2580 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2581 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2582 break; 2583 2584 case Instruction::PHI: { 2585 const PHINode &PN = cast<PHINode>(I); 2586 Code = bitc::FUNC_CODE_INST_PHI; 2587 // With the newer instruction encoding, forward references could give 2588 // negative valued IDs. This is most common for PHIs, so we use 2589 // signed VBRs. 2590 SmallVector<uint64_t, 128> Vals64; 2591 Vals64.push_back(VE.getTypeID(PN.getType())); 2592 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2593 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2594 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2595 } 2596 // Emit a Vals64 vector and exit. 2597 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2598 Vals64.clear(); 2599 return; 2600 } 2601 2602 case Instruction::LandingPad: { 2603 const LandingPadInst &LP = cast<LandingPadInst>(I); 2604 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2605 Vals.push_back(VE.getTypeID(LP.getType())); 2606 Vals.push_back(LP.isCleanup()); 2607 Vals.push_back(LP.getNumClauses()); 2608 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2609 if (LP.isCatch(I)) 2610 Vals.push_back(LandingPadInst::Catch); 2611 else 2612 Vals.push_back(LandingPadInst::Filter); 2613 pushValueAndType(LP.getClause(I), InstID, Vals); 2614 } 2615 break; 2616 } 2617 2618 case Instruction::Alloca: { 2619 Code = bitc::FUNC_CODE_INST_ALLOCA; 2620 const AllocaInst &AI = cast<AllocaInst>(I); 2621 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2622 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2623 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2624 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2625 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2626 "not enough bits for maximum alignment"); 2627 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2628 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2629 AlignRecord |= 1 << 6; 2630 AlignRecord |= AI.isSwiftError() << 7; 2631 Vals.push_back(AlignRecord); 2632 break; 2633 } 2634 2635 case Instruction::Load: 2636 if (cast<LoadInst>(I).isAtomic()) { 2637 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2638 pushValueAndType(I.getOperand(0), InstID, Vals); 2639 } else { 2640 Code = bitc::FUNC_CODE_INST_LOAD; 2641 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2642 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2643 } 2644 Vals.push_back(VE.getTypeID(I.getType())); 2645 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2646 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2647 if (cast<LoadInst>(I).isAtomic()) { 2648 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2649 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2650 } 2651 break; 2652 case Instruction::Store: 2653 if (cast<StoreInst>(I).isAtomic()) 2654 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2655 else 2656 Code = bitc::FUNC_CODE_INST_STORE; 2657 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2658 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2659 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2660 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2661 if (cast<StoreInst>(I).isAtomic()) { 2662 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2663 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2664 } 2665 break; 2666 case Instruction::AtomicCmpXchg: 2667 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2668 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2669 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2670 pushValue(I.getOperand(2), InstID, Vals); // newval. 2671 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2672 Vals.push_back( 2673 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2674 Vals.push_back( 2675 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2676 Vals.push_back( 2677 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2678 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2679 break; 2680 case Instruction::AtomicRMW: 2681 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2682 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2683 pushValue(I.getOperand(1), InstID, Vals); // val. 2684 Vals.push_back( 2685 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2686 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2687 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2688 Vals.push_back( 2689 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2690 break; 2691 case Instruction::Fence: 2692 Code = bitc::FUNC_CODE_INST_FENCE; 2693 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2694 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2695 break; 2696 case Instruction::Call: { 2697 const CallInst &CI = cast<CallInst>(I); 2698 FunctionType *FTy = CI.getFunctionType(); 2699 2700 if (CI.hasOperandBundles()) 2701 writeOperandBundles(&CI, InstID); 2702 2703 Code = bitc::FUNC_CODE_INST_CALL; 2704 2705 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2706 2707 unsigned Flags = getOptimizationFlags(&I); 2708 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2709 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2710 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2711 1 << bitc::CALL_EXPLICIT_TYPE | 2712 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2713 unsigned(Flags != 0) << bitc::CALL_FMF); 2714 if (Flags != 0) 2715 Vals.push_back(Flags); 2716 2717 Vals.push_back(VE.getTypeID(FTy)); 2718 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2719 2720 // Emit value #'s for the fixed parameters. 2721 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2722 // Check for labels (can happen with asm labels). 2723 if (FTy->getParamType(i)->isLabelTy()) 2724 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2725 else 2726 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2727 } 2728 2729 // Emit type/value pairs for varargs params. 2730 if (FTy->isVarArg()) { 2731 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2732 i != e; ++i) 2733 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2734 } 2735 break; 2736 } 2737 case Instruction::VAArg: 2738 Code = bitc::FUNC_CODE_INST_VAARG; 2739 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2740 pushValue(I.getOperand(0), InstID, Vals); // valist. 2741 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2742 break; 2743 } 2744 2745 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2746 Vals.clear(); 2747 } 2748 2749 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2750 /// to allow clients to efficiently find the function body. 2751 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2752 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2753 // Get the offset of the VST we are writing, and backpatch it into 2754 // the VST forward declaration record. 2755 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2756 // The BitcodeStartBit was the stream offset of the identification block. 2757 VSTOffset -= bitcodeStartBit(); 2758 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2759 // Note that we add 1 here because the offset is relative to one word 2760 // before the start of the identification block, which was historically 2761 // always the start of the regular bitcode header. 2762 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2763 2764 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2765 2766 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2767 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2770 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2771 2772 for (const Function &F : M) { 2773 uint64_t Record[2]; 2774 2775 if (F.isDeclaration()) 2776 continue; 2777 2778 Record[0] = VE.getValueID(&F); 2779 2780 // Save the word offset of the function (from the start of the 2781 // actual bitcode written to the stream). 2782 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2783 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2784 // Note that we add 1 here because the offset is relative to one word 2785 // before the start of the identification block, which was historically 2786 // always the start of the regular bitcode header. 2787 Record[1] = BitcodeIndex / 32 + 1; 2788 2789 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2790 } 2791 2792 Stream.ExitBlock(); 2793 } 2794 2795 /// Emit names for arguments, instructions and basic blocks in a function. 2796 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2797 const ValueSymbolTable &VST) { 2798 if (VST.empty()) 2799 return; 2800 2801 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2802 2803 // FIXME: Set up the abbrev, we know how many values there are! 2804 // FIXME: We know if the type names can use 7-bit ascii. 2805 SmallVector<uint64_t, 64> NameVals; 2806 2807 for (const ValueName &Name : VST) { 2808 // Figure out the encoding to use for the name. 2809 StringEncoding Bits = getStringEncoding(Name.getKey()); 2810 2811 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2812 NameVals.push_back(VE.getValueID(Name.getValue())); 2813 2814 // VST_CODE_ENTRY: [valueid, namechar x N] 2815 // VST_CODE_BBENTRY: [bbid, namechar x N] 2816 unsigned Code; 2817 if (isa<BasicBlock>(Name.getValue())) { 2818 Code = bitc::VST_CODE_BBENTRY; 2819 if (Bits == SE_Char6) 2820 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2821 } else { 2822 Code = bitc::VST_CODE_ENTRY; 2823 if (Bits == SE_Char6) 2824 AbbrevToUse = VST_ENTRY_6_ABBREV; 2825 else if (Bits == SE_Fixed7) 2826 AbbrevToUse = VST_ENTRY_7_ABBREV; 2827 } 2828 2829 for (const auto P : Name.getKey()) 2830 NameVals.push_back((unsigned char)P); 2831 2832 // Emit the finished record. 2833 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2834 NameVals.clear(); 2835 } 2836 2837 Stream.ExitBlock(); 2838 } 2839 2840 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2841 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2842 unsigned Code; 2843 if (isa<BasicBlock>(Order.V)) 2844 Code = bitc::USELIST_CODE_BB; 2845 else 2846 Code = bitc::USELIST_CODE_DEFAULT; 2847 2848 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2849 Record.push_back(VE.getValueID(Order.V)); 2850 Stream.EmitRecord(Code, Record); 2851 } 2852 2853 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2854 assert(VE.shouldPreserveUseListOrder() && 2855 "Expected to be preserving use-list order"); 2856 2857 auto hasMore = [&]() { 2858 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2859 }; 2860 if (!hasMore()) 2861 // Nothing to do. 2862 return; 2863 2864 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2865 while (hasMore()) { 2866 writeUseList(std::move(VE.UseListOrders.back())); 2867 VE.UseListOrders.pop_back(); 2868 } 2869 Stream.ExitBlock(); 2870 } 2871 2872 /// Emit a function body to the module stream. 2873 void ModuleBitcodeWriter::writeFunction( 2874 const Function &F, 2875 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2876 // Save the bitcode index of the start of this function block for recording 2877 // in the VST. 2878 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2879 2880 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2881 VE.incorporateFunction(F); 2882 2883 SmallVector<unsigned, 64> Vals; 2884 2885 // Emit the number of basic blocks, so the reader can create them ahead of 2886 // time. 2887 Vals.push_back(VE.getBasicBlocks().size()); 2888 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2889 Vals.clear(); 2890 2891 // If there are function-local constants, emit them now. 2892 unsigned CstStart, CstEnd; 2893 VE.getFunctionConstantRange(CstStart, CstEnd); 2894 writeConstants(CstStart, CstEnd, false); 2895 2896 // If there is function-local metadata, emit it now. 2897 writeFunctionMetadata(F); 2898 2899 // Keep a running idea of what the instruction ID is. 2900 unsigned InstID = CstEnd; 2901 2902 bool NeedsMetadataAttachment = F.hasMetadata(); 2903 2904 DILocation *LastDL = nullptr; 2905 // Finally, emit all the instructions, in order. 2906 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2907 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2908 I != E; ++I) { 2909 writeInstruction(*I, InstID, Vals); 2910 2911 if (!I->getType()->isVoidTy()) 2912 ++InstID; 2913 2914 // If the instruction has metadata, write a metadata attachment later. 2915 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2916 2917 // If the instruction has a debug location, emit it. 2918 DILocation *DL = I->getDebugLoc(); 2919 if (!DL) 2920 continue; 2921 2922 if (DL == LastDL) { 2923 // Just repeat the same debug loc as last time. 2924 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2925 continue; 2926 } 2927 2928 Vals.push_back(DL->getLine()); 2929 Vals.push_back(DL->getColumn()); 2930 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2931 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2932 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2933 Vals.clear(); 2934 2935 LastDL = DL; 2936 } 2937 2938 // Emit names for all the instructions etc. 2939 if (auto *Symtab = F.getValueSymbolTable()) 2940 writeFunctionLevelValueSymbolTable(*Symtab); 2941 2942 if (NeedsMetadataAttachment) 2943 writeFunctionMetadataAttachment(F); 2944 if (VE.shouldPreserveUseListOrder()) 2945 writeUseListBlock(&F); 2946 VE.purgeFunction(); 2947 Stream.ExitBlock(); 2948 } 2949 2950 // Emit blockinfo, which defines the standard abbreviations etc. 2951 void ModuleBitcodeWriter::writeBlockInfo() { 2952 // We only want to emit block info records for blocks that have multiple 2953 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2954 // Other blocks can define their abbrevs inline. 2955 Stream.EnterBlockInfoBlock(); 2956 2957 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2958 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2963 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2964 VST_ENTRY_8_ABBREV) 2965 llvm_unreachable("Unexpected abbrev ordering!"); 2966 } 2967 2968 { // 7-bit fixed width VST_CODE_ENTRY strings. 2969 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2970 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2974 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2975 VST_ENTRY_7_ABBREV) 2976 llvm_unreachable("Unexpected abbrev ordering!"); 2977 } 2978 { // 6-bit char6 VST_CODE_ENTRY strings. 2979 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2980 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2984 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2985 VST_ENTRY_6_ABBREV) 2986 llvm_unreachable("Unexpected abbrev ordering!"); 2987 } 2988 { // 6-bit char6 VST_CODE_BBENTRY strings. 2989 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2990 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2994 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2995 VST_BBENTRY_6_ABBREV) 2996 llvm_unreachable("Unexpected abbrev ordering!"); 2997 } 2998 2999 3000 3001 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3002 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3003 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3005 VE.computeBitsRequiredForTypeIndicies())); 3006 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3007 CONSTANTS_SETTYPE_ABBREV) 3008 llvm_unreachable("Unexpected abbrev ordering!"); 3009 } 3010 3011 { // INTEGER abbrev for CONSTANTS_BLOCK. 3012 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3013 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3015 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3016 CONSTANTS_INTEGER_ABBREV) 3017 llvm_unreachable("Unexpected abbrev ordering!"); 3018 } 3019 3020 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3021 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3022 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3025 VE.computeBitsRequiredForTypeIndicies())); 3026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3027 3028 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3029 CONSTANTS_CE_CAST_Abbrev) 3030 llvm_unreachable("Unexpected abbrev ordering!"); 3031 } 3032 { // NULL abbrev for CONSTANTS_BLOCK. 3033 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3034 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3035 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3036 CONSTANTS_NULL_Abbrev) 3037 llvm_unreachable("Unexpected abbrev ordering!"); 3038 } 3039 3040 // FIXME: This should only use space for first class types! 3041 3042 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3043 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3044 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3047 VE.computeBitsRequiredForTypeIndicies())); 3048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3050 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3051 FUNCTION_INST_LOAD_ABBREV) 3052 llvm_unreachable("Unexpected abbrev ordering!"); 3053 } 3054 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3055 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3056 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3060 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3061 FUNCTION_INST_BINOP_ABBREV) 3062 llvm_unreachable("Unexpected abbrev ordering!"); 3063 } 3064 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3065 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3066 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3071 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3072 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3073 llvm_unreachable("Unexpected abbrev ordering!"); 3074 } 3075 { // INST_CAST abbrev for FUNCTION_BLOCK. 3076 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3077 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3080 VE.computeBitsRequiredForTypeIndicies())); 3081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3082 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3083 FUNCTION_INST_CAST_ABBREV) 3084 llvm_unreachable("Unexpected abbrev ordering!"); 3085 } 3086 3087 { // INST_RET abbrev for FUNCTION_BLOCK. 3088 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3089 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3090 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3091 FUNCTION_INST_RET_VOID_ABBREV) 3092 llvm_unreachable("Unexpected abbrev ordering!"); 3093 } 3094 { // INST_RET abbrev for FUNCTION_BLOCK. 3095 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3096 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3098 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3099 FUNCTION_INST_RET_VAL_ABBREV) 3100 llvm_unreachable("Unexpected abbrev ordering!"); 3101 } 3102 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3103 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3104 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3105 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3106 FUNCTION_INST_UNREACHABLE_ABBREV) 3107 llvm_unreachable("Unexpected abbrev ordering!"); 3108 } 3109 { 3110 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3111 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3114 Log2_32_Ceil(VE.getTypes().size() + 1))); 3115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3117 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3118 FUNCTION_INST_GEP_ABBREV) 3119 llvm_unreachable("Unexpected abbrev ordering!"); 3120 } 3121 3122 Stream.ExitBlock(); 3123 } 3124 3125 /// Write the module path strings, currently only used when generating 3126 /// a combined index file. 3127 void IndexBitcodeWriter::writeModStrings() { 3128 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3129 3130 // TODO: See which abbrev sizes we actually need to emit 3131 3132 // 8-bit fixed-width MST_ENTRY strings. 3133 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3134 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3138 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3139 3140 // 7-bit fixed width MST_ENTRY strings. 3141 Abbv = std::make_shared<BitCodeAbbrev>(); 3142 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3146 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3147 3148 // 6-bit char6 MST_ENTRY strings. 3149 Abbv = std::make_shared<BitCodeAbbrev>(); 3150 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3154 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3155 3156 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3157 Abbv = std::make_shared<BitCodeAbbrev>(); 3158 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3164 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3165 3166 SmallVector<unsigned, 64> Vals; 3167 forEachModule( 3168 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3169 StringRef Key = MPSE.getKey(); 3170 const auto &Value = MPSE.getValue(); 3171 StringEncoding Bits = getStringEncoding(Key); 3172 unsigned AbbrevToUse = Abbrev8Bit; 3173 if (Bits == SE_Char6) 3174 AbbrevToUse = Abbrev6Bit; 3175 else if (Bits == SE_Fixed7) 3176 AbbrevToUse = Abbrev7Bit; 3177 3178 Vals.push_back(Value.first); 3179 Vals.append(Key.begin(), Key.end()); 3180 3181 // Emit the finished record. 3182 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3183 3184 // Emit an optional hash for the module now 3185 const auto &Hash = Value.second; 3186 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3187 Vals.assign(Hash.begin(), Hash.end()); 3188 // Emit the hash record. 3189 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3190 } 3191 3192 Vals.clear(); 3193 }); 3194 Stream.ExitBlock(); 3195 } 3196 3197 /// Write the function type metadata related records that need to appear before 3198 /// a function summary entry (whether per-module or combined). 3199 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3200 FunctionSummary *FS) { 3201 if (!FS->type_tests().empty()) 3202 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3203 3204 SmallVector<uint64_t, 64> Record; 3205 3206 auto WriteVFuncIdVec = [&](uint64_t Ty, 3207 ArrayRef<FunctionSummary::VFuncId> VFs) { 3208 if (VFs.empty()) 3209 return; 3210 Record.clear(); 3211 for (auto &VF : VFs) { 3212 Record.push_back(VF.GUID); 3213 Record.push_back(VF.Offset); 3214 } 3215 Stream.EmitRecord(Ty, Record); 3216 }; 3217 3218 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3219 FS->type_test_assume_vcalls()); 3220 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3221 FS->type_checked_load_vcalls()); 3222 3223 auto WriteConstVCallVec = [&](uint64_t Ty, 3224 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3225 for (auto &VC : VCs) { 3226 Record.clear(); 3227 Record.push_back(VC.VFunc.GUID); 3228 Record.push_back(VC.VFunc.Offset); 3229 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3230 Stream.EmitRecord(Ty, Record); 3231 } 3232 }; 3233 3234 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3235 FS->type_test_assume_const_vcalls()); 3236 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3237 FS->type_checked_load_const_vcalls()); 3238 } 3239 3240 // Helper to emit a single function summary record. 3241 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3242 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3243 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3244 const Function &F) { 3245 NameVals.push_back(ValueID); 3246 3247 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3248 writeFunctionTypeMetadataRecords(Stream, FS); 3249 3250 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3251 NameVals.push_back(FS->instCount()); 3252 NameVals.push_back(FS->refs().size()); 3253 3254 for (auto &RI : FS->refs()) 3255 NameVals.push_back(VE.getValueID(RI.getValue())); 3256 3257 bool HasProfileData = F.getEntryCount().hasValue(); 3258 for (auto &ECI : FS->calls()) { 3259 NameVals.push_back(getValueId(ECI.first)); 3260 if (HasProfileData) 3261 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3262 } 3263 3264 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3265 unsigned Code = 3266 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3267 3268 // Emit the finished record. 3269 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3270 NameVals.clear(); 3271 } 3272 3273 // Collect the global value references in the given variable's initializer, 3274 // and emit them in a summary record. 3275 void ModuleBitcodeWriter::writeModuleLevelReferences( 3276 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3277 unsigned FSModRefsAbbrev) { 3278 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3279 if (!VI || VI.getSummaryList().empty()) { 3280 // Only declarations should not have a summary (a declaration might however 3281 // have a summary if the def was in module level asm). 3282 assert(V.isDeclaration()); 3283 return; 3284 } 3285 auto *Summary = VI.getSummaryList()[0].get(); 3286 NameVals.push_back(VE.getValueID(&V)); 3287 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3288 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3289 3290 unsigned SizeBeforeRefs = NameVals.size(); 3291 for (auto &RI : VS->refs()) 3292 NameVals.push_back(VE.getValueID(RI.getValue())); 3293 // Sort the refs for determinism output, the vector returned by FS->refs() has 3294 // been initialized from a DenseSet. 3295 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3296 3297 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3298 FSModRefsAbbrev); 3299 NameVals.clear(); 3300 } 3301 3302 // Current version for the summary. 3303 // This is bumped whenever we introduce changes in the way some record are 3304 // interpreted, like flags for instance. 3305 static const uint64_t INDEX_VERSION = 3; 3306 3307 /// Emit the per-module summary section alongside the rest of 3308 /// the module's bitcode. 3309 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3310 // By default we compile with ThinLTO if the module has a summary, but the 3311 // client can request full LTO with a module flag. 3312 bool IsThinLTO = true; 3313 if (auto *MD = 3314 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3315 IsThinLTO = MD->getZExtValue(); 3316 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3317 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3318 4); 3319 3320 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3321 3322 if (Index->begin() == Index->end()) { 3323 Stream.ExitBlock(); 3324 return; 3325 } 3326 3327 for (const auto &GVI : valueIds()) { 3328 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3329 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3330 } 3331 3332 // Abbrev for FS_PERMODULE. 3333 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3334 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3339 // numrefs x valueid, n x (valueid) 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3342 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3343 3344 // Abbrev for FS_PERMODULE_PROFILE. 3345 Abbv = std::make_shared<BitCodeAbbrev>(); 3346 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3351 // numrefs x valueid, n x (valueid, hotness) 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3354 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3355 3356 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3357 Abbv = std::make_shared<BitCodeAbbrev>(); 3358 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3363 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3364 3365 // Abbrev for FS_ALIAS. 3366 Abbv = std::make_shared<BitCodeAbbrev>(); 3367 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3371 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3372 3373 SmallVector<uint64_t, 64> NameVals; 3374 // Iterate over the list of functions instead of the Index to 3375 // ensure the ordering is stable. 3376 for (const Function &F : M) { 3377 // Summary emission does not support anonymous functions, they have to 3378 // renamed using the anonymous function renaming pass. 3379 if (!F.hasName()) 3380 report_fatal_error("Unexpected anonymous function when writing summary"); 3381 3382 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3383 if (!VI || VI.getSummaryList().empty()) { 3384 // Only declarations should not have a summary (a declaration might 3385 // however have a summary if the def was in module level asm). 3386 assert(F.isDeclaration()); 3387 continue; 3388 } 3389 auto *Summary = VI.getSummaryList()[0].get(); 3390 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3391 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3392 } 3393 3394 // Capture references from GlobalVariable initializers, which are outside 3395 // of a function scope. 3396 for (const GlobalVariable &G : M.globals()) 3397 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3398 3399 for (const GlobalAlias &A : M.aliases()) { 3400 auto *Aliasee = A.getBaseObject(); 3401 if (!Aliasee->hasName()) 3402 // Nameless function don't have an entry in the summary, skip it. 3403 continue; 3404 auto AliasId = VE.getValueID(&A); 3405 auto AliaseeId = VE.getValueID(Aliasee); 3406 NameVals.push_back(AliasId); 3407 auto *Summary = Index->getGlobalValueSummary(A); 3408 AliasSummary *AS = cast<AliasSummary>(Summary); 3409 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3410 NameVals.push_back(AliaseeId); 3411 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3412 NameVals.clear(); 3413 } 3414 3415 Stream.ExitBlock(); 3416 } 3417 3418 /// Emit the combined summary section into the combined index file. 3419 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3420 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3421 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3422 3423 for (const auto &GVI : valueIds()) { 3424 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3425 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3426 } 3427 3428 // Abbrev for FS_COMBINED. 3429 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3430 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3436 // numrefs x valueid, n x (valueid) 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3439 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3440 3441 // Abbrev for FS_COMBINED_PROFILE. 3442 Abbv = std::make_shared<BitCodeAbbrev>(); 3443 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3449 // numrefs x valueid, n x (valueid, hotness) 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3452 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3453 3454 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3455 Abbv = std::make_shared<BitCodeAbbrev>(); 3456 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3462 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3463 3464 // Abbrev for FS_COMBINED_ALIAS. 3465 Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3471 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3472 3473 // The aliases are emitted as a post-pass, and will point to the value 3474 // id of the aliasee. Save them in a vector for post-processing. 3475 SmallVector<AliasSummary *, 64> Aliases; 3476 3477 // Save the value id for each summary for alias emission. 3478 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3479 3480 SmallVector<uint64_t, 64> NameVals; 3481 3482 // For local linkage, we also emit the original name separately 3483 // immediately after the record. 3484 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3485 if (!GlobalValue::isLocalLinkage(S.linkage())) 3486 return; 3487 NameVals.push_back(S.getOriginalName()); 3488 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3489 NameVals.clear(); 3490 }; 3491 3492 forEachSummary([&](GVInfo I) { 3493 GlobalValueSummary *S = I.second; 3494 assert(S); 3495 3496 auto ValueId = getValueId(I.first); 3497 assert(ValueId); 3498 SummaryToValueIdMap[S] = *ValueId; 3499 3500 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3501 // Will process aliases as a post-pass because the reader wants all 3502 // global to be loaded first. 3503 Aliases.push_back(AS); 3504 return; 3505 } 3506 3507 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3508 NameVals.push_back(*ValueId); 3509 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3510 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3511 for (auto &RI : VS->refs()) { 3512 auto RefValueId = getValueId(RI.getGUID()); 3513 if (!RefValueId) 3514 continue; 3515 NameVals.push_back(*RefValueId); 3516 } 3517 3518 // Emit the finished record. 3519 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3520 FSModRefsAbbrev); 3521 NameVals.clear(); 3522 MaybeEmitOriginalName(*S); 3523 return; 3524 } 3525 3526 auto *FS = cast<FunctionSummary>(S); 3527 writeFunctionTypeMetadataRecords(Stream, FS); 3528 3529 NameVals.push_back(*ValueId); 3530 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3531 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3532 NameVals.push_back(FS->instCount()); 3533 // Fill in below 3534 NameVals.push_back(0); 3535 3536 unsigned Count = 0; 3537 for (auto &RI : FS->refs()) { 3538 auto RefValueId = getValueId(RI.getGUID()); 3539 if (!RefValueId) 3540 continue; 3541 NameVals.push_back(*RefValueId); 3542 Count++; 3543 } 3544 NameVals[4] = Count; 3545 3546 bool HasProfileData = false; 3547 for (auto &EI : FS->calls()) { 3548 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3549 if (HasProfileData) 3550 break; 3551 } 3552 3553 for (auto &EI : FS->calls()) { 3554 // If this GUID doesn't have a value id, it doesn't have a function 3555 // summary and we don't need to record any calls to it. 3556 GlobalValue::GUID GUID = EI.first.getGUID(); 3557 auto CallValueId = getValueId(GUID); 3558 if (!CallValueId) { 3559 // For SamplePGO, the indirect call targets for local functions will 3560 // have its original name annotated in profile. We try to find the 3561 // corresponding PGOFuncName as the GUID. 3562 GUID = Index.getGUIDFromOriginalID(GUID); 3563 if (GUID == 0) 3564 continue; 3565 CallValueId = getValueId(GUID); 3566 if (!CallValueId) 3567 continue; 3568 } 3569 NameVals.push_back(*CallValueId); 3570 if (HasProfileData) 3571 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3572 } 3573 3574 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3575 unsigned Code = 3576 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3577 3578 // Emit the finished record. 3579 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3580 NameVals.clear(); 3581 MaybeEmitOriginalName(*S); 3582 }); 3583 3584 for (auto *AS : Aliases) { 3585 auto AliasValueId = SummaryToValueIdMap[AS]; 3586 assert(AliasValueId); 3587 NameVals.push_back(AliasValueId); 3588 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3589 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3590 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3591 assert(AliaseeValueId); 3592 NameVals.push_back(AliaseeValueId); 3593 3594 // Emit the finished record. 3595 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3596 NameVals.clear(); 3597 MaybeEmitOriginalName(*AS); 3598 } 3599 3600 if (!Index.cfiFunctionDefs().empty()) { 3601 for (auto &S : Index.cfiFunctionDefs()) { 3602 NameVals.push_back(StrtabBuilder.add(S)); 3603 NameVals.push_back(S.size()); 3604 } 3605 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3606 NameVals.clear(); 3607 } 3608 3609 if (!Index.cfiFunctionDecls().empty()) { 3610 for (auto &S : Index.cfiFunctionDecls()) { 3611 NameVals.push_back(StrtabBuilder.add(S)); 3612 NameVals.push_back(S.size()); 3613 } 3614 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3615 NameVals.clear(); 3616 } 3617 3618 Stream.ExitBlock(); 3619 } 3620 3621 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3622 /// current llvm version, and a record for the epoch number. 3623 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3624 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3625 3626 // Write the "user readable" string identifying the bitcode producer 3627 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3628 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3631 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3632 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3633 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3634 3635 // Write the epoch version 3636 Abbv = std::make_shared<BitCodeAbbrev>(); 3637 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3639 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3640 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3641 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3642 Stream.ExitBlock(); 3643 } 3644 3645 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3646 // Emit the module's hash. 3647 // MODULE_CODE_HASH: [5*i32] 3648 if (GenerateHash) { 3649 SHA1 Hasher; 3650 uint32_t Vals[5]; 3651 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3652 Buffer.size() - BlockStartPos)); 3653 StringRef Hash = Hasher.result(); 3654 for (int Pos = 0; Pos < 20; Pos += 4) { 3655 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3656 } 3657 3658 // Emit the finished record. 3659 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3660 3661 if (ModHash) 3662 // Save the written hash value. 3663 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3664 } else if (ModHash) 3665 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3666 } 3667 3668 void ModuleBitcodeWriter::write() { 3669 writeIdentificationBlock(Stream); 3670 3671 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3672 size_t BlockStartPos = Buffer.size(); 3673 3674 writeModuleVersion(); 3675 3676 // Emit blockinfo, which defines the standard abbreviations etc. 3677 writeBlockInfo(); 3678 3679 // Emit information about attribute groups. 3680 writeAttributeGroupTable(); 3681 3682 // Emit information about parameter attributes. 3683 writeAttributeTable(); 3684 3685 // Emit information describing all of the types in the module. 3686 writeTypeTable(); 3687 3688 writeComdats(); 3689 3690 // Emit top-level description of module, including target triple, inline asm, 3691 // descriptors for global variables, and function prototype info. 3692 writeModuleInfo(); 3693 3694 // Emit constants. 3695 writeModuleConstants(); 3696 3697 // Emit metadata kind names. 3698 writeModuleMetadataKinds(); 3699 3700 // Emit metadata. 3701 writeModuleMetadata(); 3702 3703 // Emit module-level use-lists. 3704 if (VE.shouldPreserveUseListOrder()) 3705 writeUseListBlock(nullptr); 3706 3707 writeOperandBundleTags(); 3708 3709 // Emit function bodies. 3710 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3711 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3712 if (!F->isDeclaration()) 3713 writeFunction(*F, FunctionToBitcodeIndex); 3714 3715 // Need to write after the above call to WriteFunction which populates 3716 // the summary information in the index. 3717 if (Index) 3718 writePerModuleGlobalValueSummary(); 3719 3720 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3721 3722 writeModuleHash(BlockStartPos); 3723 3724 Stream.ExitBlock(); 3725 } 3726 3727 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3728 uint32_t &Position) { 3729 support::endian::write32le(&Buffer[Position], Value); 3730 Position += 4; 3731 } 3732 3733 /// If generating a bc file on darwin, we have to emit a 3734 /// header and trailer to make it compatible with the system archiver. To do 3735 /// this we emit the following header, and then emit a trailer that pads the 3736 /// file out to be a multiple of 16 bytes. 3737 /// 3738 /// struct bc_header { 3739 /// uint32_t Magic; // 0x0B17C0DE 3740 /// uint32_t Version; // Version, currently always 0. 3741 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3742 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3743 /// uint32_t CPUType; // CPU specifier. 3744 /// ... potentially more later ... 3745 /// }; 3746 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3747 const Triple &TT) { 3748 unsigned CPUType = ~0U; 3749 3750 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3751 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3752 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3753 // specific constants here because they are implicitly part of the Darwin ABI. 3754 enum { 3755 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3756 DARWIN_CPU_TYPE_X86 = 7, 3757 DARWIN_CPU_TYPE_ARM = 12, 3758 DARWIN_CPU_TYPE_POWERPC = 18 3759 }; 3760 3761 Triple::ArchType Arch = TT.getArch(); 3762 if (Arch == Triple::x86_64) 3763 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3764 else if (Arch == Triple::x86) 3765 CPUType = DARWIN_CPU_TYPE_X86; 3766 else if (Arch == Triple::ppc) 3767 CPUType = DARWIN_CPU_TYPE_POWERPC; 3768 else if (Arch == Triple::ppc64) 3769 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3770 else if (Arch == Triple::arm || Arch == Triple::thumb) 3771 CPUType = DARWIN_CPU_TYPE_ARM; 3772 3773 // Traditional Bitcode starts after header. 3774 assert(Buffer.size() >= BWH_HeaderSize && 3775 "Expected header size to be reserved"); 3776 unsigned BCOffset = BWH_HeaderSize; 3777 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3778 3779 // Write the magic and version. 3780 unsigned Position = 0; 3781 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3782 writeInt32ToBuffer(0, Buffer, Position); // Version. 3783 writeInt32ToBuffer(BCOffset, Buffer, Position); 3784 writeInt32ToBuffer(BCSize, Buffer, Position); 3785 writeInt32ToBuffer(CPUType, Buffer, Position); 3786 3787 // If the file is not a multiple of 16 bytes, insert dummy padding. 3788 while (Buffer.size() & 15) 3789 Buffer.push_back(0); 3790 } 3791 3792 /// Helper to write the header common to all bitcode files. 3793 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3794 // Emit the file header. 3795 Stream.Emit((unsigned)'B', 8); 3796 Stream.Emit((unsigned)'C', 8); 3797 Stream.Emit(0x0, 4); 3798 Stream.Emit(0xC, 4); 3799 Stream.Emit(0xE, 4); 3800 Stream.Emit(0xD, 4); 3801 } 3802 3803 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3804 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3805 writeBitcodeHeader(*Stream); 3806 } 3807 3808 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3809 3810 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3811 Stream->EnterSubblock(Block, 3); 3812 3813 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3814 Abbv->Add(BitCodeAbbrevOp(Record)); 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3816 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3817 3818 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3819 3820 Stream->ExitBlock(); 3821 } 3822 3823 void BitcodeWriter::writeStrtab() { 3824 assert(!WroteStrtab); 3825 3826 std::vector<char> Strtab; 3827 StrtabBuilder.finalizeInOrder(); 3828 Strtab.resize(StrtabBuilder.getSize()); 3829 StrtabBuilder.write((uint8_t *)Strtab.data()); 3830 3831 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3832 {Strtab.data(), Strtab.size()}); 3833 3834 WroteStrtab = true; 3835 } 3836 3837 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3838 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3839 WroteStrtab = true; 3840 } 3841 3842 void BitcodeWriter::writeModule(const Module *M, 3843 bool ShouldPreserveUseListOrder, 3844 const ModuleSummaryIndex *Index, 3845 bool GenerateHash, ModuleHash *ModHash) { 3846 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3847 ShouldPreserveUseListOrder, Index, 3848 GenerateHash, ModHash); 3849 ModuleWriter.write(); 3850 } 3851 3852 void BitcodeWriter::writeIndex( 3853 const ModuleSummaryIndex *Index, 3854 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3855 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 3856 ModuleToSummariesForIndex); 3857 IndexWriter.write(); 3858 } 3859 3860 /// WriteBitcodeToFile - Write the specified module to the specified output 3861 /// stream. 3862 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3863 bool ShouldPreserveUseListOrder, 3864 const ModuleSummaryIndex *Index, 3865 bool GenerateHash, ModuleHash *ModHash) { 3866 SmallVector<char, 0> Buffer; 3867 Buffer.reserve(256*1024); 3868 3869 // If this is darwin or another generic macho target, reserve space for the 3870 // header. 3871 Triple TT(M->getTargetTriple()); 3872 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3873 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3874 3875 BitcodeWriter Writer(Buffer); 3876 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3877 ModHash); 3878 Writer.writeStrtab(); 3879 3880 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3881 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3882 3883 // Write the generated bitstream to "Out". 3884 Out.write((char*)&Buffer.front(), Buffer.size()); 3885 } 3886 3887 void IndexBitcodeWriter::write() { 3888 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3889 3890 writeModuleVersion(); 3891 3892 // Write the module paths in the combined index. 3893 writeModStrings(); 3894 3895 // Write the summary combined index records. 3896 writeCombinedGlobalValueSummary(); 3897 3898 Stream.ExitBlock(); 3899 } 3900 3901 // Write the specified module summary index to the given raw output stream, 3902 // where it will be written in a new bitcode block. This is used when 3903 // writing the combined index file for ThinLTO. When writing a subset of the 3904 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3905 void llvm::WriteIndexToFile( 3906 const ModuleSummaryIndex &Index, raw_ostream &Out, 3907 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3908 SmallVector<char, 0> Buffer; 3909 Buffer.reserve(256 * 1024); 3910 3911 BitcodeWriter Writer(Buffer); 3912 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 3913 Writer.writeStrtab(); 3914 3915 Out.write((char *)&Buffer.front(), Buffer.size()); 3916 } 3917