1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/Program.h" 31 #include <cctype> 32 using namespace llvm; 33 34 /// These are manifest constants used by the bitcode writer. They do not need to 35 /// be kept in sync with the reader, but need to be consistent within this file. 36 enum { 37 CurVersion = 0, 38 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_ARRAY. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Emit an entry count so the reader can reserve space. 193 TypeVals.push_back(TypeList.size()); 194 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 195 TypeVals.clear(); 196 197 // Loop over all of the types, emitting each in turn. 198 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 199 const Type *T = TypeList[i]; 200 int AbbrevToUse = 0; 201 unsigned Code = 0; 202 203 switch (T->getTypeID()) { 204 default: llvm_unreachable("Unknown type!"); 205 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 206 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 207 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 208 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 209 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 210 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 211 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 212 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 213 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 214 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 215 case Type::IntegerTyID: 216 // INTEGER: [width] 217 Code = bitc::TYPE_CODE_INTEGER; 218 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 219 break; 220 case Type::PointerTyID: { 221 const PointerType *PTy = cast<PointerType>(T); 222 // POINTER: [pointee type, address space] 223 Code = bitc::TYPE_CODE_POINTER; 224 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 225 unsigned AddressSpace = PTy->getAddressSpace(); 226 TypeVals.push_back(AddressSpace); 227 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 228 break; 229 } 230 case Type::FunctionTyID: { 231 const FunctionType *FT = cast<FunctionType>(T); 232 // FUNCTION: [isvararg, attrid, retty, paramty x N] 233 Code = bitc::TYPE_CODE_FUNCTION; 234 TypeVals.push_back(FT->isVarArg()); 235 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 236 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 237 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 238 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 239 AbbrevToUse = FunctionAbbrev; 240 break; 241 } 242 case Type::StructTyID: { 243 const StructType *ST = cast<StructType>(T); 244 // STRUCT: [ispacked, eltty x N] 245 Code = bitc::TYPE_CODE_STRUCT; 246 TypeVals.push_back(ST->isPacked()); 247 // Output all of the element types. 248 for (StructType::element_iterator I = ST->element_begin(), 249 E = ST->element_end(); I != E; ++I) 250 TypeVals.push_back(VE.getTypeID(*I)); 251 AbbrevToUse = StructAbbrev; 252 break; 253 } 254 case Type::ArrayTyID: { 255 const ArrayType *AT = cast<ArrayType>(T); 256 // ARRAY: [numelts, eltty] 257 Code = bitc::TYPE_CODE_ARRAY; 258 TypeVals.push_back(AT->getNumElements()); 259 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 260 AbbrevToUse = ArrayAbbrev; 261 break; 262 } 263 case Type::VectorTyID: { 264 const VectorType *VT = cast<VectorType>(T); 265 // VECTOR [numelts, eltty] 266 Code = bitc::TYPE_CODE_VECTOR; 267 TypeVals.push_back(VT->getNumElements()); 268 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 269 break; 270 } 271 } 272 273 // Emit the finished record. 274 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 275 TypeVals.clear(); 276 } 277 278 Stream.ExitBlock(); 279 } 280 281 static unsigned getEncodedLinkage(const GlobalValue *GV) { 282 switch (GV->getLinkage()) { 283 default: llvm_unreachable("Invalid linkage!"); 284 case GlobalValue::ExternalLinkage: return 0; 285 case GlobalValue::WeakAnyLinkage: return 1; 286 case GlobalValue::AppendingLinkage: return 2; 287 case GlobalValue::InternalLinkage: return 3; 288 case GlobalValue::LinkOnceAnyLinkage: return 4; 289 case GlobalValue::DLLImportLinkage: return 5; 290 case GlobalValue::DLLExportLinkage: return 6; 291 case GlobalValue::ExternalWeakLinkage: return 7; 292 case GlobalValue::CommonLinkage: return 8; 293 case GlobalValue::PrivateLinkage: return 9; 294 case GlobalValue::WeakODRLinkage: return 10; 295 case GlobalValue::LinkOnceODRLinkage: return 11; 296 case GlobalValue::AvailableExternallyLinkage: return 12; 297 case GlobalValue::LinkerPrivateLinkage: return 13; 298 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 299 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 300 } 301 } 302 303 static unsigned getEncodedVisibility(const GlobalValue *GV) { 304 switch (GV->getVisibility()) { 305 default: llvm_unreachable("Invalid visibility!"); 306 case GlobalValue::DefaultVisibility: return 0; 307 case GlobalValue::HiddenVisibility: return 1; 308 case GlobalValue::ProtectedVisibility: return 2; 309 } 310 } 311 312 // Emit top-level description of module, including target triple, inline asm, 313 // descriptors for global variables, and function prototype info. 314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 315 BitstreamWriter &Stream) { 316 // Emit the list of dependent libraries for the Module. 317 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 318 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 319 320 // Emit various pieces of data attached to a module. 321 if (!M->getTargetTriple().empty()) 322 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 323 0/*TODO*/, Stream); 324 if (!M->getDataLayout().empty()) 325 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 326 0/*TODO*/, Stream); 327 if (!M->getModuleInlineAsm().empty()) 328 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 329 0/*TODO*/, Stream); 330 331 // Emit information about sections and GC, computing how many there are. Also 332 // compute the maximum alignment value. 333 std::map<std::string, unsigned> SectionMap; 334 std::map<std::string, unsigned> GCMap; 335 unsigned MaxAlignment = 0; 336 unsigned MaxGlobalType = 0; 337 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 338 GV != E; ++GV) { 339 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 340 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 341 342 if (!GV->hasSection()) continue; 343 // Give section names unique ID's. 344 unsigned &Entry = SectionMap[GV->getSection()]; 345 if (Entry != 0) continue; 346 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 347 0/*TODO*/, Stream); 348 Entry = SectionMap.size(); 349 } 350 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 351 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 352 if (F->hasSection()) { 353 // Give section names unique ID's. 354 unsigned &Entry = SectionMap[F->getSection()]; 355 if (!Entry) { 356 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 357 0/*TODO*/, Stream); 358 Entry = SectionMap.size(); 359 } 360 } 361 if (F->hasGC()) { 362 // Same for GC names. 363 unsigned &Entry = GCMap[F->getGC()]; 364 if (!Entry) { 365 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 366 0/*TODO*/, Stream); 367 Entry = GCMap.size(); 368 } 369 } 370 } 371 372 // Emit abbrev for globals, now that we know # sections and max alignment. 373 unsigned SimpleGVarAbbrev = 0; 374 if (!M->global_empty()) { 375 // Add an abbrev for common globals with no visibility or thread localness. 376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 377 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 379 Log2_32_Ceil(MaxGlobalType+1))); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 383 if (MaxAlignment == 0) // Alignment. 384 Abbv->Add(BitCodeAbbrevOp(0)); 385 else { 386 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 388 Log2_32_Ceil(MaxEncAlignment+1))); 389 } 390 if (SectionMap.empty()) // Section. 391 Abbv->Add(BitCodeAbbrevOp(0)); 392 else 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 394 Log2_32_Ceil(SectionMap.size()+1))); 395 // Don't bother emitting vis + thread local. 396 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 397 } 398 399 // Emit the global variable information. 400 SmallVector<unsigned, 64> Vals; 401 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 402 GV != E; ++GV) { 403 unsigned AbbrevToUse = 0; 404 405 // GLOBALVAR: [type, isconst, initid, 406 // linkage, alignment, section, visibility, threadlocal, 407 // unnamed_addr] 408 Vals.push_back(VE.getTypeID(GV->getType())); 409 Vals.push_back(GV->isConstant()); 410 Vals.push_back(GV->isDeclaration() ? 0 : 411 (VE.getValueID(GV->getInitializer()) + 1)); 412 Vals.push_back(getEncodedLinkage(GV)); 413 Vals.push_back(Log2_32(GV->getAlignment())+1); 414 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 415 if (GV->isThreadLocal() || 416 GV->getVisibility() != GlobalValue::DefaultVisibility || 417 GV->hasUnnamedAddr()) { 418 Vals.push_back(getEncodedVisibility(GV)); 419 Vals.push_back(GV->isThreadLocal()); 420 Vals.push_back(GV->hasUnnamedAddr()); 421 } else { 422 AbbrevToUse = SimpleGVarAbbrev; 423 } 424 425 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 426 Vals.clear(); 427 } 428 429 // Emit the function proto information. 430 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 431 // FUNCTION: [type, callingconv, isproto, paramattr, 432 // linkage, alignment, section, visibility, gc, unnamed_addr] 433 Vals.push_back(VE.getTypeID(F->getType())); 434 Vals.push_back(F->getCallingConv()); 435 Vals.push_back(F->isDeclaration()); 436 Vals.push_back(getEncodedLinkage(F)); 437 Vals.push_back(VE.getAttributeID(F->getAttributes())); 438 Vals.push_back(Log2_32(F->getAlignment())+1); 439 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 440 Vals.push_back(getEncodedVisibility(F)); 441 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 442 Vals.push_back(F->hasUnnamedAddr()); 443 444 unsigned AbbrevToUse = 0; 445 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 446 Vals.clear(); 447 } 448 449 // Emit the alias information. 450 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 451 AI != E; ++AI) { 452 Vals.push_back(VE.getTypeID(AI->getType())); 453 Vals.push_back(VE.getValueID(AI->getAliasee())); 454 Vals.push_back(getEncodedLinkage(AI)); 455 Vals.push_back(getEncodedVisibility(AI)); 456 unsigned AbbrevToUse = 0; 457 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 458 Vals.clear(); 459 } 460 } 461 462 static uint64_t GetOptimizationFlags(const Value *V) { 463 uint64_t Flags = 0; 464 465 if (const OverflowingBinaryOperator *OBO = 466 dyn_cast<OverflowingBinaryOperator>(V)) { 467 if (OBO->hasNoSignedWrap()) 468 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 469 if (OBO->hasNoUnsignedWrap()) 470 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 471 } else if (const PossiblyExactOperator *PEO = 472 dyn_cast<PossiblyExactOperator>(V)) { 473 if (PEO->isExact()) 474 Flags |= 1 << bitc::PEO_EXACT; 475 } 476 477 return Flags; 478 } 479 480 static void WriteMDNode(const MDNode *N, 481 const ValueEnumerator &VE, 482 BitstreamWriter &Stream, 483 SmallVector<uint64_t, 64> &Record) { 484 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 485 if (N->getOperand(i)) { 486 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 487 Record.push_back(VE.getValueID(N->getOperand(i))); 488 } else { 489 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 490 Record.push_back(0); 491 } 492 } 493 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 494 bitc::METADATA_NODE; 495 Stream.EmitRecord(MDCode, Record, 0); 496 Record.clear(); 497 } 498 499 static void WriteModuleMetadata(const Module *M, 500 const ValueEnumerator &VE, 501 BitstreamWriter &Stream) { 502 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 503 bool StartedMetadataBlock = false; 504 unsigned MDSAbbrev = 0; 505 SmallVector<uint64_t, 64> Record; 506 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 507 508 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 509 if (!N->isFunctionLocal() || !N->getFunction()) { 510 if (!StartedMetadataBlock) { 511 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 512 StartedMetadataBlock = true; 513 } 514 WriteMDNode(N, VE, Stream, Record); 515 } 516 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 517 if (!StartedMetadataBlock) { 518 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 519 520 // Abbrev for METADATA_STRING. 521 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 522 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 525 MDSAbbrev = Stream.EmitAbbrev(Abbv); 526 StartedMetadataBlock = true; 527 } 528 529 // Code: [strchar x N] 530 Record.append(MDS->begin(), MDS->end()); 531 532 // Emit the finished record. 533 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 534 Record.clear(); 535 } 536 } 537 538 // Write named metadata. 539 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 540 E = M->named_metadata_end(); I != E; ++I) { 541 const NamedMDNode *NMD = I; 542 if (!StartedMetadataBlock) { 543 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 544 StartedMetadataBlock = true; 545 } 546 547 // Write name. 548 StringRef Str = NMD->getName(); 549 for (unsigned i = 0, e = Str.size(); i != e; ++i) 550 Record.push_back(Str[i]); 551 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 552 Record.clear(); 553 554 // Write named metadata operands. 555 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 556 Record.push_back(VE.getValueID(NMD->getOperand(i))); 557 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 558 Record.clear(); 559 } 560 561 if (StartedMetadataBlock) 562 Stream.ExitBlock(); 563 } 564 565 static void WriteFunctionLocalMetadata(const Function &F, 566 const ValueEnumerator &VE, 567 BitstreamWriter &Stream) { 568 bool StartedMetadataBlock = false; 569 SmallVector<uint64_t, 64> Record; 570 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 571 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 572 if (const MDNode *N = Vals[i]) 573 if (N->isFunctionLocal() && N->getFunction() == &F) { 574 if (!StartedMetadataBlock) { 575 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 576 StartedMetadataBlock = true; 577 } 578 WriteMDNode(N, VE, Stream, Record); 579 } 580 581 if (StartedMetadataBlock) 582 Stream.ExitBlock(); 583 } 584 585 static void WriteMetadataAttachment(const Function &F, 586 const ValueEnumerator &VE, 587 BitstreamWriter &Stream) { 588 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 589 590 SmallVector<uint64_t, 64> Record; 591 592 // Write metadata attachments 593 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 594 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 595 596 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 597 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 598 I != E; ++I) { 599 MDs.clear(); 600 I->getAllMetadataOtherThanDebugLoc(MDs); 601 602 // If no metadata, ignore instruction. 603 if (MDs.empty()) continue; 604 605 Record.push_back(VE.getInstructionID(I)); 606 607 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 608 Record.push_back(MDs[i].first); 609 Record.push_back(VE.getValueID(MDs[i].second)); 610 } 611 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 612 Record.clear(); 613 } 614 615 Stream.ExitBlock(); 616 } 617 618 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 619 SmallVector<uint64_t, 64> Record; 620 621 // Write metadata kinds 622 // METADATA_KIND - [n x [id, name]] 623 SmallVector<StringRef, 4> Names; 624 M->getMDKindNames(Names); 625 626 if (Names.empty()) return; 627 628 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 629 630 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 631 Record.push_back(MDKindID); 632 StringRef KName = Names[MDKindID]; 633 Record.append(KName.begin(), KName.end()); 634 635 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 636 Record.clear(); 637 } 638 639 Stream.ExitBlock(); 640 } 641 642 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 643 const ValueEnumerator &VE, 644 BitstreamWriter &Stream, bool isGlobal) { 645 if (FirstVal == LastVal) return; 646 647 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 648 649 unsigned AggregateAbbrev = 0; 650 unsigned String8Abbrev = 0; 651 unsigned CString7Abbrev = 0; 652 unsigned CString6Abbrev = 0; 653 // If this is a constant pool for the module, emit module-specific abbrevs. 654 if (isGlobal) { 655 // Abbrev for CST_CODE_AGGREGATE. 656 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 657 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 660 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 661 662 // Abbrev for CST_CODE_STRING. 663 Abbv = new BitCodeAbbrev(); 664 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 667 String8Abbrev = Stream.EmitAbbrev(Abbv); 668 // Abbrev for CST_CODE_CSTRING. 669 Abbv = new BitCodeAbbrev(); 670 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 673 CString7Abbrev = Stream.EmitAbbrev(Abbv); 674 // Abbrev for CST_CODE_CSTRING. 675 Abbv = new BitCodeAbbrev(); 676 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 679 CString6Abbrev = Stream.EmitAbbrev(Abbv); 680 } 681 682 SmallVector<uint64_t, 64> Record; 683 684 const ValueEnumerator::ValueList &Vals = VE.getValues(); 685 const Type *LastTy = 0; 686 for (unsigned i = FirstVal; i != LastVal; ++i) { 687 const Value *V = Vals[i].first; 688 // If we need to switch types, do so now. 689 if (V->getType() != LastTy) { 690 LastTy = V->getType(); 691 Record.push_back(VE.getTypeID(LastTy)); 692 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 693 CONSTANTS_SETTYPE_ABBREV); 694 Record.clear(); 695 } 696 697 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 698 Record.push_back(unsigned(IA->hasSideEffects()) | 699 unsigned(IA->isAlignStack()) << 1); 700 701 // Add the asm string. 702 const std::string &AsmStr = IA->getAsmString(); 703 Record.push_back(AsmStr.size()); 704 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 705 Record.push_back(AsmStr[i]); 706 707 // Add the constraint string. 708 const std::string &ConstraintStr = IA->getConstraintString(); 709 Record.push_back(ConstraintStr.size()); 710 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 711 Record.push_back(ConstraintStr[i]); 712 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 713 Record.clear(); 714 continue; 715 } 716 const Constant *C = cast<Constant>(V); 717 unsigned Code = -1U; 718 unsigned AbbrevToUse = 0; 719 if (C->isNullValue()) { 720 Code = bitc::CST_CODE_NULL; 721 } else if (isa<UndefValue>(C)) { 722 Code = bitc::CST_CODE_UNDEF; 723 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 724 if (IV->getBitWidth() <= 64) { 725 uint64_t V = IV->getSExtValue(); 726 if ((int64_t)V >= 0) 727 Record.push_back(V << 1); 728 else 729 Record.push_back((-V << 1) | 1); 730 Code = bitc::CST_CODE_INTEGER; 731 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 732 } else { // Wide integers, > 64 bits in size. 733 // We have an arbitrary precision integer value to write whose 734 // bit width is > 64. However, in canonical unsigned integer 735 // format it is likely that the high bits are going to be zero. 736 // So, we only write the number of active words. 737 unsigned NWords = IV->getValue().getActiveWords(); 738 const uint64_t *RawWords = IV->getValue().getRawData(); 739 for (unsigned i = 0; i != NWords; ++i) { 740 int64_t V = RawWords[i]; 741 if (V >= 0) 742 Record.push_back(V << 1); 743 else 744 Record.push_back((-V << 1) | 1); 745 } 746 Code = bitc::CST_CODE_WIDE_INTEGER; 747 } 748 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 749 Code = bitc::CST_CODE_FLOAT; 750 const Type *Ty = CFP->getType(); 751 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 752 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 753 } else if (Ty->isX86_FP80Ty()) { 754 // api needed to prevent premature destruction 755 // bits are not in the same order as a normal i80 APInt, compensate. 756 APInt api = CFP->getValueAPF().bitcastToAPInt(); 757 const uint64_t *p = api.getRawData(); 758 Record.push_back((p[1] << 48) | (p[0] >> 16)); 759 Record.push_back(p[0] & 0xffffLL); 760 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 761 APInt api = CFP->getValueAPF().bitcastToAPInt(); 762 const uint64_t *p = api.getRawData(); 763 Record.push_back(p[0]); 764 Record.push_back(p[1]); 765 } else { 766 assert (0 && "Unknown FP type!"); 767 } 768 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 769 const ConstantArray *CA = cast<ConstantArray>(C); 770 // Emit constant strings specially. 771 unsigned NumOps = CA->getNumOperands(); 772 // If this is a null-terminated string, use the denser CSTRING encoding. 773 if (CA->getOperand(NumOps-1)->isNullValue()) { 774 Code = bitc::CST_CODE_CSTRING; 775 --NumOps; // Don't encode the null, which isn't allowed by char6. 776 } else { 777 Code = bitc::CST_CODE_STRING; 778 AbbrevToUse = String8Abbrev; 779 } 780 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 781 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 782 for (unsigned i = 0; i != NumOps; ++i) { 783 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 784 Record.push_back(V); 785 isCStr7 &= (V & 128) == 0; 786 if (isCStrChar6) 787 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 788 } 789 790 if (isCStrChar6) 791 AbbrevToUse = CString6Abbrev; 792 else if (isCStr7) 793 AbbrevToUse = CString7Abbrev; 794 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 795 isa<ConstantVector>(V)) { 796 Code = bitc::CST_CODE_AGGREGATE; 797 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 798 Record.push_back(VE.getValueID(C->getOperand(i))); 799 AbbrevToUse = AggregateAbbrev; 800 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 801 switch (CE->getOpcode()) { 802 default: 803 if (Instruction::isCast(CE->getOpcode())) { 804 Code = bitc::CST_CODE_CE_CAST; 805 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 806 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 807 Record.push_back(VE.getValueID(C->getOperand(0))); 808 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 809 } else { 810 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 811 Code = bitc::CST_CODE_CE_BINOP; 812 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 813 Record.push_back(VE.getValueID(C->getOperand(0))); 814 Record.push_back(VE.getValueID(C->getOperand(1))); 815 uint64_t Flags = GetOptimizationFlags(CE); 816 if (Flags != 0) 817 Record.push_back(Flags); 818 } 819 break; 820 case Instruction::GetElementPtr: 821 Code = bitc::CST_CODE_CE_GEP; 822 if (cast<GEPOperator>(C)->isInBounds()) 823 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 824 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 825 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 826 Record.push_back(VE.getValueID(C->getOperand(i))); 827 } 828 break; 829 case Instruction::Select: 830 Code = bitc::CST_CODE_CE_SELECT; 831 Record.push_back(VE.getValueID(C->getOperand(0))); 832 Record.push_back(VE.getValueID(C->getOperand(1))); 833 Record.push_back(VE.getValueID(C->getOperand(2))); 834 break; 835 case Instruction::ExtractElement: 836 Code = bitc::CST_CODE_CE_EXTRACTELT; 837 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 838 Record.push_back(VE.getValueID(C->getOperand(0))); 839 Record.push_back(VE.getValueID(C->getOperand(1))); 840 break; 841 case Instruction::InsertElement: 842 Code = bitc::CST_CODE_CE_INSERTELT; 843 Record.push_back(VE.getValueID(C->getOperand(0))); 844 Record.push_back(VE.getValueID(C->getOperand(1))); 845 Record.push_back(VE.getValueID(C->getOperand(2))); 846 break; 847 case Instruction::ShuffleVector: 848 // If the return type and argument types are the same, this is a 849 // standard shufflevector instruction. If the types are different, 850 // then the shuffle is widening or truncating the input vectors, and 851 // the argument type must also be encoded. 852 if (C->getType() == C->getOperand(0)->getType()) { 853 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 854 } else { 855 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 856 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 857 } 858 Record.push_back(VE.getValueID(C->getOperand(0))); 859 Record.push_back(VE.getValueID(C->getOperand(1))); 860 Record.push_back(VE.getValueID(C->getOperand(2))); 861 break; 862 case Instruction::ICmp: 863 case Instruction::FCmp: 864 Code = bitc::CST_CODE_CE_CMP; 865 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 866 Record.push_back(VE.getValueID(C->getOperand(0))); 867 Record.push_back(VE.getValueID(C->getOperand(1))); 868 Record.push_back(CE->getPredicate()); 869 break; 870 } 871 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 872 Code = bitc::CST_CODE_BLOCKADDRESS; 873 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 874 Record.push_back(VE.getValueID(BA->getFunction())); 875 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 876 } else { 877 #ifndef NDEBUG 878 C->dump(); 879 #endif 880 llvm_unreachable("Unknown constant!"); 881 } 882 Stream.EmitRecord(Code, Record, AbbrevToUse); 883 Record.clear(); 884 } 885 886 Stream.ExitBlock(); 887 } 888 889 static void WriteModuleConstants(const ValueEnumerator &VE, 890 BitstreamWriter &Stream) { 891 const ValueEnumerator::ValueList &Vals = VE.getValues(); 892 893 // Find the first constant to emit, which is the first non-globalvalue value. 894 // We know globalvalues have been emitted by WriteModuleInfo. 895 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 896 if (!isa<GlobalValue>(Vals[i].first)) { 897 WriteConstants(i, Vals.size(), VE, Stream, true); 898 return; 899 } 900 } 901 } 902 903 /// PushValueAndType - The file has to encode both the value and type id for 904 /// many values, because we need to know what type to create for forward 905 /// references. However, most operands are not forward references, so this type 906 /// field is not needed. 907 /// 908 /// This function adds V's value ID to Vals. If the value ID is higher than the 909 /// instruction ID, then it is a forward reference, and it also includes the 910 /// type ID. 911 static bool PushValueAndType(const Value *V, unsigned InstID, 912 SmallVector<unsigned, 64> &Vals, 913 ValueEnumerator &VE) { 914 unsigned ValID = VE.getValueID(V); 915 Vals.push_back(ValID); 916 if (ValID >= InstID) { 917 Vals.push_back(VE.getTypeID(V->getType())); 918 return true; 919 } 920 return false; 921 } 922 923 /// WriteInstruction - Emit an instruction to the specified stream. 924 static void WriteInstruction(const Instruction &I, unsigned InstID, 925 ValueEnumerator &VE, BitstreamWriter &Stream, 926 SmallVector<unsigned, 64> &Vals) { 927 unsigned Code = 0; 928 unsigned AbbrevToUse = 0; 929 VE.setInstructionID(&I); 930 switch (I.getOpcode()) { 931 default: 932 if (Instruction::isCast(I.getOpcode())) { 933 Code = bitc::FUNC_CODE_INST_CAST; 934 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 935 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 936 Vals.push_back(VE.getTypeID(I.getType())); 937 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 938 } else { 939 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 940 Code = bitc::FUNC_CODE_INST_BINOP; 941 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 942 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 943 Vals.push_back(VE.getValueID(I.getOperand(1))); 944 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 945 uint64_t Flags = GetOptimizationFlags(&I); 946 if (Flags != 0) { 947 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 948 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 949 Vals.push_back(Flags); 950 } 951 } 952 break; 953 954 case Instruction::GetElementPtr: 955 Code = bitc::FUNC_CODE_INST_GEP; 956 if (cast<GEPOperator>(&I)->isInBounds()) 957 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 958 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 959 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 960 break; 961 case Instruction::ExtractValue: { 962 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 963 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 964 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 965 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 966 Vals.push_back(*i); 967 break; 968 } 969 case Instruction::InsertValue: { 970 Code = bitc::FUNC_CODE_INST_INSERTVAL; 971 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 972 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 973 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 974 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 975 Vals.push_back(*i); 976 break; 977 } 978 case Instruction::Select: 979 Code = bitc::FUNC_CODE_INST_VSELECT; 980 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 981 Vals.push_back(VE.getValueID(I.getOperand(2))); 982 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 983 break; 984 case Instruction::ExtractElement: 985 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 986 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 987 Vals.push_back(VE.getValueID(I.getOperand(1))); 988 break; 989 case Instruction::InsertElement: 990 Code = bitc::FUNC_CODE_INST_INSERTELT; 991 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 992 Vals.push_back(VE.getValueID(I.getOperand(1))); 993 Vals.push_back(VE.getValueID(I.getOperand(2))); 994 break; 995 case Instruction::ShuffleVector: 996 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 997 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 998 Vals.push_back(VE.getValueID(I.getOperand(1))); 999 Vals.push_back(VE.getValueID(I.getOperand(2))); 1000 break; 1001 case Instruction::ICmp: 1002 case Instruction::FCmp: 1003 // compare returning Int1Ty or vector of Int1Ty 1004 Code = bitc::FUNC_CODE_INST_CMP2; 1005 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1006 Vals.push_back(VE.getValueID(I.getOperand(1))); 1007 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1008 break; 1009 1010 case Instruction::Ret: 1011 { 1012 Code = bitc::FUNC_CODE_INST_RET; 1013 unsigned NumOperands = I.getNumOperands(); 1014 if (NumOperands == 0) 1015 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1016 else if (NumOperands == 1) { 1017 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1018 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1019 } else { 1020 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1021 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1022 } 1023 } 1024 break; 1025 case Instruction::Br: 1026 { 1027 Code = bitc::FUNC_CODE_INST_BR; 1028 BranchInst &II = cast<BranchInst>(I); 1029 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1030 if (II.isConditional()) { 1031 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1032 Vals.push_back(VE.getValueID(II.getCondition())); 1033 } 1034 } 1035 break; 1036 case Instruction::Switch: 1037 Code = bitc::FUNC_CODE_INST_SWITCH; 1038 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1039 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1040 Vals.push_back(VE.getValueID(I.getOperand(i))); 1041 break; 1042 case Instruction::IndirectBr: 1043 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1044 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1045 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1046 Vals.push_back(VE.getValueID(I.getOperand(i))); 1047 break; 1048 1049 case Instruction::Invoke: { 1050 const InvokeInst *II = cast<InvokeInst>(&I); 1051 const Value *Callee(II->getCalledValue()); 1052 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1053 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1054 Code = bitc::FUNC_CODE_INST_INVOKE; 1055 1056 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1057 Vals.push_back(II->getCallingConv()); 1058 Vals.push_back(VE.getValueID(II->getNormalDest())); 1059 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1060 PushValueAndType(Callee, InstID, Vals, VE); 1061 1062 // Emit value #'s for the fixed parameters. 1063 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1064 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1065 1066 // Emit type/value pairs for varargs params. 1067 if (FTy->isVarArg()) { 1068 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1069 i != e; ++i) 1070 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1071 } 1072 break; 1073 } 1074 case Instruction::Unwind: 1075 Code = bitc::FUNC_CODE_INST_UNWIND; 1076 break; 1077 case Instruction::Unreachable: 1078 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1079 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1080 break; 1081 1082 case Instruction::PHI: { 1083 const PHINode &PN = cast<PHINode>(I); 1084 Code = bitc::FUNC_CODE_INST_PHI; 1085 Vals.push_back(VE.getTypeID(PN.getType())); 1086 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1087 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1088 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1089 } 1090 break; 1091 } 1092 1093 case Instruction::Alloca: 1094 Code = bitc::FUNC_CODE_INST_ALLOCA; 1095 Vals.push_back(VE.getTypeID(I.getType())); 1096 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1097 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1098 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1099 break; 1100 1101 case Instruction::Load: 1102 Code = bitc::FUNC_CODE_INST_LOAD; 1103 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1104 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1105 1106 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1107 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1108 break; 1109 case Instruction::Store: 1110 Code = bitc::FUNC_CODE_INST_STORE; 1111 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1112 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1113 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1114 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1115 break; 1116 case Instruction::Call: { 1117 const CallInst &CI = cast<CallInst>(I); 1118 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1119 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1120 1121 Code = bitc::FUNC_CODE_INST_CALL; 1122 1123 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1124 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1125 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1126 1127 // Emit value #'s for the fixed parameters. 1128 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1129 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1130 1131 // Emit type/value pairs for varargs params. 1132 if (FTy->isVarArg()) { 1133 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1134 i != e; ++i) 1135 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1136 } 1137 break; 1138 } 1139 case Instruction::VAArg: 1140 Code = bitc::FUNC_CODE_INST_VAARG; 1141 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1142 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1143 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1144 break; 1145 } 1146 1147 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1148 Vals.clear(); 1149 } 1150 1151 // Emit names for globals/functions etc. 1152 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1153 const ValueEnumerator &VE, 1154 BitstreamWriter &Stream) { 1155 if (VST.empty()) return; 1156 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1157 1158 // FIXME: Set up the abbrev, we know how many values there are! 1159 // FIXME: We know if the type names can use 7-bit ascii. 1160 SmallVector<unsigned, 64> NameVals; 1161 1162 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1163 SI != SE; ++SI) { 1164 1165 const ValueName &Name = *SI; 1166 1167 // Figure out the encoding to use for the name. 1168 bool is7Bit = true; 1169 bool isChar6 = true; 1170 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1171 C != E; ++C) { 1172 if (isChar6) 1173 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1174 if ((unsigned char)*C & 128) { 1175 is7Bit = false; 1176 break; // don't bother scanning the rest. 1177 } 1178 } 1179 1180 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1181 1182 // VST_ENTRY: [valueid, namechar x N] 1183 // VST_BBENTRY: [bbid, namechar x N] 1184 unsigned Code; 1185 if (isa<BasicBlock>(SI->getValue())) { 1186 Code = bitc::VST_CODE_BBENTRY; 1187 if (isChar6) 1188 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1189 } else { 1190 Code = bitc::VST_CODE_ENTRY; 1191 if (isChar6) 1192 AbbrevToUse = VST_ENTRY_6_ABBREV; 1193 else if (is7Bit) 1194 AbbrevToUse = VST_ENTRY_7_ABBREV; 1195 } 1196 1197 NameVals.push_back(VE.getValueID(SI->getValue())); 1198 for (const char *P = Name.getKeyData(), 1199 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1200 NameVals.push_back((unsigned char)*P); 1201 1202 // Emit the finished record. 1203 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1204 NameVals.clear(); 1205 } 1206 Stream.ExitBlock(); 1207 } 1208 1209 /// WriteFunction - Emit a function body to the module stream. 1210 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1211 BitstreamWriter &Stream) { 1212 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1213 VE.incorporateFunction(F); 1214 1215 SmallVector<unsigned, 64> Vals; 1216 1217 // Emit the number of basic blocks, so the reader can create them ahead of 1218 // time. 1219 Vals.push_back(VE.getBasicBlocks().size()); 1220 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1221 Vals.clear(); 1222 1223 // If there are function-local constants, emit them now. 1224 unsigned CstStart, CstEnd; 1225 VE.getFunctionConstantRange(CstStart, CstEnd); 1226 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1227 1228 // If there is function-local metadata, emit it now. 1229 WriteFunctionLocalMetadata(F, VE, Stream); 1230 1231 // Keep a running idea of what the instruction ID is. 1232 unsigned InstID = CstEnd; 1233 1234 bool NeedsMetadataAttachment = false; 1235 1236 DebugLoc LastDL; 1237 1238 // Finally, emit all the instructions, in order. 1239 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1240 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1241 I != E; ++I) { 1242 WriteInstruction(*I, InstID, VE, Stream, Vals); 1243 1244 if (!I->getType()->isVoidTy()) 1245 ++InstID; 1246 1247 // If the instruction has metadata, write a metadata attachment later. 1248 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1249 1250 // If the instruction has a debug location, emit it. 1251 DebugLoc DL = I->getDebugLoc(); 1252 if (DL.isUnknown()) { 1253 // nothing todo. 1254 } else if (DL == LastDL) { 1255 // Just repeat the same debug loc as last time. 1256 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1257 } else { 1258 MDNode *Scope, *IA; 1259 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1260 1261 Vals.push_back(DL.getLine()); 1262 Vals.push_back(DL.getCol()); 1263 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1264 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1265 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1266 Vals.clear(); 1267 1268 LastDL = DL; 1269 } 1270 } 1271 1272 // Emit names for all the instructions etc. 1273 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1274 1275 if (NeedsMetadataAttachment) 1276 WriteMetadataAttachment(F, VE, Stream); 1277 VE.purgeFunction(); 1278 Stream.ExitBlock(); 1279 } 1280 1281 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1282 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1283 const ValueEnumerator &VE, 1284 BitstreamWriter &Stream) { 1285 if (TST.empty()) return; 1286 1287 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1288 1289 // 7-bit fixed width VST_CODE_ENTRY strings. 1290 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1291 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1293 Log2_32_Ceil(VE.getTypes().size()+1))); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1296 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1297 1298 SmallVector<unsigned, 64> NameVals; 1299 1300 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1301 TI != TE; ++TI) { 1302 // TST_ENTRY: [typeid, namechar x N] 1303 NameVals.push_back(VE.getTypeID(TI->second)); 1304 1305 const std::string &Str = TI->first; 1306 bool is7Bit = true; 1307 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1308 NameVals.push_back((unsigned char)Str[i]); 1309 if (Str[i] & 128) 1310 is7Bit = false; 1311 } 1312 1313 // Emit the finished record. 1314 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1315 NameVals.clear(); 1316 } 1317 1318 Stream.ExitBlock(); 1319 } 1320 1321 // Emit blockinfo, which defines the standard abbreviations etc. 1322 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1323 // We only want to emit block info records for blocks that have multiple 1324 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1325 // blocks can defined their abbrevs inline. 1326 Stream.EnterBlockInfoBlock(2); 1327 1328 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1334 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1335 Abbv) != VST_ENTRY_8_ABBREV) 1336 llvm_unreachable("Unexpected abbrev ordering!"); 1337 } 1338 1339 { // 7-bit fixed width VST_ENTRY strings. 1340 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1341 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1345 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1346 Abbv) != VST_ENTRY_7_ABBREV) 1347 llvm_unreachable("Unexpected abbrev ordering!"); 1348 } 1349 { // 6-bit char6 VST_ENTRY strings. 1350 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1351 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1355 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1356 Abbv) != VST_ENTRY_6_ABBREV) 1357 llvm_unreachable("Unexpected abbrev ordering!"); 1358 } 1359 { // 6-bit char6 VST_BBENTRY strings. 1360 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1361 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1365 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1366 Abbv) != VST_BBENTRY_6_ABBREV) 1367 llvm_unreachable("Unexpected abbrev ordering!"); 1368 } 1369 1370 1371 1372 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1373 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1374 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1376 Log2_32_Ceil(VE.getTypes().size()+1))); 1377 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1378 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1379 llvm_unreachable("Unexpected abbrev ordering!"); 1380 } 1381 1382 { // INTEGER abbrev for CONSTANTS_BLOCK. 1383 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1384 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1386 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1387 Abbv) != CONSTANTS_INTEGER_ABBREV) 1388 llvm_unreachable("Unexpected abbrev ordering!"); 1389 } 1390 1391 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1392 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1393 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1396 Log2_32_Ceil(VE.getTypes().size()+1))); 1397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1398 1399 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1400 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1401 llvm_unreachable("Unexpected abbrev ordering!"); 1402 } 1403 { // NULL abbrev for CONSTANTS_BLOCK. 1404 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1405 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1406 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1407 Abbv) != CONSTANTS_NULL_Abbrev) 1408 llvm_unreachable("Unexpected abbrev ordering!"); 1409 } 1410 1411 // FIXME: This should only use space for first class types! 1412 1413 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1414 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1415 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1419 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1420 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1421 llvm_unreachable("Unexpected abbrev ordering!"); 1422 } 1423 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1424 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1425 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1429 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1430 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1431 llvm_unreachable("Unexpected abbrev ordering!"); 1432 } 1433 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1434 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1435 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1440 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1441 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1442 llvm_unreachable("Unexpected abbrev ordering!"); 1443 } 1444 { // INST_CAST abbrev for FUNCTION_BLOCK. 1445 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1446 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1449 Log2_32_Ceil(VE.getTypes().size()+1))); 1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1451 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1452 Abbv) != FUNCTION_INST_CAST_ABBREV) 1453 llvm_unreachable("Unexpected abbrev ordering!"); 1454 } 1455 1456 { // INST_RET abbrev for FUNCTION_BLOCK. 1457 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1458 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1459 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1460 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1461 llvm_unreachable("Unexpected abbrev ordering!"); 1462 } 1463 { // INST_RET abbrev for FUNCTION_BLOCK. 1464 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1465 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1467 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1468 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1469 llvm_unreachable("Unexpected abbrev ordering!"); 1470 } 1471 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1472 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1473 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1474 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1475 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1476 llvm_unreachable("Unexpected abbrev ordering!"); 1477 } 1478 1479 Stream.ExitBlock(); 1480 } 1481 1482 1483 /// WriteModule - Emit the specified module to the bitstream. 1484 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1485 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1486 1487 // Emit the version number if it is non-zero. 1488 if (CurVersion) { 1489 SmallVector<unsigned, 1> Vals; 1490 Vals.push_back(CurVersion); 1491 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1492 } 1493 1494 // Analyze the module, enumerating globals, functions, etc. 1495 ValueEnumerator VE(M); 1496 1497 // Emit blockinfo, which defines the standard abbreviations etc. 1498 WriteBlockInfo(VE, Stream); 1499 1500 // Emit information about parameter attributes. 1501 WriteAttributeTable(VE, Stream); 1502 1503 // Emit information describing all of the types in the module. 1504 WriteTypeTable(VE, Stream); 1505 1506 // Emit top-level description of module, including target triple, inline asm, 1507 // descriptors for global variables, and function prototype info. 1508 WriteModuleInfo(M, VE, Stream); 1509 1510 // Emit constants. 1511 WriteModuleConstants(VE, Stream); 1512 1513 // Emit metadata. 1514 WriteModuleMetadata(M, VE, Stream); 1515 1516 // Emit function bodies. 1517 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1518 if (!F->isDeclaration()) 1519 WriteFunction(*F, VE, Stream); 1520 1521 // Emit metadata. 1522 WriteModuleMetadataStore(M, Stream); 1523 1524 // Emit the type symbol table information. 1525 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1526 1527 // Emit names for globals/functions etc. 1528 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1529 1530 Stream.ExitBlock(); 1531 } 1532 1533 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1534 /// header and trailer to make it compatible with the system archiver. To do 1535 /// this we emit the following header, and then emit a trailer that pads the 1536 /// file out to be a multiple of 16 bytes. 1537 /// 1538 /// struct bc_header { 1539 /// uint32_t Magic; // 0x0B17C0DE 1540 /// uint32_t Version; // Version, currently always 0. 1541 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1542 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1543 /// uint32_t CPUType; // CPU specifier. 1544 /// ... potentially more later ... 1545 /// }; 1546 enum { 1547 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1548 DarwinBCHeaderSize = 5*4 1549 }; 1550 1551 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) { 1552 unsigned CPUType = ~0U; 1553 1554 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1555 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1556 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1557 // specific constants here because they are implicitly part of the Darwin ABI. 1558 enum { 1559 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1560 DARWIN_CPU_TYPE_X86 = 7, 1561 DARWIN_CPU_TYPE_ARM = 12, 1562 DARWIN_CPU_TYPE_POWERPC = 18 1563 }; 1564 1565 Triple::ArchType Arch = TT.getArch(); 1566 if (Arch == Triple::x86_64) 1567 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1568 else if (Arch == Triple::x86) 1569 CPUType = DARWIN_CPU_TYPE_X86; 1570 else if (Arch == Triple::ppc) 1571 CPUType = DARWIN_CPU_TYPE_POWERPC; 1572 else if (Arch == Triple::ppc64) 1573 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1574 else if (Arch == Triple::arm || Arch == Triple::thumb) 1575 CPUType = DARWIN_CPU_TYPE_ARM; 1576 1577 // Traditional Bitcode starts after header. 1578 unsigned BCOffset = DarwinBCHeaderSize; 1579 1580 Stream.Emit(0x0B17C0DE, 32); 1581 Stream.Emit(0 , 32); // Version. 1582 Stream.Emit(BCOffset , 32); 1583 Stream.Emit(0 , 32); // Filled in later. 1584 Stream.Emit(CPUType , 32); 1585 } 1586 1587 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1588 /// finalize the header. 1589 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1590 // Update the size field in the header. 1591 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1592 1593 // If the file is not a multiple of 16 bytes, insert dummy padding. 1594 while (BufferSize & 15) { 1595 Stream.Emit(0, 8); 1596 ++BufferSize; 1597 } 1598 } 1599 1600 1601 /// WriteBitcodeToFile - Write the specified module to the specified output 1602 /// stream. 1603 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1604 std::vector<unsigned char> Buffer; 1605 BitstreamWriter Stream(Buffer); 1606 1607 Buffer.reserve(256*1024); 1608 1609 WriteBitcodeToStream( M, Stream ); 1610 1611 // Write the generated bitstream to "Out". 1612 Out.write((char*)&Buffer.front(), Buffer.size()); 1613 } 1614 1615 /// WriteBitcodeToStream - Write the specified module to the specified output 1616 /// stream. 1617 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1618 // If this is darwin or another generic macho target, emit a file header and 1619 // trailer if needed. 1620 Triple TT(M->getTargetTriple()); 1621 if (TT.isOSDarwin()) 1622 EmitDarwinBCHeader(Stream, TT); 1623 1624 // Emit the file header. 1625 Stream.Emit((unsigned)'B', 8); 1626 Stream.Emit((unsigned)'C', 8); 1627 Stream.Emit(0x0, 4); 1628 Stream.Emit(0xC, 4); 1629 Stream.Emit(0xE, 4); 1630 Stream.Emit(0xD, 4); 1631 1632 // Emit the module. 1633 WriteModule(M, Stream); 1634 1635 if (TT.isOSDarwin()) 1636 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1637 } 1638