1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 namespace { 90 91 /// These are manifest constants used by the bitcode writer. They do not need to 92 /// be kept in sync with the reader, but need to be consistent within this file. 93 enum { 94 // VALUE_SYMTAB_BLOCK abbrev id's. 95 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 96 VST_ENTRY_7_ABBREV, 97 VST_ENTRY_6_ABBREV, 98 VST_BBENTRY_6_ABBREV, 99 100 // CONSTANTS_BLOCK abbrev id's. 101 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 CONSTANTS_INTEGER_ABBREV, 103 CONSTANTS_CE_CAST_Abbrev, 104 CONSTANTS_NULL_Abbrev, 105 106 // FUNCTION_BLOCK abbrev id's. 107 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 FUNCTION_INST_BINOP_ABBREV, 109 FUNCTION_INST_BINOP_FLAGS_ABBREV, 110 FUNCTION_INST_CAST_ABBREV, 111 FUNCTION_INST_RET_VOID_ABBREV, 112 FUNCTION_INST_RET_VAL_ABBREV, 113 FUNCTION_INST_UNREACHABLE_ABBREV, 114 FUNCTION_INST_GEP_ABBREV, 115 }; 116 117 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 118 /// file type. 119 class BitcodeWriterBase { 120 protected: 121 /// The stream created and owned by the client. 122 BitstreamWriter &Stream; 123 124 StringTableBuilder &StrtabBuilder; 125 126 public: 127 /// Constructs a BitcodeWriterBase object that writes to the provided 128 /// \p Stream. 129 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 130 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 131 132 protected: 133 void writeBitcodeHeader(); 134 void writeModuleVersion(); 135 }; 136 137 void BitcodeWriterBase::writeModuleVersion() { 138 // VERSION: [version#] 139 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 140 } 141 142 /// Base class to manage the module bitcode writing, currently subclassed for 143 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 144 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 145 protected: 146 /// The Module to write to bitcode. 147 const Module &M; 148 149 /// Enumerates ids for all values in the module. 150 ValueEnumerator VE; 151 152 /// Optional per-module index to write for ThinLTO. 153 const ModuleSummaryIndex *Index; 154 155 /// Map that holds the correspondence between GUIDs in the summary index, 156 /// that came from indirect call profiles, and a value id generated by this 157 /// class to use in the VST and summary block records. 158 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 159 160 /// Tracks the last value id recorded in the GUIDToValueMap. 161 unsigned GlobalValueId; 162 163 /// Saves the offset of the VSTOffset record that must eventually be 164 /// backpatched with the offset of the actual VST. 165 uint64_t VSTOffsetPlaceholder = 0; 166 167 public: 168 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 169 /// writing to the provided \p Buffer. 170 ModuleBitcodeWriterBase(const Module *M, StringTableBuilder &StrtabBuilder, 171 BitstreamWriter &Stream, 172 bool ShouldPreserveUseListOrder, 173 const ModuleSummaryIndex *Index) 174 : BitcodeWriterBase(Stream, StrtabBuilder), M(*M), 175 VE(*M, ShouldPreserveUseListOrder), Index(Index) { 176 // Assign ValueIds to any callee values in the index that came from 177 // indirect call profiles and were recorded as a GUID not a Value* 178 // (which would have been assigned an ID by the ValueEnumerator). 179 // The starting ValueId is just after the number of values in the 180 // ValueEnumerator, so that they can be emitted in the VST. 181 GlobalValueId = VE.getValues().size(); 182 if (!Index) 183 return; 184 for (const auto &GUIDSummaryLists : *Index) 185 // Examine all summaries for this GUID. 186 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 187 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 188 // For each call in the function summary, see if the call 189 // is to a GUID (which means it is for an indirect call, 190 // otherwise we would have a Value for it). If so, synthesize 191 // a value id. 192 for (auto &CallEdge : FS->calls()) 193 if (!CallEdge.first.getValue()) 194 assignValueId(CallEdge.first.getGUID()); 195 } 196 197 protected: 198 void writePerModuleGlobalValueSummary(); 199 200 private: 201 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 202 GlobalValueSummary *Summary, 203 unsigned ValueID, 204 unsigned FSCallsAbbrev, 205 unsigned FSCallsProfileAbbrev, 206 const Function &F); 207 void writeModuleLevelReferences(const GlobalVariable &V, 208 SmallVector<uint64_t, 64> &NameVals, 209 unsigned FSModRefsAbbrev); 210 211 void assignValueId(GlobalValue::GUID ValGUID) { 212 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 213 } 214 215 unsigned getValueId(GlobalValue::GUID ValGUID) { 216 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 217 // Expect that any GUID value had a value Id assigned by an 218 // earlier call to assignValueId. 219 assert(VMI != GUIDToValueIdMap.end() && 220 "GUID does not have assigned value Id"); 221 return VMI->second; 222 } 223 224 // Helper to get the valueId for the type of value recorded in VI. 225 unsigned getValueId(ValueInfo VI) { 226 if (!VI.getValue()) 227 return getValueId(VI.getGUID()); 228 return VE.getValueID(VI.getValue()); 229 } 230 231 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 232 }; 233 234 /// Class to manage the bitcode writing for a module. 235 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 236 /// Pointer to the buffer allocated by caller for bitcode writing. 237 const SmallVectorImpl<char> &Buffer; 238 239 /// True if a module hash record should be written. 240 bool GenerateHash; 241 242 /// If non-null, when GenerateHash is true, the resulting hash is written 243 /// into ModHash. 244 ModuleHash *ModHash; 245 246 SHA1 Hasher; 247 248 /// The start bit of the identification block. 249 uint64_t BitcodeStartBit; 250 251 public: 252 /// Constructs a ModuleBitcodeWriter object for the given Module, 253 /// writing to the provided \p Buffer. 254 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 255 StringTableBuilder &StrtabBuilder, 256 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 257 const ModuleSummaryIndex *Index, bool GenerateHash, 258 ModuleHash *ModHash = nullptr) 259 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 260 ShouldPreserveUseListOrder, Index), 261 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 262 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 263 264 /// Emit the current module to the bitstream. 265 void write(); 266 267 private: 268 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 269 270 size_t addToStrtab(StringRef Str); 271 272 void writeAttributeGroupTable(); 273 void writeAttributeTable(); 274 void writeTypeTable(); 275 void writeComdats(); 276 void writeValueSymbolTableForwardDecl(); 277 void writeModuleInfo(); 278 void writeValueAsMetadata(const ValueAsMetadata *MD, 279 SmallVectorImpl<uint64_t> &Record); 280 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev); 282 unsigned createDILocationAbbrev(); 283 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 284 unsigned &Abbrev); 285 unsigned createGenericDINodeAbbrev(); 286 void writeGenericDINode(const GenericDINode *N, 287 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 288 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 void writeDIEnumerator(const DIEnumerator *N, 291 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 292 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 void writeDIDerivedType(const DIDerivedType *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 296 void writeDICompositeType(const DICompositeType *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDISubroutineType(const DISubroutineType *N, 299 SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDICompileUnit(const DICompileUnit *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubprogram(const DISubprogram *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDILexicalBlock(const DILexicalBlock *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 310 SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 321 SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 324 SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIGlobalVariable(const DIGlobalVariable *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDILocalVariable(const DILocalVariable *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDIExpression(const DIExpression *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIObjCProperty(const DIObjCProperty *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDIImportedEntity(const DIImportedEntity *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 unsigned createNamedMetadataAbbrev(); 342 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 343 unsigned createMetadataStringsAbbrev(); 344 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 345 SmallVectorImpl<uint64_t> &Record); 346 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 347 SmallVectorImpl<uint64_t> &Record, 348 std::vector<unsigned> *MDAbbrevs = nullptr, 349 std::vector<uint64_t> *IndexPos = nullptr); 350 void writeModuleMetadata(); 351 void writeFunctionMetadata(const Function &F); 352 void writeFunctionMetadataAttachment(const Function &F); 353 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 354 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 355 const GlobalObject &GO); 356 void writeModuleMetadataKinds(); 357 void writeOperandBundleTags(); 358 void writeSyncScopeNames(); 359 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 360 void writeModuleConstants(); 361 bool pushValueAndType(const Value *V, unsigned InstID, 362 SmallVectorImpl<unsigned> &Vals); 363 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 364 void pushValue(const Value *V, unsigned InstID, 365 SmallVectorImpl<unsigned> &Vals); 366 void pushValueSigned(const Value *V, unsigned InstID, 367 SmallVectorImpl<uint64_t> &Vals); 368 void writeInstruction(const Instruction &I, unsigned InstID, 369 SmallVectorImpl<unsigned> &Vals); 370 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 371 void writeGlobalValueSymbolTable( 372 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 373 void writeUseList(UseListOrder &&Order); 374 void writeUseListBlock(const Function *F); 375 void 376 writeFunction(const Function &F, 377 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 378 void writeBlockInfo(); 379 void writeModuleHash(size_t BlockStartPos); 380 381 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 382 return unsigned(SSID); 383 } 384 }; 385 386 /// Class to manage the bitcode writing for a combined index. 387 class IndexBitcodeWriter : public BitcodeWriterBase { 388 /// The combined index to write to bitcode. 389 const ModuleSummaryIndex &Index; 390 391 /// When writing a subset of the index for distributed backends, client 392 /// provides a map of modules to the corresponding GUIDs/summaries to write. 393 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 394 395 /// Map that holds the correspondence between the GUID used in the combined 396 /// index and a value id generated by this class to use in references. 397 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 398 399 /// Tracks the last value id recorded in the GUIDToValueMap. 400 unsigned GlobalValueId = 0; 401 402 public: 403 /// Constructs a IndexBitcodeWriter object for the given combined index, 404 /// writing to the provided \p Buffer. When writing a subset of the index 405 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 406 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 407 const ModuleSummaryIndex &Index, 408 const std::map<std::string, GVSummaryMapTy> 409 *ModuleToSummariesForIndex = nullptr) 410 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 411 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 412 // Assign unique value ids to all summaries to be written, for use 413 // in writing out the call graph edges. Save the mapping from GUID 414 // to the new global value id to use when writing those edges, which 415 // are currently saved in the index in terms of GUID. 416 forEachSummary([&](GVInfo I) { 417 GUIDToValueIdMap[I.first] = ++GlobalValueId; 418 }); 419 } 420 421 /// The below iterator returns the GUID and associated summary. 422 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 423 424 /// Calls the callback for each value GUID and summary to be written to 425 /// bitcode. This hides the details of whether they are being pulled from the 426 /// entire index or just those in a provided ModuleToSummariesForIndex map. 427 template<typename Functor> 428 void forEachSummary(Functor Callback) { 429 if (ModuleToSummariesForIndex) { 430 for (auto &M : *ModuleToSummariesForIndex) 431 for (auto &Summary : M.second) 432 Callback(Summary); 433 } else { 434 for (auto &Summaries : Index) 435 for (auto &Summary : Summaries.second.SummaryList) 436 Callback({Summaries.first, Summary.get()}); 437 } 438 } 439 440 /// Calls the callback for each entry in the modulePaths StringMap that 441 /// should be written to the module path string table. This hides the details 442 /// of whether they are being pulled from the entire index or just those in a 443 /// provided ModuleToSummariesForIndex map. 444 template <typename Functor> void forEachModule(Functor Callback) { 445 if (ModuleToSummariesForIndex) { 446 for (const auto &M : *ModuleToSummariesForIndex) { 447 const auto &MPI = Index.modulePaths().find(M.first); 448 if (MPI == Index.modulePaths().end()) { 449 // This should only happen if the bitcode file was empty, in which 450 // case we shouldn't be importing (the ModuleToSummariesForIndex 451 // would only include the module we are writing and index for). 452 assert(ModuleToSummariesForIndex->size() == 1); 453 continue; 454 } 455 Callback(*MPI); 456 } 457 } else { 458 for (const auto &MPSE : Index.modulePaths()) 459 Callback(MPSE); 460 } 461 } 462 463 /// Main entry point for writing a combined index to bitcode. 464 void write(); 465 466 private: 467 void writeModStrings(); 468 void writeCombinedGlobalValueSummary(); 469 470 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 471 auto VMI = GUIDToValueIdMap.find(ValGUID); 472 if (VMI == GUIDToValueIdMap.end()) 473 return None; 474 return VMI->second; 475 } 476 477 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 478 }; 479 480 } // end anonymous namespace 481 482 static unsigned getEncodedCastOpcode(unsigned Opcode) { 483 switch (Opcode) { 484 default: llvm_unreachable("Unknown cast instruction!"); 485 case Instruction::Trunc : return bitc::CAST_TRUNC; 486 case Instruction::ZExt : return bitc::CAST_ZEXT; 487 case Instruction::SExt : return bitc::CAST_SEXT; 488 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 489 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 490 case Instruction::UIToFP : return bitc::CAST_UITOFP; 491 case Instruction::SIToFP : return bitc::CAST_SITOFP; 492 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 493 case Instruction::FPExt : return bitc::CAST_FPEXT; 494 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 495 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 496 case Instruction::BitCast : return bitc::CAST_BITCAST; 497 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 498 } 499 } 500 501 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown binary instruction!"); 504 case Instruction::Add: 505 case Instruction::FAdd: return bitc::BINOP_ADD; 506 case Instruction::Sub: 507 case Instruction::FSub: return bitc::BINOP_SUB; 508 case Instruction::Mul: 509 case Instruction::FMul: return bitc::BINOP_MUL; 510 case Instruction::UDiv: return bitc::BINOP_UDIV; 511 case Instruction::FDiv: 512 case Instruction::SDiv: return bitc::BINOP_SDIV; 513 case Instruction::URem: return bitc::BINOP_UREM; 514 case Instruction::FRem: 515 case Instruction::SRem: return bitc::BINOP_SREM; 516 case Instruction::Shl: return bitc::BINOP_SHL; 517 case Instruction::LShr: return bitc::BINOP_LSHR; 518 case Instruction::AShr: return bitc::BINOP_ASHR; 519 case Instruction::And: return bitc::BINOP_AND; 520 case Instruction::Or: return bitc::BINOP_OR; 521 case Instruction::Xor: return bitc::BINOP_XOR; 522 } 523 } 524 525 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 526 switch (Op) { 527 default: llvm_unreachable("Unknown RMW operation!"); 528 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 529 case AtomicRMWInst::Add: return bitc::RMW_ADD; 530 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 531 case AtomicRMWInst::And: return bitc::RMW_AND; 532 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 533 case AtomicRMWInst::Or: return bitc::RMW_OR; 534 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 535 case AtomicRMWInst::Max: return bitc::RMW_MAX; 536 case AtomicRMWInst::Min: return bitc::RMW_MIN; 537 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 538 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 539 } 540 } 541 542 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 543 switch (Ordering) { 544 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 545 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 546 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 547 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 548 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 549 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 550 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 551 } 552 llvm_unreachable("Invalid ordering"); 553 } 554 555 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 556 StringRef Str, unsigned AbbrevToUse) { 557 SmallVector<unsigned, 64> Vals; 558 559 // Code: [strchar x N] 560 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 561 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 562 AbbrevToUse = 0; 563 Vals.push_back(Str[i]); 564 } 565 566 // Emit the finished record. 567 Stream.EmitRecord(Code, Vals, AbbrevToUse); 568 } 569 570 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 571 switch (Kind) { 572 case Attribute::Alignment: 573 return bitc::ATTR_KIND_ALIGNMENT; 574 case Attribute::AllocSize: 575 return bitc::ATTR_KIND_ALLOC_SIZE; 576 case Attribute::AlwaysInline: 577 return bitc::ATTR_KIND_ALWAYS_INLINE; 578 case Attribute::ArgMemOnly: 579 return bitc::ATTR_KIND_ARGMEMONLY; 580 case Attribute::Builtin: 581 return bitc::ATTR_KIND_BUILTIN; 582 case Attribute::ByVal: 583 return bitc::ATTR_KIND_BY_VAL; 584 case Attribute::Convergent: 585 return bitc::ATTR_KIND_CONVERGENT; 586 case Attribute::InAlloca: 587 return bitc::ATTR_KIND_IN_ALLOCA; 588 case Attribute::Cold: 589 return bitc::ATTR_KIND_COLD; 590 case Attribute::InaccessibleMemOnly: 591 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 592 case Attribute::InaccessibleMemOrArgMemOnly: 593 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 594 case Attribute::InlineHint: 595 return bitc::ATTR_KIND_INLINE_HINT; 596 case Attribute::InReg: 597 return bitc::ATTR_KIND_IN_REG; 598 case Attribute::JumpTable: 599 return bitc::ATTR_KIND_JUMP_TABLE; 600 case Attribute::MinSize: 601 return bitc::ATTR_KIND_MIN_SIZE; 602 case Attribute::Naked: 603 return bitc::ATTR_KIND_NAKED; 604 case Attribute::Nest: 605 return bitc::ATTR_KIND_NEST; 606 case Attribute::NoAlias: 607 return bitc::ATTR_KIND_NO_ALIAS; 608 case Attribute::NoBuiltin: 609 return bitc::ATTR_KIND_NO_BUILTIN; 610 case Attribute::NoCapture: 611 return bitc::ATTR_KIND_NO_CAPTURE; 612 case Attribute::NoDuplicate: 613 return bitc::ATTR_KIND_NO_DUPLICATE; 614 case Attribute::NoImplicitFloat: 615 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 616 case Attribute::NoInline: 617 return bitc::ATTR_KIND_NO_INLINE; 618 case Attribute::NoRecurse: 619 return bitc::ATTR_KIND_NO_RECURSE; 620 case Attribute::NonLazyBind: 621 return bitc::ATTR_KIND_NON_LAZY_BIND; 622 case Attribute::NonNull: 623 return bitc::ATTR_KIND_NON_NULL; 624 case Attribute::Dereferenceable: 625 return bitc::ATTR_KIND_DEREFERENCEABLE; 626 case Attribute::DereferenceableOrNull: 627 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 628 case Attribute::NoRedZone: 629 return bitc::ATTR_KIND_NO_RED_ZONE; 630 case Attribute::NoReturn: 631 return bitc::ATTR_KIND_NO_RETURN; 632 case Attribute::NoUnwind: 633 return bitc::ATTR_KIND_NO_UNWIND; 634 case Attribute::OptimizeForSize: 635 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 636 case Attribute::OptimizeNone: 637 return bitc::ATTR_KIND_OPTIMIZE_NONE; 638 case Attribute::ReadNone: 639 return bitc::ATTR_KIND_READ_NONE; 640 case Attribute::ReadOnly: 641 return bitc::ATTR_KIND_READ_ONLY; 642 case Attribute::Returned: 643 return bitc::ATTR_KIND_RETURNED; 644 case Attribute::ReturnsTwice: 645 return bitc::ATTR_KIND_RETURNS_TWICE; 646 case Attribute::SExt: 647 return bitc::ATTR_KIND_S_EXT; 648 case Attribute::Speculatable: 649 return bitc::ATTR_KIND_SPECULATABLE; 650 case Attribute::StackAlignment: 651 return bitc::ATTR_KIND_STACK_ALIGNMENT; 652 case Attribute::StackProtect: 653 return bitc::ATTR_KIND_STACK_PROTECT; 654 case Attribute::StackProtectReq: 655 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 656 case Attribute::StackProtectStrong: 657 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 658 case Attribute::SafeStack: 659 return bitc::ATTR_KIND_SAFESTACK; 660 case Attribute::StrictFP: 661 return bitc::ATTR_KIND_STRICT_FP; 662 case Attribute::StructRet: 663 return bitc::ATTR_KIND_STRUCT_RET; 664 case Attribute::SanitizeAddress: 665 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 666 case Attribute::SanitizeHWAddress: 667 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 668 case Attribute::SanitizeThread: 669 return bitc::ATTR_KIND_SANITIZE_THREAD; 670 case Attribute::SanitizeMemory: 671 return bitc::ATTR_KIND_SANITIZE_MEMORY; 672 case Attribute::SwiftError: 673 return bitc::ATTR_KIND_SWIFT_ERROR; 674 case Attribute::SwiftSelf: 675 return bitc::ATTR_KIND_SWIFT_SELF; 676 case Attribute::UWTable: 677 return bitc::ATTR_KIND_UW_TABLE; 678 case Attribute::WriteOnly: 679 return bitc::ATTR_KIND_WRITEONLY; 680 case Attribute::ZExt: 681 return bitc::ATTR_KIND_Z_EXT; 682 case Attribute::EndAttrKinds: 683 llvm_unreachable("Can not encode end-attribute kinds marker."); 684 case Attribute::None: 685 llvm_unreachable("Can not encode none-attribute."); 686 } 687 688 llvm_unreachable("Trying to encode unknown attribute"); 689 } 690 691 void ModuleBitcodeWriter::writeAttributeGroupTable() { 692 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 693 VE.getAttributeGroups(); 694 if (AttrGrps.empty()) return; 695 696 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 697 698 SmallVector<uint64_t, 64> Record; 699 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 700 unsigned AttrListIndex = Pair.first; 701 AttributeSet AS = Pair.second; 702 Record.push_back(VE.getAttributeGroupID(Pair)); 703 Record.push_back(AttrListIndex); 704 705 for (Attribute Attr : AS) { 706 if (Attr.isEnumAttribute()) { 707 Record.push_back(0); 708 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 709 } else if (Attr.isIntAttribute()) { 710 Record.push_back(1); 711 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 712 Record.push_back(Attr.getValueAsInt()); 713 } else { 714 StringRef Kind = Attr.getKindAsString(); 715 StringRef Val = Attr.getValueAsString(); 716 717 Record.push_back(Val.empty() ? 3 : 4); 718 Record.append(Kind.begin(), Kind.end()); 719 Record.push_back(0); 720 if (!Val.empty()) { 721 Record.append(Val.begin(), Val.end()); 722 Record.push_back(0); 723 } 724 } 725 } 726 727 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 728 Record.clear(); 729 } 730 731 Stream.ExitBlock(); 732 } 733 734 void ModuleBitcodeWriter::writeAttributeTable() { 735 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 736 if (Attrs.empty()) return; 737 738 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 739 740 SmallVector<uint64_t, 64> Record; 741 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 742 AttributeList AL = Attrs[i]; 743 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 744 AttributeSet AS = AL.getAttributes(i); 745 if (AS.hasAttributes()) 746 Record.push_back(VE.getAttributeGroupID({i, AS})); 747 } 748 749 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 750 Record.clear(); 751 } 752 753 Stream.ExitBlock(); 754 } 755 756 /// WriteTypeTable - Write out the type table for a module. 757 void ModuleBitcodeWriter::writeTypeTable() { 758 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 759 760 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 761 SmallVector<uint64_t, 64> TypeVals; 762 763 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 764 765 // Abbrev for TYPE_CODE_POINTER. 766 auto Abbv = std::make_shared<BitCodeAbbrev>(); 767 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 769 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 770 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 771 772 // Abbrev for TYPE_CODE_FUNCTION. 773 Abbv = std::make_shared<BitCodeAbbrev>(); 774 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 778 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 779 780 // Abbrev for TYPE_CODE_STRUCT_ANON. 781 Abbv = std::make_shared<BitCodeAbbrev>(); 782 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 786 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 787 788 // Abbrev for TYPE_CODE_STRUCT_NAME. 789 Abbv = std::make_shared<BitCodeAbbrev>(); 790 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 793 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 794 795 // Abbrev for TYPE_CODE_STRUCT_NAMED. 796 Abbv = std::make_shared<BitCodeAbbrev>(); 797 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 801 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 802 803 // Abbrev for TYPE_CODE_ARRAY. 804 Abbv = std::make_shared<BitCodeAbbrev>(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 808 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 809 810 // Emit an entry count so the reader can reserve space. 811 TypeVals.push_back(TypeList.size()); 812 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 813 TypeVals.clear(); 814 815 // Loop over all of the types, emitting each in turn. 816 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 817 Type *T = TypeList[i]; 818 int AbbrevToUse = 0; 819 unsigned Code = 0; 820 821 switch (T->getTypeID()) { 822 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 823 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 824 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 825 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 826 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 827 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 828 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 829 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 830 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 831 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 832 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 833 case Type::IntegerTyID: 834 // INTEGER: [width] 835 Code = bitc::TYPE_CODE_INTEGER; 836 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 837 break; 838 case Type::PointerTyID: { 839 PointerType *PTy = cast<PointerType>(T); 840 // POINTER: [pointee type, address space] 841 Code = bitc::TYPE_CODE_POINTER; 842 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 843 unsigned AddressSpace = PTy->getAddressSpace(); 844 TypeVals.push_back(AddressSpace); 845 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 846 break; 847 } 848 case Type::FunctionTyID: { 849 FunctionType *FT = cast<FunctionType>(T); 850 // FUNCTION: [isvararg, retty, paramty x N] 851 Code = bitc::TYPE_CODE_FUNCTION; 852 TypeVals.push_back(FT->isVarArg()); 853 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 854 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 855 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 856 AbbrevToUse = FunctionAbbrev; 857 break; 858 } 859 case Type::StructTyID: { 860 StructType *ST = cast<StructType>(T); 861 // STRUCT: [ispacked, eltty x N] 862 TypeVals.push_back(ST->isPacked()); 863 // Output all of the element types. 864 for (StructType::element_iterator I = ST->element_begin(), 865 E = ST->element_end(); I != E; ++I) 866 TypeVals.push_back(VE.getTypeID(*I)); 867 868 if (ST->isLiteral()) { 869 Code = bitc::TYPE_CODE_STRUCT_ANON; 870 AbbrevToUse = StructAnonAbbrev; 871 } else { 872 if (ST->isOpaque()) { 873 Code = bitc::TYPE_CODE_OPAQUE; 874 } else { 875 Code = bitc::TYPE_CODE_STRUCT_NAMED; 876 AbbrevToUse = StructNamedAbbrev; 877 } 878 879 // Emit the name if it is present. 880 if (!ST->getName().empty()) 881 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 882 StructNameAbbrev); 883 } 884 break; 885 } 886 case Type::ArrayTyID: { 887 ArrayType *AT = cast<ArrayType>(T); 888 // ARRAY: [numelts, eltty] 889 Code = bitc::TYPE_CODE_ARRAY; 890 TypeVals.push_back(AT->getNumElements()); 891 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 892 AbbrevToUse = ArrayAbbrev; 893 break; 894 } 895 case Type::VectorTyID: { 896 VectorType *VT = cast<VectorType>(T); 897 // VECTOR [numelts, eltty] 898 Code = bitc::TYPE_CODE_VECTOR; 899 TypeVals.push_back(VT->getNumElements()); 900 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 901 break; 902 } 903 } 904 905 // Emit the finished record. 906 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 907 TypeVals.clear(); 908 } 909 910 Stream.ExitBlock(); 911 } 912 913 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 914 switch (Linkage) { 915 case GlobalValue::ExternalLinkage: 916 return 0; 917 case GlobalValue::WeakAnyLinkage: 918 return 16; 919 case GlobalValue::AppendingLinkage: 920 return 2; 921 case GlobalValue::InternalLinkage: 922 return 3; 923 case GlobalValue::LinkOnceAnyLinkage: 924 return 18; 925 case GlobalValue::ExternalWeakLinkage: 926 return 7; 927 case GlobalValue::CommonLinkage: 928 return 8; 929 case GlobalValue::PrivateLinkage: 930 return 9; 931 case GlobalValue::WeakODRLinkage: 932 return 17; 933 case GlobalValue::LinkOnceODRLinkage: 934 return 19; 935 case GlobalValue::AvailableExternallyLinkage: 936 return 12; 937 } 938 llvm_unreachable("Invalid linkage"); 939 } 940 941 static unsigned getEncodedLinkage(const GlobalValue &GV) { 942 return getEncodedLinkage(GV.getLinkage()); 943 } 944 945 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 946 uint64_t RawFlags = 0; 947 RawFlags |= Flags.ReadNone; 948 RawFlags |= (Flags.ReadOnly << 1); 949 RawFlags |= (Flags.NoRecurse << 2); 950 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 951 return RawFlags; 952 } 953 954 // Decode the flags for GlobalValue in the summary 955 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 956 uint64_t RawFlags = 0; 957 958 RawFlags |= Flags.NotEligibleToImport; // bool 959 RawFlags |= (Flags.Live << 1); 960 RawFlags |= (Flags.DSOLocal << 2); 961 962 // Linkage don't need to be remapped at that time for the summary. Any future 963 // change to the getEncodedLinkage() function will need to be taken into 964 // account here as well. 965 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 966 967 return RawFlags; 968 } 969 970 static unsigned getEncodedVisibility(const GlobalValue &GV) { 971 switch (GV.getVisibility()) { 972 case GlobalValue::DefaultVisibility: return 0; 973 case GlobalValue::HiddenVisibility: return 1; 974 case GlobalValue::ProtectedVisibility: return 2; 975 } 976 llvm_unreachable("Invalid visibility"); 977 } 978 979 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 980 switch (GV.getDLLStorageClass()) { 981 case GlobalValue::DefaultStorageClass: return 0; 982 case GlobalValue::DLLImportStorageClass: return 1; 983 case GlobalValue::DLLExportStorageClass: return 2; 984 } 985 llvm_unreachable("Invalid DLL storage class"); 986 } 987 988 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 989 switch (GV.getThreadLocalMode()) { 990 case GlobalVariable::NotThreadLocal: return 0; 991 case GlobalVariable::GeneralDynamicTLSModel: return 1; 992 case GlobalVariable::LocalDynamicTLSModel: return 2; 993 case GlobalVariable::InitialExecTLSModel: return 3; 994 case GlobalVariable::LocalExecTLSModel: return 4; 995 } 996 llvm_unreachable("Invalid TLS model"); 997 } 998 999 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1000 switch (C.getSelectionKind()) { 1001 case Comdat::Any: 1002 return bitc::COMDAT_SELECTION_KIND_ANY; 1003 case Comdat::ExactMatch: 1004 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1005 case Comdat::Largest: 1006 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1007 case Comdat::NoDuplicates: 1008 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1009 case Comdat::SameSize: 1010 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1011 } 1012 llvm_unreachable("Invalid selection kind"); 1013 } 1014 1015 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1016 switch (GV.getUnnamedAddr()) { 1017 case GlobalValue::UnnamedAddr::None: return 0; 1018 case GlobalValue::UnnamedAddr::Local: return 2; 1019 case GlobalValue::UnnamedAddr::Global: return 1; 1020 } 1021 llvm_unreachable("Invalid unnamed_addr"); 1022 } 1023 1024 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1025 if (GenerateHash) 1026 Hasher.update(Str); 1027 return StrtabBuilder.add(Str); 1028 } 1029 1030 void ModuleBitcodeWriter::writeComdats() { 1031 SmallVector<unsigned, 64> Vals; 1032 for (const Comdat *C : VE.getComdats()) { 1033 // COMDAT: [strtab offset, strtab size, selection_kind] 1034 Vals.push_back(addToStrtab(C->getName())); 1035 Vals.push_back(C->getName().size()); 1036 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1037 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1038 Vals.clear(); 1039 } 1040 } 1041 1042 /// Write a record that will eventually hold the word offset of the 1043 /// module-level VST. For now the offset is 0, which will be backpatched 1044 /// after the real VST is written. Saves the bit offset to backpatch. 1045 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1046 // Write a placeholder value in for the offset of the real VST, 1047 // which is written after the function blocks so that it can include 1048 // the offset of each function. The placeholder offset will be 1049 // updated when the real VST is written. 1050 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1051 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1052 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1053 // hold the real VST offset. Must use fixed instead of VBR as we don't 1054 // know how many VBR chunks to reserve ahead of time. 1055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1056 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1057 1058 // Emit the placeholder 1059 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1060 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1061 1062 // Compute and save the bit offset to the placeholder, which will be 1063 // patched when the real VST is written. We can simply subtract the 32-bit 1064 // fixed size from the current bit number to get the location to backpatch. 1065 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1066 } 1067 1068 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1069 1070 /// Determine the encoding to use for the given string name and length. 1071 static StringEncoding getStringEncoding(StringRef Str) { 1072 bool isChar6 = true; 1073 for (char C : Str) { 1074 if (isChar6) 1075 isChar6 = BitCodeAbbrevOp::isChar6(C); 1076 if ((unsigned char)C & 128) 1077 // don't bother scanning the rest. 1078 return SE_Fixed8; 1079 } 1080 if (isChar6) 1081 return SE_Char6; 1082 return SE_Fixed7; 1083 } 1084 1085 /// Emit top-level description of module, including target triple, inline asm, 1086 /// descriptors for global variables, and function prototype info. 1087 /// Returns the bit offset to backpatch with the location of the real VST. 1088 void ModuleBitcodeWriter::writeModuleInfo() { 1089 // Emit various pieces of data attached to a module. 1090 if (!M.getTargetTriple().empty()) 1091 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1092 0 /*TODO*/); 1093 const std::string &DL = M.getDataLayoutStr(); 1094 if (!DL.empty()) 1095 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1096 if (!M.getModuleInlineAsm().empty()) 1097 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1098 0 /*TODO*/); 1099 1100 // Emit information about sections and GC, computing how many there are. Also 1101 // compute the maximum alignment value. 1102 std::map<std::string, unsigned> SectionMap; 1103 std::map<std::string, unsigned> GCMap; 1104 unsigned MaxAlignment = 0; 1105 unsigned MaxGlobalType = 0; 1106 for (const GlobalValue &GV : M.globals()) { 1107 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1108 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1109 if (GV.hasSection()) { 1110 // Give section names unique ID's. 1111 unsigned &Entry = SectionMap[GV.getSection()]; 1112 if (!Entry) { 1113 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1114 0 /*TODO*/); 1115 Entry = SectionMap.size(); 1116 } 1117 } 1118 } 1119 for (const Function &F : M) { 1120 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1121 if (F.hasSection()) { 1122 // Give section names unique ID's. 1123 unsigned &Entry = SectionMap[F.getSection()]; 1124 if (!Entry) { 1125 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1126 0 /*TODO*/); 1127 Entry = SectionMap.size(); 1128 } 1129 } 1130 if (F.hasGC()) { 1131 // Same for GC names. 1132 unsigned &Entry = GCMap[F.getGC()]; 1133 if (!Entry) { 1134 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1135 0 /*TODO*/); 1136 Entry = GCMap.size(); 1137 } 1138 } 1139 } 1140 1141 // Emit abbrev for globals, now that we know # sections and max alignment. 1142 unsigned SimpleGVarAbbrev = 0; 1143 if (!M.global_empty()) { 1144 // Add an abbrev for common globals with no visibility or thread localness. 1145 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1146 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1150 Log2_32_Ceil(MaxGlobalType+1))); 1151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1152 //| explicitType << 1 1153 //| constant 1154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1156 if (MaxAlignment == 0) // Alignment. 1157 Abbv->Add(BitCodeAbbrevOp(0)); 1158 else { 1159 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1161 Log2_32_Ceil(MaxEncAlignment+1))); 1162 } 1163 if (SectionMap.empty()) // Section. 1164 Abbv->Add(BitCodeAbbrevOp(0)); 1165 else 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1167 Log2_32_Ceil(SectionMap.size()+1))); 1168 // Don't bother emitting vis + thread local. 1169 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1170 } 1171 1172 SmallVector<unsigned, 64> Vals; 1173 // Emit the module's source file name. 1174 { 1175 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1176 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1177 if (Bits == SE_Char6) 1178 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1179 else if (Bits == SE_Fixed7) 1180 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1181 1182 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1183 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1184 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1186 Abbv->Add(AbbrevOpToUse); 1187 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1188 1189 for (const auto P : M.getSourceFileName()) 1190 Vals.push_back((unsigned char)P); 1191 1192 // Emit the finished record. 1193 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1194 Vals.clear(); 1195 } 1196 1197 // Emit the global variable information. 1198 for (const GlobalVariable &GV : M.globals()) { 1199 unsigned AbbrevToUse = 0; 1200 1201 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1202 // linkage, alignment, section, visibility, threadlocal, 1203 // unnamed_addr, externally_initialized, dllstorageclass, 1204 // comdat, attributes, DSO_Local] 1205 Vals.push_back(addToStrtab(GV.getName())); 1206 Vals.push_back(GV.getName().size()); 1207 Vals.push_back(VE.getTypeID(GV.getValueType())); 1208 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1209 Vals.push_back(GV.isDeclaration() ? 0 : 1210 (VE.getValueID(GV.getInitializer()) + 1)); 1211 Vals.push_back(getEncodedLinkage(GV)); 1212 Vals.push_back(Log2_32(GV.getAlignment())+1); 1213 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1214 if (GV.isThreadLocal() || 1215 GV.getVisibility() != GlobalValue::DefaultVisibility || 1216 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1217 GV.isExternallyInitialized() || 1218 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1219 GV.hasComdat() || 1220 GV.hasAttributes() || 1221 GV.isDSOLocal()) { 1222 Vals.push_back(getEncodedVisibility(GV)); 1223 Vals.push_back(getEncodedThreadLocalMode(GV)); 1224 Vals.push_back(getEncodedUnnamedAddr(GV)); 1225 Vals.push_back(GV.isExternallyInitialized()); 1226 Vals.push_back(getEncodedDLLStorageClass(GV)); 1227 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1228 1229 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1230 Vals.push_back(VE.getAttributeListID(AL)); 1231 1232 Vals.push_back(GV.isDSOLocal()); 1233 } else { 1234 AbbrevToUse = SimpleGVarAbbrev; 1235 } 1236 1237 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1238 Vals.clear(); 1239 } 1240 1241 // Emit the function proto information. 1242 for (const Function &F : M) { 1243 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1244 // linkage, paramattrs, alignment, section, visibility, gc, 1245 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1246 // prefixdata, personalityfn, DSO_Local] 1247 Vals.push_back(addToStrtab(F.getName())); 1248 Vals.push_back(F.getName().size()); 1249 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1250 Vals.push_back(F.getCallingConv()); 1251 Vals.push_back(F.isDeclaration()); 1252 Vals.push_back(getEncodedLinkage(F)); 1253 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1254 Vals.push_back(Log2_32(F.getAlignment())+1); 1255 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1256 Vals.push_back(getEncodedVisibility(F)); 1257 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1258 Vals.push_back(getEncodedUnnamedAddr(F)); 1259 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1260 : 0); 1261 Vals.push_back(getEncodedDLLStorageClass(F)); 1262 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1263 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1264 : 0); 1265 Vals.push_back( 1266 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1267 1268 Vals.push_back(F.isDSOLocal()); 1269 unsigned AbbrevToUse = 0; 1270 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1271 Vals.clear(); 1272 } 1273 1274 // Emit the alias information. 1275 for (const GlobalAlias &A : M.aliases()) { 1276 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1277 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1278 // DSO_Local] 1279 Vals.push_back(addToStrtab(A.getName())); 1280 Vals.push_back(A.getName().size()); 1281 Vals.push_back(VE.getTypeID(A.getValueType())); 1282 Vals.push_back(A.getType()->getAddressSpace()); 1283 Vals.push_back(VE.getValueID(A.getAliasee())); 1284 Vals.push_back(getEncodedLinkage(A)); 1285 Vals.push_back(getEncodedVisibility(A)); 1286 Vals.push_back(getEncodedDLLStorageClass(A)); 1287 Vals.push_back(getEncodedThreadLocalMode(A)); 1288 Vals.push_back(getEncodedUnnamedAddr(A)); 1289 Vals.push_back(A.isDSOLocal()); 1290 1291 unsigned AbbrevToUse = 0; 1292 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1293 Vals.clear(); 1294 } 1295 1296 // Emit the ifunc information. 1297 for (const GlobalIFunc &I : M.ifuncs()) { 1298 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1299 // val#, linkage, visibility] 1300 Vals.push_back(addToStrtab(I.getName())); 1301 Vals.push_back(I.getName().size()); 1302 Vals.push_back(VE.getTypeID(I.getValueType())); 1303 Vals.push_back(I.getType()->getAddressSpace()); 1304 Vals.push_back(VE.getValueID(I.getResolver())); 1305 Vals.push_back(getEncodedLinkage(I)); 1306 Vals.push_back(getEncodedVisibility(I)); 1307 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1308 Vals.clear(); 1309 } 1310 1311 writeValueSymbolTableForwardDecl(); 1312 } 1313 1314 static uint64_t getOptimizationFlags(const Value *V) { 1315 uint64_t Flags = 0; 1316 1317 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1318 if (OBO->hasNoSignedWrap()) 1319 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1320 if (OBO->hasNoUnsignedWrap()) 1321 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1322 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1323 if (PEO->isExact()) 1324 Flags |= 1 << bitc::PEO_EXACT; 1325 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1326 if (FPMO->hasAllowReassoc()) 1327 Flags |= FastMathFlags::AllowReassoc; 1328 if (FPMO->hasNoNaNs()) 1329 Flags |= FastMathFlags::NoNaNs; 1330 if (FPMO->hasNoInfs()) 1331 Flags |= FastMathFlags::NoInfs; 1332 if (FPMO->hasNoSignedZeros()) 1333 Flags |= FastMathFlags::NoSignedZeros; 1334 if (FPMO->hasAllowReciprocal()) 1335 Flags |= FastMathFlags::AllowReciprocal; 1336 if (FPMO->hasAllowContract()) 1337 Flags |= FastMathFlags::AllowContract; 1338 if (FPMO->hasApproxFunc()) 1339 Flags |= FastMathFlags::ApproxFunc; 1340 } 1341 1342 return Flags; 1343 } 1344 1345 void ModuleBitcodeWriter::writeValueAsMetadata( 1346 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1347 // Mimic an MDNode with a value as one operand. 1348 Value *V = MD->getValue(); 1349 Record.push_back(VE.getTypeID(V->getType())); 1350 Record.push_back(VE.getValueID(V)); 1351 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1352 Record.clear(); 1353 } 1354 1355 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1356 SmallVectorImpl<uint64_t> &Record, 1357 unsigned Abbrev) { 1358 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1359 Metadata *MD = N->getOperand(i); 1360 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1361 "Unexpected function-local metadata"); 1362 Record.push_back(VE.getMetadataOrNullID(MD)); 1363 } 1364 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1365 : bitc::METADATA_NODE, 1366 Record, Abbrev); 1367 Record.clear(); 1368 } 1369 1370 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1371 // Assume the column is usually under 128, and always output the inlined-at 1372 // location (it's never more expensive than building an array size 1). 1373 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1374 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1380 return Stream.EmitAbbrev(std::move(Abbv)); 1381 } 1382 1383 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1384 SmallVectorImpl<uint64_t> &Record, 1385 unsigned &Abbrev) { 1386 if (!Abbrev) 1387 Abbrev = createDILocationAbbrev(); 1388 1389 Record.push_back(N->isDistinct()); 1390 Record.push_back(N->getLine()); 1391 Record.push_back(N->getColumn()); 1392 Record.push_back(VE.getMetadataID(N->getScope())); 1393 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1394 1395 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1396 Record.clear(); 1397 } 1398 1399 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1400 // Assume the column is usually under 128, and always output the inlined-at 1401 // location (it's never more expensive than building an array size 1). 1402 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1403 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1410 return Stream.EmitAbbrev(std::move(Abbv)); 1411 } 1412 1413 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1414 SmallVectorImpl<uint64_t> &Record, 1415 unsigned &Abbrev) { 1416 if (!Abbrev) 1417 Abbrev = createGenericDINodeAbbrev(); 1418 1419 Record.push_back(N->isDistinct()); 1420 Record.push_back(N->getTag()); 1421 Record.push_back(0); // Per-tag version field; unused for now. 1422 1423 for (auto &I : N->operands()) 1424 Record.push_back(VE.getMetadataOrNullID(I)); 1425 1426 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1427 Record.clear(); 1428 } 1429 1430 static uint64_t rotateSign(int64_t I) { 1431 uint64_t U = I; 1432 return I < 0 ? ~(U << 1) : U << 1; 1433 } 1434 1435 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1436 SmallVectorImpl<uint64_t> &Record, 1437 unsigned Abbrev) { 1438 Record.push_back(N->isDistinct()); 1439 Record.push_back(N->getCount()); 1440 Record.push_back(rotateSign(N->getLowerBound())); 1441 1442 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1443 Record.clear(); 1444 } 1445 1446 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1447 SmallVectorImpl<uint64_t> &Record, 1448 unsigned Abbrev) { 1449 Record.push_back(N->isDistinct()); 1450 Record.push_back(rotateSign(N->getValue())); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1452 1453 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1454 Record.clear(); 1455 } 1456 1457 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1458 SmallVectorImpl<uint64_t> &Record, 1459 unsigned Abbrev) { 1460 Record.push_back(N->isDistinct()); 1461 Record.push_back(N->getTag()); 1462 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1463 Record.push_back(N->getSizeInBits()); 1464 Record.push_back(N->getAlignInBits()); 1465 Record.push_back(N->getEncoding()); 1466 1467 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1468 Record.clear(); 1469 } 1470 1471 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1472 SmallVectorImpl<uint64_t> &Record, 1473 unsigned Abbrev) { 1474 Record.push_back(N->isDistinct()); 1475 Record.push_back(N->getTag()); 1476 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1478 Record.push_back(N->getLine()); 1479 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1480 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1481 Record.push_back(N->getSizeInBits()); 1482 Record.push_back(N->getAlignInBits()); 1483 Record.push_back(N->getOffsetInBits()); 1484 Record.push_back(N->getFlags()); 1485 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1486 1487 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1488 // that there is no DWARF address space associated with DIDerivedType. 1489 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1490 Record.push_back(*DWARFAddressSpace + 1); 1491 else 1492 Record.push_back(0); 1493 1494 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1495 Record.clear(); 1496 } 1497 1498 void ModuleBitcodeWriter::writeDICompositeType( 1499 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1500 unsigned Abbrev) { 1501 const unsigned IsNotUsedInOldTypeRef = 0x2; 1502 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1503 Record.push_back(N->getTag()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1506 Record.push_back(N->getLine()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1508 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1509 Record.push_back(N->getSizeInBits()); 1510 Record.push_back(N->getAlignInBits()); 1511 Record.push_back(N->getOffsetInBits()); 1512 Record.push_back(N->getFlags()); 1513 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1514 Record.push_back(N->getRuntimeLang()); 1515 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1516 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1517 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1518 1519 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1520 Record.clear(); 1521 } 1522 1523 void ModuleBitcodeWriter::writeDISubroutineType( 1524 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1525 unsigned Abbrev) { 1526 const unsigned HasNoOldTypeRefs = 0x2; 1527 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1528 Record.push_back(N->getFlags()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1530 Record.push_back(N->getCC()); 1531 1532 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1533 Record.clear(); 1534 } 1535 1536 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1537 SmallVectorImpl<uint64_t> &Record, 1538 unsigned Abbrev) { 1539 Record.push_back(N->isDistinct()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1542 Record.push_back(N->getChecksumKind()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1544 1545 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1550 SmallVectorImpl<uint64_t> &Record, 1551 unsigned Abbrev) { 1552 assert(N->isDistinct() && "Expected distinct compile units"); 1553 Record.push_back(/* IsDistinct */ true); 1554 Record.push_back(N->getSourceLanguage()); 1555 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1557 Record.push_back(N->isOptimized()); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1559 Record.push_back(N->getRuntimeVersion()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1561 Record.push_back(N->getEmissionKind()); 1562 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1564 Record.push_back(/* subprograms */ 0); 1565 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1566 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1567 Record.push_back(N->getDWOId()); 1568 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1569 Record.push_back(N->getSplitDebugInlining()); 1570 Record.push_back(N->getDebugInfoForProfiling()); 1571 Record.push_back(N->getGnuPubnames()); 1572 1573 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1574 Record.clear(); 1575 } 1576 1577 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1578 SmallVectorImpl<uint64_t> &Record, 1579 unsigned Abbrev) { 1580 uint64_t HasUnitFlag = 1 << 1; 1581 Record.push_back(N->isDistinct() | HasUnitFlag); 1582 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1586 Record.push_back(N->getLine()); 1587 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1588 Record.push_back(N->isLocalToUnit()); 1589 Record.push_back(N->isDefinition()); 1590 Record.push_back(N->getScopeLine()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1592 Record.push_back(N->getVirtuality()); 1593 Record.push_back(N->getVirtualIndex()); 1594 Record.push_back(N->getFlags()); 1595 Record.push_back(N->isOptimized()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1599 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1600 Record.push_back(N->getThisAdjustment()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1602 1603 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1608 SmallVectorImpl<uint64_t> &Record, 1609 unsigned Abbrev) { 1610 Record.push_back(N->isDistinct()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1613 Record.push_back(N->getLine()); 1614 Record.push_back(N->getColumn()); 1615 1616 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1617 Record.clear(); 1618 } 1619 1620 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1621 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1622 unsigned Abbrev) { 1623 Record.push_back(N->isDistinct()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1626 Record.push_back(N->getDiscriminator()); 1627 1628 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1629 Record.clear(); 1630 } 1631 1632 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1633 SmallVectorImpl<uint64_t> &Record, 1634 unsigned Abbrev) { 1635 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1636 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1638 1639 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1640 Record.clear(); 1641 } 1642 1643 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1644 SmallVectorImpl<uint64_t> &Record, 1645 unsigned Abbrev) { 1646 Record.push_back(N->isDistinct()); 1647 Record.push_back(N->getMacinfoType()); 1648 Record.push_back(N->getLine()); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1651 1652 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.push_back(N->isDistinct()); 1660 Record.push_back(N->getMacinfoType()); 1661 Record.push_back(N->getLine()); 1662 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1664 1665 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1670 SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 Record.push_back(N->isDistinct()); 1673 for (auto &I : N->operands()) 1674 Record.push_back(VE.getMetadataOrNullID(I)); 1675 1676 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1681 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1686 1687 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1688 Record.clear(); 1689 } 1690 1691 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1692 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1693 unsigned Abbrev) { 1694 Record.push_back(N->isDistinct()); 1695 Record.push_back(N->getTag()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1699 1700 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1701 Record.clear(); 1702 } 1703 1704 void ModuleBitcodeWriter::writeDIGlobalVariable( 1705 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1706 unsigned Abbrev) { 1707 const uint64_t Version = 1 << 1; 1708 Record.push_back((uint64_t)N->isDistinct() | Version); 1709 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1713 Record.push_back(N->getLine()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1715 Record.push_back(N->isLocalToUnit()); 1716 Record.push_back(N->isDefinition()); 1717 Record.push_back(/* expr */ 0); 1718 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1719 Record.push_back(N->getAlignInBits()); 1720 1721 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1722 Record.clear(); 1723 } 1724 1725 void ModuleBitcodeWriter::writeDILocalVariable( 1726 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1727 unsigned Abbrev) { 1728 // In order to support all possible bitcode formats in BitcodeReader we need 1729 // to distinguish the following cases: 1730 // 1) Record has no artificial tag (Record[1]), 1731 // has no obsolete inlinedAt field (Record[9]). 1732 // In this case Record size will be 8, HasAlignment flag is false. 1733 // 2) Record has artificial tag (Record[1]), 1734 // has no obsolete inlignedAt field (Record[9]). 1735 // In this case Record size will be 9, HasAlignment flag is false. 1736 // 3) Record has both artificial tag (Record[1]) and 1737 // obsolete inlignedAt field (Record[9]). 1738 // In this case Record size will be 10, HasAlignment flag is false. 1739 // 4) Record has neither artificial tag, nor inlignedAt field, but 1740 // HasAlignment flag is true and Record[8] contains alignment value. 1741 const uint64_t HasAlignmentFlag = 1 << 1; 1742 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1743 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1745 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1746 Record.push_back(N->getLine()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1748 Record.push_back(N->getArg()); 1749 Record.push_back(N->getFlags()); 1750 Record.push_back(N->getAlignInBits()); 1751 1752 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1753 Record.clear(); 1754 } 1755 1756 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1757 SmallVectorImpl<uint64_t> &Record, 1758 unsigned Abbrev) { 1759 Record.reserve(N->getElements().size() + 1); 1760 const uint64_t Version = 3 << 1; 1761 Record.push_back((uint64_t)N->isDistinct() | Version); 1762 Record.append(N->elements_begin(), N->elements_end()); 1763 1764 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1765 Record.clear(); 1766 } 1767 1768 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1769 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1770 unsigned Abbrev) { 1771 Record.push_back(N->isDistinct()); 1772 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1774 1775 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1776 Record.clear(); 1777 } 1778 1779 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1780 SmallVectorImpl<uint64_t> &Record, 1781 unsigned Abbrev) { 1782 Record.push_back(N->isDistinct()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1785 Record.push_back(N->getLine()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1788 Record.push_back(N->getAttributes()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1790 1791 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1792 Record.clear(); 1793 } 1794 1795 void ModuleBitcodeWriter::writeDIImportedEntity( 1796 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1797 unsigned Abbrev) { 1798 Record.push_back(N->isDistinct()); 1799 Record.push_back(N->getTag()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1802 Record.push_back(N->getLine()); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1805 1806 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1807 Record.clear(); 1808 } 1809 1810 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1811 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1812 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1815 return Stream.EmitAbbrev(std::move(Abbv)); 1816 } 1817 1818 void ModuleBitcodeWriter::writeNamedMetadata( 1819 SmallVectorImpl<uint64_t> &Record) { 1820 if (M.named_metadata_empty()) 1821 return; 1822 1823 unsigned Abbrev = createNamedMetadataAbbrev(); 1824 for (const NamedMDNode &NMD : M.named_metadata()) { 1825 // Write name. 1826 StringRef Str = NMD.getName(); 1827 Record.append(Str.bytes_begin(), Str.bytes_end()); 1828 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1829 Record.clear(); 1830 1831 // Write named metadata operands. 1832 for (const MDNode *N : NMD.operands()) 1833 Record.push_back(VE.getMetadataID(N)); 1834 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1835 Record.clear(); 1836 } 1837 } 1838 1839 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1840 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1841 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1845 return Stream.EmitAbbrev(std::move(Abbv)); 1846 } 1847 1848 /// Write out a record for MDString. 1849 /// 1850 /// All the metadata strings in a metadata block are emitted in a single 1851 /// record. The sizes and strings themselves are shoved into a blob. 1852 void ModuleBitcodeWriter::writeMetadataStrings( 1853 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1854 if (Strings.empty()) 1855 return; 1856 1857 // Start the record with the number of strings. 1858 Record.push_back(bitc::METADATA_STRINGS); 1859 Record.push_back(Strings.size()); 1860 1861 // Emit the sizes of the strings in the blob. 1862 SmallString<256> Blob; 1863 { 1864 BitstreamWriter W(Blob); 1865 for (const Metadata *MD : Strings) 1866 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1867 W.FlushToWord(); 1868 } 1869 1870 // Add the offset to the strings to the record. 1871 Record.push_back(Blob.size()); 1872 1873 // Add the strings to the blob. 1874 for (const Metadata *MD : Strings) 1875 Blob.append(cast<MDString>(MD)->getString()); 1876 1877 // Emit the final record. 1878 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1879 Record.clear(); 1880 } 1881 1882 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1883 enum MetadataAbbrev : unsigned { 1884 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1885 #include "llvm/IR/Metadata.def" 1886 LastPlusOne 1887 }; 1888 1889 void ModuleBitcodeWriter::writeMetadataRecords( 1890 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1891 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1892 if (MDs.empty()) 1893 return; 1894 1895 // Initialize MDNode abbreviations. 1896 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1897 #include "llvm/IR/Metadata.def" 1898 1899 for (const Metadata *MD : MDs) { 1900 if (IndexPos) 1901 IndexPos->push_back(Stream.GetCurrentBitNo()); 1902 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1903 assert(N->isResolved() && "Expected forward references to be resolved"); 1904 1905 switch (N->getMetadataID()) { 1906 default: 1907 llvm_unreachable("Invalid MDNode subclass"); 1908 #define HANDLE_MDNODE_LEAF(CLASS) \ 1909 case Metadata::CLASS##Kind: \ 1910 if (MDAbbrevs) \ 1911 write##CLASS(cast<CLASS>(N), Record, \ 1912 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1913 else \ 1914 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1915 continue; 1916 #include "llvm/IR/Metadata.def" 1917 } 1918 } 1919 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1920 } 1921 } 1922 1923 void ModuleBitcodeWriter::writeModuleMetadata() { 1924 if (!VE.hasMDs() && M.named_metadata_empty()) 1925 return; 1926 1927 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1928 SmallVector<uint64_t, 64> Record; 1929 1930 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1931 // block and load any metadata. 1932 std::vector<unsigned> MDAbbrevs; 1933 1934 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1935 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1936 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1937 createGenericDINodeAbbrev(); 1938 1939 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1940 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1943 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1944 1945 Abbv = std::make_shared<BitCodeAbbrev>(); 1946 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1949 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1950 1951 // Emit MDStrings together upfront. 1952 writeMetadataStrings(VE.getMDStrings(), Record); 1953 1954 // We only emit an index for the metadata record if we have more than a given 1955 // (naive) threshold of metadatas, otherwise it is not worth it. 1956 if (VE.getNonMDStrings().size() > IndexThreshold) { 1957 // Write a placeholder value in for the offset of the metadata index, 1958 // which is written after the records, so that it can include 1959 // the offset of each entry. The placeholder offset will be 1960 // updated after all records are emitted. 1961 uint64_t Vals[] = {0, 0}; 1962 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1963 } 1964 1965 // Compute and save the bit offset to the current position, which will be 1966 // patched when we emit the index later. We can simply subtract the 64-bit 1967 // fixed size from the current bit number to get the location to backpatch. 1968 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1969 1970 // This index will contain the bitpos for each individual record. 1971 std::vector<uint64_t> IndexPos; 1972 IndexPos.reserve(VE.getNonMDStrings().size()); 1973 1974 // Write all the records 1975 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1976 1977 if (VE.getNonMDStrings().size() > IndexThreshold) { 1978 // Now that we have emitted all the records we will emit the index. But 1979 // first 1980 // backpatch the forward reference so that the reader can skip the records 1981 // efficiently. 1982 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1983 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1984 1985 // Delta encode the index. 1986 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1987 for (auto &Elt : IndexPos) { 1988 auto EltDelta = Elt - PreviousValue; 1989 PreviousValue = Elt; 1990 Elt = EltDelta; 1991 } 1992 // Emit the index record. 1993 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1994 IndexPos.clear(); 1995 } 1996 1997 // Write the named metadata now. 1998 writeNamedMetadata(Record); 1999 2000 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2001 SmallVector<uint64_t, 4> Record; 2002 Record.push_back(VE.getValueID(&GO)); 2003 pushGlobalMetadataAttachment(Record, GO); 2004 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2005 }; 2006 for (const Function &F : M) 2007 if (F.isDeclaration() && F.hasMetadata()) 2008 AddDeclAttachedMetadata(F); 2009 // FIXME: Only store metadata for declarations here, and move data for global 2010 // variable definitions to a separate block (PR28134). 2011 for (const GlobalVariable &GV : M.globals()) 2012 if (GV.hasMetadata()) 2013 AddDeclAttachedMetadata(GV); 2014 2015 Stream.ExitBlock(); 2016 } 2017 2018 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2019 if (!VE.hasMDs()) 2020 return; 2021 2022 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2023 SmallVector<uint64_t, 64> Record; 2024 writeMetadataStrings(VE.getMDStrings(), Record); 2025 writeMetadataRecords(VE.getNonMDStrings(), Record); 2026 Stream.ExitBlock(); 2027 } 2028 2029 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2030 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2031 // [n x [id, mdnode]] 2032 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2033 GO.getAllMetadata(MDs); 2034 for (const auto &I : MDs) { 2035 Record.push_back(I.first); 2036 Record.push_back(VE.getMetadataID(I.second)); 2037 } 2038 } 2039 2040 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2041 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2042 2043 SmallVector<uint64_t, 64> Record; 2044 2045 if (F.hasMetadata()) { 2046 pushGlobalMetadataAttachment(Record, F); 2047 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2048 Record.clear(); 2049 } 2050 2051 // Write metadata attachments 2052 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2053 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2054 for (const BasicBlock &BB : F) 2055 for (const Instruction &I : BB) { 2056 MDs.clear(); 2057 I.getAllMetadataOtherThanDebugLoc(MDs); 2058 2059 // If no metadata, ignore instruction. 2060 if (MDs.empty()) continue; 2061 2062 Record.push_back(VE.getInstructionID(&I)); 2063 2064 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2065 Record.push_back(MDs[i].first); 2066 Record.push_back(VE.getMetadataID(MDs[i].second)); 2067 } 2068 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2069 Record.clear(); 2070 } 2071 2072 Stream.ExitBlock(); 2073 } 2074 2075 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2076 SmallVector<uint64_t, 64> Record; 2077 2078 // Write metadata kinds 2079 // METADATA_KIND - [n x [id, name]] 2080 SmallVector<StringRef, 8> Names; 2081 M.getMDKindNames(Names); 2082 2083 if (Names.empty()) return; 2084 2085 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2086 2087 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2088 Record.push_back(MDKindID); 2089 StringRef KName = Names[MDKindID]; 2090 Record.append(KName.begin(), KName.end()); 2091 2092 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2093 Record.clear(); 2094 } 2095 2096 Stream.ExitBlock(); 2097 } 2098 2099 void ModuleBitcodeWriter::writeOperandBundleTags() { 2100 // Write metadata kinds 2101 // 2102 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2103 // 2104 // OPERAND_BUNDLE_TAG - [strchr x N] 2105 2106 SmallVector<StringRef, 8> Tags; 2107 M.getOperandBundleTags(Tags); 2108 2109 if (Tags.empty()) 2110 return; 2111 2112 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2113 2114 SmallVector<uint64_t, 64> Record; 2115 2116 for (auto Tag : Tags) { 2117 Record.append(Tag.begin(), Tag.end()); 2118 2119 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2120 Record.clear(); 2121 } 2122 2123 Stream.ExitBlock(); 2124 } 2125 2126 void ModuleBitcodeWriter::writeSyncScopeNames() { 2127 SmallVector<StringRef, 8> SSNs; 2128 M.getContext().getSyncScopeNames(SSNs); 2129 if (SSNs.empty()) 2130 return; 2131 2132 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2133 2134 SmallVector<uint64_t, 64> Record; 2135 for (auto SSN : SSNs) { 2136 Record.append(SSN.begin(), SSN.end()); 2137 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2138 Record.clear(); 2139 } 2140 2141 Stream.ExitBlock(); 2142 } 2143 2144 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2145 if ((int64_t)V >= 0) 2146 Vals.push_back(V << 1); 2147 else 2148 Vals.push_back((-V << 1) | 1); 2149 } 2150 2151 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2152 bool isGlobal) { 2153 if (FirstVal == LastVal) return; 2154 2155 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2156 2157 unsigned AggregateAbbrev = 0; 2158 unsigned String8Abbrev = 0; 2159 unsigned CString7Abbrev = 0; 2160 unsigned CString6Abbrev = 0; 2161 // If this is a constant pool for the module, emit module-specific abbrevs. 2162 if (isGlobal) { 2163 // Abbrev for CST_CODE_AGGREGATE. 2164 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2165 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2168 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2169 2170 // Abbrev for CST_CODE_STRING. 2171 Abbv = std::make_shared<BitCodeAbbrev>(); 2172 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2175 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2176 // Abbrev for CST_CODE_CSTRING. 2177 Abbv = std::make_shared<BitCodeAbbrev>(); 2178 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2181 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2182 // Abbrev for CST_CODE_CSTRING. 2183 Abbv = std::make_shared<BitCodeAbbrev>(); 2184 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2187 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2188 } 2189 2190 SmallVector<uint64_t, 64> Record; 2191 2192 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2193 Type *LastTy = nullptr; 2194 for (unsigned i = FirstVal; i != LastVal; ++i) { 2195 const Value *V = Vals[i].first; 2196 // If we need to switch types, do so now. 2197 if (V->getType() != LastTy) { 2198 LastTy = V->getType(); 2199 Record.push_back(VE.getTypeID(LastTy)); 2200 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2201 CONSTANTS_SETTYPE_ABBREV); 2202 Record.clear(); 2203 } 2204 2205 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2206 Record.push_back(unsigned(IA->hasSideEffects()) | 2207 unsigned(IA->isAlignStack()) << 1 | 2208 unsigned(IA->getDialect()&1) << 2); 2209 2210 // Add the asm string. 2211 const std::string &AsmStr = IA->getAsmString(); 2212 Record.push_back(AsmStr.size()); 2213 Record.append(AsmStr.begin(), AsmStr.end()); 2214 2215 // Add the constraint string. 2216 const std::string &ConstraintStr = IA->getConstraintString(); 2217 Record.push_back(ConstraintStr.size()); 2218 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2219 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2220 Record.clear(); 2221 continue; 2222 } 2223 const Constant *C = cast<Constant>(V); 2224 unsigned Code = -1U; 2225 unsigned AbbrevToUse = 0; 2226 if (C->isNullValue()) { 2227 Code = bitc::CST_CODE_NULL; 2228 } else if (isa<UndefValue>(C)) { 2229 Code = bitc::CST_CODE_UNDEF; 2230 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2231 if (IV->getBitWidth() <= 64) { 2232 uint64_t V = IV->getSExtValue(); 2233 emitSignedInt64(Record, V); 2234 Code = bitc::CST_CODE_INTEGER; 2235 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2236 } else { // Wide integers, > 64 bits in size. 2237 // We have an arbitrary precision integer value to write whose 2238 // bit width is > 64. However, in canonical unsigned integer 2239 // format it is likely that the high bits are going to be zero. 2240 // So, we only write the number of active words. 2241 unsigned NWords = IV->getValue().getActiveWords(); 2242 const uint64_t *RawWords = IV->getValue().getRawData(); 2243 for (unsigned i = 0; i != NWords; ++i) { 2244 emitSignedInt64(Record, RawWords[i]); 2245 } 2246 Code = bitc::CST_CODE_WIDE_INTEGER; 2247 } 2248 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2249 Code = bitc::CST_CODE_FLOAT; 2250 Type *Ty = CFP->getType(); 2251 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2252 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2253 } else if (Ty->isX86_FP80Ty()) { 2254 // api needed to prevent premature destruction 2255 // bits are not in the same order as a normal i80 APInt, compensate. 2256 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2257 const uint64_t *p = api.getRawData(); 2258 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2259 Record.push_back(p[0] & 0xffffLL); 2260 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2261 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2262 const uint64_t *p = api.getRawData(); 2263 Record.push_back(p[0]); 2264 Record.push_back(p[1]); 2265 } else { 2266 assert(0 && "Unknown FP type!"); 2267 } 2268 } else if (isa<ConstantDataSequential>(C) && 2269 cast<ConstantDataSequential>(C)->isString()) { 2270 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2271 // Emit constant strings specially. 2272 unsigned NumElts = Str->getNumElements(); 2273 // If this is a null-terminated string, use the denser CSTRING encoding. 2274 if (Str->isCString()) { 2275 Code = bitc::CST_CODE_CSTRING; 2276 --NumElts; // Don't encode the null, which isn't allowed by char6. 2277 } else { 2278 Code = bitc::CST_CODE_STRING; 2279 AbbrevToUse = String8Abbrev; 2280 } 2281 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2282 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2283 for (unsigned i = 0; i != NumElts; ++i) { 2284 unsigned char V = Str->getElementAsInteger(i); 2285 Record.push_back(V); 2286 isCStr7 &= (V & 128) == 0; 2287 if (isCStrChar6) 2288 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2289 } 2290 2291 if (isCStrChar6) 2292 AbbrevToUse = CString6Abbrev; 2293 else if (isCStr7) 2294 AbbrevToUse = CString7Abbrev; 2295 } else if (const ConstantDataSequential *CDS = 2296 dyn_cast<ConstantDataSequential>(C)) { 2297 Code = bitc::CST_CODE_DATA; 2298 Type *EltTy = CDS->getType()->getElementType(); 2299 if (isa<IntegerType>(EltTy)) { 2300 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2301 Record.push_back(CDS->getElementAsInteger(i)); 2302 } else { 2303 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2304 Record.push_back( 2305 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2306 } 2307 } else if (isa<ConstantAggregate>(C)) { 2308 Code = bitc::CST_CODE_AGGREGATE; 2309 for (const Value *Op : C->operands()) 2310 Record.push_back(VE.getValueID(Op)); 2311 AbbrevToUse = AggregateAbbrev; 2312 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2313 switch (CE->getOpcode()) { 2314 default: 2315 if (Instruction::isCast(CE->getOpcode())) { 2316 Code = bitc::CST_CODE_CE_CAST; 2317 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2318 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2319 Record.push_back(VE.getValueID(C->getOperand(0))); 2320 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2321 } else { 2322 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2323 Code = bitc::CST_CODE_CE_BINOP; 2324 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2325 Record.push_back(VE.getValueID(C->getOperand(0))); 2326 Record.push_back(VE.getValueID(C->getOperand(1))); 2327 uint64_t Flags = getOptimizationFlags(CE); 2328 if (Flags != 0) 2329 Record.push_back(Flags); 2330 } 2331 break; 2332 case Instruction::GetElementPtr: { 2333 Code = bitc::CST_CODE_CE_GEP; 2334 const auto *GO = cast<GEPOperator>(C); 2335 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2336 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2337 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2338 Record.push_back((*Idx << 1) | GO->isInBounds()); 2339 } else if (GO->isInBounds()) 2340 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2341 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2342 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2343 Record.push_back(VE.getValueID(C->getOperand(i))); 2344 } 2345 break; 2346 } 2347 case Instruction::Select: 2348 Code = bitc::CST_CODE_CE_SELECT; 2349 Record.push_back(VE.getValueID(C->getOperand(0))); 2350 Record.push_back(VE.getValueID(C->getOperand(1))); 2351 Record.push_back(VE.getValueID(C->getOperand(2))); 2352 break; 2353 case Instruction::ExtractElement: 2354 Code = bitc::CST_CODE_CE_EXTRACTELT; 2355 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2356 Record.push_back(VE.getValueID(C->getOperand(0))); 2357 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2358 Record.push_back(VE.getValueID(C->getOperand(1))); 2359 break; 2360 case Instruction::InsertElement: 2361 Code = bitc::CST_CODE_CE_INSERTELT; 2362 Record.push_back(VE.getValueID(C->getOperand(0))); 2363 Record.push_back(VE.getValueID(C->getOperand(1))); 2364 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2365 Record.push_back(VE.getValueID(C->getOperand(2))); 2366 break; 2367 case Instruction::ShuffleVector: 2368 // If the return type and argument types are the same, this is a 2369 // standard shufflevector instruction. If the types are different, 2370 // then the shuffle is widening or truncating the input vectors, and 2371 // the argument type must also be encoded. 2372 if (C->getType() == C->getOperand(0)->getType()) { 2373 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2374 } else { 2375 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2376 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2377 } 2378 Record.push_back(VE.getValueID(C->getOperand(0))); 2379 Record.push_back(VE.getValueID(C->getOperand(1))); 2380 Record.push_back(VE.getValueID(C->getOperand(2))); 2381 break; 2382 case Instruction::ICmp: 2383 case Instruction::FCmp: 2384 Code = bitc::CST_CODE_CE_CMP; 2385 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2386 Record.push_back(VE.getValueID(C->getOperand(0))); 2387 Record.push_back(VE.getValueID(C->getOperand(1))); 2388 Record.push_back(CE->getPredicate()); 2389 break; 2390 } 2391 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2392 Code = bitc::CST_CODE_BLOCKADDRESS; 2393 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2394 Record.push_back(VE.getValueID(BA->getFunction())); 2395 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2396 } else { 2397 #ifndef NDEBUG 2398 C->dump(); 2399 #endif 2400 llvm_unreachable("Unknown constant!"); 2401 } 2402 Stream.EmitRecord(Code, Record, AbbrevToUse); 2403 Record.clear(); 2404 } 2405 2406 Stream.ExitBlock(); 2407 } 2408 2409 void ModuleBitcodeWriter::writeModuleConstants() { 2410 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2411 2412 // Find the first constant to emit, which is the first non-globalvalue value. 2413 // We know globalvalues have been emitted by WriteModuleInfo. 2414 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2415 if (!isa<GlobalValue>(Vals[i].first)) { 2416 writeConstants(i, Vals.size(), true); 2417 return; 2418 } 2419 } 2420 } 2421 2422 /// pushValueAndType - The file has to encode both the value and type id for 2423 /// many values, because we need to know what type to create for forward 2424 /// references. However, most operands are not forward references, so this type 2425 /// field is not needed. 2426 /// 2427 /// This function adds V's value ID to Vals. If the value ID is higher than the 2428 /// instruction ID, then it is a forward reference, and it also includes the 2429 /// type ID. The value ID that is written is encoded relative to the InstID. 2430 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2431 SmallVectorImpl<unsigned> &Vals) { 2432 unsigned ValID = VE.getValueID(V); 2433 // Make encoding relative to the InstID. 2434 Vals.push_back(InstID - ValID); 2435 if (ValID >= InstID) { 2436 Vals.push_back(VE.getTypeID(V->getType())); 2437 return true; 2438 } 2439 return false; 2440 } 2441 2442 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2443 unsigned InstID) { 2444 SmallVector<unsigned, 64> Record; 2445 LLVMContext &C = CS.getInstruction()->getContext(); 2446 2447 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2448 const auto &Bundle = CS.getOperandBundleAt(i); 2449 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2450 2451 for (auto &Input : Bundle.Inputs) 2452 pushValueAndType(Input, InstID, Record); 2453 2454 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2455 Record.clear(); 2456 } 2457 } 2458 2459 /// pushValue - Like pushValueAndType, but where the type of the value is 2460 /// omitted (perhaps it was already encoded in an earlier operand). 2461 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2462 SmallVectorImpl<unsigned> &Vals) { 2463 unsigned ValID = VE.getValueID(V); 2464 Vals.push_back(InstID - ValID); 2465 } 2466 2467 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2468 SmallVectorImpl<uint64_t> &Vals) { 2469 unsigned ValID = VE.getValueID(V); 2470 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2471 emitSignedInt64(Vals, diff); 2472 } 2473 2474 /// WriteInstruction - Emit an instruction to the specified stream. 2475 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2476 unsigned InstID, 2477 SmallVectorImpl<unsigned> &Vals) { 2478 unsigned Code = 0; 2479 unsigned AbbrevToUse = 0; 2480 VE.setInstructionID(&I); 2481 switch (I.getOpcode()) { 2482 default: 2483 if (Instruction::isCast(I.getOpcode())) { 2484 Code = bitc::FUNC_CODE_INST_CAST; 2485 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2486 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2487 Vals.push_back(VE.getTypeID(I.getType())); 2488 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2489 } else { 2490 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2491 Code = bitc::FUNC_CODE_INST_BINOP; 2492 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2493 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2494 pushValue(I.getOperand(1), InstID, Vals); 2495 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2496 uint64_t Flags = getOptimizationFlags(&I); 2497 if (Flags != 0) { 2498 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2499 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2500 Vals.push_back(Flags); 2501 } 2502 } 2503 break; 2504 2505 case Instruction::GetElementPtr: { 2506 Code = bitc::FUNC_CODE_INST_GEP; 2507 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2508 auto &GEPInst = cast<GetElementPtrInst>(I); 2509 Vals.push_back(GEPInst.isInBounds()); 2510 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2511 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2512 pushValueAndType(I.getOperand(i), InstID, Vals); 2513 break; 2514 } 2515 case Instruction::ExtractValue: { 2516 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2517 pushValueAndType(I.getOperand(0), InstID, Vals); 2518 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2519 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2520 break; 2521 } 2522 case Instruction::InsertValue: { 2523 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2524 pushValueAndType(I.getOperand(0), InstID, Vals); 2525 pushValueAndType(I.getOperand(1), InstID, Vals); 2526 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2527 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2528 break; 2529 } 2530 case Instruction::Select: 2531 Code = bitc::FUNC_CODE_INST_VSELECT; 2532 pushValueAndType(I.getOperand(1), InstID, Vals); 2533 pushValue(I.getOperand(2), InstID, Vals); 2534 pushValueAndType(I.getOperand(0), InstID, Vals); 2535 break; 2536 case Instruction::ExtractElement: 2537 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2538 pushValueAndType(I.getOperand(0), InstID, Vals); 2539 pushValueAndType(I.getOperand(1), InstID, Vals); 2540 break; 2541 case Instruction::InsertElement: 2542 Code = bitc::FUNC_CODE_INST_INSERTELT; 2543 pushValueAndType(I.getOperand(0), InstID, Vals); 2544 pushValue(I.getOperand(1), InstID, Vals); 2545 pushValueAndType(I.getOperand(2), InstID, Vals); 2546 break; 2547 case Instruction::ShuffleVector: 2548 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2549 pushValueAndType(I.getOperand(0), InstID, Vals); 2550 pushValue(I.getOperand(1), InstID, Vals); 2551 pushValue(I.getOperand(2), InstID, Vals); 2552 break; 2553 case Instruction::ICmp: 2554 case Instruction::FCmp: { 2555 // compare returning Int1Ty or vector of Int1Ty 2556 Code = bitc::FUNC_CODE_INST_CMP2; 2557 pushValueAndType(I.getOperand(0), InstID, Vals); 2558 pushValue(I.getOperand(1), InstID, Vals); 2559 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2560 uint64_t Flags = getOptimizationFlags(&I); 2561 if (Flags != 0) 2562 Vals.push_back(Flags); 2563 break; 2564 } 2565 2566 case Instruction::Ret: 2567 { 2568 Code = bitc::FUNC_CODE_INST_RET; 2569 unsigned NumOperands = I.getNumOperands(); 2570 if (NumOperands == 0) 2571 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2572 else if (NumOperands == 1) { 2573 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2574 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2575 } else { 2576 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2577 pushValueAndType(I.getOperand(i), InstID, Vals); 2578 } 2579 } 2580 break; 2581 case Instruction::Br: 2582 { 2583 Code = bitc::FUNC_CODE_INST_BR; 2584 const BranchInst &II = cast<BranchInst>(I); 2585 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2586 if (II.isConditional()) { 2587 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2588 pushValue(II.getCondition(), InstID, Vals); 2589 } 2590 } 2591 break; 2592 case Instruction::Switch: 2593 { 2594 Code = bitc::FUNC_CODE_INST_SWITCH; 2595 const SwitchInst &SI = cast<SwitchInst>(I); 2596 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2597 pushValue(SI.getCondition(), InstID, Vals); 2598 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2599 for (auto Case : SI.cases()) { 2600 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2601 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2602 } 2603 } 2604 break; 2605 case Instruction::IndirectBr: 2606 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2607 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2608 // Encode the address operand as relative, but not the basic blocks. 2609 pushValue(I.getOperand(0), InstID, Vals); 2610 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2611 Vals.push_back(VE.getValueID(I.getOperand(i))); 2612 break; 2613 2614 case Instruction::Invoke: { 2615 const InvokeInst *II = cast<InvokeInst>(&I); 2616 const Value *Callee = II->getCalledValue(); 2617 FunctionType *FTy = II->getFunctionType(); 2618 2619 if (II->hasOperandBundles()) 2620 writeOperandBundles(II, InstID); 2621 2622 Code = bitc::FUNC_CODE_INST_INVOKE; 2623 2624 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2625 Vals.push_back(II->getCallingConv() | 1 << 13); 2626 Vals.push_back(VE.getValueID(II->getNormalDest())); 2627 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2628 Vals.push_back(VE.getTypeID(FTy)); 2629 pushValueAndType(Callee, InstID, Vals); 2630 2631 // Emit value #'s for the fixed parameters. 2632 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2633 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2634 2635 // Emit type/value pairs for varargs params. 2636 if (FTy->isVarArg()) { 2637 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2638 i != e; ++i) 2639 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2640 } 2641 break; 2642 } 2643 case Instruction::Resume: 2644 Code = bitc::FUNC_CODE_INST_RESUME; 2645 pushValueAndType(I.getOperand(0), InstID, Vals); 2646 break; 2647 case Instruction::CleanupRet: { 2648 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2649 const auto &CRI = cast<CleanupReturnInst>(I); 2650 pushValue(CRI.getCleanupPad(), InstID, Vals); 2651 if (CRI.hasUnwindDest()) 2652 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2653 break; 2654 } 2655 case Instruction::CatchRet: { 2656 Code = bitc::FUNC_CODE_INST_CATCHRET; 2657 const auto &CRI = cast<CatchReturnInst>(I); 2658 pushValue(CRI.getCatchPad(), InstID, Vals); 2659 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2660 break; 2661 } 2662 case Instruction::CleanupPad: 2663 case Instruction::CatchPad: { 2664 const auto &FuncletPad = cast<FuncletPadInst>(I); 2665 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2666 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2667 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2668 2669 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2670 Vals.push_back(NumArgOperands); 2671 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2672 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2673 break; 2674 } 2675 case Instruction::CatchSwitch: { 2676 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2677 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2678 2679 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2680 2681 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2682 Vals.push_back(NumHandlers); 2683 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2684 Vals.push_back(VE.getValueID(CatchPadBB)); 2685 2686 if (CatchSwitch.hasUnwindDest()) 2687 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2688 break; 2689 } 2690 case Instruction::Unreachable: 2691 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2692 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2693 break; 2694 2695 case Instruction::PHI: { 2696 const PHINode &PN = cast<PHINode>(I); 2697 Code = bitc::FUNC_CODE_INST_PHI; 2698 // With the newer instruction encoding, forward references could give 2699 // negative valued IDs. This is most common for PHIs, so we use 2700 // signed VBRs. 2701 SmallVector<uint64_t, 128> Vals64; 2702 Vals64.push_back(VE.getTypeID(PN.getType())); 2703 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2704 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2705 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2706 } 2707 // Emit a Vals64 vector and exit. 2708 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2709 Vals64.clear(); 2710 return; 2711 } 2712 2713 case Instruction::LandingPad: { 2714 const LandingPadInst &LP = cast<LandingPadInst>(I); 2715 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2716 Vals.push_back(VE.getTypeID(LP.getType())); 2717 Vals.push_back(LP.isCleanup()); 2718 Vals.push_back(LP.getNumClauses()); 2719 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2720 if (LP.isCatch(I)) 2721 Vals.push_back(LandingPadInst::Catch); 2722 else 2723 Vals.push_back(LandingPadInst::Filter); 2724 pushValueAndType(LP.getClause(I), InstID, Vals); 2725 } 2726 break; 2727 } 2728 2729 case Instruction::Alloca: { 2730 Code = bitc::FUNC_CODE_INST_ALLOCA; 2731 const AllocaInst &AI = cast<AllocaInst>(I); 2732 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2733 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2734 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2735 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2736 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2737 "not enough bits for maximum alignment"); 2738 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2739 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2740 AlignRecord |= 1 << 6; 2741 AlignRecord |= AI.isSwiftError() << 7; 2742 Vals.push_back(AlignRecord); 2743 break; 2744 } 2745 2746 case Instruction::Load: 2747 if (cast<LoadInst>(I).isAtomic()) { 2748 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2749 pushValueAndType(I.getOperand(0), InstID, Vals); 2750 } else { 2751 Code = bitc::FUNC_CODE_INST_LOAD; 2752 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2753 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2754 } 2755 Vals.push_back(VE.getTypeID(I.getType())); 2756 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2757 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2758 if (cast<LoadInst>(I).isAtomic()) { 2759 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2760 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2761 } 2762 break; 2763 case Instruction::Store: 2764 if (cast<StoreInst>(I).isAtomic()) 2765 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2766 else 2767 Code = bitc::FUNC_CODE_INST_STORE; 2768 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2769 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2770 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2771 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2772 if (cast<StoreInst>(I).isAtomic()) { 2773 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2774 Vals.push_back( 2775 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2776 } 2777 break; 2778 case Instruction::AtomicCmpXchg: 2779 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2780 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2781 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2782 pushValue(I.getOperand(2), InstID, Vals); // newval. 2783 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2784 Vals.push_back( 2785 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2786 Vals.push_back( 2787 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2788 Vals.push_back( 2789 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2790 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2791 break; 2792 case Instruction::AtomicRMW: 2793 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2794 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2795 pushValue(I.getOperand(1), InstID, Vals); // val. 2796 Vals.push_back( 2797 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2798 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2799 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2800 Vals.push_back( 2801 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2802 break; 2803 case Instruction::Fence: 2804 Code = bitc::FUNC_CODE_INST_FENCE; 2805 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2806 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2807 break; 2808 case Instruction::Call: { 2809 const CallInst &CI = cast<CallInst>(I); 2810 FunctionType *FTy = CI.getFunctionType(); 2811 2812 if (CI.hasOperandBundles()) 2813 writeOperandBundles(&CI, InstID); 2814 2815 Code = bitc::FUNC_CODE_INST_CALL; 2816 2817 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2818 2819 unsigned Flags = getOptimizationFlags(&I); 2820 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2821 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2822 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2823 1 << bitc::CALL_EXPLICIT_TYPE | 2824 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2825 unsigned(Flags != 0) << bitc::CALL_FMF); 2826 if (Flags != 0) 2827 Vals.push_back(Flags); 2828 2829 Vals.push_back(VE.getTypeID(FTy)); 2830 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2831 2832 // Emit value #'s for the fixed parameters. 2833 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2834 // Check for labels (can happen with asm labels). 2835 if (FTy->getParamType(i)->isLabelTy()) 2836 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2837 else 2838 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2839 } 2840 2841 // Emit type/value pairs for varargs params. 2842 if (FTy->isVarArg()) { 2843 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2844 i != e; ++i) 2845 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2846 } 2847 break; 2848 } 2849 case Instruction::VAArg: 2850 Code = bitc::FUNC_CODE_INST_VAARG; 2851 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2852 pushValue(I.getOperand(0), InstID, Vals); // valist. 2853 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2854 break; 2855 } 2856 2857 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2858 Vals.clear(); 2859 } 2860 2861 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2862 /// to allow clients to efficiently find the function body. 2863 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2864 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2865 // Get the offset of the VST we are writing, and backpatch it into 2866 // the VST forward declaration record. 2867 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2868 // The BitcodeStartBit was the stream offset of the identification block. 2869 VSTOffset -= bitcodeStartBit(); 2870 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2871 // Note that we add 1 here because the offset is relative to one word 2872 // before the start of the identification block, which was historically 2873 // always the start of the regular bitcode header. 2874 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2875 2876 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2877 2878 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2879 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2882 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2883 2884 for (const Function &F : M) { 2885 uint64_t Record[2]; 2886 2887 if (F.isDeclaration()) 2888 continue; 2889 2890 Record[0] = VE.getValueID(&F); 2891 2892 // Save the word offset of the function (from the start of the 2893 // actual bitcode written to the stream). 2894 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2895 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2896 // Note that we add 1 here because the offset is relative to one word 2897 // before the start of the identification block, which was historically 2898 // always the start of the regular bitcode header. 2899 Record[1] = BitcodeIndex / 32 + 1; 2900 2901 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2902 } 2903 2904 Stream.ExitBlock(); 2905 } 2906 2907 /// Emit names for arguments, instructions and basic blocks in a function. 2908 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2909 const ValueSymbolTable &VST) { 2910 if (VST.empty()) 2911 return; 2912 2913 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2914 2915 // FIXME: Set up the abbrev, we know how many values there are! 2916 // FIXME: We know if the type names can use 7-bit ascii. 2917 SmallVector<uint64_t, 64> NameVals; 2918 2919 for (const ValueName &Name : VST) { 2920 // Figure out the encoding to use for the name. 2921 StringEncoding Bits = getStringEncoding(Name.getKey()); 2922 2923 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2924 NameVals.push_back(VE.getValueID(Name.getValue())); 2925 2926 // VST_CODE_ENTRY: [valueid, namechar x N] 2927 // VST_CODE_BBENTRY: [bbid, namechar x N] 2928 unsigned Code; 2929 if (isa<BasicBlock>(Name.getValue())) { 2930 Code = bitc::VST_CODE_BBENTRY; 2931 if (Bits == SE_Char6) 2932 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2933 } else { 2934 Code = bitc::VST_CODE_ENTRY; 2935 if (Bits == SE_Char6) 2936 AbbrevToUse = VST_ENTRY_6_ABBREV; 2937 else if (Bits == SE_Fixed7) 2938 AbbrevToUse = VST_ENTRY_7_ABBREV; 2939 } 2940 2941 for (const auto P : Name.getKey()) 2942 NameVals.push_back((unsigned char)P); 2943 2944 // Emit the finished record. 2945 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2946 NameVals.clear(); 2947 } 2948 2949 Stream.ExitBlock(); 2950 } 2951 2952 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2953 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2954 unsigned Code; 2955 if (isa<BasicBlock>(Order.V)) 2956 Code = bitc::USELIST_CODE_BB; 2957 else 2958 Code = bitc::USELIST_CODE_DEFAULT; 2959 2960 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2961 Record.push_back(VE.getValueID(Order.V)); 2962 Stream.EmitRecord(Code, Record); 2963 } 2964 2965 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2966 assert(VE.shouldPreserveUseListOrder() && 2967 "Expected to be preserving use-list order"); 2968 2969 auto hasMore = [&]() { 2970 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2971 }; 2972 if (!hasMore()) 2973 // Nothing to do. 2974 return; 2975 2976 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2977 while (hasMore()) { 2978 writeUseList(std::move(VE.UseListOrders.back())); 2979 VE.UseListOrders.pop_back(); 2980 } 2981 Stream.ExitBlock(); 2982 } 2983 2984 /// Emit a function body to the module stream. 2985 void ModuleBitcodeWriter::writeFunction( 2986 const Function &F, 2987 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2988 // Save the bitcode index of the start of this function block for recording 2989 // in the VST. 2990 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2991 2992 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2993 VE.incorporateFunction(F); 2994 2995 SmallVector<unsigned, 64> Vals; 2996 2997 // Emit the number of basic blocks, so the reader can create them ahead of 2998 // time. 2999 Vals.push_back(VE.getBasicBlocks().size()); 3000 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3001 Vals.clear(); 3002 3003 // If there are function-local constants, emit them now. 3004 unsigned CstStart, CstEnd; 3005 VE.getFunctionConstantRange(CstStart, CstEnd); 3006 writeConstants(CstStart, CstEnd, false); 3007 3008 // If there is function-local metadata, emit it now. 3009 writeFunctionMetadata(F); 3010 3011 // Keep a running idea of what the instruction ID is. 3012 unsigned InstID = CstEnd; 3013 3014 bool NeedsMetadataAttachment = F.hasMetadata(); 3015 3016 DILocation *LastDL = nullptr; 3017 // Finally, emit all the instructions, in order. 3018 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3019 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3020 I != E; ++I) { 3021 writeInstruction(*I, InstID, Vals); 3022 3023 if (!I->getType()->isVoidTy()) 3024 ++InstID; 3025 3026 // If the instruction has metadata, write a metadata attachment later. 3027 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3028 3029 // If the instruction has a debug location, emit it. 3030 DILocation *DL = I->getDebugLoc(); 3031 if (!DL) 3032 continue; 3033 3034 if (DL == LastDL) { 3035 // Just repeat the same debug loc as last time. 3036 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3037 continue; 3038 } 3039 3040 Vals.push_back(DL->getLine()); 3041 Vals.push_back(DL->getColumn()); 3042 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3043 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3044 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3045 Vals.clear(); 3046 3047 LastDL = DL; 3048 } 3049 3050 // Emit names for all the instructions etc. 3051 if (auto *Symtab = F.getValueSymbolTable()) 3052 writeFunctionLevelValueSymbolTable(*Symtab); 3053 3054 if (NeedsMetadataAttachment) 3055 writeFunctionMetadataAttachment(F); 3056 if (VE.shouldPreserveUseListOrder()) 3057 writeUseListBlock(&F); 3058 VE.purgeFunction(); 3059 Stream.ExitBlock(); 3060 } 3061 3062 // Emit blockinfo, which defines the standard abbreviations etc. 3063 void ModuleBitcodeWriter::writeBlockInfo() { 3064 // We only want to emit block info records for blocks that have multiple 3065 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3066 // Other blocks can define their abbrevs inline. 3067 Stream.EnterBlockInfoBlock(); 3068 3069 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3070 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3075 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3076 VST_ENTRY_8_ABBREV) 3077 llvm_unreachable("Unexpected abbrev ordering!"); 3078 } 3079 3080 { // 7-bit fixed width VST_CODE_ENTRY strings. 3081 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3082 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3086 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3087 VST_ENTRY_7_ABBREV) 3088 llvm_unreachable("Unexpected abbrev ordering!"); 3089 } 3090 { // 6-bit char6 VST_CODE_ENTRY strings. 3091 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3092 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3096 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3097 VST_ENTRY_6_ABBREV) 3098 llvm_unreachable("Unexpected abbrev ordering!"); 3099 } 3100 { // 6-bit char6 VST_CODE_BBENTRY strings. 3101 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3102 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3106 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3107 VST_BBENTRY_6_ABBREV) 3108 llvm_unreachable("Unexpected abbrev ordering!"); 3109 } 3110 3111 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3112 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3113 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3115 VE.computeBitsRequiredForTypeIndicies())); 3116 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3117 CONSTANTS_SETTYPE_ABBREV) 3118 llvm_unreachable("Unexpected abbrev ordering!"); 3119 } 3120 3121 { // INTEGER abbrev for CONSTANTS_BLOCK. 3122 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3123 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3125 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3126 CONSTANTS_INTEGER_ABBREV) 3127 llvm_unreachable("Unexpected abbrev ordering!"); 3128 } 3129 3130 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3131 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3132 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3135 VE.computeBitsRequiredForTypeIndicies())); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3137 3138 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3139 CONSTANTS_CE_CAST_Abbrev) 3140 llvm_unreachable("Unexpected abbrev ordering!"); 3141 } 3142 { // NULL abbrev for CONSTANTS_BLOCK. 3143 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3144 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3145 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3146 CONSTANTS_NULL_Abbrev) 3147 llvm_unreachable("Unexpected abbrev ordering!"); 3148 } 3149 3150 // FIXME: This should only use space for first class types! 3151 3152 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3153 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3154 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3157 VE.computeBitsRequiredForTypeIndicies())); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3160 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3161 FUNCTION_INST_LOAD_ABBREV) 3162 llvm_unreachable("Unexpected abbrev ordering!"); 3163 } 3164 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3165 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3166 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3170 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3171 FUNCTION_INST_BINOP_ABBREV) 3172 llvm_unreachable("Unexpected abbrev ordering!"); 3173 } 3174 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3175 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3176 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3181 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3182 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3183 llvm_unreachable("Unexpected abbrev ordering!"); 3184 } 3185 { // INST_CAST abbrev for FUNCTION_BLOCK. 3186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3187 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3190 VE.computeBitsRequiredForTypeIndicies())); 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3192 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3193 FUNCTION_INST_CAST_ABBREV) 3194 llvm_unreachable("Unexpected abbrev ordering!"); 3195 } 3196 3197 { // INST_RET abbrev for FUNCTION_BLOCK. 3198 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3199 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3200 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3201 FUNCTION_INST_RET_VOID_ABBREV) 3202 llvm_unreachable("Unexpected abbrev ordering!"); 3203 } 3204 { // INST_RET abbrev for FUNCTION_BLOCK. 3205 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3206 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3208 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3209 FUNCTION_INST_RET_VAL_ABBREV) 3210 llvm_unreachable("Unexpected abbrev ordering!"); 3211 } 3212 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3213 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3214 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3215 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3216 FUNCTION_INST_UNREACHABLE_ABBREV) 3217 llvm_unreachable("Unexpected abbrev ordering!"); 3218 } 3219 { 3220 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3221 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3224 Log2_32_Ceil(VE.getTypes().size() + 1))); 3225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3227 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3228 FUNCTION_INST_GEP_ABBREV) 3229 llvm_unreachable("Unexpected abbrev ordering!"); 3230 } 3231 3232 Stream.ExitBlock(); 3233 } 3234 3235 /// Write the module path strings, currently only used when generating 3236 /// a combined index file. 3237 void IndexBitcodeWriter::writeModStrings() { 3238 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3239 3240 // TODO: See which abbrev sizes we actually need to emit 3241 3242 // 8-bit fixed-width MST_ENTRY strings. 3243 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3244 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3248 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3249 3250 // 7-bit fixed width MST_ENTRY strings. 3251 Abbv = std::make_shared<BitCodeAbbrev>(); 3252 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3253 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3256 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3257 3258 // 6-bit char6 MST_ENTRY strings. 3259 Abbv = std::make_shared<BitCodeAbbrev>(); 3260 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3263 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3264 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3265 3266 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3267 Abbv = std::make_shared<BitCodeAbbrev>(); 3268 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3274 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3275 3276 SmallVector<unsigned, 64> Vals; 3277 forEachModule( 3278 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3279 StringRef Key = MPSE.getKey(); 3280 const auto &Value = MPSE.getValue(); 3281 StringEncoding Bits = getStringEncoding(Key); 3282 unsigned AbbrevToUse = Abbrev8Bit; 3283 if (Bits == SE_Char6) 3284 AbbrevToUse = Abbrev6Bit; 3285 else if (Bits == SE_Fixed7) 3286 AbbrevToUse = Abbrev7Bit; 3287 3288 Vals.push_back(Value.first); 3289 Vals.append(Key.begin(), Key.end()); 3290 3291 // Emit the finished record. 3292 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3293 3294 // Emit an optional hash for the module now 3295 const auto &Hash = Value.second; 3296 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3297 Vals.assign(Hash.begin(), Hash.end()); 3298 // Emit the hash record. 3299 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3300 } 3301 3302 Vals.clear(); 3303 }); 3304 Stream.ExitBlock(); 3305 } 3306 3307 /// Write the function type metadata related records that need to appear before 3308 /// a function summary entry (whether per-module or combined). 3309 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3310 FunctionSummary *FS) { 3311 if (!FS->type_tests().empty()) 3312 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3313 3314 SmallVector<uint64_t, 64> Record; 3315 3316 auto WriteVFuncIdVec = [&](uint64_t Ty, 3317 ArrayRef<FunctionSummary::VFuncId> VFs) { 3318 if (VFs.empty()) 3319 return; 3320 Record.clear(); 3321 for (auto &VF : VFs) { 3322 Record.push_back(VF.GUID); 3323 Record.push_back(VF.Offset); 3324 } 3325 Stream.EmitRecord(Ty, Record); 3326 }; 3327 3328 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3329 FS->type_test_assume_vcalls()); 3330 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3331 FS->type_checked_load_vcalls()); 3332 3333 auto WriteConstVCallVec = [&](uint64_t Ty, 3334 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3335 for (auto &VC : VCs) { 3336 Record.clear(); 3337 Record.push_back(VC.VFunc.GUID); 3338 Record.push_back(VC.VFunc.Offset); 3339 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3340 Stream.EmitRecord(Ty, Record); 3341 } 3342 }; 3343 3344 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3345 FS->type_test_assume_const_vcalls()); 3346 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3347 FS->type_checked_load_const_vcalls()); 3348 } 3349 3350 // Helper to emit a single function summary record. 3351 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3352 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3353 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3354 const Function &F) { 3355 NameVals.push_back(ValueID); 3356 3357 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3358 writeFunctionTypeMetadataRecords(Stream, FS); 3359 3360 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3361 NameVals.push_back(FS->instCount()); 3362 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3363 NameVals.push_back(FS->refs().size()); 3364 3365 for (auto &RI : FS->refs()) 3366 NameVals.push_back(VE.getValueID(RI.getValue())); 3367 3368 bool HasProfileData = F.getEntryCount().hasValue(); 3369 for (auto &ECI : FS->calls()) { 3370 NameVals.push_back(getValueId(ECI.first)); 3371 if (HasProfileData) 3372 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3373 } 3374 3375 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3376 unsigned Code = 3377 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3378 3379 // Emit the finished record. 3380 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3381 NameVals.clear(); 3382 } 3383 3384 // Collect the global value references in the given variable's initializer, 3385 // and emit them in a summary record. 3386 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3387 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3388 unsigned FSModRefsAbbrev) { 3389 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3390 if (!VI || VI.getSummaryList().empty()) { 3391 // Only declarations should not have a summary (a declaration might however 3392 // have a summary if the def was in module level asm). 3393 assert(V.isDeclaration()); 3394 return; 3395 } 3396 auto *Summary = VI.getSummaryList()[0].get(); 3397 NameVals.push_back(VE.getValueID(&V)); 3398 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3399 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3400 3401 unsigned SizeBeforeRefs = NameVals.size(); 3402 for (auto &RI : VS->refs()) 3403 NameVals.push_back(VE.getValueID(RI.getValue())); 3404 // Sort the refs for determinism output, the vector returned by FS->refs() has 3405 // been initialized from a DenseSet. 3406 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3407 3408 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3409 FSModRefsAbbrev); 3410 NameVals.clear(); 3411 } 3412 3413 // Current version for the summary. 3414 // This is bumped whenever we introduce changes in the way some record are 3415 // interpreted, like flags for instance. 3416 static const uint64_t INDEX_VERSION = 4; 3417 3418 /// Emit the per-module summary section alongside the rest of 3419 /// the module's bitcode. 3420 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3421 // By default we compile with ThinLTO if the module has a summary, but the 3422 // client can request full LTO with a module flag. 3423 bool IsThinLTO = true; 3424 if (auto *MD = 3425 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3426 IsThinLTO = MD->getZExtValue(); 3427 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3428 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3429 4); 3430 3431 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3432 3433 if (Index->begin() == Index->end()) { 3434 Stream.ExitBlock(); 3435 return; 3436 } 3437 3438 for (const auto &GVI : valueIds()) { 3439 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3440 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3441 } 3442 3443 // Abbrev for FS_PERMODULE. 3444 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3451 // numrefs x valueid, n x (valueid) 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3454 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3455 3456 // Abbrev for FS_PERMODULE_PROFILE. 3457 Abbv = std::make_shared<BitCodeAbbrev>(); 3458 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3464 // numrefs x valueid, n x (valueid, hotness) 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3467 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3468 3469 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3470 Abbv = std::make_shared<BitCodeAbbrev>(); 3471 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3476 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3477 3478 // Abbrev for FS_ALIAS. 3479 Abbv = std::make_shared<BitCodeAbbrev>(); 3480 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3484 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3485 3486 SmallVector<uint64_t, 64> NameVals; 3487 // Iterate over the list of functions instead of the Index to 3488 // ensure the ordering is stable. 3489 for (const Function &F : M) { 3490 // Summary emission does not support anonymous functions, they have to 3491 // renamed using the anonymous function renaming pass. 3492 if (!F.hasName()) 3493 report_fatal_error("Unexpected anonymous function when writing summary"); 3494 3495 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3496 if (!VI || VI.getSummaryList().empty()) { 3497 // Only declarations should not have a summary (a declaration might 3498 // however have a summary if the def was in module level asm). 3499 assert(F.isDeclaration()); 3500 continue; 3501 } 3502 auto *Summary = VI.getSummaryList()[0].get(); 3503 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3504 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3505 } 3506 3507 // Capture references from GlobalVariable initializers, which are outside 3508 // of a function scope. 3509 for (const GlobalVariable &G : M.globals()) 3510 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3511 3512 for (const GlobalAlias &A : M.aliases()) { 3513 auto *Aliasee = A.getBaseObject(); 3514 if (!Aliasee->hasName()) 3515 // Nameless function don't have an entry in the summary, skip it. 3516 continue; 3517 auto AliasId = VE.getValueID(&A); 3518 auto AliaseeId = VE.getValueID(Aliasee); 3519 NameVals.push_back(AliasId); 3520 auto *Summary = Index->getGlobalValueSummary(A); 3521 AliasSummary *AS = cast<AliasSummary>(Summary); 3522 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3523 NameVals.push_back(AliaseeId); 3524 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3525 NameVals.clear(); 3526 } 3527 3528 Stream.ExitBlock(); 3529 } 3530 3531 /// Emit the combined summary section into the combined index file. 3532 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3533 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3534 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3535 3536 for (const auto &GVI : valueIds()) { 3537 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3538 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3539 } 3540 3541 // Abbrev for FS_COMBINED. 3542 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3543 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3550 // numrefs x valueid, n x (valueid) 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3553 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3554 3555 // Abbrev for FS_COMBINED_PROFILE. 3556 Abbv = std::make_shared<BitCodeAbbrev>(); 3557 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3564 // numrefs x valueid, n x (valueid, hotness) 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3567 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3568 3569 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3570 Abbv = std::make_shared<BitCodeAbbrev>(); 3571 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3577 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3578 3579 // Abbrev for FS_COMBINED_ALIAS. 3580 Abbv = std::make_shared<BitCodeAbbrev>(); 3581 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3583 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3586 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3587 3588 // The aliases are emitted as a post-pass, and will point to the value 3589 // id of the aliasee. Save them in a vector for post-processing. 3590 SmallVector<AliasSummary *, 64> Aliases; 3591 3592 // Save the value id for each summary for alias emission. 3593 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3594 3595 SmallVector<uint64_t, 64> NameVals; 3596 3597 // For local linkage, we also emit the original name separately 3598 // immediately after the record. 3599 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3600 if (!GlobalValue::isLocalLinkage(S.linkage())) 3601 return; 3602 NameVals.push_back(S.getOriginalName()); 3603 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3604 NameVals.clear(); 3605 }; 3606 3607 forEachSummary([&](GVInfo I) { 3608 GlobalValueSummary *S = I.second; 3609 assert(S); 3610 3611 auto ValueId = getValueId(I.first); 3612 assert(ValueId); 3613 SummaryToValueIdMap[S] = *ValueId; 3614 3615 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3616 // Will process aliases as a post-pass because the reader wants all 3617 // global to be loaded first. 3618 Aliases.push_back(AS); 3619 return; 3620 } 3621 3622 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3623 NameVals.push_back(*ValueId); 3624 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3625 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3626 for (auto &RI : VS->refs()) { 3627 auto RefValueId = getValueId(RI.getGUID()); 3628 if (!RefValueId) 3629 continue; 3630 NameVals.push_back(*RefValueId); 3631 } 3632 3633 // Emit the finished record. 3634 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3635 FSModRefsAbbrev); 3636 NameVals.clear(); 3637 MaybeEmitOriginalName(*S); 3638 return; 3639 } 3640 3641 auto *FS = cast<FunctionSummary>(S); 3642 writeFunctionTypeMetadataRecords(Stream, FS); 3643 3644 NameVals.push_back(*ValueId); 3645 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3646 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3647 NameVals.push_back(FS->instCount()); 3648 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3649 // Fill in below 3650 NameVals.push_back(0); 3651 3652 unsigned Count = 0; 3653 for (auto &RI : FS->refs()) { 3654 auto RefValueId = getValueId(RI.getGUID()); 3655 if (!RefValueId) 3656 continue; 3657 NameVals.push_back(*RefValueId); 3658 Count++; 3659 } 3660 NameVals[5] = Count; 3661 3662 bool HasProfileData = false; 3663 for (auto &EI : FS->calls()) { 3664 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3665 if (HasProfileData) 3666 break; 3667 } 3668 3669 for (auto &EI : FS->calls()) { 3670 // If this GUID doesn't have a value id, it doesn't have a function 3671 // summary and we don't need to record any calls to it. 3672 GlobalValue::GUID GUID = EI.first.getGUID(); 3673 auto CallValueId = getValueId(GUID); 3674 if (!CallValueId) { 3675 // For SamplePGO, the indirect call targets for local functions will 3676 // have its original name annotated in profile. We try to find the 3677 // corresponding PGOFuncName as the GUID. 3678 GUID = Index.getGUIDFromOriginalID(GUID); 3679 if (GUID == 0) 3680 continue; 3681 CallValueId = getValueId(GUID); 3682 if (!CallValueId) 3683 continue; 3684 // The mapping from OriginalId to GUID may return a GUID 3685 // that corresponds to a static variable. Filter it out here. 3686 // This can happen when 3687 // 1) There is a call to a library function which does not have 3688 // a CallValidId; 3689 // 2) There is a static variable with the OriginalGUID identical 3690 // to the GUID of the library function in 1); 3691 // When this happens, the logic for SamplePGO kicks in and 3692 // the static variable in 2) will be found, which needs to be 3693 // filtered out. 3694 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3695 if (GVSum && 3696 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3697 continue; 3698 } 3699 NameVals.push_back(*CallValueId); 3700 if (HasProfileData) 3701 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3702 } 3703 3704 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3705 unsigned Code = 3706 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3707 3708 // Emit the finished record. 3709 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3710 NameVals.clear(); 3711 MaybeEmitOriginalName(*S); 3712 }); 3713 3714 for (auto *AS : Aliases) { 3715 auto AliasValueId = SummaryToValueIdMap[AS]; 3716 assert(AliasValueId); 3717 NameVals.push_back(AliasValueId); 3718 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3719 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3720 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3721 assert(AliaseeValueId); 3722 NameVals.push_back(AliaseeValueId); 3723 3724 // Emit the finished record. 3725 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3726 NameVals.clear(); 3727 MaybeEmitOriginalName(*AS); 3728 } 3729 3730 if (!Index.cfiFunctionDefs().empty()) { 3731 for (auto &S : Index.cfiFunctionDefs()) { 3732 NameVals.push_back(StrtabBuilder.add(S)); 3733 NameVals.push_back(S.size()); 3734 } 3735 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3736 NameVals.clear(); 3737 } 3738 3739 if (!Index.cfiFunctionDecls().empty()) { 3740 for (auto &S : Index.cfiFunctionDecls()) { 3741 NameVals.push_back(StrtabBuilder.add(S)); 3742 NameVals.push_back(S.size()); 3743 } 3744 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3745 NameVals.clear(); 3746 } 3747 3748 Stream.ExitBlock(); 3749 } 3750 3751 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3752 /// current llvm version, and a record for the epoch number. 3753 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3754 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3755 3756 // Write the "user readable" string identifying the bitcode producer 3757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3758 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3761 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3762 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3763 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3764 3765 // Write the epoch version 3766 Abbv = std::make_shared<BitCodeAbbrev>(); 3767 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3769 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3770 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3771 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3772 Stream.ExitBlock(); 3773 } 3774 3775 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3776 // Emit the module's hash. 3777 // MODULE_CODE_HASH: [5*i32] 3778 if (GenerateHash) { 3779 uint32_t Vals[5]; 3780 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3781 Buffer.size() - BlockStartPos)); 3782 StringRef Hash = Hasher.result(); 3783 for (int Pos = 0; Pos < 20; Pos += 4) { 3784 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3785 } 3786 3787 // Emit the finished record. 3788 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3789 3790 if (ModHash) 3791 // Save the written hash value. 3792 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3793 } 3794 } 3795 3796 void ModuleBitcodeWriter::write() { 3797 writeIdentificationBlock(Stream); 3798 3799 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3800 size_t BlockStartPos = Buffer.size(); 3801 3802 writeModuleVersion(); 3803 3804 // Emit blockinfo, which defines the standard abbreviations etc. 3805 writeBlockInfo(); 3806 3807 // Emit information about attribute groups. 3808 writeAttributeGroupTable(); 3809 3810 // Emit information about parameter attributes. 3811 writeAttributeTable(); 3812 3813 // Emit information describing all of the types in the module. 3814 writeTypeTable(); 3815 3816 writeComdats(); 3817 3818 // Emit top-level description of module, including target triple, inline asm, 3819 // descriptors for global variables, and function prototype info. 3820 writeModuleInfo(); 3821 3822 // Emit constants. 3823 writeModuleConstants(); 3824 3825 // Emit metadata kind names. 3826 writeModuleMetadataKinds(); 3827 3828 // Emit metadata. 3829 writeModuleMetadata(); 3830 3831 // Emit module-level use-lists. 3832 if (VE.shouldPreserveUseListOrder()) 3833 writeUseListBlock(nullptr); 3834 3835 writeOperandBundleTags(); 3836 writeSyncScopeNames(); 3837 3838 // Emit function bodies. 3839 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3840 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3841 if (!F->isDeclaration()) 3842 writeFunction(*F, FunctionToBitcodeIndex); 3843 3844 // Need to write after the above call to WriteFunction which populates 3845 // the summary information in the index. 3846 if (Index) 3847 writePerModuleGlobalValueSummary(); 3848 3849 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3850 3851 writeModuleHash(BlockStartPos); 3852 3853 Stream.ExitBlock(); 3854 } 3855 3856 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3857 uint32_t &Position) { 3858 support::endian::write32le(&Buffer[Position], Value); 3859 Position += 4; 3860 } 3861 3862 /// If generating a bc file on darwin, we have to emit a 3863 /// header and trailer to make it compatible with the system archiver. To do 3864 /// this we emit the following header, and then emit a trailer that pads the 3865 /// file out to be a multiple of 16 bytes. 3866 /// 3867 /// struct bc_header { 3868 /// uint32_t Magic; // 0x0B17C0DE 3869 /// uint32_t Version; // Version, currently always 0. 3870 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3871 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3872 /// uint32_t CPUType; // CPU specifier. 3873 /// ... potentially more later ... 3874 /// }; 3875 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3876 const Triple &TT) { 3877 unsigned CPUType = ~0U; 3878 3879 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3880 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3881 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3882 // specific constants here because they are implicitly part of the Darwin ABI. 3883 enum { 3884 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3885 DARWIN_CPU_TYPE_X86 = 7, 3886 DARWIN_CPU_TYPE_ARM = 12, 3887 DARWIN_CPU_TYPE_POWERPC = 18 3888 }; 3889 3890 Triple::ArchType Arch = TT.getArch(); 3891 if (Arch == Triple::x86_64) 3892 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3893 else if (Arch == Triple::x86) 3894 CPUType = DARWIN_CPU_TYPE_X86; 3895 else if (Arch == Triple::ppc) 3896 CPUType = DARWIN_CPU_TYPE_POWERPC; 3897 else if (Arch == Triple::ppc64) 3898 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3899 else if (Arch == Triple::arm || Arch == Triple::thumb) 3900 CPUType = DARWIN_CPU_TYPE_ARM; 3901 3902 // Traditional Bitcode starts after header. 3903 assert(Buffer.size() >= BWH_HeaderSize && 3904 "Expected header size to be reserved"); 3905 unsigned BCOffset = BWH_HeaderSize; 3906 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3907 3908 // Write the magic and version. 3909 unsigned Position = 0; 3910 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3911 writeInt32ToBuffer(0, Buffer, Position); // Version. 3912 writeInt32ToBuffer(BCOffset, Buffer, Position); 3913 writeInt32ToBuffer(BCSize, Buffer, Position); 3914 writeInt32ToBuffer(CPUType, Buffer, Position); 3915 3916 // If the file is not a multiple of 16 bytes, insert dummy padding. 3917 while (Buffer.size() & 15) 3918 Buffer.push_back(0); 3919 } 3920 3921 /// Helper to write the header common to all bitcode files. 3922 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3923 // Emit the file header. 3924 Stream.Emit((unsigned)'B', 8); 3925 Stream.Emit((unsigned)'C', 8); 3926 Stream.Emit(0x0, 4); 3927 Stream.Emit(0xC, 4); 3928 Stream.Emit(0xE, 4); 3929 Stream.Emit(0xD, 4); 3930 } 3931 3932 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3933 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3934 writeBitcodeHeader(*Stream); 3935 } 3936 3937 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3938 3939 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3940 Stream->EnterSubblock(Block, 3); 3941 3942 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3943 Abbv->Add(BitCodeAbbrevOp(Record)); 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3945 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3946 3947 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3948 3949 Stream->ExitBlock(); 3950 } 3951 3952 void BitcodeWriter::writeSymtab() { 3953 assert(!WroteStrtab && !WroteSymtab); 3954 3955 // If any module has module-level inline asm, we will require a registered asm 3956 // parser for the target so that we can create an accurate symbol table for 3957 // the module. 3958 for (Module *M : Mods) { 3959 if (M->getModuleInlineAsm().empty()) 3960 continue; 3961 3962 std::string Err; 3963 const Triple TT(M->getTargetTriple()); 3964 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 3965 if (!T || !T->hasMCAsmParser()) 3966 return; 3967 } 3968 3969 WroteSymtab = true; 3970 SmallVector<char, 0> Symtab; 3971 // The irsymtab::build function may be unable to create a symbol table if the 3972 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 3973 // table is not required for correctness, but we still want to be able to 3974 // write malformed modules to bitcode files, so swallow the error. 3975 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 3976 consumeError(std::move(E)); 3977 return; 3978 } 3979 3980 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 3981 {Symtab.data(), Symtab.size()}); 3982 } 3983 3984 void BitcodeWriter::writeStrtab() { 3985 assert(!WroteStrtab); 3986 3987 std::vector<char> Strtab; 3988 StrtabBuilder.finalizeInOrder(); 3989 Strtab.resize(StrtabBuilder.getSize()); 3990 StrtabBuilder.write((uint8_t *)Strtab.data()); 3991 3992 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3993 {Strtab.data(), Strtab.size()}); 3994 3995 WroteStrtab = true; 3996 } 3997 3998 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3999 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4000 WroteStrtab = true; 4001 } 4002 4003 void BitcodeWriter::writeModule(const Module *M, 4004 bool ShouldPreserveUseListOrder, 4005 const ModuleSummaryIndex *Index, 4006 bool GenerateHash, ModuleHash *ModHash) { 4007 assert(!WroteStrtab); 4008 4009 // The Mods vector is used by irsymtab::build, which requires non-const 4010 // Modules in case it needs to materialize metadata. But the bitcode writer 4011 // requires that the module is materialized, so we can cast to non-const here, 4012 // after checking that it is in fact materialized. 4013 assert(M->isMaterialized()); 4014 Mods.push_back(const_cast<Module *>(M)); 4015 4016 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4017 ShouldPreserveUseListOrder, Index, 4018 GenerateHash, ModHash); 4019 ModuleWriter.write(); 4020 } 4021 4022 void BitcodeWriter::writeIndex( 4023 const ModuleSummaryIndex *Index, 4024 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4025 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4026 ModuleToSummariesForIndex); 4027 IndexWriter.write(); 4028 } 4029 4030 /// WriteBitcodeToFile - Write the specified module to the specified output 4031 /// stream. 4032 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 4033 bool ShouldPreserveUseListOrder, 4034 const ModuleSummaryIndex *Index, 4035 bool GenerateHash, ModuleHash *ModHash) { 4036 SmallVector<char, 0> Buffer; 4037 Buffer.reserve(256*1024); 4038 4039 // If this is darwin or another generic macho target, reserve space for the 4040 // header. 4041 Triple TT(M->getTargetTriple()); 4042 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4043 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4044 4045 BitcodeWriter Writer(Buffer); 4046 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4047 ModHash); 4048 Writer.writeSymtab(); 4049 Writer.writeStrtab(); 4050 4051 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4052 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4053 4054 // Write the generated bitstream to "Out". 4055 Out.write((char*)&Buffer.front(), Buffer.size()); 4056 } 4057 4058 void IndexBitcodeWriter::write() { 4059 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4060 4061 writeModuleVersion(); 4062 4063 // Write the module paths in the combined index. 4064 writeModStrings(); 4065 4066 // Write the summary combined index records. 4067 writeCombinedGlobalValueSummary(); 4068 4069 Stream.ExitBlock(); 4070 } 4071 4072 // Write the specified module summary index to the given raw output stream, 4073 // where it will be written in a new bitcode block. This is used when 4074 // writing the combined index file for ThinLTO. When writing a subset of the 4075 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4076 void llvm::WriteIndexToFile( 4077 const ModuleSummaryIndex &Index, raw_ostream &Out, 4078 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4079 SmallVector<char, 0> Buffer; 4080 Buffer.reserve(256 * 1024); 4081 4082 BitcodeWriter Writer(Buffer); 4083 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4084 Writer.writeStrtab(); 4085 4086 Out.write((char *)&Buffer.front(), Buffer.size()); 4087 } 4088 4089 namespace { 4090 4091 /// Class to manage the bitcode writing for a thin link bitcode file. 4092 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4093 /// ModHash is for use in ThinLTO incremental build, generated while writing 4094 /// the module bitcode file. 4095 const ModuleHash *ModHash; 4096 4097 public: 4098 ThinLinkBitcodeWriter(const Module *M, StringTableBuilder &StrtabBuilder, 4099 BitstreamWriter &Stream, 4100 const ModuleSummaryIndex &Index, 4101 const ModuleHash &ModHash) 4102 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4103 /*ShouldPreserveUseListOrder=*/false, &Index), 4104 ModHash(&ModHash) {} 4105 4106 void write(); 4107 4108 private: 4109 void writeSimplifiedModuleInfo(); 4110 }; 4111 4112 } // end anonymous namespace 4113 4114 // This function writes a simpilified module info for thin link bitcode file. 4115 // It only contains the source file name along with the name(the offset and 4116 // size in strtab) and linkage for global values. For the global value info 4117 // entry, in order to keep linkage at offset 5, there are three zeros used 4118 // as padding. 4119 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4120 SmallVector<unsigned, 64> Vals; 4121 // Emit the module's source file name. 4122 { 4123 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4124 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4125 if (Bits == SE_Char6) 4126 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4127 else if (Bits == SE_Fixed7) 4128 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4129 4130 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4131 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4132 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4134 Abbv->Add(AbbrevOpToUse); 4135 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4136 4137 for (const auto P : M.getSourceFileName()) 4138 Vals.push_back((unsigned char)P); 4139 4140 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4141 Vals.clear(); 4142 } 4143 4144 // Emit the global variable information. 4145 for (const GlobalVariable &GV : M.globals()) { 4146 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4147 Vals.push_back(StrtabBuilder.add(GV.getName())); 4148 Vals.push_back(GV.getName().size()); 4149 Vals.push_back(0); 4150 Vals.push_back(0); 4151 Vals.push_back(0); 4152 Vals.push_back(getEncodedLinkage(GV)); 4153 4154 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4155 Vals.clear(); 4156 } 4157 4158 // Emit the function proto information. 4159 for (const Function &F : M) { 4160 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4161 Vals.push_back(StrtabBuilder.add(F.getName())); 4162 Vals.push_back(F.getName().size()); 4163 Vals.push_back(0); 4164 Vals.push_back(0); 4165 Vals.push_back(0); 4166 Vals.push_back(getEncodedLinkage(F)); 4167 4168 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4169 Vals.clear(); 4170 } 4171 4172 // Emit the alias information. 4173 for (const GlobalAlias &A : M.aliases()) { 4174 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4175 Vals.push_back(StrtabBuilder.add(A.getName())); 4176 Vals.push_back(A.getName().size()); 4177 Vals.push_back(0); 4178 Vals.push_back(0); 4179 Vals.push_back(0); 4180 Vals.push_back(getEncodedLinkage(A)); 4181 4182 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4183 Vals.clear(); 4184 } 4185 4186 // Emit the ifunc information. 4187 for (const GlobalIFunc &I : M.ifuncs()) { 4188 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4189 Vals.push_back(StrtabBuilder.add(I.getName())); 4190 Vals.push_back(I.getName().size()); 4191 Vals.push_back(0); 4192 Vals.push_back(0); 4193 Vals.push_back(0); 4194 Vals.push_back(getEncodedLinkage(I)); 4195 4196 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4197 Vals.clear(); 4198 } 4199 } 4200 4201 void ThinLinkBitcodeWriter::write() { 4202 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4203 4204 writeModuleVersion(); 4205 4206 writeSimplifiedModuleInfo(); 4207 4208 writePerModuleGlobalValueSummary(); 4209 4210 // Write module hash. 4211 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4212 4213 Stream.ExitBlock(); 4214 } 4215 4216 void BitcodeWriter::writeThinLinkBitcode(const Module *M, 4217 const ModuleSummaryIndex &Index, 4218 const ModuleHash &ModHash) { 4219 assert(!WroteStrtab); 4220 4221 // The Mods vector is used by irsymtab::build, which requires non-const 4222 // Modules in case it needs to materialize metadata. But the bitcode writer 4223 // requires that the module is materialized, so we can cast to non-const here, 4224 // after checking that it is in fact materialized. 4225 assert(M->isMaterialized()); 4226 Mods.push_back(const_cast<Module *>(M)); 4227 4228 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4229 ModHash); 4230 ThinLinkWriter.write(); 4231 } 4232 4233 // Write the specified thin link bitcode file to the given raw output stream, 4234 // where it will be written in a new bitcode block. This is used when 4235 // writing the per-module index file for ThinLTO. 4236 void llvm::WriteThinLinkBitcodeToFile(const Module *M, raw_ostream &Out, 4237 const ModuleSummaryIndex &Index, 4238 const ModuleHash &ModHash) { 4239 SmallVector<char, 0> Buffer; 4240 Buffer.reserve(256 * 1024); 4241 4242 BitcodeWriter Writer(Buffer); 4243 Writer.writeThinLinkBitcode(M, Index, ModHash); 4244 Writer.writeSymtab(); 4245 Writer.writeStrtab(); 4246 4247 Out.write((char *)&Buffer.front(), Buffer.size()); 4248 } 4249