1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Metadata.h" 23 #include "llvm/Module.h" 24 #include "llvm/Operator.h" 25 #include "llvm/TypeSymbolTable.h" 26 #include "llvm/ValueSymbolTable.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/Streams.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/System/Program.h" 32 using namespace llvm; 33 34 /// These are manifest constants used by the bitcode writer. They do not need to 35 /// be kept in sync with the reader, but need to be consistent within this file. 36 enum { 37 CurVersion = 0, 38 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 105 106 static void WriteStringRecord(unsigned Code, const std::string &Str, 107 unsigned AbbrevToUse, BitstreamWriter &Stream) { 108 SmallVector<unsigned, 64> Vals; 109 110 // Code: [strchar x N] 111 for (unsigned i = 0, e = Str.size(); i != e; ++i) 112 Vals.push_back(Str[i]); 113 114 // Emit the finished record. 115 Stream.EmitRecord(Code, Vals, AbbrevToUse); 116 } 117 118 // Emit information about parameter attributes. 119 static void WriteAttributeTable(const ValueEnumerator &VE, 120 BitstreamWriter &Stream) { 121 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 122 if (Attrs.empty()) return; 123 124 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 125 126 SmallVector<uint64_t, 64> Record; 127 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 128 const AttrListPtr &A = Attrs[i]; 129 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 130 const AttributeWithIndex &PAWI = A.getSlot(i); 131 Record.push_back(PAWI.Index); 132 133 // FIXME: remove in LLVM 3.0 134 // Store the alignment in the bitcode as a 16-bit raw value instead of a 135 // 5-bit log2 encoded value. Shift the bits above the alignment up by 136 // 11 bits. 137 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 138 if (PAWI.Attrs & Attribute::Alignment) 139 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 140 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 141 142 Record.push_back(FauxAttr); 143 } 144 145 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 146 Record.clear(); 147 } 148 149 Stream.ExitBlock(); 150 } 151 152 /// WriteTypeTable - Write out the type table for a module. 153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 154 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 155 156 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 157 SmallVector<uint64_t, 64> TypeVals; 158 159 // Abbrev for TYPE_CODE_POINTER. 160 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 161 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 163 Log2_32_Ceil(VE.getTypes().size()+1))); 164 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 165 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 166 167 // Abbrev for TYPE_CODE_FUNCTION. 168 Abbv = new BitCodeAbbrev(); 169 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 171 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 174 Log2_32_Ceil(VE.getTypes().size()+1))); 175 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 176 177 // Abbrev for TYPE_CODE_STRUCT. 178 Abbv = new BitCodeAbbrev(); 179 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 183 Log2_32_Ceil(VE.getTypes().size()+1))); 184 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 185 186 // Abbrev for TYPE_CODE_ARRAY. 187 Abbv = new BitCodeAbbrev(); 188 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 191 Log2_32_Ceil(VE.getTypes().size()+1))); 192 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 193 194 // Emit an entry count so the reader can reserve space. 195 TypeVals.push_back(TypeList.size()); 196 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 197 TypeVals.clear(); 198 199 // Loop over all of the types, emitting each in turn. 200 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 201 const Type *T = TypeList[i].first; 202 int AbbrevToUse = 0; 203 unsigned Code = 0; 204 205 switch (T->getTypeID()) { 206 default: llvm_unreachable("Unknown type!"); 207 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 208 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 209 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 210 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 211 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 212 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 213 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 214 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 215 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 216 case Type::IntegerTyID: 217 // INTEGER: [width] 218 Code = bitc::TYPE_CODE_INTEGER; 219 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 220 break; 221 case Type::PointerTyID: { 222 const PointerType *PTy = cast<PointerType>(T); 223 // POINTER: [pointee type, address space] 224 Code = bitc::TYPE_CODE_POINTER; 225 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 226 unsigned AddressSpace = PTy->getAddressSpace(); 227 TypeVals.push_back(AddressSpace); 228 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 229 break; 230 } 231 case Type::FunctionTyID: { 232 const FunctionType *FT = cast<FunctionType>(T); 233 // FUNCTION: [isvararg, attrid, retty, paramty x N] 234 Code = bitc::TYPE_CODE_FUNCTION; 235 TypeVals.push_back(FT->isVarArg()); 236 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 237 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 238 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 239 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 240 AbbrevToUse = FunctionAbbrev; 241 break; 242 } 243 case Type::StructTyID: { 244 const StructType *ST = cast<StructType>(T); 245 // STRUCT: [ispacked, eltty x N] 246 Code = bitc::TYPE_CODE_STRUCT; 247 TypeVals.push_back(ST->isPacked()); 248 // Output all of the element types. 249 for (StructType::element_iterator I = ST->element_begin(), 250 E = ST->element_end(); I != E; ++I) 251 TypeVals.push_back(VE.getTypeID(*I)); 252 AbbrevToUse = StructAbbrev; 253 break; 254 } 255 case Type::ArrayTyID: { 256 const ArrayType *AT = cast<ArrayType>(T); 257 // ARRAY: [numelts, eltty] 258 Code = bitc::TYPE_CODE_ARRAY; 259 TypeVals.push_back(AT->getNumElements()); 260 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 261 AbbrevToUse = ArrayAbbrev; 262 break; 263 } 264 case Type::VectorTyID: { 265 const VectorType *VT = cast<VectorType>(T); 266 // VECTOR [numelts, eltty] 267 Code = bitc::TYPE_CODE_VECTOR; 268 TypeVals.push_back(VT->getNumElements()); 269 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 270 break; 271 } 272 } 273 274 // Emit the finished record. 275 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 276 TypeVals.clear(); 277 } 278 279 Stream.ExitBlock(); 280 } 281 282 static unsigned getEncodedLinkage(const GlobalValue *GV) { 283 switch (GV->getLinkage()) { 284 default: llvm_unreachable("Invalid linkage!"); 285 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 286 case GlobalValue::ExternalLinkage: return 0; 287 case GlobalValue::WeakAnyLinkage: return 1; 288 case GlobalValue::AppendingLinkage: return 2; 289 case GlobalValue::InternalLinkage: return 3; 290 case GlobalValue::LinkOnceAnyLinkage: return 4; 291 case GlobalValue::DLLImportLinkage: return 5; 292 case GlobalValue::DLLExportLinkage: return 6; 293 case GlobalValue::ExternalWeakLinkage: return 7; 294 case GlobalValue::CommonLinkage: return 8; 295 case GlobalValue::PrivateLinkage: return 9; 296 case GlobalValue::WeakODRLinkage: return 10; 297 case GlobalValue::LinkOnceODRLinkage: return 11; 298 case GlobalValue::AvailableExternallyLinkage: return 12; 299 case GlobalValue::LinkerPrivateLinkage: return 13; 300 } 301 } 302 303 static unsigned getEncodedVisibility(const GlobalValue *GV) { 304 switch (GV->getVisibility()) { 305 default: llvm_unreachable("Invalid visibility!"); 306 case GlobalValue::DefaultVisibility: return 0; 307 case GlobalValue::HiddenVisibility: return 1; 308 case GlobalValue::ProtectedVisibility: return 2; 309 } 310 } 311 312 // Emit top-level description of module, including target triple, inline asm, 313 // descriptors for global variables, and function prototype info. 314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 315 BitstreamWriter &Stream) { 316 // Emit the list of dependent libraries for the Module. 317 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 318 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 319 320 // Emit various pieces of data attached to a module. 321 if (!M->getTargetTriple().empty()) 322 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 323 0/*TODO*/, Stream); 324 if (!M->getDataLayout().empty()) 325 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 326 0/*TODO*/, Stream); 327 if (!M->getModuleInlineAsm().empty()) 328 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 329 0/*TODO*/, Stream); 330 331 // Emit information about sections and GC, computing how many there are. Also 332 // compute the maximum alignment value. 333 std::map<std::string, unsigned> SectionMap; 334 std::map<std::string, unsigned> GCMap; 335 unsigned MaxAlignment = 0; 336 unsigned MaxGlobalType = 0; 337 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 338 GV != E; ++GV) { 339 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 340 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 341 342 if (!GV->hasSection()) continue; 343 // Give section names unique ID's. 344 unsigned &Entry = SectionMap[GV->getSection()]; 345 if (Entry != 0) continue; 346 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 347 0/*TODO*/, Stream); 348 Entry = SectionMap.size(); 349 } 350 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 351 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 352 if (F->hasSection()) { 353 // Give section names unique ID's. 354 unsigned &Entry = SectionMap[F->getSection()]; 355 if (!Entry) { 356 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 357 0/*TODO*/, Stream); 358 Entry = SectionMap.size(); 359 } 360 } 361 if (F->hasGC()) { 362 // Same for GC names. 363 unsigned &Entry = GCMap[F->getGC()]; 364 if (!Entry) { 365 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 366 0/*TODO*/, Stream); 367 Entry = GCMap.size(); 368 } 369 } 370 } 371 372 // Emit abbrev for globals, now that we know # sections and max alignment. 373 unsigned SimpleGVarAbbrev = 0; 374 if (!M->global_empty()) { 375 // Add an abbrev for common globals with no visibility or thread localness. 376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 377 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 379 Log2_32_Ceil(MaxGlobalType+1))); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 383 if (MaxAlignment == 0) // Alignment. 384 Abbv->Add(BitCodeAbbrevOp(0)); 385 else { 386 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 388 Log2_32_Ceil(MaxEncAlignment+1))); 389 } 390 if (SectionMap.empty()) // Section. 391 Abbv->Add(BitCodeAbbrevOp(0)); 392 else 393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 394 Log2_32_Ceil(SectionMap.size()+1))); 395 // Don't bother emitting vis + thread local. 396 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 397 } 398 399 // Emit the global variable information. 400 SmallVector<unsigned, 64> Vals; 401 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 402 GV != E; ++GV) { 403 unsigned AbbrevToUse = 0; 404 405 // GLOBALVAR: [type, isconst, initid, 406 // linkage, alignment, section, visibility, threadlocal] 407 Vals.push_back(VE.getTypeID(GV->getType())); 408 Vals.push_back(GV->isConstant()); 409 Vals.push_back(GV->isDeclaration() ? 0 : 410 (VE.getValueID(GV->getInitializer()) + 1)); 411 Vals.push_back(getEncodedLinkage(GV)); 412 Vals.push_back(Log2_32(GV->getAlignment())+1); 413 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 414 if (GV->isThreadLocal() || 415 GV->getVisibility() != GlobalValue::DefaultVisibility) { 416 Vals.push_back(getEncodedVisibility(GV)); 417 Vals.push_back(GV->isThreadLocal()); 418 } else { 419 AbbrevToUse = SimpleGVarAbbrev; 420 } 421 422 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 423 Vals.clear(); 424 } 425 426 // Emit the function proto information. 427 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 428 // FUNCTION: [type, callingconv, isproto, paramattr, 429 // linkage, alignment, section, visibility, gc] 430 Vals.push_back(VE.getTypeID(F->getType())); 431 Vals.push_back(F->getCallingConv()); 432 Vals.push_back(F->isDeclaration()); 433 Vals.push_back(getEncodedLinkage(F)); 434 Vals.push_back(VE.getAttributeID(F->getAttributes())); 435 Vals.push_back(Log2_32(F->getAlignment())+1); 436 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 437 Vals.push_back(getEncodedVisibility(F)); 438 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 439 440 unsigned AbbrevToUse = 0; 441 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 442 Vals.clear(); 443 } 444 445 446 // Emit the alias information. 447 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 448 AI != E; ++AI) { 449 Vals.push_back(VE.getTypeID(AI->getType())); 450 Vals.push_back(VE.getValueID(AI->getAliasee())); 451 Vals.push_back(getEncodedLinkage(AI)); 452 Vals.push_back(getEncodedVisibility(AI)); 453 unsigned AbbrevToUse = 0; 454 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 455 Vals.clear(); 456 } 457 } 458 459 static uint64_t GetOptimizationFlags(const Value *V) { 460 uint64_t Flags = 0; 461 462 if (const OverflowingBinaryOperator *OBO = 463 dyn_cast<OverflowingBinaryOperator>(V)) { 464 if (OBO->hasNoSignedOverflow()) 465 Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW; 466 if (OBO->hasNoUnsignedOverflow()) 467 Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW; 468 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 469 if (Div->isExact()) 470 Flags |= 1 << bitc::SDIV_EXACT; 471 } 472 473 return Flags; 474 } 475 476 static void WriteMDNode(const MDNode *N, 477 const ValueEnumerator &VE, 478 BitstreamWriter &Stream, 479 SmallVector<uint64_t, 64> &Record) { 480 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 481 if (N->getElement(i)) { 482 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 483 Record.push_back(VE.getValueID(N->getElement(i))); 484 } else { 485 Record.push_back(VE.getTypeID(Type::VoidTy)); 486 Record.push_back(0); 487 } 488 } 489 Stream.EmitRecord(bitc::METADATA_NODE, Record, 0); 490 Record.clear(); 491 } 492 493 static void WriteModuleMetadata(const ValueEnumerator &VE, 494 BitstreamWriter &Stream) { 495 const ValueEnumerator::ValueList &Vals = VE.getValues(); 496 bool StartedMetadataBlock = false; 497 unsigned MDSAbbrev = 0; 498 unsigned String8Abbrev = 0; 499 SmallVector<uint64_t, 64> Record; 500 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 501 502 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 503 if (!StartedMetadataBlock) { 504 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 505 StartedMetadataBlock = true; 506 } 507 WriteMDNode(N, VE, Stream, Record); 508 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 509 if (!StartedMetadataBlock) { 510 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 511 512 // Abbrev for METADATA_STRING. 513 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 514 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 517 MDSAbbrev = Stream.EmitAbbrev(Abbv); 518 StartedMetadataBlock = true; 519 } 520 521 // Code: [strchar x N] 522 const char *StrBegin = MDS->begin(); 523 for (unsigned i = 0, e = MDS->length(); i != e; ++i) 524 Record.push_back(StrBegin[i]); 525 526 // Emit the finished record. 527 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 528 Record.clear(); 529 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 530 if (!StartedMetadataBlock) { 531 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 532 StartedMetadataBlock = true; 533 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 534 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 537 String8Abbrev = Stream.EmitAbbrev(Abbv); 538 } 539 540 // Write name. 541 const char *StrBegin = NMD->getName().data(); 542 for (unsigned i = 0, e = NMD->getName().size(); i != e; ++i) 543 Record.push_back(StrBegin[i]); 544 Stream.EmitRecord(bitc::METADATA_NAME, Record, String8Abbrev); 545 Record.clear(); 546 547 // Write named metadata elements. 548 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { 549 if (NMD->getElement(i)) 550 Record.push_back(VE.getValueID(NMD->getElement(i))); 551 else 552 Record.push_back(0); 553 } 554 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 555 Record.clear(); 556 } 557 } 558 559 if (StartedMetadataBlock) 560 Stream.ExitBlock(); 561 } 562 563 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 564 const ValueEnumerator &VE, 565 BitstreamWriter &Stream, bool isGlobal) { 566 if (FirstVal == LastVal) return; 567 568 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 569 570 unsigned AggregateAbbrev = 0; 571 unsigned String8Abbrev = 0; 572 unsigned CString7Abbrev = 0; 573 unsigned CString6Abbrev = 0; 574 // If this is a constant pool for the module, emit module-specific abbrevs. 575 if (isGlobal) { 576 // Abbrev for CST_CODE_AGGREGATE. 577 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 578 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 581 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 582 583 // Abbrev for CST_CODE_STRING. 584 Abbv = new BitCodeAbbrev(); 585 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 588 String8Abbrev = Stream.EmitAbbrev(Abbv); 589 // Abbrev for CST_CODE_CSTRING. 590 Abbv = new BitCodeAbbrev(); 591 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 594 CString7Abbrev = Stream.EmitAbbrev(Abbv); 595 // Abbrev for CST_CODE_CSTRING. 596 Abbv = new BitCodeAbbrev(); 597 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 600 CString6Abbrev = Stream.EmitAbbrev(Abbv); 601 } 602 603 SmallVector<uint64_t, 64> Record; 604 605 const ValueEnumerator::ValueList &Vals = VE.getValues(); 606 const Type *LastTy = 0; 607 for (unsigned i = FirstVal; i != LastVal; ++i) { 608 const Value *V = Vals[i].first; 609 if (isa<MetadataBase>(V)) 610 continue; 611 // If we need to switch types, do so now. 612 if (V->getType() != LastTy) { 613 LastTy = V->getType(); 614 Record.push_back(VE.getTypeID(LastTy)); 615 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 616 CONSTANTS_SETTYPE_ABBREV); 617 Record.clear(); 618 } 619 620 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 621 Record.push_back(unsigned(IA->hasSideEffects())); 622 623 // Add the asm string. 624 const std::string &AsmStr = IA->getAsmString(); 625 Record.push_back(AsmStr.size()); 626 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 627 Record.push_back(AsmStr[i]); 628 629 // Add the constraint string. 630 const std::string &ConstraintStr = IA->getConstraintString(); 631 Record.push_back(ConstraintStr.size()); 632 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 633 Record.push_back(ConstraintStr[i]); 634 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 635 Record.clear(); 636 continue; 637 } 638 const Constant *C = cast<Constant>(V); 639 unsigned Code = -1U; 640 unsigned AbbrevToUse = 0; 641 if (C->isNullValue()) { 642 Code = bitc::CST_CODE_NULL; 643 } else if (isa<UndefValue>(C)) { 644 Code = bitc::CST_CODE_UNDEF; 645 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 646 if (IV->getBitWidth() <= 64) { 647 int64_t V = IV->getSExtValue(); 648 if (V >= 0) 649 Record.push_back(V << 1); 650 else 651 Record.push_back((-V << 1) | 1); 652 Code = bitc::CST_CODE_INTEGER; 653 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 654 } else { // Wide integers, > 64 bits in size. 655 // We have an arbitrary precision integer value to write whose 656 // bit width is > 64. However, in canonical unsigned integer 657 // format it is likely that the high bits are going to be zero. 658 // So, we only write the number of active words. 659 unsigned NWords = IV->getValue().getActiveWords(); 660 const uint64_t *RawWords = IV->getValue().getRawData(); 661 for (unsigned i = 0; i != NWords; ++i) { 662 int64_t V = RawWords[i]; 663 if (V >= 0) 664 Record.push_back(V << 1); 665 else 666 Record.push_back((-V << 1) | 1); 667 } 668 Code = bitc::CST_CODE_WIDE_INTEGER; 669 } 670 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 671 Code = bitc::CST_CODE_FLOAT; 672 const Type *Ty = CFP->getType(); 673 if (Ty == Type::FloatTy || Ty == Type::DoubleTy) { 674 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 675 } else if (Ty == Type::X86_FP80Ty) { 676 // api needed to prevent premature destruction 677 // bits are not in the same order as a normal i80 APInt, compensate. 678 APInt api = CFP->getValueAPF().bitcastToAPInt(); 679 const uint64_t *p = api.getRawData(); 680 Record.push_back((p[1] << 48) | (p[0] >> 16)); 681 Record.push_back(p[0] & 0xffffLL); 682 } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) { 683 APInt api = CFP->getValueAPF().bitcastToAPInt(); 684 const uint64_t *p = api.getRawData(); 685 Record.push_back(p[0]); 686 Record.push_back(p[1]); 687 } else { 688 assert (0 && "Unknown FP type!"); 689 } 690 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 691 // Emit constant strings specially. 692 unsigned NumOps = C->getNumOperands(); 693 // If this is a null-terminated string, use the denser CSTRING encoding. 694 if (C->getOperand(NumOps-1)->isNullValue()) { 695 Code = bitc::CST_CODE_CSTRING; 696 --NumOps; // Don't encode the null, which isn't allowed by char6. 697 } else { 698 Code = bitc::CST_CODE_STRING; 699 AbbrevToUse = String8Abbrev; 700 } 701 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 702 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 703 for (unsigned i = 0; i != NumOps; ++i) { 704 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 705 Record.push_back(V); 706 isCStr7 &= (V & 128) == 0; 707 if (isCStrChar6) 708 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 709 } 710 711 if (isCStrChar6) 712 AbbrevToUse = CString6Abbrev; 713 else if (isCStr7) 714 AbbrevToUse = CString7Abbrev; 715 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 716 isa<ConstantVector>(V)) { 717 Code = bitc::CST_CODE_AGGREGATE; 718 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 719 Record.push_back(VE.getValueID(C->getOperand(i))); 720 AbbrevToUse = AggregateAbbrev; 721 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 722 switch (CE->getOpcode()) { 723 default: 724 if (Instruction::isCast(CE->getOpcode())) { 725 Code = bitc::CST_CODE_CE_CAST; 726 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 727 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 728 Record.push_back(VE.getValueID(C->getOperand(0))); 729 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 730 } else { 731 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 732 Code = bitc::CST_CODE_CE_BINOP; 733 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 734 Record.push_back(VE.getValueID(C->getOperand(0))); 735 Record.push_back(VE.getValueID(C->getOperand(1))); 736 uint64_t Flags = GetOptimizationFlags(CE); 737 if (Flags != 0) 738 Record.push_back(Flags); 739 } 740 break; 741 case Instruction::GetElementPtr: 742 Code = bitc::CST_CODE_CE_GEP; 743 if (cast<GEPOperator>(C)->isInBounds()) 744 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 745 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 746 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 747 Record.push_back(VE.getValueID(C->getOperand(i))); 748 } 749 break; 750 case Instruction::Select: 751 Code = bitc::CST_CODE_CE_SELECT; 752 Record.push_back(VE.getValueID(C->getOperand(0))); 753 Record.push_back(VE.getValueID(C->getOperand(1))); 754 Record.push_back(VE.getValueID(C->getOperand(2))); 755 break; 756 case Instruction::ExtractElement: 757 Code = bitc::CST_CODE_CE_EXTRACTELT; 758 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 759 Record.push_back(VE.getValueID(C->getOperand(0))); 760 Record.push_back(VE.getValueID(C->getOperand(1))); 761 break; 762 case Instruction::InsertElement: 763 Code = bitc::CST_CODE_CE_INSERTELT; 764 Record.push_back(VE.getValueID(C->getOperand(0))); 765 Record.push_back(VE.getValueID(C->getOperand(1))); 766 Record.push_back(VE.getValueID(C->getOperand(2))); 767 break; 768 case Instruction::ShuffleVector: 769 // If the return type and argument types are the same, this is a 770 // standard shufflevector instruction. If the types are different, 771 // then the shuffle is widening or truncating the input vectors, and 772 // the argument type must also be encoded. 773 if (C->getType() == C->getOperand(0)->getType()) { 774 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 775 } else { 776 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 777 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 778 } 779 Record.push_back(VE.getValueID(C->getOperand(0))); 780 Record.push_back(VE.getValueID(C->getOperand(1))); 781 Record.push_back(VE.getValueID(C->getOperand(2))); 782 break; 783 case Instruction::ICmp: 784 case Instruction::FCmp: 785 Code = bitc::CST_CODE_CE_CMP; 786 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 787 Record.push_back(VE.getValueID(C->getOperand(0))); 788 Record.push_back(VE.getValueID(C->getOperand(1))); 789 Record.push_back(CE->getPredicate()); 790 break; 791 } 792 } else { 793 llvm_unreachable("Unknown constant!"); 794 } 795 Stream.EmitRecord(Code, Record, AbbrevToUse); 796 Record.clear(); 797 } 798 799 Stream.ExitBlock(); 800 } 801 802 static void WriteModuleConstants(const ValueEnumerator &VE, 803 BitstreamWriter &Stream) { 804 const ValueEnumerator::ValueList &Vals = VE.getValues(); 805 806 // Find the first constant to emit, which is the first non-globalvalue value. 807 // We know globalvalues have been emitted by WriteModuleInfo. 808 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 809 if (!isa<GlobalValue>(Vals[i].first)) { 810 WriteConstants(i, Vals.size(), VE, Stream, true); 811 return; 812 } 813 } 814 } 815 816 /// PushValueAndType - The file has to encode both the value and type id for 817 /// many values, because we need to know what type to create for forward 818 /// references. However, most operands are not forward references, so this type 819 /// field is not needed. 820 /// 821 /// This function adds V's value ID to Vals. If the value ID is higher than the 822 /// instruction ID, then it is a forward reference, and it also includes the 823 /// type ID. 824 static bool PushValueAndType(const Value *V, unsigned InstID, 825 SmallVector<unsigned, 64> &Vals, 826 ValueEnumerator &VE) { 827 unsigned ValID = VE.getValueID(V); 828 Vals.push_back(ValID); 829 if (ValID >= InstID) { 830 Vals.push_back(VE.getTypeID(V->getType())); 831 return true; 832 } 833 return false; 834 } 835 836 /// WriteInstruction - Emit an instruction to the specified stream. 837 static void WriteInstruction(const Instruction &I, unsigned InstID, 838 ValueEnumerator &VE, BitstreamWriter &Stream, 839 SmallVector<unsigned, 64> &Vals) { 840 unsigned Code = 0; 841 unsigned AbbrevToUse = 0; 842 switch (I.getOpcode()) { 843 default: 844 if (Instruction::isCast(I.getOpcode())) { 845 Code = bitc::FUNC_CODE_INST_CAST; 846 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 847 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 848 Vals.push_back(VE.getTypeID(I.getType())); 849 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 850 } else { 851 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 852 Code = bitc::FUNC_CODE_INST_BINOP; 853 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 854 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 855 Vals.push_back(VE.getValueID(I.getOperand(1))); 856 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 857 uint64_t Flags = GetOptimizationFlags(&I); 858 if (Flags != 0) { 859 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 860 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 861 Vals.push_back(Flags); 862 } 863 } 864 break; 865 866 case Instruction::GetElementPtr: 867 Code = bitc::FUNC_CODE_INST_GEP; 868 if (cast<GEPOperator>(&I)->isInBounds()) 869 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 870 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 871 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 872 break; 873 case Instruction::ExtractValue: { 874 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 875 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 876 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 877 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 878 Vals.push_back(*i); 879 break; 880 } 881 case Instruction::InsertValue: { 882 Code = bitc::FUNC_CODE_INST_INSERTVAL; 883 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 884 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 885 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 886 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 887 Vals.push_back(*i); 888 break; 889 } 890 case Instruction::Select: 891 Code = bitc::FUNC_CODE_INST_VSELECT; 892 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 893 Vals.push_back(VE.getValueID(I.getOperand(2))); 894 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 895 break; 896 case Instruction::ExtractElement: 897 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 898 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 899 Vals.push_back(VE.getValueID(I.getOperand(1))); 900 break; 901 case Instruction::InsertElement: 902 Code = bitc::FUNC_CODE_INST_INSERTELT; 903 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 904 Vals.push_back(VE.getValueID(I.getOperand(1))); 905 Vals.push_back(VE.getValueID(I.getOperand(2))); 906 break; 907 case Instruction::ShuffleVector: 908 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 909 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 910 Vals.push_back(VE.getValueID(I.getOperand(1))); 911 Vals.push_back(VE.getValueID(I.getOperand(2))); 912 break; 913 case Instruction::ICmp: 914 case Instruction::FCmp: 915 // compare returning Int1Ty or vector of Int1Ty 916 Code = bitc::FUNC_CODE_INST_CMP2; 917 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 918 Vals.push_back(VE.getValueID(I.getOperand(1))); 919 Vals.push_back(cast<CmpInst>(I).getPredicate()); 920 break; 921 922 case Instruction::Ret: 923 { 924 Code = bitc::FUNC_CODE_INST_RET; 925 unsigned NumOperands = I.getNumOperands(); 926 if (NumOperands == 0) 927 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 928 else if (NumOperands == 1) { 929 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 930 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 931 } else { 932 for (unsigned i = 0, e = NumOperands; i != e; ++i) 933 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 934 } 935 } 936 break; 937 case Instruction::Br: 938 { 939 Code = bitc::FUNC_CODE_INST_BR; 940 BranchInst &II(cast<BranchInst>(I)); 941 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 942 if (II.isConditional()) { 943 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 944 Vals.push_back(VE.getValueID(II.getCondition())); 945 } 946 } 947 break; 948 case Instruction::Switch: 949 Code = bitc::FUNC_CODE_INST_SWITCH; 950 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 951 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 952 Vals.push_back(VE.getValueID(I.getOperand(i))); 953 break; 954 case Instruction::Invoke: { 955 const InvokeInst *II = cast<InvokeInst>(&I); 956 const Value *Callee(II->getCalledValue()); 957 const PointerType *PTy = cast<PointerType>(Callee->getType()); 958 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 959 Code = bitc::FUNC_CODE_INST_INVOKE; 960 961 Vals.push_back(VE.getAttributeID(II->getAttributes())); 962 Vals.push_back(II->getCallingConv()); 963 Vals.push_back(VE.getValueID(II->getNormalDest())); 964 Vals.push_back(VE.getValueID(II->getUnwindDest())); 965 PushValueAndType(Callee, InstID, Vals, VE); 966 967 // Emit value #'s for the fixed parameters. 968 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 969 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 970 971 // Emit type/value pairs for varargs params. 972 if (FTy->isVarArg()) { 973 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 974 i != e; ++i) 975 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 976 } 977 break; 978 } 979 case Instruction::Unwind: 980 Code = bitc::FUNC_CODE_INST_UNWIND; 981 break; 982 case Instruction::Unreachable: 983 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 984 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 985 break; 986 987 case Instruction::PHI: 988 Code = bitc::FUNC_CODE_INST_PHI; 989 Vals.push_back(VE.getTypeID(I.getType())); 990 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 991 Vals.push_back(VE.getValueID(I.getOperand(i))); 992 break; 993 994 case Instruction::Malloc: 995 Code = bitc::FUNC_CODE_INST_MALLOC; 996 Vals.push_back(VE.getTypeID(I.getType())); 997 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 998 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 999 break; 1000 1001 case Instruction::Free: 1002 Code = bitc::FUNC_CODE_INST_FREE; 1003 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1004 break; 1005 1006 case Instruction::Alloca: 1007 Code = bitc::FUNC_CODE_INST_ALLOCA; 1008 Vals.push_back(VE.getTypeID(I.getType())); 1009 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1010 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1011 break; 1012 1013 case Instruction::Load: 1014 Code = bitc::FUNC_CODE_INST_LOAD; 1015 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1016 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1017 1018 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1019 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1020 break; 1021 case Instruction::Store: 1022 Code = bitc::FUNC_CODE_INST_STORE2; 1023 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1024 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1025 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1026 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1027 break; 1028 case Instruction::Call: { 1029 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 1030 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1031 1032 Code = bitc::FUNC_CODE_INST_CALL; 1033 1034 const CallInst *CI = cast<CallInst>(&I); 1035 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 1036 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 1037 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 1038 1039 // Emit value #'s for the fixed parameters. 1040 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1041 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 1042 1043 // Emit type/value pairs for varargs params. 1044 if (FTy->isVarArg()) { 1045 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1046 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1047 i != e; ++i) 1048 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1049 } 1050 break; 1051 } 1052 case Instruction::VAArg: 1053 Code = bitc::FUNC_CODE_INST_VAARG; 1054 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1055 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1056 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1057 break; 1058 } 1059 1060 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1061 Vals.clear(); 1062 } 1063 1064 // Emit names for globals/functions etc. 1065 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1066 const ValueEnumerator &VE, 1067 BitstreamWriter &Stream) { 1068 if (VST.empty()) return; 1069 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1070 1071 // FIXME: Set up the abbrev, we know how many values there are! 1072 // FIXME: We know if the type names can use 7-bit ascii. 1073 SmallVector<unsigned, 64> NameVals; 1074 1075 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1076 SI != SE; ++SI) { 1077 1078 const ValueName &Name = *SI; 1079 1080 // Figure out the encoding to use for the name. 1081 bool is7Bit = true; 1082 bool isChar6 = true; 1083 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1084 C != E; ++C) { 1085 if (isChar6) 1086 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1087 if ((unsigned char)*C & 128) { 1088 is7Bit = false; 1089 break; // don't bother scanning the rest. 1090 } 1091 } 1092 1093 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1094 1095 // VST_ENTRY: [valueid, namechar x N] 1096 // VST_BBENTRY: [bbid, namechar x N] 1097 unsigned Code; 1098 if (isa<BasicBlock>(SI->getValue())) { 1099 Code = bitc::VST_CODE_BBENTRY; 1100 if (isChar6) 1101 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1102 } else { 1103 Code = bitc::VST_CODE_ENTRY; 1104 if (isChar6) 1105 AbbrevToUse = VST_ENTRY_6_ABBREV; 1106 else if (is7Bit) 1107 AbbrevToUse = VST_ENTRY_7_ABBREV; 1108 } 1109 1110 NameVals.push_back(VE.getValueID(SI->getValue())); 1111 for (const char *P = Name.getKeyData(), 1112 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1113 NameVals.push_back((unsigned char)*P); 1114 1115 // Emit the finished record. 1116 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1117 NameVals.clear(); 1118 } 1119 Stream.ExitBlock(); 1120 } 1121 1122 /// WriteFunction - Emit a function body to the module stream. 1123 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1124 BitstreamWriter &Stream) { 1125 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1126 VE.incorporateFunction(F); 1127 1128 SmallVector<unsigned, 64> Vals; 1129 1130 // Emit the number of basic blocks, so the reader can create them ahead of 1131 // time. 1132 Vals.push_back(VE.getBasicBlocks().size()); 1133 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1134 Vals.clear(); 1135 1136 // If there are function-local constants, emit them now. 1137 unsigned CstStart, CstEnd; 1138 VE.getFunctionConstantRange(CstStart, CstEnd); 1139 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1140 1141 // Keep a running idea of what the instruction ID is. 1142 unsigned InstID = CstEnd; 1143 1144 // Finally, emit all the instructions, in order. 1145 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1146 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1147 I != E; ++I) { 1148 WriteInstruction(*I, InstID, VE, Stream, Vals); 1149 if (I->getType() != Type::VoidTy) 1150 ++InstID; 1151 } 1152 1153 // Emit names for all the instructions etc. 1154 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1155 1156 VE.purgeFunction(); 1157 Stream.ExitBlock(); 1158 } 1159 1160 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1161 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1162 const ValueEnumerator &VE, 1163 BitstreamWriter &Stream) { 1164 if (TST.empty()) return; 1165 1166 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1167 1168 // 7-bit fixed width VST_CODE_ENTRY strings. 1169 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1170 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1172 Log2_32_Ceil(VE.getTypes().size()+1))); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1175 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1176 1177 SmallVector<unsigned, 64> NameVals; 1178 1179 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1180 TI != TE; ++TI) { 1181 // TST_ENTRY: [typeid, namechar x N] 1182 NameVals.push_back(VE.getTypeID(TI->second)); 1183 1184 const std::string &Str = TI->first; 1185 bool is7Bit = true; 1186 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1187 NameVals.push_back((unsigned char)Str[i]); 1188 if (Str[i] & 128) 1189 is7Bit = false; 1190 } 1191 1192 // Emit the finished record. 1193 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1194 NameVals.clear(); 1195 } 1196 1197 Stream.ExitBlock(); 1198 } 1199 1200 // Emit blockinfo, which defines the standard abbreviations etc. 1201 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1202 // We only want to emit block info records for blocks that have multiple 1203 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1204 // blocks can defined their abbrevs inline. 1205 Stream.EnterBlockInfoBlock(2); 1206 1207 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1208 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1213 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1214 Abbv) != VST_ENTRY_8_ABBREV) 1215 llvm_unreachable("Unexpected abbrev ordering!"); 1216 } 1217 1218 { // 7-bit fixed width VST_ENTRY strings. 1219 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1220 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1224 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1225 Abbv) != VST_ENTRY_7_ABBREV) 1226 llvm_unreachable("Unexpected abbrev ordering!"); 1227 } 1228 { // 6-bit char6 VST_ENTRY strings. 1229 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1230 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1234 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1235 Abbv) != VST_ENTRY_6_ABBREV) 1236 llvm_unreachable("Unexpected abbrev ordering!"); 1237 } 1238 { // 6-bit char6 VST_BBENTRY strings. 1239 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1240 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1244 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1245 Abbv) != VST_BBENTRY_6_ABBREV) 1246 llvm_unreachable("Unexpected abbrev ordering!"); 1247 } 1248 1249 1250 1251 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1252 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1253 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1255 Log2_32_Ceil(VE.getTypes().size()+1))); 1256 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1257 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1258 llvm_unreachable("Unexpected abbrev ordering!"); 1259 } 1260 1261 { // INTEGER abbrev for CONSTANTS_BLOCK. 1262 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1263 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1265 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1266 Abbv) != CONSTANTS_INTEGER_ABBREV) 1267 llvm_unreachable("Unexpected abbrev ordering!"); 1268 } 1269 1270 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1271 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1272 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1275 Log2_32_Ceil(VE.getTypes().size()+1))); 1276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1277 1278 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1279 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1280 llvm_unreachable("Unexpected abbrev ordering!"); 1281 } 1282 { // NULL abbrev for CONSTANTS_BLOCK. 1283 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1284 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1285 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1286 Abbv) != CONSTANTS_NULL_Abbrev) 1287 llvm_unreachable("Unexpected abbrev ordering!"); 1288 } 1289 1290 // FIXME: This should only use space for first class types! 1291 1292 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1293 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1294 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1298 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1299 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1300 llvm_unreachable("Unexpected abbrev ordering!"); 1301 } 1302 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1303 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1304 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1308 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1309 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1310 llvm_unreachable("Unexpected abbrev ordering!"); 1311 } 1312 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1313 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1314 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1319 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1320 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1321 llvm_unreachable("Unexpected abbrev ordering!"); 1322 } 1323 { // INST_CAST abbrev for FUNCTION_BLOCK. 1324 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1325 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1328 Log2_32_Ceil(VE.getTypes().size()+1))); 1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1330 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1331 Abbv) != FUNCTION_INST_CAST_ABBREV) 1332 llvm_unreachable("Unexpected abbrev ordering!"); 1333 } 1334 1335 { // INST_RET abbrev for FUNCTION_BLOCK. 1336 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1337 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1338 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1339 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1340 llvm_unreachable("Unexpected abbrev ordering!"); 1341 } 1342 { // INST_RET abbrev for FUNCTION_BLOCK. 1343 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1344 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1346 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1347 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1348 llvm_unreachable("Unexpected abbrev ordering!"); 1349 } 1350 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1351 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1352 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1353 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1354 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1355 llvm_unreachable("Unexpected abbrev ordering!"); 1356 } 1357 1358 Stream.ExitBlock(); 1359 } 1360 1361 1362 /// WriteModule - Emit the specified module to the bitstream. 1363 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1364 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1365 1366 // Emit the version number if it is non-zero. 1367 if (CurVersion) { 1368 SmallVector<unsigned, 1> Vals; 1369 Vals.push_back(CurVersion); 1370 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1371 } 1372 1373 // Analyze the module, enumerating globals, functions, etc. 1374 ValueEnumerator VE(M); 1375 1376 // Emit blockinfo, which defines the standard abbreviations etc. 1377 WriteBlockInfo(VE, Stream); 1378 1379 // Emit information about parameter attributes. 1380 WriteAttributeTable(VE, Stream); 1381 1382 // Emit information describing all of the types in the module. 1383 WriteTypeTable(VE, Stream); 1384 1385 // Emit top-level description of module, including target triple, inline asm, 1386 // descriptors for global variables, and function prototype info. 1387 WriteModuleInfo(M, VE, Stream); 1388 1389 // Emit constants. 1390 WriteModuleConstants(VE, Stream); 1391 1392 // Emit metadata. 1393 WriteModuleMetadata(VE, Stream); 1394 1395 // Emit function bodies. 1396 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1397 if (!I->isDeclaration()) 1398 WriteFunction(*I, VE, Stream); 1399 1400 // Emit the type symbol table information. 1401 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1402 1403 // Emit names for globals/functions etc. 1404 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1405 1406 Stream.ExitBlock(); 1407 } 1408 1409 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1410 /// header and trailer to make it compatible with the system archiver. To do 1411 /// this we emit the following header, and then emit a trailer that pads the 1412 /// file out to be a multiple of 16 bytes. 1413 /// 1414 /// struct bc_header { 1415 /// uint32_t Magic; // 0x0B17C0DE 1416 /// uint32_t Version; // Version, currently always 0. 1417 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1418 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1419 /// uint32_t CPUType; // CPU specifier. 1420 /// ... potentially more later ... 1421 /// }; 1422 enum { 1423 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1424 DarwinBCHeaderSize = 5*4 1425 }; 1426 1427 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1428 const std::string &TT) { 1429 unsigned CPUType = ~0U; 1430 1431 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1432 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1433 // specific constants here because they are implicitly part of the Darwin ABI. 1434 enum { 1435 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1436 DARWIN_CPU_TYPE_X86 = 7, 1437 DARWIN_CPU_TYPE_POWERPC = 18 1438 }; 1439 1440 if (TT.find("x86_64-") == 0) 1441 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1442 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1443 TT[4] == '-' && TT[1] - '3' < 6) 1444 CPUType = DARWIN_CPU_TYPE_X86; 1445 else if (TT.find("powerpc-") == 0) 1446 CPUType = DARWIN_CPU_TYPE_POWERPC; 1447 else if (TT.find("powerpc64-") == 0) 1448 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1449 1450 // Traditional Bitcode starts after header. 1451 unsigned BCOffset = DarwinBCHeaderSize; 1452 1453 Stream.Emit(0x0B17C0DE, 32); 1454 Stream.Emit(0 , 32); // Version. 1455 Stream.Emit(BCOffset , 32); 1456 Stream.Emit(0 , 32); // Filled in later. 1457 Stream.Emit(CPUType , 32); 1458 } 1459 1460 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1461 /// finalize the header. 1462 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1463 // Update the size field in the header. 1464 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1465 1466 // If the file is not a multiple of 16 bytes, insert dummy padding. 1467 while (BufferSize & 15) { 1468 Stream.Emit(0, 8); 1469 ++BufferSize; 1470 } 1471 } 1472 1473 1474 /// WriteBitcodeToFile - Write the specified module to the specified output 1475 /// stream. 1476 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1477 raw_os_ostream RawOut(Out); 1478 // If writing to stdout, set binary mode. 1479 if (llvm::cout == Out) 1480 sys::Program::ChangeStdoutToBinary(); 1481 WriteBitcodeToFile(M, RawOut); 1482 } 1483 1484 /// WriteBitcodeToFile - Write the specified module to the specified output 1485 /// stream. 1486 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1487 std::vector<unsigned char> Buffer; 1488 BitstreamWriter Stream(Buffer); 1489 1490 Buffer.reserve(256*1024); 1491 1492 WriteBitcodeToStream( M, Stream ); 1493 1494 // If writing to stdout, set binary mode. 1495 if (&llvm::outs() == &Out) 1496 sys::Program::ChangeStdoutToBinary(); 1497 1498 // Write the generated bitstream to "Out". 1499 Out.write((char*)&Buffer.front(), Buffer.size()); 1500 1501 // Make sure it hits disk now. 1502 Out.flush(); 1503 } 1504 1505 /// WriteBitcodeToStream - Write the specified module to the specified output 1506 /// stream. 1507 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1508 // If this is darwin, emit a file header and trailer if needed. 1509 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1510 if (isDarwin) 1511 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1512 1513 // Emit the file header. 1514 Stream.Emit((unsigned)'B', 8); 1515 Stream.Emit((unsigned)'C', 8); 1516 Stream.Emit(0x0, 4); 1517 Stream.Emit(0xC, 4); 1518 Stream.Emit(0xE, 4); 1519 Stream.Emit(0xD, 4); 1520 1521 // Emit the module. 1522 WriteModule(M, Stream); 1523 1524 if (isDarwin) 1525 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1526 } 1527