1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeModuleVersion(); 146 }; 147 148 void BitcodeWriterBase::writeModuleVersion() { 149 // VERSION: [version#] 150 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 151 } 152 153 /// Base class to manage the module bitcode writing, currently subclassed for 154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 155 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 156 protected: 157 /// The Module to write to bitcode. 158 const Module &M; 159 160 /// Enumerates ids for all values in the module. 161 ValueEnumerator VE; 162 163 /// Optional per-module index to write for ThinLTO. 164 const ModuleSummaryIndex *Index; 165 166 /// Map that holds the correspondence between GUIDs in the summary index, 167 /// that came from indirect call profiles, and a value id generated by this 168 /// class to use in the VST and summary block records. 169 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 170 171 /// Tracks the last value id recorded in the GUIDToValueMap. 172 unsigned GlobalValueId; 173 174 /// Saves the offset of the VSTOffset record that must eventually be 175 /// backpatched with the offset of the actual VST. 176 uint64_t VSTOffsetPlaceholder = 0; 177 178 public: 179 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 180 /// writing to the provided \p Buffer. 181 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 182 BitstreamWriter &Stream, 183 bool ShouldPreserveUseListOrder, 184 const ModuleSummaryIndex *Index) 185 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 186 VE(M, ShouldPreserveUseListOrder), Index(Index) { 187 // Assign ValueIds to any callee values in the index that came from 188 // indirect call profiles and were recorded as a GUID not a Value* 189 // (which would have been assigned an ID by the ValueEnumerator). 190 // The starting ValueId is just after the number of values in the 191 // ValueEnumerator, so that they can be emitted in the VST. 192 GlobalValueId = VE.getValues().size(); 193 if (!Index) 194 return; 195 for (const auto &GUIDSummaryLists : *Index) 196 // Examine all summaries for this GUID. 197 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 198 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 199 // For each call in the function summary, see if the call 200 // is to a GUID (which means it is for an indirect call, 201 // otherwise we would have a Value for it). If so, synthesize 202 // a value id. 203 for (auto &CallEdge : FS->calls()) 204 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 205 assignValueId(CallEdge.first.getGUID()); 206 } 207 208 protected: 209 void writePerModuleGlobalValueSummary(); 210 211 private: 212 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 213 GlobalValueSummary *Summary, 214 unsigned ValueID, 215 unsigned FSCallsAbbrev, 216 unsigned FSCallsProfileAbbrev, 217 const Function &F); 218 void writeModuleLevelReferences(const GlobalVariable &V, 219 SmallVector<uint64_t, 64> &NameVals, 220 unsigned FSModRefsAbbrev, 221 unsigned FSModVTableRefsAbbrev); 222 223 void assignValueId(GlobalValue::GUID ValGUID) { 224 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 225 } 226 227 unsigned getValueId(GlobalValue::GUID ValGUID) { 228 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 229 // Expect that any GUID value had a value Id assigned by an 230 // earlier call to assignValueId. 231 assert(VMI != GUIDToValueIdMap.end() && 232 "GUID does not have assigned value Id"); 233 return VMI->second; 234 } 235 236 // Helper to get the valueId for the type of value recorded in VI. 237 unsigned getValueId(ValueInfo VI) { 238 if (!VI.haveGVs() || !VI.getValue()) 239 return getValueId(VI.getGUID()); 240 return VE.getValueID(VI.getValue()); 241 } 242 243 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 244 }; 245 246 /// Class to manage the bitcode writing for a module. 247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 248 /// Pointer to the buffer allocated by caller for bitcode writing. 249 const SmallVectorImpl<char> &Buffer; 250 251 /// True if a module hash record should be written. 252 bool GenerateHash; 253 254 /// If non-null, when GenerateHash is true, the resulting hash is written 255 /// into ModHash. 256 ModuleHash *ModHash; 257 258 SHA1 Hasher; 259 260 /// The start bit of the identification block. 261 uint64_t BitcodeStartBit; 262 263 public: 264 /// Constructs a ModuleBitcodeWriter object for the given Module, 265 /// writing to the provided \p Buffer. 266 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 267 StringTableBuilder &StrtabBuilder, 268 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 269 const ModuleSummaryIndex *Index, bool GenerateHash, 270 ModuleHash *ModHash = nullptr) 271 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 272 ShouldPreserveUseListOrder, Index), 273 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 274 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 275 276 /// Emit the current module to the bitstream. 277 void write(); 278 279 private: 280 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 281 282 size_t addToStrtab(StringRef Str); 283 284 void writeAttributeGroupTable(); 285 void writeAttributeTable(); 286 void writeTypeTable(); 287 void writeComdats(); 288 void writeValueSymbolTableForwardDecl(); 289 void writeModuleInfo(); 290 void writeValueAsMetadata(const ValueAsMetadata *MD, 291 SmallVectorImpl<uint64_t> &Record); 292 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev); 294 unsigned createDILocationAbbrev(); 295 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned &Abbrev); 297 unsigned createGenericDINodeAbbrev(); 298 void writeGenericDINode(const GenericDINode *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 300 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIGenericSubrange(const DIGenericSubrange *N, 303 SmallVectorImpl<uint64_t> &Record, 304 unsigned Abbrev); 305 void writeDIEnumerator(const DIEnumerator *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIStringType(const DIStringType *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDIDerivedType(const DIDerivedType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDICompositeType(const DICompositeType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubroutineType(const DISubroutineType *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICompileUnit(const DICompileUnit *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDISubprogram(const DISubprogram *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDILexicalBlock(const DILexicalBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDICommonBlock(const DICommonBlock *N, 330 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 331 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIGlobalVariable(const DIGlobalVariable *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDILocalVariable(const DILocalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDILabel(const DILabel *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIExpression(const DIExpression *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 357 SmallVectorImpl<uint64_t> &Record, 358 unsigned Abbrev); 359 void writeDIObjCProperty(const DIObjCProperty *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIImportedEntity(const DIImportedEntity *N, 362 SmallVectorImpl<uint64_t> &Record, 363 unsigned Abbrev); 364 unsigned createNamedMetadataAbbrev(); 365 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 366 unsigned createMetadataStringsAbbrev(); 367 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 368 SmallVectorImpl<uint64_t> &Record); 369 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 370 SmallVectorImpl<uint64_t> &Record, 371 std::vector<unsigned> *MDAbbrevs = nullptr, 372 std::vector<uint64_t> *IndexPos = nullptr); 373 void writeModuleMetadata(); 374 void writeFunctionMetadata(const Function &F); 375 void writeFunctionMetadataAttachment(const Function &F); 376 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 377 const GlobalObject &GO); 378 void writeModuleMetadataKinds(); 379 void writeOperandBundleTags(); 380 void writeSyncScopeNames(); 381 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 382 void writeModuleConstants(); 383 bool pushValueAndType(const Value *V, unsigned InstID, 384 SmallVectorImpl<unsigned> &Vals); 385 void writeOperandBundles(const CallBase &CB, unsigned InstID); 386 void pushValue(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void pushValueSigned(const Value *V, unsigned InstID, 389 SmallVectorImpl<uint64_t> &Vals); 390 void writeInstruction(const Instruction &I, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 393 void writeGlobalValueSymbolTable( 394 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 395 void writeUseList(UseListOrder &&Order); 396 void writeUseListBlock(const Function *F); 397 void 398 writeFunction(const Function &F, 399 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 400 void writeBlockInfo(); 401 void writeModuleHash(size_t BlockStartPos); 402 403 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 404 return unsigned(SSID); 405 } 406 407 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 408 }; 409 410 /// Class to manage the bitcode writing for a combined index. 411 class IndexBitcodeWriter : public BitcodeWriterBase { 412 /// The combined index to write to bitcode. 413 const ModuleSummaryIndex &Index; 414 415 /// When writing a subset of the index for distributed backends, client 416 /// provides a map of modules to the corresponding GUIDs/summaries to write. 417 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 418 419 /// Map that holds the correspondence between the GUID used in the combined 420 /// index and a value id generated by this class to use in references. 421 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 422 423 /// Tracks the last value id recorded in the GUIDToValueMap. 424 unsigned GlobalValueId = 0; 425 426 public: 427 /// Constructs a IndexBitcodeWriter object for the given combined index, 428 /// writing to the provided \p Buffer. When writing a subset of the index 429 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 430 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 431 const ModuleSummaryIndex &Index, 432 const std::map<std::string, GVSummaryMapTy> 433 *ModuleToSummariesForIndex = nullptr) 434 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 435 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 436 // Assign unique value ids to all summaries to be written, for use 437 // in writing out the call graph edges. Save the mapping from GUID 438 // to the new global value id to use when writing those edges, which 439 // are currently saved in the index in terms of GUID. 440 forEachSummary([&](GVInfo I, bool) { 441 GUIDToValueIdMap[I.first] = ++GlobalValueId; 442 }); 443 } 444 445 /// The below iterator returns the GUID and associated summary. 446 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 447 448 /// Calls the callback for each value GUID and summary to be written to 449 /// bitcode. This hides the details of whether they are being pulled from the 450 /// entire index or just those in a provided ModuleToSummariesForIndex map. 451 template<typename Functor> 452 void forEachSummary(Functor Callback) { 453 if (ModuleToSummariesForIndex) { 454 for (auto &M : *ModuleToSummariesForIndex) 455 for (auto &Summary : M.second) { 456 Callback(Summary, false); 457 // Ensure aliasee is handled, e.g. for assigning a valueId, 458 // even if we are not importing the aliasee directly (the 459 // imported alias will contain a copy of aliasee). 460 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 461 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 462 } 463 } else { 464 for (auto &Summaries : Index) 465 for (auto &Summary : Summaries.second.SummaryList) 466 Callback({Summaries.first, Summary.get()}, false); 467 } 468 } 469 470 /// Calls the callback for each entry in the modulePaths StringMap that 471 /// should be written to the module path string table. This hides the details 472 /// of whether they are being pulled from the entire index or just those in a 473 /// provided ModuleToSummariesForIndex map. 474 template <typename Functor> void forEachModule(Functor Callback) { 475 if (ModuleToSummariesForIndex) { 476 for (const auto &M : *ModuleToSummariesForIndex) { 477 const auto &MPI = Index.modulePaths().find(M.first); 478 if (MPI == Index.modulePaths().end()) { 479 // This should only happen if the bitcode file was empty, in which 480 // case we shouldn't be importing (the ModuleToSummariesForIndex 481 // would only include the module we are writing and index for). 482 assert(ModuleToSummariesForIndex->size() == 1); 483 continue; 484 } 485 Callback(*MPI); 486 } 487 } else { 488 for (const auto &MPSE : Index.modulePaths()) 489 Callback(MPSE); 490 } 491 } 492 493 /// Main entry point for writing a combined index to bitcode. 494 void write(); 495 496 private: 497 void writeModStrings(); 498 void writeCombinedGlobalValueSummary(); 499 500 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 501 auto VMI = GUIDToValueIdMap.find(ValGUID); 502 if (VMI == GUIDToValueIdMap.end()) 503 return None; 504 return VMI->second; 505 } 506 507 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 508 }; 509 510 } // end anonymous namespace 511 512 static unsigned getEncodedCastOpcode(unsigned Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Unknown cast instruction!"); 515 case Instruction::Trunc : return bitc::CAST_TRUNC; 516 case Instruction::ZExt : return bitc::CAST_ZEXT; 517 case Instruction::SExt : return bitc::CAST_SEXT; 518 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 519 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 520 case Instruction::UIToFP : return bitc::CAST_UITOFP; 521 case Instruction::SIToFP : return bitc::CAST_SITOFP; 522 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 523 case Instruction::FPExt : return bitc::CAST_FPEXT; 524 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 525 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 526 case Instruction::BitCast : return bitc::CAST_BITCAST; 527 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 528 } 529 } 530 531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 532 switch (Opcode) { 533 default: llvm_unreachable("Unknown binary instruction!"); 534 case Instruction::FNeg: return bitc::UNOP_FNEG; 535 } 536 } 537 538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: llvm_unreachable("Unknown binary instruction!"); 541 case Instruction::Add: 542 case Instruction::FAdd: return bitc::BINOP_ADD; 543 case Instruction::Sub: 544 case Instruction::FSub: return bitc::BINOP_SUB; 545 case Instruction::Mul: 546 case Instruction::FMul: return bitc::BINOP_MUL; 547 case Instruction::UDiv: return bitc::BINOP_UDIV; 548 case Instruction::FDiv: 549 case Instruction::SDiv: return bitc::BINOP_SDIV; 550 case Instruction::URem: return bitc::BINOP_UREM; 551 case Instruction::FRem: 552 case Instruction::SRem: return bitc::BINOP_SREM; 553 case Instruction::Shl: return bitc::BINOP_SHL; 554 case Instruction::LShr: return bitc::BINOP_LSHR; 555 case Instruction::AShr: return bitc::BINOP_ASHR; 556 case Instruction::And: return bitc::BINOP_AND; 557 case Instruction::Or: return bitc::BINOP_OR; 558 case Instruction::Xor: return bitc::BINOP_XOR; 559 } 560 } 561 562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 563 switch (Op) { 564 default: llvm_unreachable("Unknown RMW operation!"); 565 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 566 case AtomicRMWInst::Add: return bitc::RMW_ADD; 567 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 568 case AtomicRMWInst::And: return bitc::RMW_AND; 569 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 570 case AtomicRMWInst::Or: return bitc::RMW_OR; 571 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 572 case AtomicRMWInst::Max: return bitc::RMW_MAX; 573 case AtomicRMWInst::Min: return bitc::RMW_MIN; 574 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 575 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 576 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 577 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 578 } 579 } 580 581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 582 switch (Ordering) { 583 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 584 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 586 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 587 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 588 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 589 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 590 } 591 llvm_unreachable("Invalid ordering"); 592 } 593 594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 595 StringRef Str, unsigned AbbrevToUse) { 596 SmallVector<unsigned, 64> Vals; 597 598 // Code: [strchar x N] 599 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 600 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 601 AbbrevToUse = 0; 602 Vals.push_back(Str[i]); 603 } 604 605 // Emit the finished record. 606 Stream.EmitRecord(Code, Vals, AbbrevToUse); 607 } 608 609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 610 switch (Kind) { 611 case Attribute::Alignment: 612 return bitc::ATTR_KIND_ALIGNMENT; 613 case Attribute::AllocSize: 614 return bitc::ATTR_KIND_ALLOC_SIZE; 615 case Attribute::AlwaysInline: 616 return bitc::ATTR_KIND_ALWAYS_INLINE; 617 case Attribute::ArgMemOnly: 618 return bitc::ATTR_KIND_ARGMEMONLY; 619 case Attribute::Builtin: 620 return bitc::ATTR_KIND_BUILTIN; 621 case Attribute::ByVal: 622 return bitc::ATTR_KIND_BY_VAL; 623 case Attribute::Convergent: 624 return bitc::ATTR_KIND_CONVERGENT; 625 case Attribute::InAlloca: 626 return bitc::ATTR_KIND_IN_ALLOCA; 627 case Attribute::Cold: 628 return bitc::ATTR_KIND_COLD; 629 case Attribute::DisableSanitizerInstrumentation: 630 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::ElementType: 634 return bitc::ATTR_KIND_ELEMENTTYPE; 635 case Attribute::InaccessibleMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 637 case Attribute::InaccessibleMemOrArgMemOnly: 638 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 639 case Attribute::InlineHint: 640 return bitc::ATTR_KIND_INLINE_HINT; 641 case Attribute::InReg: 642 return bitc::ATTR_KIND_IN_REG; 643 case Attribute::JumpTable: 644 return bitc::ATTR_KIND_JUMP_TABLE; 645 case Attribute::MinSize: 646 return bitc::ATTR_KIND_MIN_SIZE; 647 case Attribute::Naked: 648 return bitc::ATTR_KIND_NAKED; 649 case Attribute::Nest: 650 return bitc::ATTR_KIND_NEST; 651 case Attribute::NoAlias: 652 return bitc::ATTR_KIND_NO_ALIAS; 653 case Attribute::NoBuiltin: 654 return bitc::ATTR_KIND_NO_BUILTIN; 655 case Attribute::NoCallback: 656 return bitc::ATTR_KIND_NO_CALLBACK; 657 case Attribute::NoCapture: 658 return bitc::ATTR_KIND_NO_CAPTURE; 659 case Attribute::NoDuplicate: 660 return bitc::ATTR_KIND_NO_DUPLICATE; 661 case Attribute::NoFree: 662 return bitc::ATTR_KIND_NOFREE; 663 case Attribute::NoImplicitFloat: 664 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 665 case Attribute::NoInline: 666 return bitc::ATTR_KIND_NO_INLINE; 667 case Attribute::NoRecurse: 668 return bitc::ATTR_KIND_NO_RECURSE; 669 case Attribute::NoMerge: 670 return bitc::ATTR_KIND_NO_MERGE; 671 case Attribute::NonLazyBind: 672 return bitc::ATTR_KIND_NON_LAZY_BIND; 673 case Attribute::NonNull: 674 return bitc::ATTR_KIND_NON_NULL; 675 case Attribute::Dereferenceable: 676 return bitc::ATTR_KIND_DEREFERENCEABLE; 677 case Attribute::DereferenceableOrNull: 678 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 679 case Attribute::NoRedZone: 680 return bitc::ATTR_KIND_NO_RED_ZONE; 681 case Attribute::NoReturn: 682 return bitc::ATTR_KIND_NO_RETURN; 683 case Attribute::NoSync: 684 return bitc::ATTR_KIND_NOSYNC; 685 case Attribute::NoCfCheck: 686 return bitc::ATTR_KIND_NOCF_CHECK; 687 case Attribute::NoProfile: 688 return bitc::ATTR_KIND_NO_PROFILE; 689 case Attribute::NoUnwind: 690 return bitc::ATTR_KIND_NO_UNWIND; 691 case Attribute::NoSanitizeCoverage: 692 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 693 case Attribute::NullPointerIsValid: 694 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 695 case Attribute::OptForFuzzing: 696 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 697 case Attribute::OptimizeForSize: 698 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 699 case Attribute::OptimizeNone: 700 return bitc::ATTR_KIND_OPTIMIZE_NONE; 701 case Attribute::ReadNone: 702 return bitc::ATTR_KIND_READ_NONE; 703 case Attribute::ReadOnly: 704 return bitc::ATTR_KIND_READ_ONLY; 705 case Attribute::Returned: 706 return bitc::ATTR_KIND_RETURNED; 707 case Attribute::ReturnsTwice: 708 return bitc::ATTR_KIND_RETURNS_TWICE; 709 case Attribute::SExt: 710 return bitc::ATTR_KIND_S_EXT; 711 case Attribute::Speculatable: 712 return bitc::ATTR_KIND_SPECULATABLE; 713 case Attribute::StackAlignment: 714 return bitc::ATTR_KIND_STACK_ALIGNMENT; 715 case Attribute::StackProtect: 716 return bitc::ATTR_KIND_STACK_PROTECT; 717 case Attribute::StackProtectReq: 718 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 719 case Attribute::StackProtectStrong: 720 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 721 case Attribute::SafeStack: 722 return bitc::ATTR_KIND_SAFESTACK; 723 case Attribute::ShadowCallStack: 724 return bitc::ATTR_KIND_SHADOWCALLSTACK; 725 case Attribute::StrictFP: 726 return bitc::ATTR_KIND_STRICT_FP; 727 case Attribute::StructRet: 728 return bitc::ATTR_KIND_STRUCT_RET; 729 case Attribute::SanitizeAddress: 730 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 731 case Attribute::SanitizeHWAddress: 732 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 733 case Attribute::SanitizeThread: 734 return bitc::ATTR_KIND_SANITIZE_THREAD; 735 case Attribute::SanitizeMemory: 736 return bitc::ATTR_KIND_SANITIZE_MEMORY; 737 case Attribute::SpeculativeLoadHardening: 738 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 739 case Attribute::SwiftError: 740 return bitc::ATTR_KIND_SWIFT_ERROR; 741 case Attribute::SwiftSelf: 742 return bitc::ATTR_KIND_SWIFT_SELF; 743 case Attribute::SwiftAsync: 744 return bitc::ATTR_KIND_SWIFT_ASYNC; 745 case Attribute::UWTable: 746 return bitc::ATTR_KIND_UW_TABLE; 747 case Attribute::VScaleRange: 748 return bitc::ATTR_KIND_VSCALE_RANGE; 749 case Attribute::WillReturn: 750 return bitc::ATTR_KIND_WILLRETURN; 751 case Attribute::WriteOnly: 752 return bitc::ATTR_KIND_WRITEONLY; 753 case Attribute::ZExt: 754 return bitc::ATTR_KIND_Z_EXT; 755 case Attribute::ImmArg: 756 return bitc::ATTR_KIND_IMMARG; 757 case Attribute::SanitizeMemTag: 758 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 759 case Attribute::Preallocated: 760 return bitc::ATTR_KIND_PREALLOCATED; 761 case Attribute::NoUndef: 762 return bitc::ATTR_KIND_NOUNDEF; 763 case Attribute::ByRef: 764 return bitc::ATTR_KIND_BYREF; 765 case Attribute::MustProgress: 766 return bitc::ATTR_KIND_MUSTPROGRESS; 767 case Attribute::EndAttrKinds: 768 llvm_unreachable("Can not encode end-attribute kinds marker."); 769 case Attribute::None: 770 llvm_unreachable("Can not encode none-attribute."); 771 case Attribute::EmptyKey: 772 case Attribute::TombstoneKey: 773 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 774 } 775 776 llvm_unreachable("Trying to encode unknown attribute"); 777 } 778 779 void ModuleBitcodeWriter::writeAttributeGroupTable() { 780 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 781 VE.getAttributeGroups(); 782 if (AttrGrps.empty()) return; 783 784 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 785 786 SmallVector<uint64_t, 64> Record; 787 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 788 unsigned AttrListIndex = Pair.first; 789 AttributeSet AS = Pair.second; 790 Record.push_back(VE.getAttributeGroupID(Pair)); 791 Record.push_back(AttrListIndex); 792 793 for (Attribute Attr : AS) { 794 if (Attr.isEnumAttribute()) { 795 Record.push_back(0); 796 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 797 } else if (Attr.isIntAttribute()) { 798 Record.push_back(1); 799 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 800 Record.push_back(Attr.getValueAsInt()); 801 } else if (Attr.isStringAttribute()) { 802 StringRef Kind = Attr.getKindAsString(); 803 StringRef Val = Attr.getValueAsString(); 804 805 Record.push_back(Val.empty() ? 3 : 4); 806 Record.append(Kind.begin(), Kind.end()); 807 Record.push_back(0); 808 if (!Val.empty()) { 809 Record.append(Val.begin(), Val.end()); 810 Record.push_back(0); 811 } 812 } else { 813 assert(Attr.isTypeAttribute()); 814 Type *Ty = Attr.getValueAsType(); 815 Record.push_back(Ty ? 6 : 5); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 if (Ty) 818 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 819 } 820 } 821 822 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 823 Record.clear(); 824 } 825 826 Stream.ExitBlock(); 827 } 828 829 void ModuleBitcodeWriter::writeAttributeTable() { 830 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 831 if (Attrs.empty()) return; 832 833 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 834 835 SmallVector<uint64_t, 64> Record; 836 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 837 AttributeList AL = Attrs[i]; 838 for (unsigned i : AL.indexes()) { 839 AttributeSet AS = AL.getAttributes(i); 840 if (AS.hasAttributes()) 841 Record.push_back(VE.getAttributeGroupID({i, AS})); 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 /// WriteTypeTable - Write out the type table for a module. 852 void ModuleBitcodeWriter::writeTypeTable() { 853 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 854 855 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 856 SmallVector<uint64_t, 64> TypeVals; 857 858 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 859 860 // Abbrev for TYPE_CODE_POINTER. 861 auto Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 870 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 871 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 872 873 // Abbrev for TYPE_CODE_FUNCTION. 874 Abbv = std::make_shared<BitCodeAbbrev>(); 875 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Abbrev for TYPE_CODE_STRUCT_ANON. 882 Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 887 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 888 889 // Abbrev for TYPE_CODE_STRUCT_NAME. 890 Abbv = std::make_shared<BitCodeAbbrev>(); 891 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 894 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 895 896 // Abbrev for TYPE_CODE_STRUCT_NAMED. 897 Abbv = std::make_shared<BitCodeAbbrev>(); 898 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 903 904 // Abbrev for TYPE_CODE_ARRAY. 905 Abbv = std::make_shared<BitCodeAbbrev>(); 906 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 909 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Emit an entry count so the reader can reserve space. 912 TypeVals.push_back(TypeList.size()); 913 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 914 TypeVals.clear(); 915 916 // Loop over all of the types, emitting each in turn. 917 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 918 Type *T = TypeList[i]; 919 int AbbrevToUse = 0; 920 unsigned Code = 0; 921 922 switch (T->getTypeID()) { 923 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 924 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 925 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 926 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 927 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 928 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 929 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 930 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 931 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 932 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 933 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 934 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 935 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 936 case Type::IntegerTyID: 937 // INTEGER: [width] 938 Code = bitc::TYPE_CODE_INTEGER; 939 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 940 break; 941 case Type::PointerTyID: { 942 PointerType *PTy = cast<PointerType>(T); 943 unsigned AddressSpace = PTy->getAddressSpace(); 944 if (PTy->isOpaque()) { 945 // OPAQUE_POINTER: [address space] 946 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 947 TypeVals.push_back(AddressSpace); 948 if (AddressSpace == 0) 949 AbbrevToUse = OpaquePtrAbbrev; 950 } else { 951 // POINTER: [pointee type, address space] 952 Code = bitc::TYPE_CODE_POINTER; 953 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 954 TypeVals.push_back(AddressSpace); 955 if (AddressSpace == 0) 956 AbbrevToUse = PtrAbbrev; 957 } 958 break; 959 } 960 case Type::FunctionTyID: { 961 FunctionType *FT = cast<FunctionType>(T); 962 // FUNCTION: [isvararg, retty, paramty x N] 963 Code = bitc::TYPE_CODE_FUNCTION; 964 TypeVals.push_back(FT->isVarArg()); 965 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 966 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 967 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 968 AbbrevToUse = FunctionAbbrev; 969 break; 970 } 971 case Type::StructTyID: { 972 StructType *ST = cast<StructType>(T); 973 // STRUCT: [ispacked, eltty x N] 974 TypeVals.push_back(ST->isPacked()); 975 // Output all of the element types. 976 for (StructType::element_iterator I = ST->element_begin(), 977 E = ST->element_end(); I != E; ++I) 978 TypeVals.push_back(VE.getTypeID(*I)); 979 980 if (ST->isLiteral()) { 981 Code = bitc::TYPE_CODE_STRUCT_ANON; 982 AbbrevToUse = StructAnonAbbrev; 983 } else { 984 if (ST->isOpaque()) { 985 Code = bitc::TYPE_CODE_OPAQUE; 986 } else { 987 Code = bitc::TYPE_CODE_STRUCT_NAMED; 988 AbbrevToUse = StructNamedAbbrev; 989 } 990 991 // Emit the name if it is present. 992 if (!ST->getName().empty()) 993 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 994 StructNameAbbrev); 995 } 996 break; 997 } 998 case Type::ArrayTyID: { 999 ArrayType *AT = cast<ArrayType>(T); 1000 // ARRAY: [numelts, eltty] 1001 Code = bitc::TYPE_CODE_ARRAY; 1002 TypeVals.push_back(AT->getNumElements()); 1003 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1004 AbbrevToUse = ArrayAbbrev; 1005 break; 1006 } 1007 case Type::FixedVectorTyID: 1008 case Type::ScalableVectorTyID: { 1009 VectorType *VT = cast<VectorType>(T); 1010 // VECTOR [numelts, eltty] or 1011 // [numelts, eltty, scalable] 1012 Code = bitc::TYPE_CODE_VECTOR; 1013 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1014 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1015 if (isa<ScalableVectorType>(VT)) 1016 TypeVals.push_back(true); 1017 break; 1018 } 1019 } 1020 1021 // Emit the finished record. 1022 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1023 TypeVals.clear(); 1024 } 1025 1026 Stream.ExitBlock(); 1027 } 1028 1029 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1030 switch (Linkage) { 1031 case GlobalValue::ExternalLinkage: 1032 return 0; 1033 case GlobalValue::WeakAnyLinkage: 1034 return 16; 1035 case GlobalValue::AppendingLinkage: 1036 return 2; 1037 case GlobalValue::InternalLinkage: 1038 return 3; 1039 case GlobalValue::LinkOnceAnyLinkage: 1040 return 18; 1041 case GlobalValue::ExternalWeakLinkage: 1042 return 7; 1043 case GlobalValue::CommonLinkage: 1044 return 8; 1045 case GlobalValue::PrivateLinkage: 1046 return 9; 1047 case GlobalValue::WeakODRLinkage: 1048 return 17; 1049 case GlobalValue::LinkOnceODRLinkage: 1050 return 19; 1051 case GlobalValue::AvailableExternallyLinkage: 1052 return 12; 1053 } 1054 llvm_unreachable("Invalid linkage"); 1055 } 1056 1057 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1058 return getEncodedLinkage(GV.getLinkage()); 1059 } 1060 1061 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1062 uint64_t RawFlags = 0; 1063 RawFlags |= Flags.ReadNone; 1064 RawFlags |= (Flags.ReadOnly << 1); 1065 RawFlags |= (Flags.NoRecurse << 2); 1066 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1067 RawFlags |= (Flags.NoInline << 4); 1068 RawFlags |= (Flags.AlwaysInline << 5); 1069 RawFlags |= (Flags.NoUnwind << 6); 1070 RawFlags |= (Flags.MayThrow << 7); 1071 RawFlags |= (Flags.HasUnknownCall << 8); 1072 return RawFlags; 1073 } 1074 1075 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1076 // in BitcodeReader.cpp. 1077 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1078 uint64_t RawFlags = 0; 1079 1080 RawFlags |= Flags.NotEligibleToImport; // bool 1081 RawFlags |= (Flags.Live << 1); 1082 RawFlags |= (Flags.DSOLocal << 2); 1083 RawFlags |= (Flags.CanAutoHide << 3); 1084 1085 // Linkage don't need to be remapped at that time for the summary. Any future 1086 // change to the getEncodedLinkage() function will need to be taken into 1087 // account here as well. 1088 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1089 1090 RawFlags |= (Flags.Visibility << 8); // 2 bits 1091 1092 return RawFlags; 1093 } 1094 1095 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1096 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1097 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1098 return RawFlags; 1099 } 1100 1101 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1102 switch (GV.getVisibility()) { 1103 case GlobalValue::DefaultVisibility: return 0; 1104 case GlobalValue::HiddenVisibility: return 1; 1105 case GlobalValue::ProtectedVisibility: return 2; 1106 } 1107 llvm_unreachable("Invalid visibility"); 1108 } 1109 1110 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1111 switch (GV.getDLLStorageClass()) { 1112 case GlobalValue::DefaultStorageClass: return 0; 1113 case GlobalValue::DLLImportStorageClass: return 1; 1114 case GlobalValue::DLLExportStorageClass: return 2; 1115 } 1116 llvm_unreachable("Invalid DLL storage class"); 1117 } 1118 1119 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1120 switch (GV.getThreadLocalMode()) { 1121 case GlobalVariable::NotThreadLocal: return 0; 1122 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1123 case GlobalVariable::LocalDynamicTLSModel: return 2; 1124 case GlobalVariable::InitialExecTLSModel: return 3; 1125 case GlobalVariable::LocalExecTLSModel: return 4; 1126 } 1127 llvm_unreachable("Invalid TLS model"); 1128 } 1129 1130 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1131 switch (C.getSelectionKind()) { 1132 case Comdat::Any: 1133 return bitc::COMDAT_SELECTION_KIND_ANY; 1134 case Comdat::ExactMatch: 1135 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1136 case Comdat::Largest: 1137 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1138 case Comdat::NoDeduplicate: 1139 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1140 case Comdat::SameSize: 1141 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1142 } 1143 llvm_unreachable("Invalid selection kind"); 1144 } 1145 1146 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1147 switch (GV.getUnnamedAddr()) { 1148 case GlobalValue::UnnamedAddr::None: return 0; 1149 case GlobalValue::UnnamedAddr::Local: return 2; 1150 case GlobalValue::UnnamedAddr::Global: return 1; 1151 } 1152 llvm_unreachable("Invalid unnamed_addr"); 1153 } 1154 1155 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1156 if (GenerateHash) 1157 Hasher.update(Str); 1158 return StrtabBuilder.add(Str); 1159 } 1160 1161 void ModuleBitcodeWriter::writeComdats() { 1162 SmallVector<unsigned, 64> Vals; 1163 for (const Comdat *C : VE.getComdats()) { 1164 // COMDAT: [strtab offset, strtab size, selection_kind] 1165 Vals.push_back(addToStrtab(C->getName())); 1166 Vals.push_back(C->getName().size()); 1167 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1168 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1169 Vals.clear(); 1170 } 1171 } 1172 1173 /// Write a record that will eventually hold the word offset of the 1174 /// module-level VST. For now the offset is 0, which will be backpatched 1175 /// after the real VST is written. Saves the bit offset to backpatch. 1176 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1177 // Write a placeholder value in for the offset of the real VST, 1178 // which is written after the function blocks so that it can include 1179 // the offset of each function. The placeholder offset will be 1180 // updated when the real VST is written. 1181 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1182 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1183 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1184 // hold the real VST offset. Must use fixed instead of VBR as we don't 1185 // know how many VBR chunks to reserve ahead of time. 1186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1187 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1188 1189 // Emit the placeholder 1190 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1191 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1192 1193 // Compute and save the bit offset to the placeholder, which will be 1194 // patched when the real VST is written. We can simply subtract the 32-bit 1195 // fixed size from the current bit number to get the location to backpatch. 1196 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1197 } 1198 1199 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1200 1201 /// Determine the encoding to use for the given string name and length. 1202 static StringEncoding getStringEncoding(StringRef Str) { 1203 bool isChar6 = true; 1204 for (char C : Str) { 1205 if (isChar6) 1206 isChar6 = BitCodeAbbrevOp::isChar6(C); 1207 if ((unsigned char)C & 128) 1208 // don't bother scanning the rest. 1209 return SE_Fixed8; 1210 } 1211 if (isChar6) 1212 return SE_Char6; 1213 return SE_Fixed7; 1214 } 1215 1216 /// Emit top-level description of module, including target triple, inline asm, 1217 /// descriptors for global variables, and function prototype info. 1218 /// Returns the bit offset to backpatch with the location of the real VST. 1219 void ModuleBitcodeWriter::writeModuleInfo() { 1220 // Emit various pieces of data attached to a module. 1221 if (!M.getTargetTriple().empty()) 1222 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1223 0 /*TODO*/); 1224 const std::string &DL = M.getDataLayoutStr(); 1225 if (!DL.empty()) 1226 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1227 if (!M.getModuleInlineAsm().empty()) 1228 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1229 0 /*TODO*/); 1230 1231 // Emit information about sections and GC, computing how many there are. Also 1232 // compute the maximum alignment value. 1233 std::map<std::string, unsigned> SectionMap; 1234 std::map<std::string, unsigned> GCMap; 1235 MaybeAlign MaxAlignment; 1236 unsigned MaxGlobalType = 0; 1237 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1238 if (A) 1239 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1240 }; 1241 for (const GlobalVariable &GV : M.globals()) { 1242 UpdateMaxAlignment(GV.getAlign()); 1243 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1244 if (GV.hasSection()) { 1245 // Give section names unique ID's. 1246 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1247 if (!Entry) { 1248 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1249 0 /*TODO*/); 1250 Entry = SectionMap.size(); 1251 } 1252 } 1253 } 1254 for (const Function &F : M) { 1255 UpdateMaxAlignment(F.getAlign()); 1256 if (F.hasSection()) { 1257 // Give section names unique ID's. 1258 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1259 if (!Entry) { 1260 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1261 0 /*TODO*/); 1262 Entry = SectionMap.size(); 1263 } 1264 } 1265 if (F.hasGC()) { 1266 // Same for GC names. 1267 unsigned &Entry = GCMap[F.getGC()]; 1268 if (!Entry) { 1269 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1270 0 /*TODO*/); 1271 Entry = GCMap.size(); 1272 } 1273 } 1274 } 1275 1276 // Emit abbrev for globals, now that we know # sections and max alignment. 1277 unsigned SimpleGVarAbbrev = 0; 1278 if (!M.global_empty()) { 1279 // Add an abbrev for common globals with no visibility or thread localness. 1280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1281 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1285 Log2_32_Ceil(MaxGlobalType+1))); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1287 //| explicitType << 1 1288 //| constant 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1291 if (!MaxAlignment) // Alignment. 1292 Abbv->Add(BitCodeAbbrevOp(0)); 1293 else { 1294 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1296 Log2_32_Ceil(MaxEncAlignment+1))); 1297 } 1298 if (SectionMap.empty()) // Section. 1299 Abbv->Add(BitCodeAbbrevOp(0)); 1300 else 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1302 Log2_32_Ceil(SectionMap.size()+1))); 1303 // Don't bother emitting vis + thread local. 1304 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1305 } 1306 1307 SmallVector<unsigned, 64> Vals; 1308 // Emit the module's source file name. 1309 { 1310 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1311 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1312 if (Bits == SE_Char6) 1313 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1314 else if (Bits == SE_Fixed7) 1315 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1316 1317 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1319 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1321 Abbv->Add(AbbrevOpToUse); 1322 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1323 1324 for (const auto P : M.getSourceFileName()) 1325 Vals.push_back((unsigned char)P); 1326 1327 // Emit the finished record. 1328 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1329 Vals.clear(); 1330 } 1331 1332 // Emit the global variable information. 1333 for (const GlobalVariable &GV : M.globals()) { 1334 unsigned AbbrevToUse = 0; 1335 1336 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1337 // linkage, alignment, section, visibility, threadlocal, 1338 // unnamed_addr, externally_initialized, dllstorageclass, 1339 // comdat, attributes, DSO_Local] 1340 Vals.push_back(addToStrtab(GV.getName())); 1341 Vals.push_back(GV.getName().size()); 1342 Vals.push_back(VE.getTypeID(GV.getValueType())); 1343 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1344 Vals.push_back(GV.isDeclaration() ? 0 : 1345 (VE.getValueID(GV.getInitializer()) + 1)); 1346 Vals.push_back(getEncodedLinkage(GV)); 1347 Vals.push_back(getEncodedAlign(GV.getAlign())); 1348 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1349 : 0); 1350 if (GV.isThreadLocal() || 1351 GV.getVisibility() != GlobalValue::DefaultVisibility || 1352 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1353 GV.isExternallyInitialized() || 1354 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1355 GV.hasComdat() || 1356 GV.hasAttributes() || 1357 GV.isDSOLocal() || 1358 GV.hasPartition()) { 1359 Vals.push_back(getEncodedVisibility(GV)); 1360 Vals.push_back(getEncodedThreadLocalMode(GV)); 1361 Vals.push_back(getEncodedUnnamedAddr(GV)); 1362 Vals.push_back(GV.isExternallyInitialized()); 1363 Vals.push_back(getEncodedDLLStorageClass(GV)); 1364 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1365 1366 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1367 Vals.push_back(VE.getAttributeListID(AL)); 1368 1369 Vals.push_back(GV.isDSOLocal()); 1370 Vals.push_back(addToStrtab(GV.getPartition())); 1371 Vals.push_back(GV.getPartition().size()); 1372 } else { 1373 AbbrevToUse = SimpleGVarAbbrev; 1374 } 1375 1376 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1377 Vals.clear(); 1378 } 1379 1380 // Emit the function proto information. 1381 for (const Function &F : M) { 1382 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1383 // linkage, paramattrs, alignment, section, visibility, gc, 1384 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1385 // prefixdata, personalityfn, DSO_Local, addrspace] 1386 Vals.push_back(addToStrtab(F.getName())); 1387 Vals.push_back(F.getName().size()); 1388 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1389 Vals.push_back(F.getCallingConv()); 1390 Vals.push_back(F.isDeclaration()); 1391 Vals.push_back(getEncodedLinkage(F)); 1392 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1393 Vals.push_back(getEncodedAlign(F.getAlign())); 1394 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1395 : 0); 1396 Vals.push_back(getEncodedVisibility(F)); 1397 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1398 Vals.push_back(getEncodedUnnamedAddr(F)); 1399 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1400 : 0); 1401 Vals.push_back(getEncodedDLLStorageClass(F)); 1402 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1403 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1404 : 0); 1405 Vals.push_back( 1406 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1407 1408 Vals.push_back(F.isDSOLocal()); 1409 Vals.push_back(F.getAddressSpace()); 1410 Vals.push_back(addToStrtab(F.getPartition())); 1411 Vals.push_back(F.getPartition().size()); 1412 1413 unsigned AbbrevToUse = 0; 1414 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1415 Vals.clear(); 1416 } 1417 1418 // Emit the alias information. 1419 for (const GlobalAlias &A : M.aliases()) { 1420 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1421 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1422 // DSO_Local] 1423 Vals.push_back(addToStrtab(A.getName())); 1424 Vals.push_back(A.getName().size()); 1425 Vals.push_back(VE.getTypeID(A.getValueType())); 1426 Vals.push_back(A.getType()->getAddressSpace()); 1427 Vals.push_back(VE.getValueID(A.getAliasee())); 1428 Vals.push_back(getEncodedLinkage(A)); 1429 Vals.push_back(getEncodedVisibility(A)); 1430 Vals.push_back(getEncodedDLLStorageClass(A)); 1431 Vals.push_back(getEncodedThreadLocalMode(A)); 1432 Vals.push_back(getEncodedUnnamedAddr(A)); 1433 Vals.push_back(A.isDSOLocal()); 1434 Vals.push_back(addToStrtab(A.getPartition())); 1435 Vals.push_back(A.getPartition().size()); 1436 1437 unsigned AbbrevToUse = 0; 1438 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1439 Vals.clear(); 1440 } 1441 1442 // Emit the ifunc information. 1443 for (const GlobalIFunc &I : M.ifuncs()) { 1444 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1445 // val#, linkage, visibility, DSO_Local] 1446 Vals.push_back(addToStrtab(I.getName())); 1447 Vals.push_back(I.getName().size()); 1448 Vals.push_back(VE.getTypeID(I.getValueType())); 1449 Vals.push_back(I.getType()->getAddressSpace()); 1450 Vals.push_back(VE.getValueID(I.getResolver())); 1451 Vals.push_back(getEncodedLinkage(I)); 1452 Vals.push_back(getEncodedVisibility(I)); 1453 Vals.push_back(I.isDSOLocal()); 1454 Vals.push_back(addToStrtab(I.getPartition())); 1455 Vals.push_back(I.getPartition().size()); 1456 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1457 Vals.clear(); 1458 } 1459 1460 writeValueSymbolTableForwardDecl(); 1461 } 1462 1463 static uint64_t getOptimizationFlags(const Value *V) { 1464 uint64_t Flags = 0; 1465 1466 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1467 if (OBO->hasNoSignedWrap()) 1468 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1469 if (OBO->hasNoUnsignedWrap()) 1470 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1471 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1472 if (PEO->isExact()) 1473 Flags |= 1 << bitc::PEO_EXACT; 1474 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1475 if (FPMO->hasAllowReassoc()) 1476 Flags |= bitc::AllowReassoc; 1477 if (FPMO->hasNoNaNs()) 1478 Flags |= bitc::NoNaNs; 1479 if (FPMO->hasNoInfs()) 1480 Flags |= bitc::NoInfs; 1481 if (FPMO->hasNoSignedZeros()) 1482 Flags |= bitc::NoSignedZeros; 1483 if (FPMO->hasAllowReciprocal()) 1484 Flags |= bitc::AllowReciprocal; 1485 if (FPMO->hasAllowContract()) 1486 Flags |= bitc::AllowContract; 1487 if (FPMO->hasApproxFunc()) 1488 Flags |= bitc::ApproxFunc; 1489 } 1490 1491 return Flags; 1492 } 1493 1494 void ModuleBitcodeWriter::writeValueAsMetadata( 1495 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1496 // Mimic an MDNode with a value as one operand. 1497 Value *V = MD->getValue(); 1498 Record.push_back(VE.getTypeID(V->getType())); 1499 Record.push_back(VE.getValueID(V)); 1500 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1501 Record.clear(); 1502 } 1503 1504 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1505 SmallVectorImpl<uint64_t> &Record, 1506 unsigned Abbrev) { 1507 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1508 Metadata *MD = N->getOperand(i); 1509 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1510 "Unexpected function-local metadata"); 1511 Record.push_back(VE.getMetadataOrNullID(MD)); 1512 } 1513 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1514 : bitc::METADATA_NODE, 1515 Record, Abbrev); 1516 Record.clear(); 1517 } 1518 1519 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1520 // Assume the column is usually under 128, and always output the inlined-at 1521 // location (it's never more expensive than building an array size 1). 1522 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1523 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1530 return Stream.EmitAbbrev(std::move(Abbv)); 1531 } 1532 1533 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1534 SmallVectorImpl<uint64_t> &Record, 1535 unsigned &Abbrev) { 1536 if (!Abbrev) 1537 Abbrev = createDILocationAbbrev(); 1538 1539 Record.push_back(N->isDistinct()); 1540 Record.push_back(N->getLine()); 1541 Record.push_back(N->getColumn()); 1542 Record.push_back(VE.getMetadataID(N->getScope())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1544 Record.push_back(N->isImplicitCode()); 1545 1546 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1551 // Assume the column is usually under 128, and always output the inlined-at 1552 // location (it's never more expensive than building an array size 1). 1553 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1554 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1561 return Stream.EmitAbbrev(std::move(Abbv)); 1562 } 1563 1564 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1565 SmallVectorImpl<uint64_t> &Record, 1566 unsigned &Abbrev) { 1567 if (!Abbrev) 1568 Abbrev = createGenericDINodeAbbrev(); 1569 1570 Record.push_back(N->isDistinct()); 1571 Record.push_back(N->getTag()); 1572 Record.push_back(0); // Per-tag version field; unused for now. 1573 1574 for (auto &I : N->operands()) 1575 Record.push_back(VE.getMetadataOrNullID(I)); 1576 1577 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1578 Record.clear(); 1579 } 1580 1581 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1582 SmallVectorImpl<uint64_t> &Record, 1583 unsigned Abbrev) { 1584 const uint64_t Version = 2 << 1; 1585 Record.push_back((uint64_t)N->isDistinct() | Version); 1586 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1588 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1590 1591 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1592 Record.clear(); 1593 } 1594 1595 void ModuleBitcodeWriter::writeDIGenericSubrange( 1596 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1597 unsigned Abbrev) { 1598 Record.push_back((uint64_t)N->isDistinct()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1603 1604 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1605 Record.clear(); 1606 } 1607 1608 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1609 if ((int64_t)V >= 0) 1610 Vals.push_back(V << 1); 1611 else 1612 Vals.push_back((-V << 1) | 1); 1613 } 1614 1615 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1616 // We have an arbitrary precision integer value to write whose 1617 // bit width is > 64. However, in canonical unsigned integer 1618 // format it is likely that the high bits are going to be zero. 1619 // So, we only write the number of active words. 1620 unsigned NumWords = A.getActiveWords(); 1621 const uint64_t *RawData = A.getRawData(); 1622 for (unsigned i = 0; i < NumWords; i++) 1623 emitSignedInt64(Vals, RawData[i]); 1624 } 1625 1626 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1627 SmallVectorImpl<uint64_t> &Record, 1628 unsigned Abbrev) { 1629 const uint64_t IsBigInt = 1 << 2; 1630 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1631 Record.push_back(N->getValue().getBitWidth()); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1633 emitWideAPInt(Record, N->getValue()); 1634 1635 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 Record.push_back(N->isDistinct()); 1643 Record.push_back(N->getTag()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1645 Record.push_back(N->getSizeInBits()); 1646 Record.push_back(N->getAlignInBits()); 1647 Record.push_back(N->getEncoding()); 1648 Record.push_back(N->getFlags()); 1649 1650 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 Record.push_back(N->isDistinct()); 1658 Record.push_back(N->getTag()); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1662 Record.push_back(N->getSizeInBits()); 1663 Record.push_back(N->getAlignInBits()); 1664 Record.push_back(N->getEncoding()); 1665 1666 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1671 SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 Record.push_back(N->isDistinct()); 1674 Record.push_back(N->getTag()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1677 Record.push_back(N->getLine()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1680 Record.push_back(N->getSizeInBits()); 1681 Record.push_back(N->getAlignInBits()); 1682 Record.push_back(N->getOffsetInBits()); 1683 Record.push_back(N->getFlags()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1685 1686 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1687 // that there is no DWARF address space associated with DIDerivedType. 1688 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1689 Record.push_back(*DWARFAddressSpace + 1); 1690 else 1691 Record.push_back(0); 1692 1693 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1694 1695 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1696 Record.clear(); 1697 } 1698 1699 void ModuleBitcodeWriter::writeDICompositeType( 1700 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1701 unsigned Abbrev) { 1702 const unsigned IsNotUsedInOldTypeRef = 0x2; 1703 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1704 Record.push_back(N->getTag()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1707 Record.push_back(N->getLine()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1710 Record.push_back(N->getSizeInBits()); 1711 Record.push_back(N->getAlignInBits()); 1712 Record.push_back(N->getOffsetInBits()); 1713 Record.push_back(N->getFlags()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1715 Record.push_back(N->getRuntimeLang()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1718 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1719 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1725 1726 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDISubroutineType( 1731 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 const unsigned HasNoOldTypeRefs = 0x2; 1734 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1735 Record.push_back(N->getFlags()); 1736 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1737 Record.push_back(N->getCC()); 1738 1739 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1744 SmallVectorImpl<uint64_t> &Record, 1745 unsigned Abbrev) { 1746 Record.push_back(N->isDistinct()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1749 if (N->getRawChecksum()) { 1750 Record.push_back(N->getRawChecksum()->Kind); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1752 } else { 1753 // Maintain backwards compatibility with the old internal representation of 1754 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1755 Record.push_back(0); 1756 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1757 } 1758 auto Source = N->getRawSource(); 1759 if (Source) 1760 Record.push_back(VE.getMetadataOrNullID(*Source)); 1761 1762 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1763 Record.clear(); 1764 } 1765 1766 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1767 SmallVectorImpl<uint64_t> &Record, 1768 unsigned Abbrev) { 1769 Record.push_back(/* IsDistinct */ true); 1770 Record.push_back(N->getSourceLanguage()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1773 Record.push_back(N->isOptimized()); 1774 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1775 Record.push_back(N->getRuntimeVersion()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1777 Record.push_back(N->getEmissionKind()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1780 Record.push_back(/* subprograms */ 0); 1781 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1783 Record.push_back(N->getDWOId()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1785 Record.push_back(N->getSplitDebugInlining()); 1786 Record.push_back(N->getDebugInfoForProfiling()); 1787 Record.push_back((unsigned)N->getNameTableKind()); 1788 Record.push_back(N->getRangesBaseAddress()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1791 1792 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1793 Record.clear(); 1794 } 1795 1796 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1797 SmallVectorImpl<uint64_t> &Record, 1798 unsigned Abbrev) { 1799 const uint64_t HasUnitFlag = 1 << 1; 1800 const uint64_t HasSPFlagsFlag = 1 << 2; 1801 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1802 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1806 Record.push_back(N->getLine()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1808 Record.push_back(N->getScopeLine()); 1809 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1810 Record.push_back(N->getSPFlags()); 1811 Record.push_back(N->getVirtualIndex()); 1812 Record.push_back(N->getFlags()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1817 Record.push_back(N->getThisAdjustment()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1820 1821 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1822 Record.clear(); 1823 } 1824 1825 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1826 SmallVectorImpl<uint64_t> &Record, 1827 unsigned Abbrev) { 1828 Record.push_back(N->isDistinct()); 1829 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1831 Record.push_back(N->getLine()); 1832 Record.push_back(N->getColumn()); 1833 1834 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1835 Record.clear(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1839 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1840 unsigned Abbrev) { 1841 Record.push_back(N->isDistinct()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1844 Record.push_back(N->getDiscriminator()); 1845 1846 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1847 Record.clear(); 1848 } 1849 1850 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1851 SmallVectorImpl<uint64_t> &Record, 1852 unsigned Abbrev) { 1853 Record.push_back(N->isDistinct()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1858 Record.push_back(N->getLineNo()); 1859 1860 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1861 Record.clear(); 1862 } 1863 1864 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1865 SmallVectorImpl<uint64_t> &Record, 1866 unsigned Abbrev) { 1867 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1868 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1870 1871 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1872 Record.clear(); 1873 } 1874 1875 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1876 SmallVectorImpl<uint64_t> &Record, 1877 unsigned Abbrev) { 1878 Record.push_back(N->isDistinct()); 1879 Record.push_back(N->getMacinfoType()); 1880 Record.push_back(N->getLine()); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1883 1884 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1885 Record.clear(); 1886 } 1887 1888 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1889 SmallVectorImpl<uint64_t> &Record, 1890 unsigned Abbrev) { 1891 Record.push_back(N->isDistinct()); 1892 Record.push_back(N->getMacinfoType()); 1893 Record.push_back(N->getLine()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1895 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1896 1897 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1898 Record.clear(); 1899 } 1900 1901 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1902 SmallVectorImpl<uint64_t> &Record, 1903 unsigned Abbrev) { 1904 Record.reserve(N->getArgs().size()); 1905 for (ValueAsMetadata *MD : N->getArgs()) 1906 Record.push_back(VE.getMetadataID(MD)); 1907 1908 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1909 Record.clear(); 1910 } 1911 1912 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1913 SmallVectorImpl<uint64_t> &Record, 1914 unsigned Abbrev) { 1915 Record.push_back(N->isDistinct()); 1916 for (auto &I : N->operands()) 1917 Record.push_back(VE.getMetadataOrNullID(I)); 1918 Record.push_back(N->getLineNo()); 1919 Record.push_back(N->getIsDecl()); 1920 1921 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1926 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 Record.push_back(N->isDistinct()); 1929 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1931 Record.push_back(N->isDefault()); 1932 1933 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1934 Record.clear(); 1935 } 1936 1937 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1938 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1939 unsigned Abbrev) { 1940 Record.push_back(N->isDistinct()); 1941 Record.push_back(N->getTag()); 1942 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1943 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1944 Record.push_back(N->isDefault()); 1945 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1946 1947 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1948 Record.clear(); 1949 } 1950 1951 void ModuleBitcodeWriter::writeDIGlobalVariable( 1952 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1953 unsigned Abbrev) { 1954 const uint64_t Version = 2 << 1; 1955 Record.push_back((uint64_t)N->isDistinct() | Version); 1956 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1960 Record.push_back(N->getLine()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1962 Record.push_back(N->isLocalToUnit()); 1963 Record.push_back(N->isDefinition()); 1964 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1965 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1966 Record.push_back(N->getAlignInBits()); 1967 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1968 1969 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1970 Record.clear(); 1971 } 1972 1973 void ModuleBitcodeWriter::writeDILocalVariable( 1974 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1975 unsigned Abbrev) { 1976 // In order to support all possible bitcode formats in BitcodeReader we need 1977 // to distinguish the following cases: 1978 // 1) Record has no artificial tag (Record[1]), 1979 // has no obsolete inlinedAt field (Record[9]). 1980 // In this case Record size will be 8, HasAlignment flag is false. 1981 // 2) Record has artificial tag (Record[1]), 1982 // has no obsolete inlignedAt field (Record[9]). 1983 // In this case Record size will be 9, HasAlignment flag is false. 1984 // 3) Record has both artificial tag (Record[1]) and 1985 // obsolete inlignedAt field (Record[9]). 1986 // In this case Record size will be 10, HasAlignment flag is false. 1987 // 4) Record has neither artificial tag, nor inlignedAt field, but 1988 // HasAlignment flag is true and Record[8] contains alignment value. 1989 const uint64_t HasAlignmentFlag = 1 << 1; 1990 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1991 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1993 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1994 Record.push_back(N->getLine()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1996 Record.push_back(N->getArg()); 1997 Record.push_back(N->getFlags()); 1998 Record.push_back(N->getAlignInBits()); 1999 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2000 2001 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2002 Record.clear(); 2003 } 2004 2005 void ModuleBitcodeWriter::writeDILabel( 2006 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2007 unsigned Abbrev) { 2008 Record.push_back((uint64_t)N->isDistinct()); 2009 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2010 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2011 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2012 Record.push_back(N->getLine()); 2013 2014 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2015 Record.clear(); 2016 } 2017 2018 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2019 SmallVectorImpl<uint64_t> &Record, 2020 unsigned Abbrev) { 2021 Record.reserve(N->getElements().size() + 1); 2022 const uint64_t Version = 4 << 1; 2023 Record.push_back((uint64_t)N->isDistinct() | Version); 2024 Record.append(N->elements_begin(), N->elements_end()); 2025 2026 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2027 Record.clear(); 2028 } 2029 2030 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2031 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2032 unsigned Abbrev) { 2033 Record.push_back(N->isDistinct()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2036 2037 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2038 Record.clear(); 2039 } 2040 2041 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2042 SmallVectorImpl<uint64_t> &Record, 2043 unsigned Abbrev) { 2044 Record.push_back(N->isDistinct()); 2045 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2046 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2047 Record.push_back(N->getLine()); 2048 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2049 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2050 Record.push_back(N->getAttributes()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2052 2053 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2054 Record.clear(); 2055 } 2056 2057 void ModuleBitcodeWriter::writeDIImportedEntity( 2058 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2059 unsigned Abbrev) { 2060 Record.push_back(N->isDistinct()); 2061 Record.push_back(N->getTag()); 2062 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2063 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2064 Record.push_back(N->getLine()); 2065 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2066 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2067 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2068 2069 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2070 Record.clear(); 2071 } 2072 2073 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2074 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2075 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2078 return Stream.EmitAbbrev(std::move(Abbv)); 2079 } 2080 2081 void ModuleBitcodeWriter::writeNamedMetadata( 2082 SmallVectorImpl<uint64_t> &Record) { 2083 if (M.named_metadata_empty()) 2084 return; 2085 2086 unsigned Abbrev = createNamedMetadataAbbrev(); 2087 for (const NamedMDNode &NMD : M.named_metadata()) { 2088 // Write name. 2089 StringRef Str = NMD.getName(); 2090 Record.append(Str.bytes_begin(), Str.bytes_end()); 2091 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2092 Record.clear(); 2093 2094 // Write named metadata operands. 2095 for (const MDNode *N : NMD.operands()) 2096 Record.push_back(VE.getMetadataID(N)); 2097 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2098 Record.clear(); 2099 } 2100 } 2101 2102 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2103 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2104 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2108 return Stream.EmitAbbrev(std::move(Abbv)); 2109 } 2110 2111 /// Write out a record for MDString. 2112 /// 2113 /// All the metadata strings in a metadata block are emitted in a single 2114 /// record. The sizes and strings themselves are shoved into a blob. 2115 void ModuleBitcodeWriter::writeMetadataStrings( 2116 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2117 if (Strings.empty()) 2118 return; 2119 2120 // Start the record with the number of strings. 2121 Record.push_back(bitc::METADATA_STRINGS); 2122 Record.push_back(Strings.size()); 2123 2124 // Emit the sizes of the strings in the blob. 2125 SmallString<256> Blob; 2126 { 2127 BitstreamWriter W(Blob); 2128 for (const Metadata *MD : Strings) 2129 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2130 W.FlushToWord(); 2131 } 2132 2133 // Add the offset to the strings to the record. 2134 Record.push_back(Blob.size()); 2135 2136 // Add the strings to the blob. 2137 for (const Metadata *MD : Strings) 2138 Blob.append(cast<MDString>(MD)->getString()); 2139 2140 // Emit the final record. 2141 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2142 Record.clear(); 2143 } 2144 2145 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2146 enum MetadataAbbrev : unsigned { 2147 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2148 #include "llvm/IR/Metadata.def" 2149 LastPlusOne 2150 }; 2151 2152 void ModuleBitcodeWriter::writeMetadataRecords( 2153 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2154 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2155 if (MDs.empty()) 2156 return; 2157 2158 // Initialize MDNode abbreviations. 2159 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2160 #include "llvm/IR/Metadata.def" 2161 2162 for (const Metadata *MD : MDs) { 2163 if (IndexPos) 2164 IndexPos->push_back(Stream.GetCurrentBitNo()); 2165 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2166 assert(N->isResolved() && "Expected forward references to be resolved"); 2167 2168 #ifndef NDEBUG 2169 switch (N->getMetadataID()) { 2170 #define HANDLE_MDNODE_LEAF_UNIQUED(CLASS) \ 2171 case Metadata::CLASS##Kind: \ 2172 assert(!N->isDistinct() && "Expected non-distinct " #CLASS); \ 2173 break; 2174 #define HANDLE_MDNODE_LEAF_DISTINCT(CLASS) \ 2175 case Metadata::CLASS##Kind: \ 2176 assert(N->isDistinct() && "Expected distinct " #CLASS); \ 2177 break; 2178 #include "llvm/IR/Metadata.def" 2179 } 2180 #endif 2181 2182 switch (N->getMetadataID()) { 2183 default: 2184 llvm_unreachable("Invalid MDNode subclass"); 2185 #define HANDLE_MDNODE_LEAF(CLASS) \ 2186 case Metadata::CLASS##Kind: \ 2187 if (MDAbbrevs) \ 2188 write##CLASS(cast<CLASS>(N), Record, \ 2189 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2190 else \ 2191 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2192 continue; 2193 #include "llvm/IR/Metadata.def" 2194 } 2195 } 2196 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2197 } 2198 } 2199 2200 void ModuleBitcodeWriter::writeModuleMetadata() { 2201 if (!VE.hasMDs() && M.named_metadata_empty()) 2202 return; 2203 2204 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2205 SmallVector<uint64_t, 64> Record; 2206 2207 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2208 // block and load any metadata. 2209 std::vector<unsigned> MDAbbrevs; 2210 2211 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2212 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2213 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2214 createGenericDINodeAbbrev(); 2215 2216 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2217 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2220 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2221 2222 Abbv = std::make_shared<BitCodeAbbrev>(); 2223 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2226 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2227 2228 // Emit MDStrings together upfront. 2229 writeMetadataStrings(VE.getMDStrings(), Record); 2230 2231 // We only emit an index for the metadata record if we have more than a given 2232 // (naive) threshold of metadatas, otherwise it is not worth it. 2233 if (VE.getNonMDStrings().size() > IndexThreshold) { 2234 // Write a placeholder value in for the offset of the metadata index, 2235 // which is written after the records, so that it can include 2236 // the offset of each entry. The placeholder offset will be 2237 // updated after all records are emitted. 2238 uint64_t Vals[] = {0, 0}; 2239 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2240 } 2241 2242 // Compute and save the bit offset to the current position, which will be 2243 // patched when we emit the index later. We can simply subtract the 64-bit 2244 // fixed size from the current bit number to get the location to backpatch. 2245 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2246 2247 // This index will contain the bitpos for each individual record. 2248 std::vector<uint64_t> IndexPos; 2249 IndexPos.reserve(VE.getNonMDStrings().size()); 2250 2251 // Write all the records 2252 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2253 2254 if (VE.getNonMDStrings().size() > IndexThreshold) { 2255 // Now that we have emitted all the records we will emit the index. But 2256 // first 2257 // backpatch the forward reference so that the reader can skip the records 2258 // efficiently. 2259 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2260 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2261 2262 // Delta encode the index. 2263 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2264 for (auto &Elt : IndexPos) { 2265 auto EltDelta = Elt - PreviousValue; 2266 PreviousValue = Elt; 2267 Elt = EltDelta; 2268 } 2269 // Emit the index record. 2270 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2271 IndexPos.clear(); 2272 } 2273 2274 // Write the named metadata now. 2275 writeNamedMetadata(Record); 2276 2277 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2278 SmallVector<uint64_t, 4> Record; 2279 Record.push_back(VE.getValueID(&GO)); 2280 pushGlobalMetadataAttachment(Record, GO); 2281 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2282 }; 2283 for (const Function &F : M) 2284 if (F.isDeclaration() && F.hasMetadata()) 2285 AddDeclAttachedMetadata(F); 2286 // FIXME: Only store metadata for declarations here, and move data for global 2287 // variable definitions to a separate block (PR28134). 2288 for (const GlobalVariable &GV : M.globals()) 2289 if (GV.hasMetadata()) 2290 AddDeclAttachedMetadata(GV); 2291 2292 Stream.ExitBlock(); 2293 } 2294 2295 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2296 if (!VE.hasMDs()) 2297 return; 2298 2299 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2300 SmallVector<uint64_t, 64> Record; 2301 writeMetadataStrings(VE.getMDStrings(), Record); 2302 writeMetadataRecords(VE.getNonMDStrings(), Record); 2303 Stream.ExitBlock(); 2304 } 2305 2306 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2307 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2308 // [n x [id, mdnode]] 2309 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2310 GO.getAllMetadata(MDs); 2311 for (const auto &I : MDs) { 2312 Record.push_back(I.first); 2313 Record.push_back(VE.getMetadataID(I.second)); 2314 } 2315 } 2316 2317 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2318 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2319 2320 SmallVector<uint64_t, 64> Record; 2321 2322 if (F.hasMetadata()) { 2323 pushGlobalMetadataAttachment(Record, F); 2324 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2325 Record.clear(); 2326 } 2327 2328 // Write metadata attachments 2329 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2330 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2331 for (const BasicBlock &BB : F) 2332 for (const Instruction &I : BB) { 2333 MDs.clear(); 2334 I.getAllMetadataOtherThanDebugLoc(MDs); 2335 2336 // If no metadata, ignore instruction. 2337 if (MDs.empty()) continue; 2338 2339 Record.push_back(VE.getInstructionID(&I)); 2340 2341 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2342 Record.push_back(MDs[i].first); 2343 Record.push_back(VE.getMetadataID(MDs[i].second)); 2344 } 2345 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2346 Record.clear(); 2347 } 2348 2349 Stream.ExitBlock(); 2350 } 2351 2352 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2353 SmallVector<uint64_t, 64> Record; 2354 2355 // Write metadata kinds 2356 // METADATA_KIND - [n x [id, name]] 2357 SmallVector<StringRef, 8> Names; 2358 M.getMDKindNames(Names); 2359 2360 if (Names.empty()) return; 2361 2362 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2363 2364 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2365 Record.push_back(MDKindID); 2366 StringRef KName = Names[MDKindID]; 2367 Record.append(KName.begin(), KName.end()); 2368 2369 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2370 Record.clear(); 2371 } 2372 2373 Stream.ExitBlock(); 2374 } 2375 2376 void ModuleBitcodeWriter::writeOperandBundleTags() { 2377 // Write metadata kinds 2378 // 2379 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2380 // 2381 // OPERAND_BUNDLE_TAG - [strchr x N] 2382 2383 SmallVector<StringRef, 8> Tags; 2384 M.getOperandBundleTags(Tags); 2385 2386 if (Tags.empty()) 2387 return; 2388 2389 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2390 2391 SmallVector<uint64_t, 64> Record; 2392 2393 for (auto Tag : Tags) { 2394 Record.append(Tag.begin(), Tag.end()); 2395 2396 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2397 Record.clear(); 2398 } 2399 2400 Stream.ExitBlock(); 2401 } 2402 2403 void ModuleBitcodeWriter::writeSyncScopeNames() { 2404 SmallVector<StringRef, 8> SSNs; 2405 M.getContext().getSyncScopeNames(SSNs); 2406 if (SSNs.empty()) 2407 return; 2408 2409 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2410 2411 SmallVector<uint64_t, 64> Record; 2412 for (auto SSN : SSNs) { 2413 Record.append(SSN.begin(), SSN.end()); 2414 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2415 Record.clear(); 2416 } 2417 2418 Stream.ExitBlock(); 2419 } 2420 2421 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2422 bool isGlobal) { 2423 if (FirstVal == LastVal) return; 2424 2425 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2426 2427 unsigned AggregateAbbrev = 0; 2428 unsigned String8Abbrev = 0; 2429 unsigned CString7Abbrev = 0; 2430 unsigned CString6Abbrev = 0; 2431 // If this is a constant pool for the module, emit module-specific abbrevs. 2432 if (isGlobal) { 2433 // Abbrev for CST_CODE_AGGREGATE. 2434 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2435 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2438 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2439 2440 // Abbrev for CST_CODE_STRING. 2441 Abbv = std::make_shared<BitCodeAbbrev>(); 2442 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2445 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2446 // Abbrev for CST_CODE_CSTRING. 2447 Abbv = std::make_shared<BitCodeAbbrev>(); 2448 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2451 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2452 // Abbrev for CST_CODE_CSTRING. 2453 Abbv = std::make_shared<BitCodeAbbrev>(); 2454 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2457 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2458 } 2459 2460 SmallVector<uint64_t, 64> Record; 2461 2462 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2463 Type *LastTy = nullptr; 2464 for (unsigned i = FirstVal; i != LastVal; ++i) { 2465 const Value *V = Vals[i].first; 2466 // If we need to switch types, do so now. 2467 if (V->getType() != LastTy) { 2468 LastTy = V->getType(); 2469 Record.push_back(VE.getTypeID(LastTy)); 2470 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2471 CONSTANTS_SETTYPE_ABBREV); 2472 Record.clear(); 2473 } 2474 2475 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2476 Record.push_back( 2477 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2478 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2479 2480 // Add the asm string. 2481 const std::string &AsmStr = IA->getAsmString(); 2482 Record.push_back(AsmStr.size()); 2483 Record.append(AsmStr.begin(), AsmStr.end()); 2484 2485 // Add the constraint string. 2486 const std::string &ConstraintStr = IA->getConstraintString(); 2487 Record.push_back(ConstraintStr.size()); 2488 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2489 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2490 Record.clear(); 2491 continue; 2492 } 2493 const Constant *C = cast<Constant>(V); 2494 unsigned Code = -1U; 2495 unsigned AbbrevToUse = 0; 2496 if (C->isNullValue()) { 2497 Code = bitc::CST_CODE_NULL; 2498 } else if (isa<PoisonValue>(C)) { 2499 Code = bitc::CST_CODE_POISON; 2500 } else if (isa<UndefValue>(C)) { 2501 Code = bitc::CST_CODE_UNDEF; 2502 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2503 if (IV->getBitWidth() <= 64) { 2504 uint64_t V = IV->getSExtValue(); 2505 emitSignedInt64(Record, V); 2506 Code = bitc::CST_CODE_INTEGER; 2507 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2508 } else { // Wide integers, > 64 bits in size. 2509 emitWideAPInt(Record, IV->getValue()); 2510 Code = bitc::CST_CODE_WIDE_INTEGER; 2511 } 2512 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2513 Code = bitc::CST_CODE_FLOAT; 2514 Type *Ty = CFP->getType(); 2515 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2516 Ty->isDoubleTy()) { 2517 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2518 } else if (Ty->isX86_FP80Ty()) { 2519 // api needed to prevent premature destruction 2520 // bits are not in the same order as a normal i80 APInt, compensate. 2521 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2522 const uint64_t *p = api.getRawData(); 2523 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2524 Record.push_back(p[0] & 0xffffLL); 2525 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2526 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2527 const uint64_t *p = api.getRawData(); 2528 Record.push_back(p[0]); 2529 Record.push_back(p[1]); 2530 } else { 2531 assert(0 && "Unknown FP type!"); 2532 } 2533 } else if (isa<ConstantDataSequential>(C) && 2534 cast<ConstantDataSequential>(C)->isString()) { 2535 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2536 // Emit constant strings specially. 2537 unsigned NumElts = Str->getNumElements(); 2538 // If this is a null-terminated string, use the denser CSTRING encoding. 2539 if (Str->isCString()) { 2540 Code = bitc::CST_CODE_CSTRING; 2541 --NumElts; // Don't encode the null, which isn't allowed by char6. 2542 } else { 2543 Code = bitc::CST_CODE_STRING; 2544 AbbrevToUse = String8Abbrev; 2545 } 2546 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2547 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2548 for (unsigned i = 0; i != NumElts; ++i) { 2549 unsigned char V = Str->getElementAsInteger(i); 2550 Record.push_back(V); 2551 isCStr7 &= (V & 128) == 0; 2552 if (isCStrChar6) 2553 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2554 } 2555 2556 if (isCStrChar6) 2557 AbbrevToUse = CString6Abbrev; 2558 else if (isCStr7) 2559 AbbrevToUse = CString7Abbrev; 2560 } else if (const ConstantDataSequential *CDS = 2561 dyn_cast<ConstantDataSequential>(C)) { 2562 Code = bitc::CST_CODE_DATA; 2563 Type *EltTy = CDS->getElementType(); 2564 if (isa<IntegerType>(EltTy)) { 2565 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2566 Record.push_back(CDS->getElementAsInteger(i)); 2567 } else { 2568 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2569 Record.push_back( 2570 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2571 } 2572 } else if (isa<ConstantAggregate>(C)) { 2573 Code = bitc::CST_CODE_AGGREGATE; 2574 for (const Value *Op : C->operands()) 2575 Record.push_back(VE.getValueID(Op)); 2576 AbbrevToUse = AggregateAbbrev; 2577 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2578 switch (CE->getOpcode()) { 2579 default: 2580 if (Instruction::isCast(CE->getOpcode())) { 2581 Code = bitc::CST_CODE_CE_CAST; 2582 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2583 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2584 Record.push_back(VE.getValueID(C->getOperand(0))); 2585 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2586 } else { 2587 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2588 Code = bitc::CST_CODE_CE_BINOP; 2589 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2590 Record.push_back(VE.getValueID(C->getOperand(0))); 2591 Record.push_back(VE.getValueID(C->getOperand(1))); 2592 uint64_t Flags = getOptimizationFlags(CE); 2593 if (Flags != 0) 2594 Record.push_back(Flags); 2595 } 2596 break; 2597 case Instruction::FNeg: { 2598 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2599 Code = bitc::CST_CODE_CE_UNOP; 2600 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2601 Record.push_back(VE.getValueID(C->getOperand(0))); 2602 uint64_t Flags = getOptimizationFlags(CE); 2603 if (Flags != 0) 2604 Record.push_back(Flags); 2605 break; 2606 } 2607 case Instruction::GetElementPtr: { 2608 Code = bitc::CST_CODE_CE_GEP; 2609 const auto *GO = cast<GEPOperator>(C); 2610 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2611 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2612 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2613 Record.push_back((*Idx << 1) | GO->isInBounds()); 2614 } else if (GO->isInBounds()) 2615 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2616 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2617 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2618 Record.push_back(VE.getValueID(C->getOperand(i))); 2619 } 2620 break; 2621 } 2622 case Instruction::Select: 2623 Code = bitc::CST_CODE_CE_SELECT; 2624 Record.push_back(VE.getValueID(C->getOperand(0))); 2625 Record.push_back(VE.getValueID(C->getOperand(1))); 2626 Record.push_back(VE.getValueID(C->getOperand(2))); 2627 break; 2628 case Instruction::ExtractElement: 2629 Code = bitc::CST_CODE_CE_EXTRACTELT; 2630 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2631 Record.push_back(VE.getValueID(C->getOperand(0))); 2632 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2633 Record.push_back(VE.getValueID(C->getOperand(1))); 2634 break; 2635 case Instruction::InsertElement: 2636 Code = bitc::CST_CODE_CE_INSERTELT; 2637 Record.push_back(VE.getValueID(C->getOperand(0))); 2638 Record.push_back(VE.getValueID(C->getOperand(1))); 2639 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2640 Record.push_back(VE.getValueID(C->getOperand(2))); 2641 break; 2642 case Instruction::ShuffleVector: 2643 // If the return type and argument types are the same, this is a 2644 // standard shufflevector instruction. If the types are different, 2645 // then the shuffle is widening or truncating the input vectors, and 2646 // the argument type must also be encoded. 2647 if (C->getType() == C->getOperand(0)->getType()) { 2648 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2649 } else { 2650 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2651 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2652 } 2653 Record.push_back(VE.getValueID(C->getOperand(0))); 2654 Record.push_back(VE.getValueID(C->getOperand(1))); 2655 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2656 break; 2657 case Instruction::ICmp: 2658 case Instruction::FCmp: 2659 Code = bitc::CST_CODE_CE_CMP; 2660 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2661 Record.push_back(VE.getValueID(C->getOperand(0))); 2662 Record.push_back(VE.getValueID(C->getOperand(1))); 2663 Record.push_back(CE->getPredicate()); 2664 break; 2665 } 2666 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2667 Code = bitc::CST_CODE_BLOCKADDRESS; 2668 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2669 Record.push_back(VE.getValueID(BA->getFunction())); 2670 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2671 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2672 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2673 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2674 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2675 } else { 2676 #ifndef NDEBUG 2677 C->dump(); 2678 #endif 2679 llvm_unreachable("Unknown constant!"); 2680 } 2681 Stream.EmitRecord(Code, Record, AbbrevToUse); 2682 Record.clear(); 2683 } 2684 2685 Stream.ExitBlock(); 2686 } 2687 2688 void ModuleBitcodeWriter::writeModuleConstants() { 2689 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2690 2691 // Find the first constant to emit, which is the first non-globalvalue value. 2692 // We know globalvalues have been emitted by WriteModuleInfo. 2693 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2694 if (!isa<GlobalValue>(Vals[i].first)) { 2695 writeConstants(i, Vals.size(), true); 2696 return; 2697 } 2698 } 2699 } 2700 2701 /// pushValueAndType - The file has to encode both the value and type id for 2702 /// many values, because we need to know what type to create for forward 2703 /// references. However, most operands are not forward references, so this type 2704 /// field is not needed. 2705 /// 2706 /// This function adds V's value ID to Vals. If the value ID is higher than the 2707 /// instruction ID, then it is a forward reference, and it also includes the 2708 /// type ID. The value ID that is written is encoded relative to the InstID. 2709 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2710 SmallVectorImpl<unsigned> &Vals) { 2711 unsigned ValID = VE.getValueID(V); 2712 // Make encoding relative to the InstID. 2713 Vals.push_back(InstID - ValID); 2714 if (ValID >= InstID) { 2715 Vals.push_back(VE.getTypeID(V->getType())); 2716 return true; 2717 } 2718 return false; 2719 } 2720 2721 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2722 unsigned InstID) { 2723 SmallVector<unsigned, 64> Record; 2724 LLVMContext &C = CS.getContext(); 2725 2726 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2727 const auto &Bundle = CS.getOperandBundleAt(i); 2728 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2729 2730 for (auto &Input : Bundle.Inputs) 2731 pushValueAndType(Input, InstID, Record); 2732 2733 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2734 Record.clear(); 2735 } 2736 } 2737 2738 /// pushValue - Like pushValueAndType, but where the type of the value is 2739 /// omitted (perhaps it was already encoded in an earlier operand). 2740 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2741 SmallVectorImpl<unsigned> &Vals) { 2742 unsigned ValID = VE.getValueID(V); 2743 Vals.push_back(InstID - ValID); 2744 } 2745 2746 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2747 SmallVectorImpl<uint64_t> &Vals) { 2748 unsigned ValID = VE.getValueID(V); 2749 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2750 emitSignedInt64(Vals, diff); 2751 } 2752 2753 /// WriteInstruction - Emit an instruction to the specified stream. 2754 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2755 unsigned InstID, 2756 SmallVectorImpl<unsigned> &Vals) { 2757 unsigned Code = 0; 2758 unsigned AbbrevToUse = 0; 2759 VE.setInstructionID(&I); 2760 switch (I.getOpcode()) { 2761 default: 2762 if (Instruction::isCast(I.getOpcode())) { 2763 Code = bitc::FUNC_CODE_INST_CAST; 2764 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2765 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2766 Vals.push_back(VE.getTypeID(I.getType())); 2767 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2768 } else { 2769 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2770 Code = bitc::FUNC_CODE_INST_BINOP; 2771 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2772 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2773 pushValue(I.getOperand(1), InstID, Vals); 2774 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2775 uint64_t Flags = getOptimizationFlags(&I); 2776 if (Flags != 0) { 2777 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2778 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2779 Vals.push_back(Flags); 2780 } 2781 } 2782 break; 2783 case Instruction::FNeg: { 2784 Code = bitc::FUNC_CODE_INST_UNOP; 2785 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2786 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2787 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2788 uint64_t Flags = getOptimizationFlags(&I); 2789 if (Flags != 0) { 2790 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2791 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2792 Vals.push_back(Flags); 2793 } 2794 break; 2795 } 2796 case Instruction::GetElementPtr: { 2797 Code = bitc::FUNC_CODE_INST_GEP; 2798 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2799 auto &GEPInst = cast<GetElementPtrInst>(I); 2800 Vals.push_back(GEPInst.isInBounds()); 2801 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2802 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2803 pushValueAndType(I.getOperand(i), InstID, Vals); 2804 break; 2805 } 2806 case Instruction::ExtractValue: { 2807 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2808 pushValueAndType(I.getOperand(0), InstID, Vals); 2809 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2810 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2811 break; 2812 } 2813 case Instruction::InsertValue: { 2814 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2815 pushValueAndType(I.getOperand(0), InstID, Vals); 2816 pushValueAndType(I.getOperand(1), InstID, Vals); 2817 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2818 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2819 break; 2820 } 2821 case Instruction::Select: { 2822 Code = bitc::FUNC_CODE_INST_VSELECT; 2823 pushValueAndType(I.getOperand(1), InstID, Vals); 2824 pushValue(I.getOperand(2), InstID, Vals); 2825 pushValueAndType(I.getOperand(0), InstID, Vals); 2826 uint64_t Flags = getOptimizationFlags(&I); 2827 if (Flags != 0) 2828 Vals.push_back(Flags); 2829 break; 2830 } 2831 case Instruction::ExtractElement: 2832 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2833 pushValueAndType(I.getOperand(0), InstID, Vals); 2834 pushValueAndType(I.getOperand(1), InstID, Vals); 2835 break; 2836 case Instruction::InsertElement: 2837 Code = bitc::FUNC_CODE_INST_INSERTELT; 2838 pushValueAndType(I.getOperand(0), InstID, Vals); 2839 pushValue(I.getOperand(1), InstID, Vals); 2840 pushValueAndType(I.getOperand(2), InstID, Vals); 2841 break; 2842 case Instruction::ShuffleVector: 2843 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2844 pushValueAndType(I.getOperand(0), InstID, Vals); 2845 pushValue(I.getOperand(1), InstID, Vals); 2846 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2847 Vals); 2848 break; 2849 case Instruction::ICmp: 2850 case Instruction::FCmp: { 2851 // compare returning Int1Ty or vector of Int1Ty 2852 Code = bitc::FUNC_CODE_INST_CMP2; 2853 pushValueAndType(I.getOperand(0), InstID, Vals); 2854 pushValue(I.getOperand(1), InstID, Vals); 2855 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2856 uint64_t Flags = getOptimizationFlags(&I); 2857 if (Flags != 0) 2858 Vals.push_back(Flags); 2859 break; 2860 } 2861 2862 case Instruction::Ret: 2863 { 2864 Code = bitc::FUNC_CODE_INST_RET; 2865 unsigned NumOperands = I.getNumOperands(); 2866 if (NumOperands == 0) 2867 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2868 else if (NumOperands == 1) { 2869 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2870 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2871 } else { 2872 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2873 pushValueAndType(I.getOperand(i), InstID, Vals); 2874 } 2875 } 2876 break; 2877 case Instruction::Br: 2878 { 2879 Code = bitc::FUNC_CODE_INST_BR; 2880 const BranchInst &II = cast<BranchInst>(I); 2881 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2882 if (II.isConditional()) { 2883 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2884 pushValue(II.getCondition(), InstID, Vals); 2885 } 2886 } 2887 break; 2888 case Instruction::Switch: 2889 { 2890 Code = bitc::FUNC_CODE_INST_SWITCH; 2891 const SwitchInst &SI = cast<SwitchInst>(I); 2892 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2893 pushValue(SI.getCondition(), InstID, Vals); 2894 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2895 for (auto Case : SI.cases()) { 2896 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2897 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2898 } 2899 } 2900 break; 2901 case Instruction::IndirectBr: 2902 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2903 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2904 // Encode the address operand as relative, but not the basic blocks. 2905 pushValue(I.getOperand(0), InstID, Vals); 2906 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2907 Vals.push_back(VE.getValueID(I.getOperand(i))); 2908 break; 2909 2910 case Instruction::Invoke: { 2911 const InvokeInst *II = cast<InvokeInst>(&I); 2912 const Value *Callee = II->getCalledOperand(); 2913 FunctionType *FTy = II->getFunctionType(); 2914 2915 if (II->hasOperandBundles()) 2916 writeOperandBundles(*II, InstID); 2917 2918 Code = bitc::FUNC_CODE_INST_INVOKE; 2919 2920 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2921 Vals.push_back(II->getCallingConv() | 1 << 13); 2922 Vals.push_back(VE.getValueID(II->getNormalDest())); 2923 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2924 Vals.push_back(VE.getTypeID(FTy)); 2925 pushValueAndType(Callee, InstID, Vals); 2926 2927 // Emit value #'s for the fixed parameters. 2928 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2929 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2930 2931 // Emit type/value pairs for varargs params. 2932 if (FTy->isVarArg()) { 2933 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2934 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2935 } 2936 break; 2937 } 2938 case Instruction::Resume: 2939 Code = bitc::FUNC_CODE_INST_RESUME; 2940 pushValueAndType(I.getOperand(0), InstID, Vals); 2941 break; 2942 case Instruction::CleanupRet: { 2943 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2944 const auto &CRI = cast<CleanupReturnInst>(I); 2945 pushValue(CRI.getCleanupPad(), InstID, Vals); 2946 if (CRI.hasUnwindDest()) 2947 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2948 break; 2949 } 2950 case Instruction::CatchRet: { 2951 Code = bitc::FUNC_CODE_INST_CATCHRET; 2952 const auto &CRI = cast<CatchReturnInst>(I); 2953 pushValue(CRI.getCatchPad(), InstID, Vals); 2954 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2955 break; 2956 } 2957 case Instruction::CleanupPad: 2958 case Instruction::CatchPad: { 2959 const auto &FuncletPad = cast<FuncletPadInst>(I); 2960 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2961 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2962 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2963 2964 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2965 Vals.push_back(NumArgOperands); 2966 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2967 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2968 break; 2969 } 2970 case Instruction::CatchSwitch: { 2971 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2972 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2973 2974 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2975 2976 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2977 Vals.push_back(NumHandlers); 2978 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2979 Vals.push_back(VE.getValueID(CatchPadBB)); 2980 2981 if (CatchSwitch.hasUnwindDest()) 2982 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2983 break; 2984 } 2985 case Instruction::CallBr: { 2986 const CallBrInst *CBI = cast<CallBrInst>(&I); 2987 const Value *Callee = CBI->getCalledOperand(); 2988 FunctionType *FTy = CBI->getFunctionType(); 2989 2990 if (CBI->hasOperandBundles()) 2991 writeOperandBundles(*CBI, InstID); 2992 2993 Code = bitc::FUNC_CODE_INST_CALLBR; 2994 2995 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2996 2997 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2998 1 << bitc::CALL_EXPLICIT_TYPE); 2999 3000 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3001 Vals.push_back(CBI->getNumIndirectDests()); 3002 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3003 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3004 3005 Vals.push_back(VE.getTypeID(FTy)); 3006 pushValueAndType(Callee, InstID, Vals); 3007 3008 // Emit value #'s for the fixed parameters. 3009 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3010 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3011 3012 // Emit type/value pairs for varargs params. 3013 if (FTy->isVarArg()) { 3014 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3015 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3016 } 3017 break; 3018 } 3019 case Instruction::Unreachable: 3020 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3021 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3022 break; 3023 3024 case Instruction::PHI: { 3025 const PHINode &PN = cast<PHINode>(I); 3026 Code = bitc::FUNC_CODE_INST_PHI; 3027 // With the newer instruction encoding, forward references could give 3028 // negative valued IDs. This is most common for PHIs, so we use 3029 // signed VBRs. 3030 SmallVector<uint64_t, 128> Vals64; 3031 Vals64.push_back(VE.getTypeID(PN.getType())); 3032 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3033 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3034 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3035 } 3036 3037 uint64_t Flags = getOptimizationFlags(&I); 3038 if (Flags != 0) 3039 Vals64.push_back(Flags); 3040 3041 // Emit a Vals64 vector and exit. 3042 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3043 Vals64.clear(); 3044 return; 3045 } 3046 3047 case Instruction::LandingPad: { 3048 const LandingPadInst &LP = cast<LandingPadInst>(I); 3049 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3050 Vals.push_back(VE.getTypeID(LP.getType())); 3051 Vals.push_back(LP.isCleanup()); 3052 Vals.push_back(LP.getNumClauses()); 3053 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3054 if (LP.isCatch(I)) 3055 Vals.push_back(LandingPadInst::Catch); 3056 else 3057 Vals.push_back(LandingPadInst::Filter); 3058 pushValueAndType(LP.getClause(I), InstID, Vals); 3059 } 3060 break; 3061 } 3062 3063 case Instruction::Alloca: { 3064 Code = bitc::FUNC_CODE_INST_ALLOCA; 3065 const AllocaInst &AI = cast<AllocaInst>(I); 3066 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3067 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3068 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3069 using APV = AllocaPackedValues; 3070 unsigned Record = 0; 3071 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3072 Bitfield::set<APV::AlignLower>( 3073 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3074 Bitfield::set<APV::AlignUpper>(Record, 3075 EncodedAlign >> APV::AlignLower::Bits); 3076 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3077 Bitfield::set<APV::ExplicitType>(Record, true); 3078 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3079 Vals.push_back(Record); 3080 break; 3081 } 3082 3083 case Instruction::Load: 3084 if (cast<LoadInst>(I).isAtomic()) { 3085 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3086 pushValueAndType(I.getOperand(0), InstID, Vals); 3087 } else { 3088 Code = bitc::FUNC_CODE_INST_LOAD; 3089 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3090 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3091 } 3092 Vals.push_back(VE.getTypeID(I.getType())); 3093 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3094 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3095 if (cast<LoadInst>(I).isAtomic()) { 3096 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3097 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3098 } 3099 break; 3100 case Instruction::Store: 3101 if (cast<StoreInst>(I).isAtomic()) 3102 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3103 else 3104 Code = bitc::FUNC_CODE_INST_STORE; 3105 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3106 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3107 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3108 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3109 if (cast<StoreInst>(I).isAtomic()) { 3110 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3111 Vals.push_back( 3112 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3113 } 3114 break; 3115 case Instruction::AtomicCmpXchg: 3116 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3117 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3118 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3119 pushValue(I.getOperand(2), InstID, Vals); // newval. 3120 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3121 Vals.push_back( 3122 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3123 Vals.push_back( 3124 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3125 Vals.push_back( 3126 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3127 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3128 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3129 break; 3130 case Instruction::AtomicRMW: 3131 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3132 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3133 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3134 Vals.push_back( 3135 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3136 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3137 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3138 Vals.push_back( 3139 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3140 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3141 break; 3142 case Instruction::Fence: 3143 Code = bitc::FUNC_CODE_INST_FENCE; 3144 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3145 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3146 break; 3147 case Instruction::Call: { 3148 const CallInst &CI = cast<CallInst>(I); 3149 FunctionType *FTy = CI.getFunctionType(); 3150 3151 if (CI.hasOperandBundles()) 3152 writeOperandBundles(CI, InstID); 3153 3154 Code = bitc::FUNC_CODE_INST_CALL; 3155 3156 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3157 3158 unsigned Flags = getOptimizationFlags(&I); 3159 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3160 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3161 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3162 1 << bitc::CALL_EXPLICIT_TYPE | 3163 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3164 unsigned(Flags != 0) << bitc::CALL_FMF); 3165 if (Flags != 0) 3166 Vals.push_back(Flags); 3167 3168 Vals.push_back(VE.getTypeID(FTy)); 3169 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3170 3171 // Emit value #'s for the fixed parameters. 3172 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3173 // Check for labels (can happen with asm labels). 3174 if (FTy->getParamType(i)->isLabelTy()) 3175 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3176 else 3177 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3178 } 3179 3180 // Emit type/value pairs for varargs params. 3181 if (FTy->isVarArg()) { 3182 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3183 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3184 } 3185 break; 3186 } 3187 case Instruction::VAArg: 3188 Code = bitc::FUNC_CODE_INST_VAARG; 3189 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3190 pushValue(I.getOperand(0), InstID, Vals); // valist. 3191 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3192 break; 3193 case Instruction::Freeze: 3194 Code = bitc::FUNC_CODE_INST_FREEZE; 3195 pushValueAndType(I.getOperand(0), InstID, Vals); 3196 break; 3197 } 3198 3199 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3200 Vals.clear(); 3201 } 3202 3203 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3204 /// to allow clients to efficiently find the function body. 3205 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3206 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3207 // Get the offset of the VST we are writing, and backpatch it into 3208 // the VST forward declaration record. 3209 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3210 // The BitcodeStartBit was the stream offset of the identification block. 3211 VSTOffset -= bitcodeStartBit(); 3212 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3213 // Note that we add 1 here because the offset is relative to one word 3214 // before the start of the identification block, which was historically 3215 // always the start of the regular bitcode header. 3216 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3217 3218 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3219 3220 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3221 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3224 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3225 3226 for (const Function &F : M) { 3227 uint64_t Record[2]; 3228 3229 if (F.isDeclaration()) 3230 continue; 3231 3232 Record[0] = VE.getValueID(&F); 3233 3234 // Save the word offset of the function (from the start of the 3235 // actual bitcode written to the stream). 3236 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3237 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3238 // Note that we add 1 here because the offset is relative to one word 3239 // before the start of the identification block, which was historically 3240 // always the start of the regular bitcode header. 3241 Record[1] = BitcodeIndex / 32 + 1; 3242 3243 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3244 } 3245 3246 Stream.ExitBlock(); 3247 } 3248 3249 /// Emit names for arguments, instructions and basic blocks in a function. 3250 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3251 const ValueSymbolTable &VST) { 3252 if (VST.empty()) 3253 return; 3254 3255 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3256 3257 // FIXME: Set up the abbrev, we know how many values there are! 3258 // FIXME: We know if the type names can use 7-bit ascii. 3259 SmallVector<uint64_t, 64> NameVals; 3260 3261 for (const ValueName &Name : VST) { 3262 // Figure out the encoding to use for the name. 3263 StringEncoding Bits = getStringEncoding(Name.getKey()); 3264 3265 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3266 NameVals.push_back(VE.getValueID(Name.getValue())); 3267 3268 // VST_CODE_ENTRY: [valueid, namechar x N] 3269 // VST_CODE_BBENTRY: [bbid, namechar x N] 3270 unsigned Code; 3271 if (isa<BasicBlock>(Name.getValue())) { 3272 Code = bitc::VST_CODE_BBENTRY; 3273 if (Bits == SE_Char6) 3274 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3275 } else { 3276 Code = bitc::VST_CODE_ENTRY; 3277 if (Bits == SE_Char6) 3278 AbbrevToUse = VST_ENTRY_6_ABBREV; 3279 else if (Bits == SE_Fixed7) 3280 AbbrevToUse = VST_ENTRY_7_ABBREV; 3281 } 3282 3283 for (const auto P : Name.getKey()) 3284 NameVals.push_back((unsigned char)P); 3285 3286 // Emit the finished record. 3287 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3288 NameVals.clear(); 3289 } 3290 3291 Stream.ExitBlock(); 3292 } 3293 3294 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3295 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3296 unsigned Code; 3297 if (isa<BasicBlock>(Order.V)) 3298 Code = bitc::USELIST_CODE_BB; 3299 else 3300 Code = bitc::USELIST_CODE_DEFAULT; 3301 3302 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3303 Record.push_back(VE.getValueID(Order.V)); 3304 Stream.EmitRecord(Code, Record); 3305 } 3306 3307 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3308 assert(VE.shouldPreserveUseListOrder() && 3309 "Expected to be preserving use-list order"); 3310 3311 auto hasMore = [&]() { 3312 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3313 }; 3314 if (!hasMore()) 3315 // Nothing to do. 3316 return; 3317 3318 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3319 while (hasMore()) { 3320 writeUseList(std::move(VE.UseListOrders.back())); 3321 VE.UseListOrders.pop_back(); 3322 } 3323 Stream.ExitBlock(); 3324 } 3325 3326 /// Emit a function body to the module stream. 3327 void ModuleBitcodeWriter::writeFunction( 3328 const Function &F, 3329 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3330 // Save the bitcode index of the start of this function block for recording 3331 // in the VST. 3332 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3333 3334 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3335 VE.incorporateFunction(F); 3336 3337 SmallVector<unsigned, 64> Vals; 3338 3339 // Emit the number of basic blocks, so the reader can create them ahead of 3340 // time. 3341 Vals.push_back(VE.getBasicBlocks().size()); 3342 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3343 Vals.clear(); 3344 3345 // If there are function-local constants, emit them now. 3346 unsigned CstStart, CstEnd; 3347 VE.getFunctionConstantRange(CstStart, CstEnd); 3348 writeConstants(CstStart, CstEnd, false); 3349 3350 // If there is function-local metadata, emit it now. 3351 writeFunctionMetadata(F); 3352 3353 // Keep a running idea of what the instruction ID is. 3354 unsigned InstID = CstEnd; 3355 3356 bool NeedsMetadataAttachment = F.hasMetadata(); 3357 3358 DILocation *LastDL = nullptr; 3359 // Finally, emit all the instructions, in order. 3360 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3361 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3362 I != E; ++I) { 3363 writeInstruction(*I, InstID, Vals); 3364 3365 if (!I->getType()->isVoidTy()) 3366 ++InstID; 3367 3368 // If the instruction has metadata, write a metadata attachment later. 3369 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3370 3371 // If the instruction has a debug location, emit it. 3372 DILocation *DL = I->getDebugLoc(); 3373 if (!DL) 3374 continue; 3375 3376 if (DL == LastDL) { 3377 // Just repeat the same debug loc as last time. 3378 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3379 continue; 3380 } 3381 3382 Vals.push_back(DL->getLine()); 3383 Vals.push_back(DL->getColumn()); 3384 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3385 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3386 Vals.push_back(DL->isImplicitCode()); 3387 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3388 Vals.clear(); 3389 3390 LastDL = DL; 3391 } 3392 3393 // Emit names for all the instructions etc. 3394 if (auto *Symtab = F.getValueSymbolTable()) 3395 writeFunctionLevelValueSymbolTable(*Symtab); 3396 3397 if (NeedsMetadataAttachment) 3398 writeFunctionMetadataAttachment(F); 3399 if (VE.shouldPreserveUseListOrder()) 3400 writeUseListBlock(&F); 3401 VE.purgeFunction(); 3402 Stream.ExitBlock(); 3403 } 3404 3405 // Emit blockinfo, which defines the standard abbreviations etc. 3406 void ModuleBitcodeWriter::writeBlockInfo() { 3407 // We only want to emit block info records for blocks that have multiple 3408 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3409 // Other blocks can define their abbrevs inline. 3410 Stream.EnterBlockInfoBlock(); 3411 3412 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3413 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3418 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3419 VST_ENTRY_8_ABBREV) 3420 llvm_unreachable("Unexpected abbrev ordering!"); 3421 } 3422 3423 { // 7-bit fixed width VST_CODE_ENTRY strings. 3424 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3425 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3429 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3430 VST_ENTRY_7_ABBREV) 3431 llvm_unreachable("Unexpected abbrev ordering!"); 3432 } 3433 { // 6-bit char6 VST_CODE_ENTRY strings. 3434 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3435 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3439 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3440 VST_ENTRY_6_ABBREV) 3441 llvm_unreachable("Unexpected abbrev ordering!"); 3442 } 3443 { // 6-bit char6 VST_CODE_BBENTRY strings. 3444 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3449 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3450 VST_BBENTRY_6_ABBREV) 3451 llvm_unreachable("Unexpected abbrev ordering!"); 3452 } 3453 3454 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3455 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3456 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3458 VE.computeBitsRequiredForTypeIndicies())); 3459 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3460 CONSTANTS_SETTYPE_ABBREV) 3461 llvm_unreachable("Unexpected abbrev ordering!"); 3462 } 3463 3464 { // INTEGER abbrev for CONSTANTS_BLOCK. 3465 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3468 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3469 CONSTANTS_INTEGER_ABBREV) 3470 llvm_unreachable("Unexpected abbrev ordering!"); 3471 } 3472 3473 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3478 VE.computeBitsRequiredForTypeIndicies())); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3480 3481 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3482 CONSTANTS_CE_CAST_Abbrev) 3483 llvm_unreachable("Unexpected abbrev ordering!"); 3484 } 3485 { // NULL abbrev for CONSTANTS_BLOCK. 3486 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3487 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3488 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3489 CONSTANTS_NULL_Abbrev) 3490 llvm_unreachable("Unexpected abbrev ordering!"); 3491 } 3492 3493 // FIXME: This should only use space for first class types! 3494 3495 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3496 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3497 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3500 VE.computeBitsRequiredForTypeIndicies())); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3503 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3504 FUNCTION_INST_LOAD_ABBREV) 3505 llvm_unreachable("Unexpected abbrev ordering!"); 3506 } 3507 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3508 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3509 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3512 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3513 FUNCTION_INST_UNOP_ABBREV) 3514 llvm_unreachable("Unexpected abbrev ordering!"); 3515 } 3516 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3517 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3518 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3522 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3523 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3524 llvm_unreachable("Unexpected abbrev ordering!"); 3525 } 3526 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3527 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3528 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3532 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3533 FUNCTION_INST_BINOP_ABBREV) 3534 llvm_unreachable("Unexpected abbrev ordering!"); 3535 } 3536 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3537 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3538 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3543 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3544 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3545 llvm_unreachable("Unexpected abbrev ordering!"); 3546 } 3547 { // INST_CAST abbrev for FUNCTION_BLOCK. 3548 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3549 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3552 VE.computeBitsRequiredForTypeIndicies())); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3554 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3555 FUNCTION_INST_CAST_ABBREV) 3556 llvm_unreachable("Unexpected abbrev ordering!"); 3557 } 3558 3559 { // INST_RET abbrev for FUNCTION_BLOCK. 3560 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3561 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3562 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3563 FUNCTION_INST_RET_VOID_ABBREV) 3564 llvm_unreachable("Unexpected abbrev ordering!"); 3565 } 3566 { // INST_RET abbrev for FUNCTION_BLOCK. 3567 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3568 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3570 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3571 FUNCTION_INST_RET_VAL_ABBREV) 3572 llvm_unreachable("Unexpected abbrev ordering!"); 3573 } 3574 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3575 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3576 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3577 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3578 FUNCTION_INST_UNREACHABLE_ABBREV) 3579 llvm_unreachable("Unexpected abbrev ordering!"); 3580 } 3581 { 3582 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3583 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3586 Log2_32_Ceil(VE.getTypes().size() + 1))); 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3589 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3590 FUNCTION_INST_GEP_ABBREV) 3591 llvm_unreachable("Unexpected abbrev ordering!"); 3592 } 3593 3594 Stream.ExitBlock(); 3595 } 3596 3597 /// Write the module path strings, currently only used when generating 3598 /// a combined index file. 3599 void IndexBitcodeWriter::writeModStrings() { 3600 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3601 3602 // TODO: See which abbrev sizes we actually need to emit 3603 3604 // 8-bit fixed-width MST_ENTRY strings. 3605 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3606 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3610 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3611 3612 // 7-bit fixed width MST_ENTRY strings. 3613 Abbv = std::make_shared<BitCodeAbbrev>(); 3614 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3618 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3619 3620 // 6-bit char6 MST_ENTRY strings. 3621 Abbv = std::make_shared<BitCodeAbbrev>(); 3622 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3626 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3627 3628 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3629 Abbv = std::make_shared<BitCodeAbbrev>(); 3630 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3636 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3637 3638 SmallVector<unsigned, 64> Vals; 3639 forEachModule( 3640 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3641 StringRef Key = MPSE.getKey(); 3642 const auto &Value = MPSE.getValue(); 3643 StringEncoding Bits = getStringEncoding(Key); 3644 unsigned AbbrevToUse = Abbrev8Bit; 3645 if (Bits == SE_Char6) 3646 AbbrevToUse = Abbrev6Bit; 3647 else if (Bits == SE_Fixed7) 3648 AbbrevToUse = Abbrev7Bit; 3649 3650 Vals.push_back(Value.first); 3651 Vals.append(Key.begin(), Key.end()); 3652 3653 // Emit the finished record. 3654 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3655 3656 // Emit an optional hash for the module now 3657 const auto &Hash = Value.second; 3658 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3659 Vals.assign(Hash.begin(), Hash.end()); 3660 // Emit the hash record. 3661 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3662 } 3663 3664 Vals.clear(); 3665 }); 3666 Stream.ExitBlock(); 3667 } 3668 3669 /// Write the function type metadata related records that need to appear before 3670 /// a function summary entry (whether per-module or combined). 3671 template <typename Fn> 3672 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3673 FunctionSummary *FS, 3674 Fn GetValueID) { 3675 if (!FS->type_tests().empty()) 3676 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3677 3678 SmallVector<uint64_t, 64> Record; 3679 3680 auto WriteVFuncIdVec = [&](uint64_t Ty, 3681 ArrayRef<FunctionSummary::VFuncId> VFs) { 3682 if (VFs.empty()) 3683 return; 3684 Record.clear(); 3685 for (auto &VF : VFs) { 3686 Record.push_back(VF.GUID); 3687 Record.push_back(VF.Offset); 3688 } 3689 Stream.EmitRecord(Ty, Record); 3690 }; 3691 3692 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3693 FS->type_test_assume_vcalls()); 3694 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3695 FS->type_checked_load_vcalls()); 3696 3697 auto WriteConstVCallVec = [&](uint64_t Ty, 3698 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3699 for (auto &VC : VCs) { 3700 Record.clear(); 3701 Record.push_back(VC.VFunc.GUID); 3702 Record.push_back(VC.VFunc.Offset); 3703 llvm::append_range(Record, VC.Args); 3704 Stream.EmitRecord(Ty, Record); 3705 } 3706 }; 3707 3708 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3709 FS->type_test_assume_const_vcalls()); 3710 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3711 FS->type_checked_load_const_vcalls()); 3712 3713 auto WriteRange = [&](ConstantRange Range) { 3714 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3715 assert(Range.getLower().getNumWords() == 1); 3716 assert(Range.getUpper().getNumWords() == 1); 3717 emitSignedInt64(Record, *Range.getLower().getRawData()); 3718 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3719 }; 3720 3721 if (!FS->paramAccesses().empty()) { 3722 Record.clear(); 3723 for (auto &Arg : FS->paramAccesses()) { 3724 size_t UndoSize = Record.size(); 3725 Record.push_back(Arg.ParamNo); 3726 WriteRange(Arg.Use); 3727 Record.push_back(Arg.Calls.size()); 3728 for (auto &Call : Arg.Calls) { 3729 Record.push_back(Call.ParamNo); 3730 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3731 if (!ValueID) { 3732 // If ValueID is unknown we can't drop just this call, we must drop 3733 // entire parameter. 3734 Record.resize(UndoSize); 3735 break; 3736 } 3737 Record.push_back(*ValueID); 3738 WriteRange(Call.Offsets); 3739 } 3740 } 3741 if (!Record.empty()) 3742 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3743 } 3744 } 3745 3746 /// Collect type IDs from type tests used by function. 3747 static void 3748 getReferencedTypeIds(FunctionSummary *FS, 3749 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3750 if (!FS->type_tests().empty()) 3751 for (auto &TT : FS->type_tests()) 3752 ReferencedTypeIds.insert(TT); 3753 3754 auto GetReferencedTypesFromVFuncIdVec = 3755 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3756 for (auto &VF : VFs) 3757 ReferencedTypeIds.insert(VF.GUID); 3758 }; 3759 3760 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3761 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3762 3763 auto GetReferencedTypesFromConstVCallVec = 3764 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3765 for (auto &VC : VCs) 3766 ReferencedTypeIds.insert(VC.VFunc.GUID); 3767 }; 3768 3769 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3770 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3771 } 3772 3773 static void writeWholeProgramDevirtResolutionByArg( 3774 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3775 const WholeProgramDevirtResolution::ByArg &ByArg) { 3776 NameVals.push_back(args.size()); 3777 llvm::append_range(NameVals, args); 3778 3779 NameVals.push_back(ByArg.TheKind); 3780 NameVals.push_back(ByArg.Info); 3781 NameVals.push_back(ByArg.Byte); 3782 NameVals.push_back(ByArg.Bit); 3783 } 3784 3785 static void writeWholeProgramDevirtResolution( 3786 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3787 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3788 NameVals.push_back(Id); 3789 3790 NameVals.push_back(Wpd.TheKind); 3791 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3792 NameVals.push_back(Wpd.SingleImplName.size()); 3793 3794 NameVals.push_back(Wpd.ResByArg.size()); 3795 for (auto &A : Wpd.ResByArg) 3796 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3797 } 3798 3799 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3800 StringTableBuilder &StrtabBuilder, 3801 const std::string &Id, 3802 const TypeIdSummary &Summary) { 3803 NameVals.push_back(StrtabBuilder.add(Id)); 3804 NameVals.push_back(Id.size()); 3805 3806 NameVals.push_back(Summary.TTRes.TheKind); 3807 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3808 NameVals.push_back(Summary.TTRes.AlignLog2); 3809 NameVals.push_back(Summary.TTRes.SizeM1); 3810 NameVals.push_back(Summary.TTRes.BitMask); 3811 NameVals.push_back(Summary.TTRes.InlineBits); 3812 3813 for (auto &W : Summary.WPDRes) 3814 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3815 W.second); 3816 } 3817 3818 static void writeTypeIdCompatibleVtableSummaryRecord( 3819 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3820 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3821 ValueEnumerator &VE) { 3822 NameVals.push_back(StrtabBuilder.add(Id)); 3823 NameVals.push_back(Id.size()); 3824 3825 for (auto &P : Summary) { 3826 NameVals.push_back(P.AddressPointOffset); 3827 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3828 } 3829 } 3830 3831 // Helper to emit a single function summary record. 3832 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3833 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3834 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3835 const Function &F) { 3836 NameVals.push_back(ValueID); 3837 3838 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3839 3840 writeFunctionTypeMetadataRecords( 3841 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3842 return {VE.getValueID(VI.getValue())}; 3843 }); 3844 3845 auto SpecialRefCnts = FS->specialRefCounts(); 3846 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3847 NameVals.push_back(FS->instCount()); 3848 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3849 NameVals.push_back(FS->refs().size()); 3850 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3851 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3852 3853 for (auto &RI : FS->refs()) 3854 NameVals.push_back(VE.getValueID(RI.getValue())); 3855 3856 bool HasProfileData = 3857 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3858 for (auto &ECI : FS->calls()) { 3859 NameVals.push_back(getValueId(ECI.first)); 3860 if (HasProfileData) 3861 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3862 else if (WriteRelBFToSummary) 3863 NameVals.push_back(ECI.second.RelBlockFreq); 3864 } 3865 3866 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3867 unsigned Code = 3868 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3869 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3870 : bitc::FS_PERMODULE)); 3871 3872 // Emit the finished record. 3873 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3874 NameVals.clear(); 3875 } 3876 3877 // Collect the global value references in the given variable's initializer, 3878 // and emit them in a summary record. 3879 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3880 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3881 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3882 auto VI = Index->getValueInfo(V.getGUID()); 3883 if (!VI || VI.getSummaryList().empty()) { 3884 // Only declarations should not have a summary (a declaration might however 3885 // have a summary if the def was in module level asm). 3886 assert(V.isDeclaration()); 3887 return; 3888 } 3889 auto *Summary = VI.getSummaryList()[0].get(); 3890 NameVals.push_back(VE.getValueID(&V)); 3891 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3892 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3893 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3894 3895 auto VTableFuncs = VS->vTableFuncs(); 3896 if (!VTableFuncs.empty()) 3897 NameVals.push_back(VS->refs().size()); 3898 3899 unsigned SizeBeforeRefs = NameVals.size(); 3900 for (auto &RI : VS->refs()) 3901 NameVals.push_back(VE.getValueID(RI.getValue())); 3902 // Sort the refs for determinism output, the vector returned by FS->refs() has 3903 // been initialized from a DenseSet. 3904 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3905 3906 if (VTableFuncs.empty()) 3907 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3908 FSModRefsAbbrev); 3909 else { 3910 // VTableFuncs pairs should already be sorted by offset. 3911 for (auto &P : VTableFuncs) { 3912 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3913 NameVals.push_back(P.VTableOffset); 3914 } 3915 3916 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3917 FSModVTableRefsAbbrev); 3918 } 3919 NameVals.clear(); 3920 } 3921 3922 /// Emit the per-module summary section alongside the rest of 3923 /// the module's bitcode. 3924 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3925 // By default we compile with ThinLTO if the module has a summary, but the 3926 // client can request full LTO with a module flag. 3927 bool IsThinLTO = true; 3928 if (auto *MD = 3929 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3930 IsThinLTO = MD->getZExtValue(); 3931 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3932 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3933 4); 3934 3935 Stream.EmitRecord( 3936 bitc::FS_VERSION, 3937 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3938 3939 // Write the index flags. 3940 uint64_t Flags = 0; 3941 // Bits 1-3 are set only in the combined index, skip them. 3942 if (Index->enableSplitLTOUnit()) 3943 Flags |= 0x8; 3944 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3945 3946 if (Index->begin() == Index->end()) { 3947 Stream.ExitBlock(); 3948 return; 3949 } 3950 3951 for (const auto &GVI : valueIds()) { 3952 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3953 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3954 } 3955 3956 // Abbrev for FS_PERMODULE_PROFILE. 3957 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3958 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3966 // numrefs x valueid, n x (valueid, hotness) 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3969 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3970 3971 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3972 Abbv = std::make_shared<BitCodeAbbrev>(); 3973 if (WriteRelBFToSummary) 3974 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3975 else 3976 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3984 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3987 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3988 3989 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3990 Abbv = std::make_shared<BitCodeAbbrev>(); 3991 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3996 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3997 3998 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3999 Abbv = std::make_shared<BitCodeAbbrev>(); 4000 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4004 // numrefs x valueid, n x (valueid , offset) 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4007 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4008 4009 // Abbrev for FS_ALIAS. 4010 Abbv = std::make_shared<BitCodeAbbrev>(); 4011 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4015 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4016 4017 // Abbrev for FS_TYPE_ID_METADATA 4018 Abbv = std::make_shared<BitCodeAbbrev>(); 4019 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4022 // n x (valueid , offset) 4023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4025 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4026 4027 SmallVector<uint64_t, 64> NameVals; 4028 // Iterate over the list of functions instead of the Index to 4029 // ensure the ordering is stable. 4030 for (const Function &F : M) { 4031 // Summary emission does not support anonymous functions, they have to 4032 // renamed using the anonymous function renaming pass. 4033 if (!F.hasName()) 4034 report_fatal_error("Unexpected anonymous function when writing summary"); 4035 4036 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4037 if (!VI || VI.getSummaryList().empty()) { 4038 // Only declarations should not have a summary (a declaration might 4039 // however have a summary if the def was in module level asm). 4040 assert(F.isDeclaration()); 4041 continue; 4042 } 4043 auto *Summary = VI.getSummaryList()[0].get(); 4044 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4045 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4046 } 4047 4048 // Capture references from GlobalVariable initializers, which are outside 4049 // of a function scope. 4050 for (const GlobalVariable &G : M.globals()) 4051 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4052 FSModVTableRefsAbbrev); 4053 4054 for (const GlobalAlias &A : M.aliases()) { 4055 auto *Aliasee = A.getAliaseeObject(); 4056 if (!Aliasee->hasName()) 4057 // Nameless function don't have an entry in the summary, skip it. 4058 continue; 4059 auto AliasId = VE.getValueID(&A); 4060 auto AliaseeId = VE.getValueID(Aliasee); 4061 NameVals.push_back(AliasId); 4062 auto *Summary = Index->getGlobalValueSummary(A); 4063 AliasSummary *AS = cast<AliasSummary>(Summary); 4064 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4065 NameVals.push_back(AliaseeId); 4066 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4067 NameVals.clear(); 4068 } 4069 4070 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4071 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4072 S.second, VE); 4073 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4074 TypeIdCompatibleVtableAbbrev); 4075 NameVals.clear(); 4076 } 4077 4078 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4079 ArrayRef<uint64_t>{Index->getBlockCount()}); 4080 4081 Stream.ExitBlock(); 4082 } 4083 4084 /// Emit the combined summary section into the combined index file. 4085 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4086 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4087 Stream.EmitRecord( 4088 bitc::FS_VERSION, 4089 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4090 4091 // Write the index flags. 4092 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4093 4094 for (const auto &GVI : valueIds()) { 4095 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4096 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4097 } 4098 4099 // Abbrev for FS_COMBINED. 4100 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4101 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4111 // numrefs x valueid, n x (valueid) 4112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4114 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4115 4116 // Abbrev for FS_COMBINED_PROFILE. 4117 Abbv = std::make_shared<BitCodeAbbrev>(); 4118 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4128 // numrefs x valueid, n x (valueid, hotness) 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4131 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4132 4133 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4134 Abbv = std::make_shared<BitCodeAbbrev>(); 4135 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4141 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4142 4143 // Abbrev for FS_COMBINED_ALIAS. 4144 Abbv = std::make_shared<BitCodeAbbrev>(); 4145 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4150 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4151 4152 // The aliases are emitted as a post-pass, and will point to the value 4153 // id of the aliasee. Save them in a vector for post-processing. 4154 SmallVector<AliasSummary *, 64> Aliases; 4155 4156 // Save the value id for each summary for alias emission. 4157 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4158 4159 SmallVector<uint64_t, 64> NameVals; 4160 4161 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4162 // with the type ids referenced by this index file. 4163 std::set<GlobalValue::GUID> ReferencedTypeIds; 4164 4165 // For local linkage, we also emit the original name separately 4166 // immediately after the record. 4167 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4168 // We don't need to emit the original name if we are writing the index for 4169 // distributed backends (in which case ModuleToSummariesForIndex is 4170 // non-null). The original name is only needed during the thin link, since 4171 // for SamplePGO the indirect call targets for local functions have 4172 // have the original name annotated in profile. 4173 // Continue to emit it when writing out the entire combined index, which is 4174 // used in testing the thin link via llvm-lto. 4175 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4176 return; 4177 NameVals.push_back(S.getOriginalName()); 4178 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4179 NameVals.clear(); 4180 }; 4181 4182 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4183 forEachSummary([&](GVInfo I, bool IsAliasee) { 4184 GlobalValueSummary *S = I.second; 4185 assert(S); 4186 DefOrUseGUIDs.insert(I.first); 4187 for (const ValueInfo &VI : S->refs()) 4188 DefOrUseGUIDs.insert(VI.getGUID()); 4189 4190 auto ValueId = getValueId(I.first); 4191 assert(ValueId); 4192 SummaryToValueIdMap[S] = *ValueId; 4193 4194 // If this is invoked for an aliasee, we want to record the above 4195 // mapping, but then not emit a summary entry (if the aliasee is 4196 // to be imported, we will invoke this separately with IsAliasee=false). 4197 if (IsAliasee) 4198 return; 4199 4200 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4201 // Will process aliases as a post-pass because the reader wants all 4202 // global to be loaded first. 4203 Aliases.push_back(AS); 4204 return; 4205 } 4206 4207 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4208 NameVals.push_back(*ValueId); 4209 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4210 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4211 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4212 for (auto &RI : VS->refs()) { 4213 auto RefValueId = getValueId(RI.getGUID()); 4214 if (!RefValueId) 4215 continue; 4216 NameVals.push_back(*RefValueId); 4217 } 4218 4219 // Emit the finished record. 4220 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4221 FSModRefsAbbrev); 4222 NameVals.clear(); 4223 MaybeEmitOriginalName(*S); 4224 return; 4225 } 4226 4227 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4228 return getValueId(VI.getGUID()); 4229 }; 4230 4231 auto *FS = cast<FunctionSummary>(S); 4232 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4233 getReferencedTypeIds(FS, ReferencedTypeIds); 4234 4235 NameVals.push_back(*ValueId); 4236 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4237 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4238 NameVals.push_back(FS->instCount()); 4239 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4240 NameVals.push_back(FS->entryCount()); 4241 4242 // Fill in below 4243 NameVals.push_back(0); // numrefs 4244 NameVals.push_back(0); // rorefcnt 4245 NameVals.push_back(0); // worefcnt 4246 4247 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4248 for (auto &RI : FS->refs()) { 4249 auto RefValueId = getValueId(RI.getGUID()); 4250 if (!RefValueId) 4251 continue; 4252 NameVals.push_back(*RefValueId); 4253 if (RI.isReadOnly()) 4254 RORefCnt++; 4255 else if (RI.isWriteOnly()) 4256 WORefCnt++; 4257 Count++; 4258 } 4259 NameVals[6] = Count; 4260 NameVals[7] = RORefCnt; 4261 NameVals[8] = WORefCnt; 4262 4263 bool HasProfileData = false; 4264 for (auto &EI : FS->calls()) { 4265 HasProfileData |= 4266 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4267 if (HasProfileData) 4268 break; 4269 } 4270 4271 for (auto &EI : FS->calls()) { 4272 // If this GUID doesn't have a value id, it doesn't have a function 4273 // summary and we don't need to record any calls to it. 4274 Optional<unsigned> CallValueId = GetValueId(EI.first); 4275 if (!CallValueId) 4276 continue; 4277 NameVals.push_back(*CallValueId); 4278 if (HasProfileData) 4279 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4280 } 4281 4282 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4283 unsigned Code = 4284 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4285 4286 // Emit the finished record. 4287 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4288 NameVals.clear(); 4289 MaybeEmitOriginalName(*S); 4290 }); 4291 4292 for (auto *AS : Aliases) { 4293 auto AliasValueId = SummaryToValueIdMap[AS]; 4294 assert(AliasValueId); 4295 NameVals.push_back(AliasValueId); 4296 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4297 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4298 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4299 assert(AliaseeValueId); 4300 NameVals.push_back(AliaseeValueId); 4301 4302 // Emit the finished record. 4303 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4304 NameVals.clear(); 4305 MaybeEmitOriginalName(*AS); 4306 4307 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4308 getReferencedTypeIds(FS, ReferencedTypeIds); 4309 } 4310 4311 if (!Index.cfiFunctionDefs().empty()) { 4312 for (auto &S : Index.cfiFunctionDefs()) { 4313 if (DefOrUseGUIDs.count( 4314 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4315 NameVals.push_back(StrtabBuilder.add(S)); 4316 NameVals.push_back(S.size()); 4317 } 4318 } 4319 if (!NameVals.empty()) { 4320 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4321 NameVals.clear(); 4322 } 4323 } 4324 4325 if (!Index.cfiFunctionDecls().empty()) { 4326 for (auto &S : Index.cfiFunctionDecls()) { 4327 if (DefOrUseGUIDs.count( 4328 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4329 NameVals.push_back(StrtabBuilder.add(S)); 4330 NameVals.push_back(S.size()); 4331 } 4332 } 4333 if (!NameVals.empty()) { 4334 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4335 NameVals.clear(); 4336 } 4337 } 4338 4339 // Walk the GUIDs that were referenced, and write the 4340 // corresponding type id records. 4341 for (auto &T : ReferencedTypeIds) { 4342 auto TidIter = Index.typeIds().equal_range(T); 4343 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4344 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4345 It->second.second); 4346 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4347 NameVals.clear(); 4348 } 4349 } 4350 4351 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4352 ArrayRef<uint64_t>{Index.getBlockCount()}); 4353 4354 Stream.ExitBlock(); 4355 } 4356 4357 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4358 /// current llvm version, and a record for the epoch number. 4359 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4360 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4361 4362 // Write the "user readable" string identifying the bitcode producer 4363 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4364 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4367 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4368 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4369 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4370 4371 // Write the epoch version 4372 Abbv = std::make_shared<BitCodeAbbrev>(); 4373 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4375 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4376 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4377 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4378 Stream.ExitBlock(); 4379 } 4380 4381 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4382 // Emit the module's hash. 4383 // MODULE_CODE_HASH: [5*i32] 4384 if (GenerateHash) { 4385 uint32_t Vals[5]; 4386 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4387 Buffer.size() - BlockStartPos)); 4388 StringRef Hash = Hasher.result(); 4389 for (int Pos = 0; Pos < 20; Pos += 4) { 4390 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4391 } 4392 4393 // Emit the finished record. 4394 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4395 4396 if (ModHash) 4397 // Save the written hash value. 4398 llvm::copy(Vals, std::begin(*ModHash)); 4399 } 4400 } 4401 4402 void ModuleBitcodeWriter::write() { 4403 writeIdentificationBlock(Stream); 4404 4405 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4406 size_t BlockStartPos = Buffer.size(); 4407 4408 writeModuleVersion(); 4409 4410 // Emit blockinfo, which defines the standard abbreviations etc. 4411 writeBlockInfo(); 4412 4413 // Emit information describing all of the types in the module. 4414 writeTypeTable(); 4415 4416 // Emit information about attribute groups. 4417 writeAttributeGroupTable(); 4418 4419 // Emit information about parameter attributes. 4420 writeAttributeTable(); 4421 4422 writeComdats(); 4423 4424 // Emit top-level description of module, including target triple, inline asm, 4425 // descriptors for global variables, and function prototype info. 4426 writeModuleInfo(); 4427 4428 // Emit constants. 4429 writeModuleConstants(); 4430 4431 // Emit metadata kind names. 4432 writeModuleMetadataKinds(); 4433 4434 // Emit metadata. 4435 writeModuleMetadata(); 4436 4437 // Emit module-level use-lists. 4438 if (VE.shouldPreserveUseListOrder()) 4439 writeUseListBlock(nullptr); 4440 4441 writeOperandBundleTags(); 4442 writeSyncScopeNames(); 4443 4444 // Emit function bodies. 4445 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4446 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4447 if (!F->isDeclaration()) 4448 writeFunction(*F, FunctionToBitcodeIndex); 4449 4450 // Need to write after the above call to WriteFunction which populates 4451 // the summary information in the index. 4452 if (Index) 4453 writePerModuleGlobalValueSummary(); 4454 4455 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4456 4457 writeModuleHash(BlockStartPos); 4458 4459 Stream.ExitBlock(); 4460 } 4461 4462 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4463 uint32_t &Position) { 4464 support::endian::write32le(&Buffer[Position], Value); 4465 Position += 4; 4466 } 4467 4468 /// If generating a bc file on darwin, we have to emit a 4469 /// header and trailer to make it compatible with the system archiver. To do 4470 /// this we emit the following header, and then emit a trailer that pads the 4471 /// file out to be a multiple of 16 bytes. 4472 /// 4473 /// struct bc_header { 4474 /// uint32_t Magic; // 0x0B17C0DE 4475 /// uint32_t Version; // Version, currently always 0. 4476 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4477 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4478 /// uint32_t CPUType; // CPU specifier. 4479 /// ... potentially more later ... 4480 /// }; 4481 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4482 const Triple &TT) { 4483 unsigned CPUType = ~0U; 4484 4485 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4486 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4487 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4488 // specific constants here because they are implicitly part of the Darwin ABI. 4489 enum { 4490 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4491 DARWIN_CPU_TYPE_X86 = 7, 4492 DARWIN_CPU_TYPE_ARM = 12, 4493 DARWIN_CPU_TYPE_POWERPC = 18 4494 }; 4495 4496 Triple::ArchType Arch = TT.getArch(); 4497 if (Arch == Triple::x86_64) 4498 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4499 else if (Arch == Triple::x86) 4500 CPUType = DARWIN_CPU_TYPE_X86; 4501 else if (Arch == Triple::ppc) 4502 CPUType = DARWIN_CPU_TYPE_POWERPC; 4503 else if (Arch == Triple::ppc64) 4504 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4505 else if (Arch == Triple::arm || Arch == Triple::thumb) 4506 CPUType = DARWIN_CPU_TYPE_ARM; 4507 4508 // Traditional Bitcode starts after header. 4509 assert(Buffer.size() >= BWH_HeaderSize && 4510 "Expected header size to be reserved"); 4511 unsigned BCOffset = BWH_HeaderSize; 4512 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4513 4514 // Write the magic and version. 4515 unsigned Position = 0; 4516 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4517 writeInt32ToBuffer(0, Buffer, Position); // Version. 4518 writeInt32ToBuffer(BCOffset, Buffer, Position); 4519 writeInt32ToBuffer(BCSize, Buffer, Position); 4520 writeInt32ToBuffer(CPUType, Buffer, Position); 4521 4522 // If the file is not a multiple of 16 bytes, insert dummy padding. 4523 while (Buffer.size() & 15) 4524 Buffer.push_back(0); 4525 } 4526 4527 /// Helper to write the header common to all bitcode files. 4528 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4529 // Emit the file header. 4530 Stream.Emit((unsigned)'B', 8); 4531 Stream.Emit((unsigned)'C', 8); 4532 Stream.Emit(0x0, 4); 4533 Stream.Emit(0xC, 4); 4534 Stream.Emit(0xE, 4); 4535 Stream.Emit(0xD, 4); 4536 } 4537 4538 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4539 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4540 writeBitcodeHeader(*Stream); 4541 } 4542 4543 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4544 4545 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4546 Stream->EnterSubblock(Block, 3); 4547 4548 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4549 Abbv->Add(BitCodeAbbrevOp(Record)); 4550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4551 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4552 4553 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4554 4555 Stream->ExitBlock(); 4556 } 4557 4558 void BitcodeWriter::writeSymtab() { 4559 assert(!WroteStrtab && !WroteSymtab); 4560 4561 // If any module has module-level inline asm, we will require a registered asm 4562 // parser for the target so that we can create an accurate symbol table for 4563 // the module. 4564 for (Module *M : Mods) { 4565 if (M->getModuleInlineAsm().empty()) 4566 continue; 4567 4568 std::string Err; 4569 const Triple TT(M->getTargetTriple()); 4570 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4571 if (!T || !T->hasMCAsmParser()) 4572 return; 4573 } 4574 4575 WroteSymtab = true; 4576 SmallVector<char, 0> Symtab; 4577 // The irsymtab::build function may be unable to create a symbol table if the 4578 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4579 // table is not required for correctness, but we still want to be able to 4580 // write malformed modules to bitcode files, so swallow the error. 4581 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4582 consumeError(std::move(E)); 4583 return; 4584 } 4585 4586 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4587 {Symtab.data(), Symtab.size()}); 4588 } 4589 4590 void BitcodeWriter::writeStrtab() { 4591 assert(!WroteStrtab); 4592 4593 std::vector<char> Strtab; 4594 StrtabBuilder.finalizeInOrder(); 4595 Strtab.resize(StrtabBuilder.getSize()); 4596 StrtabBuilder.write((uint8_t *)Strtab.data()); 4597 4598 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4599 {Strtab.data(), Strtab.size()}); 4600 4601 WroteStrtab = true; 4602 } 4603 4604 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4605 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4606 WroteStrtab = true; 4607 } 4608 4609 void BitcodeWriter::writeModule(const Module &M, 4610 bool ShouldPreserveUseListOrder, 4611 const ModuleSummaryIndex *Index, 4612 bool GenerateHash, ModuleHash *ModHash) { 4613 assert(!WroteStrtab); 4614 4615 // The Mods vector is used by irsymtab::build, which requires non-const 4616 // Modules in case it needs to materialize metadata. But the bitcode writer 4617 // requires that the module is materialized, so we can cast to non-const here, 4618 // after checking that it is in fact materialized. 4619 assert(M.isMaterialized()); 4620 Mods.push_back(const_cast<Module *>(&M)); 4621 4622 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4623 ShouldPreserveUseListOrder, Index, 4624 GenerateHash, ModHash); 4625 ModuleWriter.write(); 4626 } 4627 4628 void BitcodeWriter::writeIndex( 4629 const ModuleSummaryIndex *Index, 4630 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4631 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4632 ModuleToSummariesForIndex); 4633 IndexWriter.write(); 4634 } 4635 4636 /// Write the specified module to the specified output stream. 4637 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4638 bool ShouldPreserveUseListOrder, 4639 const ModuleSummaryIndex *Index, 4640 bool GenerateHash, ModuleHash *ModHash) { 4641 SmallVector<char, 0> Buffer; 4642 Buffer.reserve(256*1024); 4643 4644 // If this is darwin or another generic macho target, reserve space for the 4645 // header. 4646 Triple TT(M.getTargetTriple()); 4647 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4648 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4649 4650 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4651 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4652 ModHash); 4653 Writer.writeSymtab(); 4654 Writer.writeStrtab(); 4655 4656 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4657 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4658 4659 // Write the generated bitstream to "Out". 4660 if (!Buffer.empty()) 4661 Out.write((char *)&Buffer.front(), Buffer.size()); 4662 } 4663 4664 void IndexBitcodeWriter::write() { 4665 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4666 4667 writeModuleVersion(); 4668 4669 // Write the module paths in the combined index. 4670 writeModStrings(); 4671 4672 // Write the summary combined index records. 4673 writeCombinedGlobalValueSummary(); 4674 4675 Stream.ExitBlock(); 4676 } 4677 4678 // Write the specified module summary index to the given raw output stream, 4679 // where it will be written in a new bitcode block. This is used when 4680 // writing the combined index file for ThinLTO. When writing a subset of the 4681 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4682 void llvm::WriteIndexToFile( 4683 const ModuleSummaryIndex &Index, raw_ostream &Out, 4684 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4685 SmallVector<char, 0> Buffer; 4686 Buffer.reserve(256 * 1024); 4687 4688 BitcodeWriter Writer(Buffer); 4689 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4690 Writer.writeStrtab(); 4691 4692 Out.write((char *)&Buffer.front(), Buffer.size()); 4693 } 4694 4695 namespace { 4696 4697 /// Class to manage the bitcode writing for a thin link bitcode file. 4698 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4699 /// ModHash is for use in ThinLTO incremental build, generated while writing 4700 /// the module bitcode file. 4701 const ModuleHash *ModHash; 4702 4703 public: 4704 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4705 BitstreamWriter &Stream, 4706 const ModuleSummaryIndex &Index, 4707 const ModuleHash &ModHash) 4708 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4709 /*ShouldPreserveUseListOrder=*/false, &Index), 4710 ModHash(&ModHash) {} 4711 4712 void write(); 4713 4714 private: 4715 void writeSimplifiedModuleInfo(); 4716 }; 4717 4718 } // end anonymous namespace 4719 4720 // This function writes a simpilified module info for thin link bitcode file. 4721 // It only contains the source file name along with the name(the offset and 4722 // size in strtab) and linkage for global values. For the global value info 4723 // entry, in order to keep linkage at offset 5, there are three zeros used 4724 // as padding. 4725 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4726 SmallVector<unsigned, 64> Vals; 4727 // Emit the module's source file name. 4728 { 4729 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4730 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4731 if (Bits == SE_Char6) 4732 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4733 else if (Bits == SE_Fixed7) 4734 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4735 4736 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4737 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4738 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4740 Abbv->Add(AbbrevOpToUse); 4741 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4742 4743 for (const auto P : M.getSourceFileName()) 4744 Vals.push_back((unsigned char)P); 4745 4746 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4747 Vals.clear(); 4748 } 4749 4750 // Emit the global variable information. 4751 for (const GlobalVariable &GV : M.globals()) { 4752 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4753 Vals.push_back(StrtabBuilder.add(GV.getName())); 4754 Vals.push_back(GV.getName().size()); 4755 Vals.push_back(0); 4756 Vals.push_back(0); 4757 Vals.push_back(0); 4758 Vals.push_back(getEncodedLinkage(GV)); 4759 4760 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4761 Vals.clear(); 4762 } 4763 4764 // Emit the function proto information. 4765 for (const Function &F : M) { 4766 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4767 Vals.push_back(StrtabBuilder.add(F.getName())); 4768 Vals.push_back(F.getName().size()); 4769 Vals.push_back(0); 4770 Vals.push_back(0); 4771 Vals.push_back(0); 4772 Vals.push_back(getEncodedLinkage(F)); 4773 4774 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4775 Vals.clear(); 4776 } 4777 4778 // Emit the alias information. 4779 for (const GlobalAlias &A : M.aliases()) { 4780 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4781 Vals.push_back(StrtabBuilder.add(A.getName())); 4782 Vals.push_back(A.getName().size()); 4783 Vals.push_back(0); 4784 Vals.push_back(0); 4785 Vals.push_back(0); 4786 Vals.push_back(getEncodedLinkage(A)); 4787 4788 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4789 Vals.clear(); 4790 } 4791 4792 // Emit the ifunc information. 4793 for (const GlobalIFunc &I : M.ifuncs()) { 4794 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4795 Vals.push_back(StrtabBuilder.add(I.getName())); 4796 Vals.push_back(I.getName().size()); 4797 Vals.push_back(0); 4798 Vals.push_back(0); 4799 Vals.push_back(0); 4800 Vals.push_back(getEncodedLinkage(I)); 4801 4802 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4803 Vals.clear(); 4804 } 4805 } 4806 4807 void ThinLinkBitcodeWriter::write() { 4808 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4809 4810 writeModuleVersion(); 4811 4812 writeSimplifiedModuleInfo(); 4813 4814 writePerModuleGlobalValueSummary(); 4815 4816 // Write module hash. 4817 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4818 4819 Stream.ExitBlock(); 4820 } 4821 4822 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4823 const ModuleSummaryIndex &Index, 4824 const ModuleHash &ModHash) { 4825 assert(!WroteStrtab); 4826 4827 // The Mods vector is used by irsymtab::build, which requires non-const 4828 // Modules in case it needs to materialize metadata. But the bitcode writer 4829 // requires that the module is materialized, so we can cast to non-const here, 4830 // after checking that it is in fact materialized. 4831 assert(M.isMaterialized()); 4832 Mods.push_back(const_cast<Module *>(&M)); 4833 4834 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4835 ModHash); 4836 ThinLinkWriter.write(); 4837 } 4838 4839 // Write the specified thin link bitcode file to the given raw output stream, 4840 // where it will be written in a new bitcode block. This is used when 4841 // writing the per-module index file for ThinLTO. 4842 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4843 const ModuleSummaryIndex &Index, 4844 const ModuleHash &ModHash) { 4845 SmallVector<char, 0> Buffer; 4846 Buffer.reserve(256 * 1024); 4847 4848 BitcodeWriter Writer(Buffer); 4849 Writer.writeThinLinkBitcode(M, Index, ModHash); 4850 Writer.writeSymtab(); 4851 Writer.writeStrtab(); 4852 4853 Out.write((char *)&Buffer.front(), Buffer.size()); 4854 } 4855 4856 static const char *getSectionNameForBitcode(const Triple &T) { 4857 switch (T.getObjectFormat()) { 4858 case Triple::MachO: 4859 return "__LLVM,__bitcode"; 4860 case Triple::COFF: 4861 case Triple::ELF: 4862 case Triple::Wasm: 4863 case Triple::UnknownObjectFormat: 4864 return ".llvmbc"; 4865 case Triple::GOFF: 4866 llvm_unreachable("GOFF is not yet implemented"); 4867 break; 4868 case Triple::XCOFF: 4869 llvm_unreachable("XCOFF is not yet implemented"); 4870 break; 4871 } 4872 llvm_unreachable("Unimplemented ObjectFormatType"); 4873 } 4874 4875 static const char *getSectionNameForCommandline(const Triple &T) { 4876 switch (T.getObjectFormat()) { 4877 case Triple::MachO: 4878 return "__LLVM,__cmdline"; 4879 case Triple::COFF: 4880 case Triple::ELF: 4881 case Triple::Wasm: 4882 case Triple::UnknownObjectFormat: 4883 return ".llvmcmd"; 4884 case Triple::GOFF: 4885 llvm_unreachable("GOFF is not yet implemented"); 4886 break; 4887 case Triple::XCOFF: 4888 llvm_unreachable("XCOFF is not yet implemented"); 4889 break; 4890 } 4891 llvm_unreachable("Unimplemented ObjectFormatType"); 4892 } 4893 4894 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4895 bool EmbedBitcode, bool EmbedCmdline, 4896 const std::vector<uint8_t> &CmdArgs) { 4897 // Save llvm.compiler.used and remove it. 4898 SmallVector<Constant *, 2> UsedArray; 4899 SmallVector<GlobalValue *, 4> UsedGlobals; 4900 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4901 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4902 for (auto *GV : UsedGlobals) { 4903 if (GV->getName() != "llvm.embedded.module" && 4904 GV->getName() != "llvm.cmdline") 4905 UsedArray.push_back( 4906 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4907 } 4908 if (Used) 4909 Used->eraseFromParent(); 4910 4911 // Embed the bitcode for the llvm module. 4912 std::string Data; 4913 ArrayRef<uint8_t> ModuleData; 4914 Triple T(M.getTargetTriple()); 4915 4916 if (EmbedBitcode) { 4917 if (Buf.getBufferSize() == 0 || 4918 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4919 (const unsigned char *)Buf.getBufferEnd())) { 4920 // If the input is LLVM Assembly, bitcode is produced by serializing 4921 // the module. Use-lists order need to be preserved in this case. 4922 llvm::raw_string_ostream OS(Data); 4923 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4924 ModuleData = 4925 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4926 } else 4927 // If the input is LLVM bitcode, write the input byte stream directly. 4928 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4929 Buf.getBufferSize()); 4930 } 4931 llvm::Constant *ModuleConstant = 4932 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4933 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4934 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4935 ModuleConstant); 4936 GV->setSection(getSectionNameForBitcode(T)); 4937 // Set alignment to 1 to prevent padding between two contributions from input 4938 // sections after linking. 4939 GV->setAlignment(Align(1)); 4940 UsedArray.push_back( 4941 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4942 if (llvm::GlobalVariable *Old = 4943 M.getGlobalVariable("llvm.embedded.module", true)) { 4944 assert(Old->hasOneUse() && 4945 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4946 GV->takeName(Old); 4947 Old->eraseFromParent(); 4948 } else { 4949 GV->setName("llvm.embedded.module"); 4950 } 4951 4952 // Skip if only bitcode needs to be embedded. 4953 if (EmbedCmdline) { 4954 // Embed command-line options. 4955 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4956 CmdArgs.size()); 4957 llvm::Constant *CmdConstant = 4958 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4959 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4960 llvm::GlobalValue::PrivateLinkage, 4961 CmdConstant); 4962 GV->setSection(getSectionNameForCommandline(T)); 4963 GV->setAlignment(Align(1)); 4964 UsedArray.push_back( 4965 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4966 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4967 assert(Old->hasOneUse() && 4968 "llvm.cmdline can only be used once in llvm.compiler.used"); 4969 GV->takeName(Old); 4970 Old->eraseFromParent(); 4971 } else { 4972 GV->setName("llvm.cmdline"); 4973 } 4974 } 4975 4976 if (UsedArray.empty()) 4977 return; 4978 4979 // Recreate llvm.compiler.used. 4980 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4981 auto *NewUsed = new GlobalVariable( 4982 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4983 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4984 NewUsed->setSection("llvm.metadata"); 4985 } 4986